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Abstract

Learning from noisy labels is a long-standing problem in machine learning for real
applications. One of the main research lines focuses on learning a label corrector
to purify potential noisy labels. However, these methods typically rely on strict
assumptions and are limited to certain types of label noise. In this paper, we
reformulate the label-noise problem from a generative-model perspective, i.e.,
labels are generated by gradually refining an initial random guess. This new
perspective immediately enables existing powerful diffusion models to seamlessly
learn the stochastic generative process. Once the generative uncertainty is modeled,
we can perform classification inference using maximum likelihood estimation
of labels. To mitigate the impact of noisy labels, we propose Label-Retrieval-
Augmented (LRA) diffusion model 1, which leverages neighbor consistency to
effectively construct pseudo-clean labels for diffusion training. Our model is
flexible and general, allowing easy incorporation of different types of conditional
information, e.g., use of pre-trained models, to further boost model performance.
Extensive experiments are conducted for evaluation. Our model achieves new
state-of-the-art (SOTA) results on all standard real-world benchmark datasets.
Remarkably, by incorporating conditional information from the powerful CLIP
model, our method can boost the current SOTA accuracy by 10-20 absolute points
in many cases.

1 Introduction

Deep neural networks have achieved extraordinary accuracy on various classification tasks. These
models are typically trained through supervised learning using large amounts of labeled data. However,
large-scale data labeling could cost huge amount of time and effort, and is prone to errors caused by
human mistakes or automatic labeling algorithms [1]. In addition, research has shown that the ability
of deep neural network models to fit random labels can result in reduced generalization ability when
learning with corrupted labels [2]. Therefore, robust learning methods using noisy labels are essential
for applying deep learning models to cheap yet imperfect datasets for supervised learning tasks.

There are multiple types of label noise investigated by previous research. More recent research
has focused on studying the more realistic feature-dependent label noise, where the probability of
mislabeling a given instance depends on its characteristics. This type of noise is more consistent with
label noise in real-world datasets [3, 4, 1, 5, 6, 7]. To address this type of noise, a model is expected
to be able to estimate the uncertainty of each training label. Many state-of-the-art methods have
primarily relied on the observation that deep neural networks tend to learn simple patterns before

1Code is available at https://github.com/puar-playground/LRA-diffusion
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Label denoising process

Label noising process
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Figure 1: Label denoising as a reverse noising process.

memorizing random noise [8, 9]. This means a temporary phase exists in the learning process, where
the model has learned useful features but has yet not started overfitting corrupt labels. At this stage,
the model predictions can be used to modify the training labels, so that they are more consistent
with model predictions [10, 11, 12, 13, 14, 15]. By correctly modifying the labels, the number of
clean training sample increases, which can further benefit the training. These type of approaches,
however, is inherently risky because the point at which the model starts to overfit varies with the
network structure and dataset. Starting too early can corrupt the training data, while starting too late
may not prevent overfitting [16]. Therefore, it is vital to carefully tune the hyper-parameters of the
training strategy, such as the number of epochs for warm-up training, learning rate, and uncertainty
threshold, to achieve successful training results.

Another class of methods adopts the assumption of label propagation in semi-supervised learning
[17, 18], where nearby data points in a feature space tend to have the same label. Therefore, they use
neighbor consistency2 regularization to prevent overfitting of the model [19, 20]. The performance
highly depends on the quality of the encoder that maps the data to the feature space, as retrieving
a neighbor that belongs to a different class could further mislead the training process. Encoders
are therefore required to first learn high-level features of the data that can be used for classification,
which could be trained simultaneously with the classifier using noisy labels. However, the training
can also lead to overfitting or underfitting.

In this paper, by contrast, we formulate the label noise problem from a generative-model perspective,
which naturally provides new insights into approaching the problem. Our intuition is to view the noisy
labeling process as a stochastic label generation process. Thus, we propose to adopt the powerful
diffusion model as the generative building block. Figure 1 illustrates our intuition. In the generative
process, we start with a noisy estimation of the label, then gradually refine it to recover the clean
label, which is equivalent to the reverse denoising process of the diffusion model.

Specifically, the diffusion model takes a noisy label and some useful conditional information (to be
specified) as inputs, and learns to recover/generate the ground-truth labels as outputs. One challenge
in this setting is that only noisy labels are available in practice for training. To overcome this issue,
we adopt the principle of neighbor consistency, and propose label-retrieval augmentation to construct
pseudo clean labels for diffusion model training, where a pre-trained image encoder is used to define
the neighborhood of a sample. It is worth noting that the pre-trained image encoder would not be
affected by the label noise, because they can be trained in a self-supervised manner [21, 22] or on
an additional clean dataset [23, 24]. In fact, pre-training can tremendously improve the model’s
adversarial robustness [25] and has been used to improve model robustness to label corruption [26].
Another merit of our design is that it is general enough to allow natural incorporation of powerful
large pre-trained model such as the CLIP model to further boost the performance.

In addition, the probability nature of diffusion models can also be better equipped to handle uncertainty
in the data and label, thus providing more robust and accurate predictions. We call our model LRA-
diffusion (label-retrieval-augmented diffusion).

Our main contributions are summarized as follows:

• We formulate learning from noisy labels as modeling a stochastic process of conditional
label generation, and propose to adopt the powerful diffusion model to learn the conditional
label distribution.

2Nearby data points tend to have the same label.
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• We incorporate the neighbor consistency principle into the modeling, and design a novel
label-retrieval-augmented diffusion model to learn effectively from noisy label data.

• We further improve our model by incorporating auxiliary conditional information from large
pre-trained models such as CLIP.

• Our model achieves the new state-of-the-art (SOTA) in various real-world noisy label
benchmarks, e.g., 20% accuracy improvement on noisy CIFAR-100 benchmark.

2 Preliminary

Diffusion models were initially designed for generative modeling. Recently, it has been extended for
classification and regression problems. In this section, we introduce the Classification and Regression
Diffusion Models (CARD) [27], which our model is based on.

The CARD model transforms deterministic classification into a conditional label generation process,
allowing for more flexible uncertainty modeling in the labeling process [27]. Similar to the standard
diffusion model, CARD consists of a forward process and a reverse process. In the forward process, an
n-dimensional one-hot label y0 is gradually corrupted to a series of intermediate random vectors y1:T ,
which converges to a random variable with a multi-variant Gaussian distribution N (fq(x), I) (latent
distribution) after T steps, where the mean is defined by a pre-trained n-dimensional image encoder fq .
The transition steps between adjacent intermediate predictions is modeled as Gaussian distributions,
q(yt|yt−1, fq) = N (yt;µt, βtI), with mean values µ1, · · · ,µT and a variance schedule β1, · · · , βT ,
where µt =

√
1− βtyt−1 + (1−√

1− βt)fq(x). This admits a closed-form sampling distribution,
q(yt|y0, fq) = N (yt;µt, (1−ᾱt)I, with an arbitrary timestep t and µt =

√
ᾱty0+(1−√

ᾱt)fq(x).
The mean term can be viewed as an interpolation between true data y0 and the mean of the latent
distribution fq(x) with a weighting term ᾱt =

∏
t(1− βt).

In the reverse (generative) process, CARD reconstructs a label vector y0 from an n-dimensional
Gaussian noise yT ∼ N (fq(x), I) by approximating the denoising transition steps conditioned on
the data point x and another pre-trained image encoder fp in an arbitrary dimension. The transition
step is also Gaussian for an infinitesimal variance βt [28] (define β̃t =

1−ᾱt−1

1−ᾱt
βt):

pθ(yt−1|yt,x, fp) = N (yt−1;µθ(yt,x, fp, t), β̃tI). (1)

The diffusion model is learned by optimizing the evidence lower bound with stochastic gradient
descent:

LELBO = Eq

[
LT +

T∑

t>1

Lt−1 + L0

]
, where (2)

L0 = − log pθ(y0|y1,x, fp), Lt−1 = DKL (q(yt−1|yt,y0,x, fq)||pθ(yt−1|yt,x, fp))

LT = DKL (q(yT |y0,x, fq)||p(yT |x, fp)) .

Following [29], the mean term is written as µθ(yt,x, fp, t) =
1√
αt
(xt − βt√

1−ᾱt
ϵθ(yt,x, fp, t)) and

the objective can be simplified to Lsimple = ∥ϵ− ϵθ(yt,x, fp, t)∥2.

3 Label-Retrieval-Augmented Diffusion Model

Inspired by CARD, Label-Retrieval-Augmented (LRA) diffusion models reframe learning from
noisy labels as a stochastic process of conditional label generation (i.e., label diffusion) process. In
this section, we first provide an overview of the our model in Section 3.1 and then introduce the
proposed label-retrieval-augmented component in Section 3.2, which can leverage label consistency
in the training data. Next, we introduce an accelerated label diffusion process to significantly reduce
classification model inference time in Section 3.3. Finally, a new conditional mechanism is proposed
to enable the usage of pre-trained models in Section 3.4.
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3.1 Model Overview

Our overall label-retrieval-augmented diffusion model is illustrated in Figure 2, where a diffusion
model is adopted for progressively label denoising, by leveraging both the retrieved labels and
auxiliary information from pre-trained models. Our model employs two pre-trained networks,
denoted as fq and fp encoders, to encode conditional information that facilitates the generation
process. The fq encoder serves as a mean estimator for yT , providing an initial label guess for a given
image. This encoder could be a standard classifier trained on noisy labels. On the other hand, the fp
encoder operates as a high-dimensional feature extractor, assisting in guiding the reverse procedure.
yt and fp(x) are concatenated together before being processed. Details about our neural-network
architecture design are provided in Supplementary C.

During training, we use labels retrieved from the neighborhood as the generation target y0. Then,
in the forward process, the distribution of neighboring labels is progressively corrupted towards a
standard Gaussian distribution centered at the estimated mean fq(x). During testing, we employ a
generalized DDIM method to efficiently compute the maximum likelihood estimation of y0.

<latexit sha1_base64="bi773C3V8mRW6Wt+7psaqO8Rax4=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiTia1l047JCX9CEMplO2qGTSZiZCCH0N9y4UMStP+POv3GSZqGtBwYO59zLPXP8mDOlbfvbqqytb2xuVbdrO7t7+wf1w6OeihJJaJdEPJIDHyvKmaBdzTSng1hSHPqc9v3Zfe73n6hULBIdncbUC/FEsIARrI3kuiHWUz/I0vmoM6o37KZdAK0SpyQNKNEe1b/ccUSSkApNOFZq6Nix9jIsNSOczmtuomiMyQxP6NBQgUOqvKzIPEdnRhmjIJLmCY0K9fdGhkOl0tA3k3lGtezl4n/eMNHBrZcxESeaCrI4FCQc6QjlBaAxk5RonhqCiWQmKyJTLDHRpqaaKcFZ/vIq6V00nevm1eNlo3VX1lGFEziFc3DgBlrwAG3oAoEYnuEV3qzEerHerY/FaMUqd47hD6zPH2Qzke4=</latexit>yT
<latexit sha1_base64="ObOHH96/pxVPLfUjsZGtzgazFnE=">AAAB9XicbVDLSsNAFL3xWeur6tJNsAiuSiK+lkU3LivYB7S1TKaTduhkEmZulBDyH25cKOLWf3Hn3zhps9DWAwOHc+7lnjleJLhGx/m2lpZXVtfWSxvlza3tnd3K3n5Lh7GirElDEaqORzQTXLImchSsEylGAk+wtje5yf32I1Oah/Iek4j1AzKS3OeUoJEeegHBseenSTZIMRtUqk7NmcJeJG5BqlCgMah89YYhjQMmkQqiddd1IuynRCGngmXlXqxZROiEjFjXUEkCpvvpNHVmHxtlaPuhMk+iPVV/b6Qk0DoJPDOZp9TzXi7+53Vj9K/6KZdRjEzS2SE/FjaGdl6BPeSKURSJIYQqbrLadEwUoWiKKpsS3PkvL5LWac29qJ3fnVXr10UdJTiEIzgBFy6hDrfQgCZQUPAMr/BmPVkv1rv1MRtdsoqdA/gD6/MHYU2TGg==</latexit>yt

<latexit sha1_base64="Yb3UnQdiZDF80f6CaINnb0H2XHM=">AAAB+XicbVDLSsNAFJ34rPUVdelmsAhuLIn4WhbduKxgH9CGMJlO2qGTSZi5KZSQP3HjQhG3/ok7/8ZJm4W2Hhg4nHMv98wJEsE1OM63tbK6tr6xWdmqbu/s7u3bB4dtHaeKshaNRay6AdFMcMlawEGwbqIYiQLBOsH4vvA7E6Y0j+UTTBPmRWQoecgpASP5tt2PCIyCMJvmfgbnbu7bNafuzICXiVuSGirR9O2v/iCmacQkUEG07rlOAl5GFHAqWF7tp5olhI7JkPUMlSRi2stmyXN8apQBDmNlngQ8U39vZCTSehoFZrLIqRe9QvzP66UQ3noZl0kKTNL5oTAVGGJc1IAHXDEKYmoIoYqbrJiOiCIUTFlVU4K7+OVl0r6ou9f1q8fLWuOurKOCjtEJOkMuukEN9ICaqIUomqBn9IrerMx6sd6tj/noilXuHKE/sD5/AL1Lk70=</latexit>yt�1

<latexit sha1_base64="OxNWMMW8gio5nPun+01zUjW0INo=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmZnJ8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgeZ9TglZqdmmk0PTKFa/qzeAuEz8nFchR75W/upGiacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKknMTJDNrp24J1aJ3L7StiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOiv3rIOMySZFJOl/UT4WLyp2+7kZcM4pibAmhmttbXTokmlC0AZVsCP7iy8ukeVb1L6sX9+eV2k0eRxGO4BhOwYcrqMEd1KEBFB7hGV7hzVHOi/PufMxbC04+cwh/4Hz+ALGXjzk=</latexit>· · ·<latexit sha1_base64="Ma28allxWVGJmPGIb7aFfH4Vhtw=">AAACEXicbVDLSsNAFJ3UV62vqEs3g0VoQUoivpZFN7qRCvYBbSiT6aQdOpnEmYlYQn7Bjb/ixoUibt2582+ctBG09cDAuefcy9x73JBRqSzry8jNzS8sLuWXCyura+sb5uZWQwaRwKSOAxaIloskYZSTuqKKkVYoCPJdRpru8Dz1m3dESBrwGzUKieOjPqcexUhpqWuWOj5SA4xYfJWUvO7tpHa9+D4p78Of4jIpd82iVbHGgLPEzkgRZKh1zc9OL8CRT7jCDEnZtq1QOTESimJGkkInkiREeIj6pK0pRz6RTjy+KIF7WulBLxD6cQXH6u+JGPlSjnxXd6YrymkvFf/z2pHyTp2Y8jBShOPJR17EoApgGg/sUUGwYiNNEBZU7wrxAAmElQ6xoEOwp0+eJY2Din1cObo+LFbPsjjyYAfsghKwwQmoggtQA3WAwQN4Ai/g1Xg0no03433SmjOymW3wB8bHNxypnTI=</latexit>N (fq(x), I)

<latexit sha1_base64="BhU49qUPh2JqpambY/vaiWGpvHI=">AAACCHicbVC5TgMxFPRyhnAtUFJgESHREO0irjKChjJI5JCSKPJ63yZWvAf2W0S0SknDr9BQgBAtn0DH3+AcBSSMZGk0743tGS+RQqPjfFtz8wuLS8u5lfzq2vrGpr21XdVxqjhUeCxjVfeYBikiqKBACfVEAQs9CTWvdzWc1+5BaRFHt9hPoBWyTiQCwRkaqW3vNREeMDOeI1TMXOJTiHjsg6IDGrTv2nbBKToj0FniTkiBTFBu219NP+ZpCBFyybRuuE6CrYwpFFzCIN9MNSSM91gHGoZGLATdykZBBvTAKD4NYmVOhHSk/nZkLNS6H3pmM2TY1dOzofjfrJFicNHKRJSkaOKNHwpSSTGmw1aoLxRwlH1DGFfC/JXyLlOMo+kub0pwpyPPkupx0T0rnt6cFEqXkzpyZJfsk0PiknNSItekTCqEk0fyTF7Jm/VkvVjv1sd4dc6aeHbIH1ifP80CmdU=</latexit>

pre-trained encoder fq

<latexit sha1_base64="OxNWMMW8gio5nPun+01zUjW0INo=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmZnJ8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgeZ9TglZqdmmk0PTKFa/qzeAuEz8nFchR75W/upGiacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKknMTJDNrp24J1aJ3L7StiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOiv3rIOMySZFJOl/UT4WLyp2+7kZcM4pibAmhmttbXTokmlC0AZVsCP7iy8ukeVb1L6sX9+eV2k0eRxGO4BhOwYcrqMEd1KEBFB7hGV7hzVHOi/PufMxbC04+cwh/4Hz+ALGXjzk=</latexit>· · ·
<latexit sha1_base64="XG+lqIePGpe98d47Wl5FcgHwJEY=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK1hY6Q8mkmTY0kwxJRhiG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnTDjTxnW/ncrK6tr6RnWztrW9s7tX3z941DJVhHaI5FL1QqwpZ4J2DDOc9hJFcRxy2g0nt4XffaJKMykeTJbQIMYjwSJGsLGS78fYjMMoz6YDd1BvuE13BrRMvJI0oER7UP/yh5KkMRWGcKx133MTE+RYGUY4ndb8VNMEkwke0b6lAsdUB/ks8xSdWGWIIqnsEwbN1N8bOY61zuLQThYZ9aJXiP95/dRE10HORJIaKsj8UJRyZCQqCkBDpigxPLMEE8VsVkTGWGFibE01W4K3+OVl8njW9C6bF/fnjdZNWUcVjuAYTsGDK2jBHbShAwQSeIZXeHNS58V5dz7moxWn3DmEP3A+fwAto5HK</latexit>y0

<latexit sha1_base64="oYtqW787ZJEdEh42Ya39TB+yQ6c=">AAACCHicbVC7SgNBFJ2NrxhfUUsLB4NgY9gVX2XQxjKCeUASwuzs3WTI7IOZu2JYUtr4KzYWitj6CXb+jZNkC008MHA4956ZOceNpdBo299WbmFxaXklv1pYW9/Y3Cpu79R1lCgONR7JSDVdpkGKEGooUEIzVsACV0LDHVyP5417UFpE4R0OY+gErBcKX3CGRuoW99sID5gazzEqZi7xKIQ88kDREfW7cbdYssv2BHSeOBkpkQzVbvGr7UU8CSBELpnWLceOsZMyhYJLGBXaiYaY8QHrQcvQkAWgO+kkyIgeGsWjfqTMCZFO1N+OlAVaDwPXbAYM+3p2Nhb/m7US9C87qQjjBE286UN+IilGdNwK9YQCjnJoCONKmL9S3meKcTTdFUwJzmzkeVI/KTvn5bPb01LlKqsjT/bIATkiDrkgFXJDqqRGOHkkz+SVvFlP1ov1bn1MV3NW5tklf2B9/gDLfpnU</latexit>

pre-trained encoder fp

<latexit sha1_base64="jplG87BCrIqXVlDsmnggTr6z3EU=">AAACF3icbVDLSsNAFJ34rPUVdelmsAgtSEjE17LoxmUF+4Amlslk0g6dPJiZCCHkL9z4K25cKOJWd/6NkzaL2npgmMM593LvPW7MqJCm+aMtLa+srq1XNqqbW9s7u/refkdECcekjSMW8Z6LBGE0JG1JJSO9mBMUuIx03fFN4XcfCRc0Cu9lGhMnQMOQ+hQjqaSBbtiZHSA5cv0szR+yutXIT6CNvUgK9c8640Zu5wO9ZhrmBHCRWCWpgRKtgf5texFOAhJKzJAQfcuMpZMhLilmJK/aiSAxwmM0JH1FQxQQ4WSTu3J4rBQP+hFXL5Rwos52ZCgQIg1cVVlsKua9QvzP6yfSv3IyGsaJJCGeDvITBmUEi5CgRznBkqWKIMyp2hXiEeIISxVlVYVgzZ+8SDqnhnVhnN+d1ZrXZRwVcAiOQB1Y4BI0wS1ogTbA4Am8gDfwrj1rr9qH9jktXdLKngPwB9rXL7nfn6o=</latexit>

{y(1), · · · ,y(k)}

<latexit sha1_base64="sc0Hwq5HBq1x1TvSg7WEmY8aWD0=">AAACAnicbVC7SgNBFJ2Nrxhfq1ZisxgEq7ArvsqgjYVFBPOAZAmzk7vJkNkHM3fFsAQbf8XGQhFbv8LOv3E22UITDwwczrmXO+d4seAKbfvbKCwsLi2vFFdLa+sbm1vm9k5DRYlkUGeRiGTLowoED6GOHAW0Ygk08AQ0veFV5jfvQSoehXc4isENaD/kPmcUtdQ19zoID5jeUA+E1dP3JPeSzBp3zbJdsSew5omTkzLJUeuaX51exJIAQmSCKtV27BjdlErkTMC41EkUxJQNaR/amoY0AOWmkwhj61ArPcuPpH4hWhP190ZKA6VGgacnA4oDNetl4n9eO0H/wk15GCcIIZse8hNhYWRlfejMEhiKkSaUSa7/arEBlZShbq2kS3BmI8+TxnHFOauc3p6Uq5d5HUWyTw7IEXHIOamSa1IjdcLII3kmr+TNeDJejHfjYzpaMPKdXfIHxucPG9uX6A==</latexit>

Label distribution
<latexit sha1_base64="hQByjbk94KcBVL449gNsQ/74jlk=">AAAB/HicbVDLSgNBEJz1GeNrNUcvg0HwFHbF1zHoxWMEo0ISwuykNxmcnVlmesVlib/ixYMiXv0Qb/6Nk7gHXwUNRVU33V1RKoXFIPjwZmbn5hcWK0vV5ZXVtXV/Y/PS6sxwaHMttbmOmAUpFLRRoITr1ABLIglX0c3pxL+6BWOFVheYp9BL2FCJWHCGTur7tS7CHRY6pgrEcBRpY8d9vx40ginoXxKWpE5KtPr+e3egeZaAQi6ZtZ0wSLFXMIOCSxhXu5mFlPEbNoSOo4olYHvF9Pgx3XHKgMbauFJIp+r3iYIl1uZJ5DoThiP725uI/3mdDOPjXiFUmiEo/rUoziRFTSdJ0IEwwFHmjjBuhLuV8hEzjKPLq+pCCH+//Jdc7jXCw8bB+X69eVLGUSFbZJvskpAckSY5Iy3SJpzk5IE8kWfv3nv0XrzXr9YZr5ypkR/w3j4BYRWVQg==</latexit>

of neighbors
<latexit sha1_base64="Uw4exNZ9b7l98SlU/kPQ+24y8nY=">AAAB9HicbVDJSgNBFHwTtxi3qEcvjUHwFGbE7Rj04jGCWSAZQk+nJ2nSs9j9JhiGfIcXD4p49WO8+Td2JnPQxIKGouoV/V55sRQabfvbKqysrq1vFDdLW9s7u3vl/YOmjhLFeINFMlJtj2ouRcgbKFDydqw4DTzJW97odua3xlxpEYUPOIm5G9BBKHzBKBrJ7SJ/wlRS5CFOe+WKXbUzkGXi5KQCOeq98le3H7EkMGEmqdYdx47RTalCwSSflrqJ5jFlIzrgHUNDGnDtptnSU3JilD7xI2VeiCRTfydSGmg9CTwzGVAc6kVvJv7ndRL0r91UhHFirmLzj/xEEozIrAHSF4ozlBNDKFPC7ErYkCrK0PRUMiU4iycvk+ZZ1bmsXtyfV2o3eR1FOIJjOAUHrqAGd1CHBjB4hGd4hTdrbL1Y79bHfLRg5ZlD+APr8weYlpKn</latexit>

latent
<latexit sha1_base64="gMMzdY0eZLlvu79XSqf4yYnnGQc=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiTia1l047KCfUAbymQybYdOJmHmRgyh/oobF4q49UPc+TdO2iy09cCFwzn3cu89fiy4Bsf5tkorq2vrG+XNytb2zu6evX/Q1lGiKGvRSESq6xPNBJesBRwE68aKkdAXrONPbnK/88CU5pG8hzRmXkhGkg85JWCkgV3tA3uELDCbFPeTXJwO7JpTd2bAy8QtSA0VaA7sr34Q0SRkEqggWvdcJwYvIwo4FWxa6SeaxYROyIj1DJUkZNrLZsdP8bFRAjyMlCkJeKb+nshIqHUa+qYzJDDWi14u/uf1EhheeRmXcQJM0vmiYSIwRDhPAgdcMQoiNYRQxc2tmI6JIhRMXhUTgrv48jJpn9bdi/r53VmtcV3EUUaH6AidIBddoga6RU3UQhSl6Bm9ojfryXqx3q2PeWvJKmaq6A+szx8Fk5Ws</latexit>

distribution

<latexit sha1_base64="Gyz2h2HX8Wydw5IYPDwGQiDf6+8=">AAAB/3icbVC7SgNBFJ31GeNrVbCxGQyCVdgVX2XQxjKCeUCyhNnJTTJk9sHMXTGsKfwVGwtFbP0NO//G2WQLTTwwcDjnXO6d48dSaHScb2thcWl5ZbWwVlzf2Nzatnd26zpKFIcaj2Skmj7TIEUINRQooRkrYIEvoeEPrzO/cQ9Kiyi8w1EMXsD6oegJztBIHXu/jfCAqYIsBDRWEQetxx275JSdCeg8cXNSIjmqHfur3Y14EkCIXDKtW64To5cyhYJLGBfbiYaY8SHrQ8vQkAWgvXRy/5geGaVLe5EyL0Q6UX9PpCzQehT4JhkwHOhZLxP/81oJ9i69VIRxghDy6aJeIilGNCuDdoUCjnJkCONKmFspHzDFOJo2iqYEd/bL86R+UnbPy2e3p6XKVV5HgRyQQ3JMXHJBKuSGVEmNcPJInskrebOerBfr3fqYRhesfGaP/IH1+QMJJpbF</latexit>reverse process

<latexit sha1_base64="Kmslq2LaNZJR9KFB6xKkguIYp2k=">AAAB/3icbVDJSgNBFOyJW4xbVPDipTEInsKMuB2DXjxGMAskQ+jpeZM06VnofqOGMQd/xYsHRbz6G978GzvLQRMLGoqq93jV5SVSaLTtbyu3sLi0vJJfLaytb2xuFbd36jpOFYcaj2Wsmh7TIEUENRQooZkoYKEnoeH1r0Z+4w6UFnF0i4ME3JB1IxEIztBIneJeG+EBsyBW90z5NFExB62HnWLJLttj0HniTEmJTFHtFL/afszTECLkkmndcuwE3YwpFFzCsNBONSSM91kXWoZGLATtZuP8Q3poFJ+aDOZFSMfq742MhVoPQs9Mhgx7etYbif95rRSDCzcTUZIiRHxyKEglxZiOyqC+UMBRDgxhXAmTlfIeU4yjqaxgSnBmvzxP6sdl56x8enNSqlxO68iTfXJAjohDzkmFXJMqqRFOHskzeSVv1pP1Yr1bH5PRnDXd2SV/YH3+AP4plr4=</latexit>

forward process
<latexit sha1_base64="/1LI1JG7Lu3qXAoa3LrDKoxcJKc=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0VoQUsivpZFNy4r2Ae0IUymk3bo5NGZiRBivsGNv+LGhSJuXbnzb5y0WdjWAxcO59zLvfc4IaNCGsaPVlhaXlldK66XNja3tnf03b2WCCKOSRMHLOAdBwnCqE+akkpGOiEnyHMYaTujm8xvPxAuaODfyzgklocGPnUpRlJJtl4dV3oekkPHTeLUTmQKH+GMcGKmx9C1x1VbLxs1YwK4SMyclEGOhq1/9/oBjjziS8yQEF3TCKWVIC4pZiQt9SJBQoRHaEC6ivrII8JKJi+l8EgpfegGXJUv4UT9O5EgT4jYc1Rndq2Y9zLxP68bSffKSqgfRpL4eLrIjRiUAczygX3KCZYsVgRhTtWtEA8RR1iqFEsqBHP+5UXSOq2ZF7Xzu7Ny/TqPowgOwCGoABNcgjq4BQ3QBBg8gRfwBt61Z+1V+9A+p60FLZ/ZBzPQvn4BI6OdwQ==</latexit>

q(yt|yt�1, fq)

<latexit sha1_base64="l0U6341QrTmjUnZpu3kwJ9Sl47Y=">AAACJ3icbVDLSgMxFM3UV62vqks3wSJU0DIjvlZSdOOygn1AW4ZMmmlDMw+SO2IZ52/c+CtuBBXRpX9ipi1iWw8ETs65l3vvcULBFZjml5GZm19YXMou51ZW19Y38ptbNRVEkrIqDUQgGw5RTHCfVYGDYI1QMuI5gtWd/lXq1++YVDzwb2EQsrZHuj53OSWgJTt/EdpxC3oMSFJseQR6jhsPEjuGQyvBD3hCSg5+//eau3a4b+cLZskcAs8Sa0wKaIyKnX9tdQIaecwHKohSTcsMoR0TCZwKluRakWIhoX3SZU1NfeIx1Y6HdyZ4Tysd7AZSPx/wUP3bERNPqYHn6Mp0TzXtpeJ/XjMC97wdcz+MgPl0NMiNBIYAp6HhDpeMghhoQqjkeldMe0QSCjranA7Bmj55ltSOStZp6eTmuFC+HMeRRTtoFxWRhc5QGV2jCqoiih7RM3pD78aT8WJ8GJ+j0owx7tlGEzC+fwB22qbk</latexit>

p✓(yt�1|yt,x, fp)

Diffusion model

Conditional information

Label retrieval

Figure 2: Overview of the proposed framework for improving learning performance from noisy labels.
The figure depicts the three main components, including (1) using diffusion models to imitate and
inverse the label noising process; (2) using pre-trained encoders (i.e., fq and fp) within the diffusion
model, and (3) the label-retrieval-augmentation approach using the fp encoder to encourage neighbor
consistency of image labels.

3.2 Label-retrieval Augmentation for Training

The noisy nature of labels excludes the availability of clean labels for training. To mitigate the issue,
we propose a training strategy based on the concept of retrieval augmented learning [30, 31], such
that it is more resistant to label noise. Our main assumption is that in a latent space, data points
from different classes form distinctive clusters. Therefore, the majority of a data point’s neighbors
are expected to have the same label as the point itself. To this end, we used a pre-trained encoder,
illustrated as fp in Figure 2, to map the data into an embedding space and retrieve a label y′ from
labels of the k nearest neighbors {y(1), · · · , y(k)} in the training set. The diffusion model was then
trained to learn the conditional distribution p(y′|x) of labels within the neighborhood, rather than the
distribution of labels p(y|x) for the data point itself. We empirically select the value of k based on
the KNN accuracy obtained on the validation data, as detailed in Supplementary Section C.

Label-retrieval augmentation enables the model to make use of the information from multiple and
potentially more accurate labels to improve its prediction performance. Algorithm 1 describes the
training procedure. Additionally, diffusion models are known to be effective at modeling multimodal
distributions. By training the model to generate different labels from neighbors based on the same
data point, the model can produce stochastic predictions based on the distribution to capture the
uncertainty inherent in the data labeling process. As a result, the trained model can be used not only
as a classifier, but also as a sampler that simulates the actual labeling process.

3.3 Efficient Inference with generalized DDIM

The iterative generation nature of the classification diffusion model makes its inference efficiency not
comparable to traditional classifiers. To enhance the inference efficiency, we propose to incorporate
the efficient sampling methods, Denoising Diffusion Implicit Model (DDIM) [32], to accelerate the
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Algorithm 1 Training
Input: training set {X,Y}, image encoder fp, fq .

1: while not converged do
2: Sample data (x, y) ∼ {X,Y}; time slice t ∼ {1, · · · , T}; and noise ϵ ∼ N (0, I)
3: Retrieve labels {y(1), · · · , y(k)} of neighbors in the feature space defined by the encoder fp
4: Sample y′ ∼ {y, y(1), · · · , y(k)}, and convert it to a one-hot vector y0

5: Take gradient descent step on the loss:
∥∥ϵ− ϵθ(

√
ᾱty0 + (1−√

ᾱt)fq(x) +
√
1− ᾱtϵ,x, fp(x), t)

∥∥2

6: end while

label diffusion process. However, the utilization of the mean estimator fq makes DDIM incompatible
with our setting, as our generation process begins with a non-zero mean Gaussian distribution
N (fq(x), I). Therefore, we adjust the DDIM method into a more general form that fits our framework.
Analogous to DDIM, our sampling process maintains the same marginal distribution as the original
q(yt|y0, fq) closed-form sampling process. Detailed derivations can be found in Supplementary A.

With DDIM, the trained model can generate a label vector in much less steps following a pre-defined
sampling trajectory of {T = τS >, · · · , > τ1 = 1}, where S < T . Consequently, yt can be
computed as:

yτs =
√
ᾱτsy0 + (1−

√
ᾱτs)fq(x) +

√
1− ᾱτsϵ, (3)

where ϵ ∼ N (0, I). Similar to CARD [27], we predict the denoised label ỹ0, a prediction of y0

given yτs , as:

ỹ0 =
1√
ᾱτs

[yτs − (1−
√
ᾱτs)fq(x)−

√
1− ᾱτsϵθ(yτs ,x, fp(x), τs)] . (4)

When τs−1 > 0, we can compute yτs−1
given yτs from the non-Markovian forward process defined

as:
yτs−1

=
√
ᾱτs−1

ỹ0 + (1−√
ᾱτs−1

)fq(x) +
√

1− ᾱτs−1
· ϵθ(yτs ,x, fp(x), τs). (5)

As the dimension of label vectors is usually much lower than that of an image, the model can employ
fewer steps in the reverse process without compromising generative quality. In our experiments,
we use S = 10 and T = 1000, substantially reducing the time cost of the classification process.
Supplementary Figure B gives an example of the label generation (classification) process on the
CIFAR-10 dataset.

To further enhance the inference efficiency, we propose a simple and effective trick for computing
the maximum likelihood estimation of labels. As the generative process is deterministic given yT ,
which is sampled from a uni-modal Gaussian distribution, we approximate the maximum likelihood
estimation of labels by initiating from the mean, i.e., y0 = DDIM(yT = fq(x),x). This trick
circumvents the time-consuming majority voting approximation that demands repeated generation.

3.4 Flexible conditioning with pre-trained encoders

The original CARD model employs a single model for both the fp and fq encoders. However, this
limits their representation capacity [33] as the dimension of fq(x) is typical relatively small, i.e.,
equalling the number of classes. To mitigate this and improve model performance, we abandon the
assumption that fp = fq, enabling the use of a more powerful pre-trained encoder (e.g., the CLIP
image encoder [24]) with arbitrary dimensions for fp.

Empirically, we find that the model can still achieve satisfactory performance when the magnitude
of fq(x) is small, which means the latent representation yT = fq(x) + ϵ is dominated by the noise
term ϵ ∼ N (0, I). In this case, the information provided by fq(x) to the diffusion process is limited.
As a result, we simply set fq(x) = 0 to avoid handling an additional n-dimensional fq encoder. For
the fp encoder, one can employ flexible pre-trained models as presented in Section 5. In this paper,
we use the SimCLR model trained on the training images (without supervised information) and the
pre-trained CLIP model.
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4 Related work

Robust loss function and regularization techniques. Several noise-robust loss functions and
regularization techniques have been proposed as alternatives to the commonly used cross-entropy loss
(CE), which is not robust to label noise. Mean absolute error (MAE) [34] loss has been shown to be
robust against noisy labels. Generalized Cross-Entropy (GCE) [35] combines CE and MAE for faster
convergence and better accuracy. Symmetric cross-entropy Learning (SL) [36] couples CE with a
noise-robust counterpart and has been found to have higher performance than GCE, particularly for
high noise rates. Label Smoothing Regularization [37] alleviates overfitting by linearly combining
labels with a uniform distribution. Bootstrapping technique [38] combines the labels with the
current model prediction. Dynamic bootstrapping [39, 40] uses the prediction confidence to control
the weighting in the combination. Neighbor Consistency Regularization (NCR) [19] encourages
consistency of prediction based on learned similarity. Our method is also based on the principle
of neighbor consistency. However, instead of encouraging consistent predictions among neighbors,
our model directly learns from the labels of neighbors. This allows for estimating instance-level
uncertainty by learning the label distribution among neighbors, rather than learning a point estimation.

Data recalibration. Data recalibration techniques progressively remove or correct mislabeled data
during training to improve the reliability of training data. Wang et al. [11] used the learned similarity
and label consistency to identify and discard data with noisy labels. TopoFilter [41] selects clean data
by analyzing the topological structures of the training data in the learned feature space. Cheng et al.
[4] defines a Bayes optimal classifier to correcct labels. Zheng et al. [14] proposed using a likelihood
ratio test (LRT) to correct training labels based on predictions. Zhang et al. [15] used LRT to correct
labels progressively and provides a theoretical proof for convergence to the Bayes optimal classifier.
Dividemix [42], LongReMix [43], and CC [44] treat the low confident data as unlabeled, and then
employ semi-supervised learning algorithms [45] for further analysis. C2D [46] combines Dividemix
with self-supervised pre-training to boost its performance by improving the quality of the extracted
features. Our approach employs the same assumption as TopoFilter that data belonging to the same
class should be clustered together with ideal feature representations. However, our technique isn’t
confined to learned features potentially distorted by label noises. Instead, similar to C2D, our method
can effectively leverage the high-quality feature learned by pre-trained encoders to achieve superior
accuracy.

Guided diffusion model and retrieval augmentation. Guided diffusion is a technique applied
to diffusion models for conditional generation. Classifier guidance [47] is an cost-effective method
leveraging the gradient of a classifier to steer the generative process of a trained diffusion model.
On the other hand, Classifier-free guidance [48] learns the conditional distribution during training
for improved generation quality. This approach also allows for the use of continuous guidance
information, such as embedding vectors, rather than being limited to discrete labels. Classification and
Regression Diffusion Models (CARD) [27] formulates classification and regression as a conditional
generation task that generates labels or target variables conditioned on images. Our approach follows
the same paradigm, and leverages the multi-modal coverage ability of diffusion models to learn
the label distribution within the neighborhood. SS-DDPM [49] proposes a diffusion model with
arbitrary noising distributions defined on constrained manifold, e.g., the probabilistic simplex for
label generation. Retrieval-augmented diffusion models [30] used retrieved neighbors from an
external database as conditional information to train diffusion models for image synthesis. Retrieval
Augmented Classification [31] used retrieval-augmentation to train classification model using class-
imbalanced training data. Our approach differs from theirs by retrieving labels instead of data to
reduce label noise in training rather than increasing the training data. In addition, our model does not
require an external database.

5 Experiments

We first evaluate the performance of our method on datasets with various types synthetic noises.
Then, we perform experiments on four real-world datasets. To better understand the performance gain
sources, we conduct ablation studies to measure the impacts of conditional diffusion and different
pseudo-label construction strategies. All experiments were done on four NVIDIA Titan V GPUs.
Comprehensive implementation details and hyper-parameters are provided in the Supplementary C.
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Table 1: Classification accuracy (%) on CIFAR-10 and CIFAR-100 datasets under PMD noises and
hybrid noises, combining PMD noise with Uniform (U) and Asymmetric (A) noise.

CIFAR-10Methods
35% PMD 70% PMD 35% PMD + 30% U 35% PMD + 60% U 35% PMD + 30% A

Standard 78.11 ± 0.74 41.98 ± 1.96 75.26 ± 0.32 64.25 ± 0.78 75.21 ± 0.64
Co-teaching+ [50] 79.97 ± 0.15 40.69 ± 1.99 78.72 ± 0.53 55.49 ± 2.11 75.43 ± 2.96

GCE [35] 80.65 ± 0.39 36.52 ± 1.62 78.08 ± 0.66 67.43 ± 1.43 76.91 ± 0.56
SL [36] 79.76 ± 0.72 36.29 ± 0.66 77.79 ± 0.46 67.63 ± 1.36 77.14 ± 0.70

LRT [14] 80.98 ± 0.80 41.52 ± 4.53 75.97 ± 0.27 59.22 ± 0.74 76.96 ± 0.45
CC [44] 81.23 ± 0.78 42.43 ± 1.56 79.6 ± 0.44 70.71 ± 0.34 78.66 ± 0.66
PLC [15] 82.80 ± 0.27 42.74 ± 2.14 79.04 ± 0.50 72.21 ± 2.92 78.31 ± 0.41

SimCLR KNN 83.71 29.45 78.25 54.82 75.37
C2D + SimCLR [46] 83.84 ± 0.13 34.23 ± 0.45 85.61 ± 0.29 81.39 ± 0.68 83.06 ± 0.57

LRA-diffusion (SimCLR) 88.76 ± 0.24 42.63 ± 1.97 88.41 ± 0.37 84.43 ± 0.82 85.64 ± 0.23
CLIP KNN 91.80 30.66 84.67 57.03 81.76

LRA-diffusion (CLIP) 96.54 ± 0.13 44.62 ± 0.18 95.71 ± 0.17 87.21 ± 0.71 93.65 ± 0.40

CIFAR-100Methods
35% PMD 70% PMD 35% PMD + 30% U 35% PMD + 60% U 35% PMD + 30% A

Standard 57.68 ± 0.29 39.32 ± 0.43 48.86 ± 0.56 35.97 ± 1.12 45.85 ± 0.93
Co-teaching+ 56.70 ± 0.71 39.53 ± 0.28 52.33 ± 0.64 27.17 ± 1.66 51.21 ± 0.31

GCE 58.37 ± 0.18 40.01 ± 0.71 52.90 ± 0.53 38.62 ± 1.65 52.69 ± 1.14
SL 55.20 ± 0.33 40.02 ± 0.85 51.34 ± 0.64 37.57 ± 0.43 50.18 ± 0.97

LRT 56.74 ± 0.34 45.29 ± 0.43 45.66 ± 1.60 23.37 ± 0.72 52.04 ± 0.15
CC 59.44 ± 0.33 42.79 ± 1.21 56.58 ± 0.45 43.64 ± 1.71 54.45 ± 1.22

PLC 60.01 ± 0.43 45.92 ± 0.61 60.09 ± 0.15 51.68 ± 0.10 56.40 ± 0.34
SimCLR KNN 54.22 39.25 51.87 41.73 46.50

C2D + SimCLR 69.28 ± 0.31 51.63 ± 0.53 59.87 ± 0.66 64.45 ± 1.41 65.65 ± 0.93
LRA-diffusion (SimCLR) 61.39 ± 0.15 53.37 ± 0.81 60.52 ± 0.28 55.79 ± 0.31 59.28 ± 0.11

CLIP KNN 79.58 52.55 69.66 50.91 61.19
LRA-diffusion (CLIP) 81.91 ± 0.10 74.52 ± 0.12 82.80 ± 0.11 81.10 ± 0.09 81.78 ± 0.15

5.1 Results on Synthetic Noisy Datasets

We conduct simulation experiments on the CIFAR-10 and CIFAR-100 datasets [51] to evaluate
our method’s performance under various noise types. Specifically, following [15], we test with
polynomial margin diminishing (PMD) noise, a novel instance-dependent noise, at two noise levels
and three hybrid noise types by adding independent and identically distributed (i.i.d) noises on top of
instance-dependent noise.

For instance-dependent noise, we adopt the recently proposed polynomial margin diminishing (PMD)
noise [15]. Following the original paper, we train a classifier η(x) using clean labels to approximate
the probability mass function of the posterior distribution p(y|x). Images are initially labeled as their
most likely class ux according to the predictions of η(x). Then, we randomly alter the labels to the
second most likely class sx for each image with probability: pux,sx = − c

2

[
ηux

(x)− ηsx(x)
]2

+ c
2 ,

where c is a constant noise factor that controls the final percentage of noisy labels. Since corrupting
labels to the second most likely class can confuse the "clean" classifier the most, it is expected to
have the most negative impact on the performance of models learned with noisy labels. For PMD
noise, we simulate two noise levels where 35% and 70% of the labels are corrupted.

For i.i.d noise, following [52, 15], we use a transition probability matrix T to generate noisy labels.
Specifically, we corrupt the label of the i-th class to the j-th class with probability Tij . We adopt
two types of i.i.d noise in this study: (1) Uniform noise, where samples are incorrectly labeled as
one of the other (n− 1) classes with a uniform probability Tij = τ/(n− 1) and Tii = 1− τ , with
τ the pre-defined noise level; (2) Asymmetric noise: we carefully design the transition probability
matrix such that for each class i, the label can only be mislabeled as one specific class j or remain
unchanged with probability Tij = τ and Tii = 1− τ . In our experiment, we generated three types of
hybrid noise by adding 30%, 60% uniform, and 30% asymmetric noise on top of 35% PMD noise.

We test our proposed label-retrieval-augmented diffusion model using two pre-trained encoders: (1)
SimCLR [21]: We trained two encoders using the ResNet50 [53] architecture on the CIFAR-10
and CIFAR-100 datasets through contrastive learning; (2) CLIP [24]: the model is pre-trained on a
large dataset comprising 400 million image-text pairs. Specifically, we used the vision transformer
[54] encoder (ViT-L/14) with pre-trained weights, the best-performing architecture in CLIP. For
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simplification, we refer to these configurations as LRA-diffusion (SimCLR) and LRA-diffusion
(CLIP). We also investigated the performance of the KNN algorithm within the feature space defined
by the SimCLR and CLIP encoders, denoted as SimCLR KNN and CLIP KNN respectively.

Table 1 lists the performance of the Standard method (train classifier using noisy labels), our method,
and baseline methods for learning from noisy labels. The results in white rows are borrowed directly
from [15]. We can see that using the SimCLR encoder in the LRA-diffusion method results in superior
test accuracy on both CIFAR-10 and CIFAR-100 datasets compared to other baselines, without the
need for additional training data. This is because the SimCLR encoder is trained in an unsupervised
manner, making it immune to label noise, and it can effectively extract categorical features for
accurate image retrieval. Therefore, when the correct labels dominate the label distribution in the
neighborhood, training with the labels of the retrieved neighbor images allows the model to learn with
more correct labels. C2D [46] also utilizes a pre-trained SimCLR encoder for initialization, but label
noise may still affect the feature space during training. In contrast, our method freezes the feature
encoder, shielding the pre-trained features from noise. Results on CIFAR-10 demonstrate that when
the pre-trained feature has high KNN accuracy, our method performs better. On CIFAR-100, where
the SimCLR feature has lower KNN accuracy, C2D is more effective, as it can refine the feature
space through training. Moreover, freezing the feature encoder allows for efficient integration of
large pre-trained encoders like CLIP, saving us from the prohibitive computational cost of fine-tuning.
Notably, incorporating the CLIP encoder into our method significantly improves test accuracy over
our LRA-diffusion (SimCLR) due to its excellent representation capabilities. In fact, by performing
KNN in the CLIP feature space alone was able to achieve accuracy surpassing all competing methods
in most experiments. This allows for the use of more clean labels during training, thus result in even
higher accuracy.

5.2 Ablation Studies

To evaluate the contribution of diffusion and the pre-trained features, we conducted ablation experi-
ments using CARD [27], SS-DDPM [49], and linear probing to incorporate pre-trained models. It is
worth noting that the SimCLR model was trained on the same training set without access to external
data. Results are given in Table 2.

Table 2: Classification accuracy (%) on CIFAR-10 and CIFAR-100 datasets with PMD noises using different
combinations of model, pre-trained feature, and label.

CIFAR-10 CIFAR-100Methods Feature space Label
35% PMD 70% PMD 35% PMD 70% PMD

Linear probing SimCLR noisy 86.9 38.93 56.18 51.87
Linear probing SimCLR sample 63.8 35.84 53.34 52
Linear probing SimCLR mean 86.27 39.94 55.95 52.61
ResNet+Linear SimCLR sample 86.55 38.06 56.57 51.36

CARD SimCLR sample 75.08 34.35 52.03 32.67
SS-DDPM (Dirichlet) SimCLR sample 88.13 40.11 59.3 51.67
LRA-diffusion (ours) SimCLR sample 88.96 42.63 61.38 53.57

Linear probing CLIP noisy 85.35 37.4 65.02 53.21
Linear probing CLIP sample 95.61 40.17 63.98 58.53
Linear probing CLIP mean 96.19 35.19 69.05 62.76
ResNet+Linear CLIP sample 88.72 43.26 59.78 51.47

CARD CLIP sample 79.72 33.57 47.1 23.45
SS-DDPM (Dirichlet) CLIP sample 96.03 42.03 80.72 72.24
LRA-diffusion (ours) CLIP sample 96.55 44.51 81.92 74.58

Linear probing with sampled labels yielded lower accuracy than using noisy labels or the mean of
neighboring labels. This difference may be due to the linear layer’s inability to yield stochastic outputs
from a multimodal distribution. During training, conflicting gradient directions may arise if the model
tries to predict different labels across gradient steps, which can impede learning. However, due to
the mode coverage ability of the diffusion model, our method can effectively learn from retrieval-
augmented labels to generate different labels with different probabilities. We also test a baseline
using an additional ResNet encoder along with the linear layer to mimic our model architecture
shown in Figure C.1. The results are comparable with linear probing with sampled labels. Our model
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significantly outperforms CARD, mainly due to the more informative fp encoder. We use the same
model architecture for SS-DDPM, which uses Dirichlet distributions for noisy states. SS-DDPM
performed slightly worse than our method, indicating that constraining noisy states within probability
simplex may not benefit our task.

Additional ablation studies are included in the Supplementary D. The results demonstrate that in
the absence of a pre-trained encoder, our model can leverage the features of a noisy classifier to
enhance its accuracy. We also include results of ablation experiments using different approaches for
incorporating the CLIP model. The results indicate that the superior performance of our method is
not solely attributable to the strength of the CLIP features. In conclusion, our LRA-diffusion model
provides an efficient approach for incorporating pre-trained encoders for learning from noisy labels.

5.3 Results on Real-world Noisy Datasets

We further evaluate the performance of our proposed method on real-world label noise. Following
previous work [42, 15, 44, 43], we conducted experiments on four image datasets, i.e., WebVision
[55], ImageNet ILSVRC12 [56], Food-101N [57], and Clothing1M [58]. For experiments on
Webvision, ILSVRC12, and Food-101N datasets, we use the CLIP image encoder as the fp encoder
to train LRA-diffusion models. Comprehensive dataset description and implementation details
can be found in the Supplementary C. We evaluated the performance of our method against a
group of state-of-the-art (SOTA) methods. The results are presented in Table 3 and Table 4. Our
approach significantly outperforms all the previous methods in terms of classification accuracy. It
is important to highlight that EPL [59] incorporates the most powerful CLIP and ConvNext-XL
[60] encoders and cooperates with other SOTA methods such as ELR [61], DivideMix [42], and
UNICON [62]. However, our method outperforms EPL by achieving ∼6% higher accuracy on
WebVision and ILSVRC12 datasets. This improvement over EPL demonstrates that developing better
ways to incorporate pre-trained models to facilitate learning from noisy labels is a non-trivial task,
highlighting the valuable contribution of our approach.

Table 3: Classification accuracies (%) on WebVision, ILSVRC2012 datasets.

Dataset DivideMix ELR UNICON EPL LongReMix C2D CC NCR LRA-diffusion
WebVision 77.32 77.78 77.60 78.77 78.92 79.42 79.36 80.5 84.16

ILSVRC2012 75.20 70.29 75.29 76.51 - 78.57 76.08 - 82.56

Table 4: Classification accuracies (%) on the Food-101N dataset.

Standard CleanNet [57] BARE [63] DeepSelf [64] PLC LongReMix LRA-diffusion
81.67 83.95 84.12 85.10 85.28 87.39 93.42

For experiments on the Clothing1M dataset, we found that LRA-diffusion conditioned on the
CLIP image encoder did not achieve the SOTA accuracy. A potential explanation is that the CLIP
feature is too general for this domain specific task for categorizing fashion styles. However, our
method is orthogonal to most traditional learning with noisy label approaches. As shown in the
additional ablation study in Supplementary D.1, our method can collaborate with a trained classifier
by conditioning on its feature encoder to achieve improved performance. We first use the CC [44]
method to select clean samples and train a ResNet50 classifier, which achieved 75.32% accuracy
(refer to as CC∗). Then, we condition on its feature before the classification head to train our LRA-
diffusion model on the selected samples, which achieved 75.70% accuracy. As Table 5 shows, our
method achieved a 0.38% improvement based on CC∗ and beat all SOTA methods.

Table 5: Classification accuracies (%) on Clothing1M

Standard BARE PLC LongReMix DeepSelf C2D NCR CleanNet
68.94 72.28 74.02 74.38 74.45 74.58 74.60 74.69

DivideMix ELR UNICON EPL CC∗ CC SANM [65] LRA-diffusion
74.76 74.81 74.98 75.21 75.32 75.40 75.63 75.70
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5.4 Inference Efficiency Analysis

In order to test the efficiency of our model, we perform experiments assessing the runtime on CIFAR-
10 dataset and compare our method with a standard classifier that uses ResNet50. It’s worth noting
that our SimCLR encoder is also built on the ResNet50. Thus, the standard method’s runtime also
reflects the linear probing runtime on SimCLR. Table 6 shows the results.

Table 6: Inference time (s) of standard classifier and LRA-diffusion models on CIFAR-10 images.

LRA-diffusion
Number of images Standard (ResNet50)

SimCLR (ResNet50) CLIP (ViT-B/32) CLIP (ViT-B/16)
10000 3.96 9.52 9.13 17.12
50000 20.77 41.31 39.82 92.34

We can see, the computation bottleneck lies on the large pre-trained encoder but not the diffusion
model itself. In general, our method takes twice as long as a standard classifier (ResNet50) when
using SimCLR (ResNet50) and CLIP (ViT-B/32) pre-trained encoders. Larger CLIP encoders can
increase the time further. However, it can be further accelerated if the features can be pre-computed
in advance or be computed in parallel (as they are only required to be computed once and can be
reused later).

6 Limitations
Our method, while being effective in many scenarios, does have certain limitations that we acknowl-
edge. Its performance enhancement can be compromised if a pre-trained fp feature encoder isn’t
available or is inadequately trained. Additionally, the diffusion model introduces Gaussian noise in
the forward process, leading to latent label vectors not being confined within the probability simplex,
which could increase training time. Lastly, our method’s performance becomes less effective when
label noise levels surpass 50%. However, supervised learning can not be the optimal choice in such
situations.

7 Conclusion
In this paper, by viewing the noisy labeling process as a conditional generative process, we leverage
diffusion models to denoise the labels and accurately capture label uncertainty. A label-retrieval-
augmented diffusion model was proposed to effectively learn from noisy label data by incorporating
the principle of neighbor consistency. Additionally, by incorporating auxiliary conditional information
from large pre-trained models such as CLIP, we are able to significantly boost the model performance.
The proposed model is tested on several benchmark datasets, including CIFAR-10, CIFAR-100, Food-
101N, and Clothing1M, achieving state-of-the-art results in most experiments. Future work could
extend our model to multi-label settings, as it does not require a one-hot representation for labels. It
is also promising to use semantic segmentation to guide the generation, potentially enhancing our
model’s interpretability and performance.
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A Denoising Diffusion Implicit Model with non-zero mean latent space

The forward process of a diffusion process with non-zero mean latent distribution yT ∼ N (f(x), I)) has a
closed form representation:

q(yt|y0, f) = N (yt;
√
ᾱty0 + (1−

√
ᾱt)f(x), (1− ᾱt)I, (A.1)

which could be reprameterized as:

yt =
√
ᾱty0 + (1−

√
ᾱt)f(x) +

√
1− ᾱtϵ (A.2)

Then, similar to the DDIM, we define a Non-Markovian forward process with σt ≥ 0, t = 1 : T .

qσ(y1:T |y0, f) := qσ(yT |y0, f)

T∏
t=2

qσ(yt−1|yt,y0, f) (A.3)

Where qσ(yT |y0, f) = N (yT ;
√
ᾱTy0 + (1−

√
ᾱT )f(x), (1− ᾱT )I) and for all t > 1.

qσ(yt−1|yt,y0, f) = N
(
yt−1;

√
ᾱt−1y0 + (1−

√
ᾱt−1)f(x) +

√
1− ᾱt−1 − σ2

t · ϵ̃, σ2
t I

)
, (A.4)

ϵ̃ =
1√

1− ᾱt

·
(
yt −

√
ᾱty0 − (1−

√
ᾱt)f(x)

)
We can prove that the sampling process defined by Eq. (A.3) and Eq. (A.4) has the same marginal distribution
as the closed-form sampling process in Eq. (A.1) by the following Lemma:

Lemma A.1. For qσ(y1:T |y0, f) defined in Eq. (A.3) and qσ(yt−1|yt,y0, f) defined in Eq. (A.4), we have:

qσ(yt|y0, f) = N (yt;
√
ᾱty0 + (1−

√
ᾱt)f(x), (1− ᾱt)I) (A.5)

Proof. Assume for any t ≤ T , if Eq. (A.5) is true, the following is also true:

qσ(yt−1|y0, f) = N (yt−1;
√
ᾱt−1y0 + (1−

√
ᾱt−1)f(x), (1− ᾱt−1)I), (A.6)

then we can prove the statement with an induction argument for t from T to 1, since the base case (t = T )
already holds.
First, we have that:

qσ(yt−1|y0) :=

∫
yt

qσ(yt|y0, f)qσ(yt−1|yt,y0, f)dyt, (A.7)

and

qσ(yt|y0, f) = N (yt;
√
ᾱty0 + (1−

√
ᾱt)f(x), (1− ᾱt)I) (A.8)

qσ(yt−1|yt,y0, f) = N
(
yt−1;

√
ᾱt−1y0 + (1−

√
ᾱt−1)f(x) +

√
1− ᾱt−1 − σ2

t · ϵ̃, σ2
t I

)
, (A.9)

ϵ̃ =
1√

1− ᾱt

·
(
yt −

√
ᾱty0 − (1−

√
ᾱt)f(x)

)
.

According to [66] Eq. (2.115), we have that qσ(yt−1|yt,y0, f) is Gaussian, with mean µt−1 and co-variance
Σt−1:

µt−1 =
√
ᾱt−1y0 + (1−

√
ᾱt−1)f(x) (A.10)

+
√

1− ᾱt−1 − σ2
t

(√
ᾱty0 + (1−

√
ᾱt)f(x)−

√
ᾱty0 − (1−

√
ᾱt)f(x)√

1− ᾱt

)
=
√
ᾱt−1y0 + (1−

√
ᾱt−1)f(x). (A.11)

Σt−1 = σ2
t I+

1− ᾱt−1 − σ2
t

1− ᾱt
(1− ᾱt)I = (1− ᾱt)I. (A.12)

Therefore, Eq. (A.6) holds. Following the induction, the lemma is proved.

In our implementation, we follow DDIM [32] setting σt = 0. The resulting model becomes an implicit
probabilistic model [67], where the generation process become deterministic given yT .
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B t-SNE visualization of the DDIM generation process

t=7 t=6 t=5 t=4

t=3 t=2 t=1 t=0

Figure B.1: The t-SNE visualization of the CLIP feature space during the reverse generation process of a
conditional diffusion model using an 7-step DDIM on the CIFAR-10 dataset. The process begins at time t = 7,
with the sampling of the latent representation of the label from the latent distribution N (fq(x), I). Through a
series of multi-step reverse operations, the latent distribution is transformed into the conditional distribution of
labels. The data points are color-coded according to the entry with the highest value in intermediate/final label
vectors, and the ground truth class labels are represented by distinct markers.

C Experimental setup and details

C.1 Real-world dataset details

WebVision comprising 2.4 million images that were crawled using Google and Flickr search engines, with the
ILSVRC12 taxonomy. Following prior studies, we trained our model on the initial 50 classes from the Google
image subset of Webvision and tested it on the validation sets of both Webvision and ILSVRC12.

Food-101N consists of 310k food images collected from the internet with the Food-101 [68] taxonomy, and has
an estimated label noise level of 20%, making it an ideal dataset to evaluate the robustness of our method under
real-world noisy labels. We assessed the classification accuracy on the curated label set of Food-101, which
contains around 25k images.

Clothing1M contains 1 million images of clothes obtained from shopping websites. Based on the keywords in
the surrounding text, the images are automatically classified into 14 classes with ∼40% estimated noise level.
The dataset includes a clean training set, validation set, and test set with manually refined labels, consisting of
approximately 47.6k, 14.3k, and 10k pictures, respectively. We discarded the clean training set and only used
the noisy label data for training.

C.2 Implementation details

To present the hyperparameter settings of our neural network, we first give a description of our neural network
design. As shown in Figure C.1, the network consists of a frozen fp encoder, a ResNet encoder, and a series of
feed forward layers. Features encoded by the two encoders are combined with time embedding via hadamard
product and passed through a series of feed-forward networks, batch normalization, and softplus activation to
predict the noise term ϵθ .

In our experiments, we use ResNet34 for CIFAR10 and CIFAR100, and use ResNet50 for real-world datasets as
the trainable encoder (blue ResNet block in Figure C.1). The dimensions of all feed-forward layers are set to
512 for CIFAR datasets and 1024 for real-world datasets, respectively. We train LRA-diffusion models for 200
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<latexit sha1_base64="F4tsvPP0HfUHukWR+GvawixWxgI=">AAACBXicbVC5TsNAEF1zhnAZKKFYEYGoIhtxlVFoqFAQ5JBiK1pv1skqa6+1O0ZEVhoafoWGAoRo+Qc6/obNUUDCk0Z6em9GM/OCRHANjvNtzc0vLC4t51byq2vrG5v21nZNy1RRVqVSSNUIiGaCx6wKHARrJIqRKBCsHvQuh379ninNZXwH/YT5EenEPOSUgJFa9p4H7AGyMgHavZYqwt4hvpUhJCLVg5ZdcIrOCHiWuBNSQBNUWvaX15Y0jVgMVBCtm66TgJ8RBZwKNsh7qWYJoT3SYU1DYxIx7WejLwb4wChtHEplKgY8Un9PZCTSuh8FpjMi0NXT3lD8z2umEF74GY+TFFhMx4vCVGCQeBgJbnPFKIi+IYQqbm7FtEsUoWCCy5sQ3OmXZ0ntuOieFU9vTgql8iSOHNpF++gIuegcldAVqqAqougRPaNX9GY9WS/Wu/Uxbp2zJjM76A+szx9mOZiG</latexit>

BatchNorm & Softplus

<latexit sha1_base64="F4tsvPP0HfUHukWR+GvawixWxgI=">AAACBXicbVC5TsNAEF1zhnAZKKFYEYGoIhtxlVFoqFAQ5JBiK1pv1skqa6+1O0ZEVhoafoWGAoRo+Qc6/obNUUDCk0Z6em9GM/OCRHANjvNtzc0vLC4t51byq2vrG5v21nZNy1RRVqVSSNUIiGaCx6wKHARrJIqRKBCsHvQuh379ninNZXwH/YT5EenEPOSUgJFa9p4H7AGyMgHavZYqwt4hvpUhJCLVg5ZdcIrOCHiWuBNSQBNUWvaX15Y0jVgMVBCtm66TgJ8RBZwKNsh7qWYJoT3SYU1DYxIx7WejLwb4wChtHEplKgY8Un9PZCTSuh8FpjMi0NXT3lD8z2umEF74GY+TFFhMx4vCVGCQeBgJbnPFKIi+IYQqbm7FtEsUoWCCy5sQ3OmXZ0ntuOieFU9vTgql8iSOHNpF++gIuegcldAVqqAqougRPaNX9GY9WS/Wu/Uxbp2zJjM76A+szx9mOZiG</latexit>

BatchNorm & Softplus

<latexit sha1_base64="F4tsvPP0HfUHukWR+GvawixWxgI=">AAACBXicbVC5TsNAEF1zhnAZKKFYEYGoIhtxlVFoqFAQ5JBiK1pv1skqa6+1O0ZEVhoafoWGAoRo+Qc6/obNUUDCk0Z6em9GM/OCRHANjvNtzc0vLC4t51byq2vrG5v21nZNy1RRVqVSSNUIiGaCx6wKHARrJIqRKBCsHvQuh379ninNZXwH/YT5EenEPOSUgJFa9p4H7AGyMgHavZYqwt4hvpUhJCLVg5ZdcIrOCHiWuBNSQBNUWvaX15Y0jVgMVBCtm66TgJ8RBZwKNsh7qWYJoT3SYU1DYxIx7WejLwb4wChtHEplKgY8Un9PZCTSuh8FpjMi0NXT3lD8z2umEF74GY+TFFhMx4vCVGCQeBgJbnPFKIi+IYQqbm7FtEsUoWCCy5sQ3OmXZ0ntuOieFU9vTgql8iSOHNpF++gIuegcldAVqqAqougRPaNX9GY9WS/Wu/Uxbp2zJjM76A+szx9mOZiG</latexit>

BatchNorm & Softplus

<latexit sha1_base64="oTz22hSleDIIhNmVkZPvIcZ001w=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9oHtUDJppg3NJCHJCGXoX7hxoYhb/8adf2PazkJbD1w4nHMv994TKc6M9f1vr7Cyura+UdwsbW3v7O6V9w+aRqaa0AaRXOp2hA3lTNCGZZbTttIUJxGnrWh0O/VbT1QbJsWDHSsaJnggWMwItk567EZsIBVPDeqVK37VnwEtkyAnFchR75W/un1J0oQKSzg2phP4yoYZ1pYRTielbmqowmSEB7TjqMAJNWE2u3iCTpzSR7HUroRFM/X3RIYTY8ZJ5DoTbIdm0ZuK/3md1MbXYcaESi0VZL4oTjmyEk3fR32mKbF87AgmmrlbERlijYl1IZVcCMHiy8ukeVYNLqsX9+eV2k0eRxGO4BhOIYArqMEd1KEBBAQ8wyu8ecZ78d69j3lrwctnDuEPvM8fc3OQyQ==</latexit>M

<latexit sha1_base64="un59KKqDRxM+/aeiLb/WmNiALUo=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cI5gHJEmZnJ8mY2Z1lplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80jUo14w2mpNLtgBouRcwbKFDydqI5jQLJW8Hoduq3nrg2QsUPOE64H9FBLPqCUbRSs6tChaRXrrhVdwayTLycVCBHvVf+6oaKpRGPkUlqTMdzE/QzqlEwySelbmp4QtmIDnjH0phG3PjZ7NoJObFKSPpK24qRzNTfExmNjBlHge2MKA7NojcV//M6Kfav/UzESYo8ZvNF/VQSVGT6OgmF5gzl2BLKtLC3EjakmjK0AZVsCN7iy8ukeVb1LqsX9+eV2k0eRxGO4BhOwYMrqMEd1KEBDB7hGV7hzVHOi/PufMxbC04+cwh/4Hz+AEYrjvI=</latexit>�
<latexit sha1_base64="spRouzTOc3zXPytNIJ6t/2ZJ6cQ=">AAACAHicbVDJSgNBEO1xjXGLevDgpTEInsKMuB2DXnKMYBZIQqjp6Uma9Cx014hhmIu/4sWDIl79DG/+jZ1kDpr4oODxXhVV9dxYCo22/W0tLa+srq0XNoqbW9s7u6W9/aaOEsV4g0UyUm0XNJci5A0UKHk7VhwCV/KWO7qd+K0HrrSIwnscx7wXwCAUvmCARuqXDrvIHzGtgQcBKI/GKvIShlm/VLYr9hR0kTg5KZMc9X7pq+tFLAl4iEyC1h3HjrGXgkLBJM+K3UTzGNgIBrxjaAgB1710+kBGT4ziUT9SpkKkU/X3RAqB1uPANZ0B4FDPexPxP6+ToH/dS0UYJ8hDNlvkJ5JiRCdpUE8ozlCODQGmhLmVsiEoYGgyK5oQnPmXF0nzrOJcVi7uzsvVmzyOAjkix+SUOOSKVEmN1EmDMJKRZ/JK3qwn68V6tz5mrUtWPnNA/sD6/AFXWJbn</latexit>

Hadamard product

<latexit sha1_base64="sl5qNeOkKV24PIyGWNjNHIsSYgw=">AAAB/XicbZDLSsNAFIZP6q3WW7zs3ASL4Kok4m1Z7MZlBXuBNpTJdNIOncyEmYlYQ/FV3LhQxK3v4c63cZpmoa0/DPx85xzmnD+IGVXadb+twtLyyupacb20sbm1vWPv7jWVSCQmDSyYkO0AKcIoJw1NNSPtWBIUBYy0glFtWm/dE6mo4Hd6HBM/QgNOQ4qRNqhnH3Q1edBpTXBDCM/opGeX3YqbyVk0Xm7KkKves7+6fYGTiHCNGVKq47mx9lMkNcWMTErdRJEY4REakI6xHEVE+Wm2/cQ5NqTvhEKax7WT0d8TKYqUGkeB6YyQHqr52hT+V+skOrzyU8rjxFyGZx+FCXO0cKZROH0qCdZsbAzCkppdHTxEEmFtAiuZELz5kxdN87TiXVTOb8/K1es8jiIcwhGcgAeXUIUbqEMDMDzCM7zCm/VkvVjv1sestWDlM/vwR9bnD2mdldw=</latexit>

Concatenation
<latexit sha1_base64="oTz22hSleDIIhNmVkZPvIcZ001w=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9oHtUDJppg3NJCHJCGXoX7hxoYhb/8adf2PazkJbD1w4nHMv994TKc6M9f1vr7Cyura+UdwsbW3v7O6V9w+aRqaa0AaRXOp2hA3lTNCGZZbTttIUJxGnrWh0O/VbT1QbJsWDHSsaJnggWMwItk567EZsIBVPDeqVK37VnwEtkyAnFchR75W/un1J0oQKSzg2phP4yoYZ1pYRTielbmqowmSEB7TjqMAJNWE2u3iCTpzSR7HUroRFM/X3RIYTY8ZJ5DoTbIdm0ZuK/3md1MbXYcaESi0VZL4oTjmyEk3fR32mKbF87AgmmrlbERlijYl1IZVcCMHiy8ukeVYNLqsX9+eV2k0eRxGO4BhOIYArqMEd1KEBBAQ8wyu8ecZ78d69j3lrwctnDuEPvM8fc3OQyQ==</latexit>M

<latexit sha1_base64="Yb3UnQdiZDF80f6CaINnb0H2XHM=">AAAB+XicbVDLSsNAFJ34rPUVdelmsAhuLIn4WhbduKxgH9CGMJlO2qGTSZi5KZSQP3HjQhG3/ok7/8ZJm4W2Hhg4nHMv98wJEsE1OM63tbK6tr6xWdmqbu/s7u3bB4dtHaeKshaNRay6AdFMcMlawEGwbqIYiQLBOsH4vvA7E6Y0j+UTTBPmRWQoecgpASP5tt2PCIyCMJvmfgbnbu7bNafuzICXiVuSGirR9O2v/iCmacQkUEG07rlOAl5GFHAqWF7tp5olhI7JkPUMlSRi2stmyXN8apQBDmNlngQ8U39vZCTSehoFZrLIqRe9QvzP66UQ3noZl0kKTNL5oTAVGGJc1IAHXDEKYmoIoYqbrJiOiCIUTFlVU4K7+OVl0r6ou9f1q8fLWuOurKOCjtEJOkMuukEN9ICaqIUomqBn9IrerMx6sd6tj/noilXuHKE/sD5/AL1Lk70=</latexit>yt�1

Figure C.1: The network architecture for conditional diffusion models. The input to the network consists of
four elements: yt, fp(x), x, and the time embedding for t, represented by pink blocks. The blue blocks in the
figure represent the trainable network components.

epochs with Adam optimizer. The batch size is 256. We used a learning rate schedule that included a warmup
phase followed by a half-cycle cosine decay. The initial learning rate is set to 0.001. Following [15], we applied
data augmentation in the training, including resizing, random horizontal flip, and random cropping. To retrieve
the nearest neighbors, we set k=10 based on our tests using a range of k values from 1 to 100 on the validation
sets. The KNN accuracy remained relatively stable for k between 10 and 50, and then starts to decline due to
reduced label consistency among neighbors. Based on these results, we infer that our LRA diffusion model is
less sensitive to variations in k within this range. All experiments are conducted using four NVIDIA Titan V
GPUs.

D Additional ablation study

D.1 Classifier feature conditioning for accuracy enhancement

To demonstrate how our method can enhance a trained classifier’s performance by using its features as conditional
information, we conduct an ablation study examining the impact of conditional diffusion and KNN on the trained
classifier. Specifically, we train classifiers, denoted as η(x), using the standard method at various noise levels.
We then remove the classification head and utilize the remaining model fη as the fp encoders in our conditional
diffusion models.

The experimental results shown in Figure D.1 indicate that these techniques can improve test accuracy. We
observe that when the noise level is below 55%, the conditional diffusion model (green) achieves a ∼ 1%
improvement over the standard method. Moreover, when the LRA method is applied concurrently (purple), test
accuracy can be further enhanced. This improvement occurs because learning from neighbors’ labels reduces
the noise level during training, as evidenced by the comparison between KNN results (blue) and clean label
percentage (gray).

However, when the noise level exceeds 55%, the use of diffusion and LRA-diffusion methods does not seem
advantageous. This limitation arises because the distribution of labels in the neighborhood becomes too corrupted
for KNN to effectively improve the proportion of clean labels during training, as illustrated by the intersection of
the blue and gray curves in the figure. We argue this does not diminish the practical value of our method because
a dataset with more than 50% label noise is not meaningful in practice.

D.2 Effects of pseudo-label construction strategies

We also conduct comparative experiments using another method that utilizes neighbor labels: replacing the
one-hot label vector with the mean vector of the neighbor’s labels as the prediction target, which we call
Mean-diffusion. We found that it can achieve higher accuracy when the noise level is higher than 55%. This
may be due to the increase in the diversity of neighbor labels. The sampling-based LRA-diffusion will need
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Figure D.1: Test accuracy of seven methods on the CIFAR-10 dataset with different levels of PMD label noise.
Other than the already introduced method names, here Diffusion is a conditional diffusion model using the
feature fη . The clean label percentage is represented by the gray line.

to learn a more complex multi-modal distribution, but Mean-diffusion only needs to learn a point estimate.
However, when the noise level is lower than 55%, we found that LRA-diffusion is slightly more accurate than
Mean-diffusion. A possible explanation is that the distribution of y0 in LRA-diffusion contains only n one-hot
labels. In contrast, y0 in Mean-diffusion is more diverse (nk/k! possible mean vectors for n classes and k
neighbors). In conclusion, LRA-diffusion has higher performance with less noisy labels. On the other hand,
Mean-diffusion has faster and more stable convergence and is more robust for high noise level. However, they
tend to perform similarly when the noise level is too high or too low since neighbors’ labels will become the
same or too corrupted.

D.3 Robustness of SimCLR feature conditioning

Finally, we use the SimCLR model as the encoder fp in our conditional diffusion model (listed as SimCLR
LRA-diffusion in Figure D.1), to showcase the effectiveness of our proposed LRA-diffusion method in utilizing
prior knowledge from pre-trained image representations to enhance the test accuracy and robustness. The
experimental results (red) show that its test accuracy significantly surpasses other settings until the noise level
reaches 65%. Beyond this point, the labels in the neighborhood become too corrupted to provide additional
supervision information.

D.4 Effects of CLIP feature conditioning strategies

Table D.1: Classification accuracy (%) of linear probing, KNN, and diffusion model using pre-trained CLIP
feature on real-world label noise datasets.

Method Webvision ILSVRC2012 Food-101N Clothing1M
KNN 81.88% 82.12% 91.73% 65.70%

linear prob + Mean label 68.56% 68.76% 90.68% 65.75%
linear prob + sample label 54.84% 56.80% 89.56% 55.52%

diffusion (Mean label) 83.96% 82.24% 93.13% 71.79%
diffusion (sample label) 84.16% 82.56% 93.42% 71.65%

We carried out an ablation study employing various strategies to integrate the CLIP model for classification on
real-world datasets. The results demonstrate that the superior performance of our diffusion-based method does
not simply reflect the strength of the CLIP features. We show results of linear probing and KNN using CLIP
features in Table D.1 to further demonstrate the effectiveness of our algorithm design. The results suggested that
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utilizing linear probing with LRA and mean labels degrades the pre-trained feature space, leading to diminished
performance in comparison to the unsupervised KNN approach. On the other hand, the diffusion process can
effectively incorporate the CLIP feature space to achieve higher performance.
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