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A threshold dynamics model of grain growth that accounts for the anisotropy in the grain boundary energy has

been used to simulate experimentally observed grain growth of polycrystalline Ni. The simulation reproduces

several aspects of the observed microstructural evolution that are not found in the results of simulations assuming

isotropic properties. For example, the relative areas of the lowest-energy twin boundaries increase as the grains

grow and the average grain boundary energy decreases with grain growth. This decrease in energy occurs

because the population of higher-energy grain boundaries decreases while the population of lower-energy

boundaries increases as the total grain boundary area decreases. This phenomenon emerges from the assumption

of anisotropic grain boundary energies without modification of the energy minimizing algorithm. These findings

are consistent with the observation that, in addition to the decrease in grain boundary area, additional energy is

dissipated during grain growth by a decrease in the average grain boundary energy.

DOI: 10.1103/PhysRevMaterials.8.093403

I. INTRODUCTION

Grain boundaries are the interfaces between crystals with

different lattice orientations in polycrystalline metals, ce-

ramics, polymers, and rocks. At high temperatures, grain

boundaries migrate and this is one important mechanism

for the evolution of polycrystalline microstructures. Grain

growth, which is an increase in the average crystal size by

grain boundary migration, affects structure-sensitive material

properties. Hence, understanding the underlying mechanism

of grain boundary migration is necessary for controlling the

electrical, optical, and mechanical properties of materials.

Grain growth by grain boundary migration has been exten-

sively studied in the past using analytical theories [1–3],

molecular dynamics simulations [4–11], Monte Carlo sim-

ulations [12–14], phase field simulations [15–29], threshold

dynamics [30,31] and other approaches [32–41].

Recent experimental observations have provided two find-

ings not captured by most of the simulations. The first is that

grain boundaries are approximately equally likely to migrate

toward or away from their centers of curvature [42–44]. The

second is that while grain boundaries move to decrease the

total energy of the system by decreasing the grain boundary

area, they further decrease the energy by replacing high-

energy grain boundaries with low-energy ones, a process

referred to as grain boundary replacement [45]. This sug-

gests that grain boundary energy must be included in the
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simulations. The grain boundary energy (GBE) depends on

five macroscopic parameters, which can be expressed as the

lattice misorientation between the two adjacent grains (three

degrees of freedom) forming the boundary, and the orienta-

tion of the boundary plane (two degrees of freedom) [46,47].

However, most previous grain growth simulations considered

isotropic grain boundary energy, i.e., the energy is the same

for all boundaries, and this cannot capture the replacement of

high-energy grain boundaries with low-energy ones.

Most of the simulations that used anisotropic properties

only considered the dependency of GBE on the misorientation

[48–50] or simulated grain growth in two dimensions [36].

However, the GBE varies more strongly with variations in the

grain boundary plane orientation than with the lattice misori-

entation [47], so it seems unlikely that simulations ignoring

these parameters will correctly simulate the energy reduction

during grain growth.

Two prior examples of three-dimensional simulations con-

sidering the grain boundary plane dependence on the GBE

in three-dimensions considered a hypothetical GBE function

and did not include the dependence of the GBE on the lattice

misorientation [38,51]. A limited number of recent studies

have simulated grain growth in 3D using a GBE that varies

with all five parameters [30,52,53]. Kim et al. [53] used the

phase field method to simulate grain growth in BCC Fe and

found that the anisotropic GBE influenced the morphological

evolution of grains and that low-energy boundaries increased

in population during grain growth. Hallberg and Bulatov

[52] developed an anisotropic level set method to show the

importance of energy anisotropy in the morphology of evolved

2475-9953/2024/8(9)/093403(11) 093403-1 ©2024 American Physical Society



S. KIANA NAGHIBZADEH et al. PHYSICAL REVIEW MATERIALS 8, 093403 (2024)

microstructures. The simulations used energies specified by

the Bulatov-Reed-Kumar (BRK) energy function [54] for fcc

structures and models no more than four grains. Nino and

Johnson [30] used a simplified extension of threshold dynam-

ics (TD) with different energy functions to study the effect

of energy anisotropy on the evolution of a microstructure in-

stantiated with a Voronoi tessellation. This simplified version

employed Gaussian kernels to describe the GBE of bound-

aries of different inclinations. A discussion on the difference

between the current method and an extension used by [30] is

provided in Sec. II A.

The purpose of this study was to compare the outcome of

the simulated 3D microstructure evolution with the experi-

mentally observed evolution of Ni during grain growth [55,56]

using both an isotropic and a five-parameter anisotropic GBE.

The simulations described here differ from the previous study

in two ways. The first is that an improved description of

the grain boundary energy anisotropy, described in Sec. II A,

is implemented. The second is that experimentally observed

microstructures are used as input, and the results are compared

to the observed microstructure in later states. The experimen-

tally determined starting microstructures contain 2400 to 3000

grains, and we quantify changes in the average grain boundary

energy and the grain boundary energy distribution, the grain

boundary area, the grain boundary curvature, the grain bound-

ary velocity, changes in the numbers of near neighbors, and

the relative areas of twin boundaries. The simulation captures

the replacement of higher energy GBs by lower energy bound-

aries in the same manner that was observed experimentally

[45], while the isotropic simulation cannot necessarily predict

this mechanism.

To simulate grain growth, we have used the TD method

originally introduced by Merriman, Bence, and Osher in

[57,58] which uses an implicit representation of boundaries.

There are three reasons for choosing the TD method. The

first is the high computational efficiency compared to other

methods using an implicit representation of the interface,

such as the phase field method and level set method. The

second reason is the straightforward extension of the model

to anisotropic simulations using experimentally derived in-

terface properties. The third is that the data structure of

the model is analogous to that of the experiment, allowing

data to be easily transferred and the analysis of microstruc-

tural characteristics to be computed using the same codes

for the experimental and simulated data. Furthermore, Nino

and Johnson [30] showed that anisotropic threshold dynam-

ics simulations produced triple junction geometries that were

consistent with the Herring [59] condition.

There are different methods to incorporate the experi-

mentally derived grain boundary energy into the evolution

algorithm [60–64]. To consider a fully anisotropic TD

method, we will follow [60], because it has no restriction

on the choice of the grain boundary energy function that

can be considered, and it is computationally less expensive

than other available models as it only requires the GBE it-

self and not its derivatives. To evaluate the grain boundary

energy, the five-parameter grain boundary function defined by

Bulatov et al. (Bulatov-Reed-Kumar (BRK) energy function)

is used [54]. Although this function is only an interpolation

between 388 calculated GBE values from molecular dynamics

simulation [65], it has been shown to be a good approximation

of experimentally determined GBEs [66].

II. MATERIALS AND METHODS

A. Threshold dynamics

The threshold dynamics (TD) algorithm is a method to

simulate free boundary motion by mean curvature and was

initially introduced by Merriman, Bence, and Osher [57,58].

In this approach, each grain i is identified by a characteristic

function 1�k
i
, which has the value one within grain i and zero

outside the grain. The set of position vectors within grain

i at time tk are denoted by �k
i . To evolve a microstructure

with N grains at time tk and evaluate the microstructure at

time tk+1 > tk , Algorithm 1 [49,61] is used. In the convolution

step, each grain’s characteristic function is convolved with a

kernel specific to each boundary, K
i, j

δt = K
j,i

δt . Typically, the

kernels are defined such that they are maximum at the origin

and decay to zero at infinity; the overall rate of the decay to

zero depends on δt and the rate of the decay in each direction

depends on the anisotropy of the grain boundary energy as de-

scribed below [67]. At each point x, the convolution operator

computes the integral of the product between the character-

istic function and the kernel, with the kernel repositioned so

that its maximum is located at point x. Hence, the value of

the convolution ψk
i at point x deep inside grain i and far

from the boundary remains zero while its value increases as

x gets closer to the boundary and increases further outside of

the grain. Note that the convolution value ψk
i highly depends

on the curvature of the boundary as the convolution, which

results from the overlap between the nonzero part of the kernel

and the nonzero part of the characteristic function 1�k
j
, can

vary significantly depending on the shape of the grain. In the

thresholding step, the characteristic function for each grain is

redefined such that 1�k+1
i

at time tk+1 is equal to one at points

where ψi is minimum compared to ψ j for all other grains with

j = 1, ..., N , and zero otherwise. This way, the boundaries are

moved effectively by weighted mean curvature.

In the generalized form of the algorithm [49], K
i, j

δt can be

different for different grain boundaries. Under the assumption

that the GBE for all boundaries is equal (isotropic GBE), the

kernel K
i, j

δt : R
3 → R is the same for all grain boundaries and

is equal to a Gaussian

K
i, j

δt (x) =
1

(4πδt )3/2
exp

(

−
|x|2

4δt

)

, (2.3)

which is spherically symmetric and decays with the same rate

in all directions.

ALGORITHM 1. Anisotropic threshold dynamics.

Initialization: Given �k
1 , ...�

k
N and time step size δt

Convolution:

ψ k
i =

∑N

j=1
j �=i

K
i, j

δt ∗ 1�k
j

(2.1)

Thresholding:

�k+1
i =

{

x : ψ k
i (x) � min

j �=i
ψ k

j (x)
}

(2.2)
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Extending this algorithm to cases where the GBE, σ , de-

pends only on misorientation, �g (three parameters model),

is straightforward. In this case, all directions for the grain

boundary normal are energetically equally favorable, hence

a spherically symmetric kernel for the evolution of each in-

terface can be used. To distinguish the difference between

the energy of different grain boundaries caused by the mis-

orientation, this spherically symmetric kernel can be scaled

according to its energy and defines K
i, j

δt for the boundary with

adjacent grains i, j as [49]

K
i, j

δt (x) =
σ i, j (�gi, j )

(4πδt )3/2
exp

(

−
|x|2

4δt

)

. (2.4)

The Read Shockley GBE [68] is an example of this case.

However, in the case that the GBE also depends on the

inclination of the grain boundary, specific grain boundary nor-

mals are more favorable than others. Hence, a kernel that can

capture this effect should not be spherically symmetric [67]

which brings in more challenges compared to the previous

case of the three-parameters model. Defining this kernel to

result in the grain boundary velocity proportional to GBE has

been the topic of several studies [60,61,63,64] and remains an

active area of research.

In this study, we will use the kernel constructed by Bon-

netier et al. [60] to simulate the anisotropic evolution of

microstructure. The Fourier transformation of this kernel

F
[

K
i, j

δt (x)
]

is

K̂
i, j

δt (ξ) = F
[

K
i, j

δt (x)
]

=
1

δt3/2
exp

(

− (σ̃ i, j (δtξ))2
)

,

σ̃ (x)i, j = |x|σ i, j

(

x

|x|

)

(2.5)

where σ i, j : S
2 → R

+ is the GBE function for all boundary

inclinations for a given misorientation �gi, j between grain

i, j, and σ̃ i, j is an extension of σ i, j such that σ̃ i, j : R
3 → R

+.

Note that for evaluating the convolution step (2.1), in the

computational setting we use f ∗ g = F−1[F [ f ]F [g]], so

there is no need for computing this kernel in the physical

domain [69]. Furthermore, in the kernel used here, the mo-

bility of the interface is embedded such that it is equal to the

GBE. There are recent attempts to derive more general kernels

where mobility and GBE can be assigned independently, and

this is still an active area of the research [63].

According to Algorithm 1, using an anisotropic kernel will

only affect the convolved value ψk
i , which is the input to the

thresholding step. The convolved value ψk
i is the result of

the convolution between the anisotropic kernel and the char-

acteristic function 1�k
j
. Hence, a simplified extension of the

Algorithm 1 to the five-parameter anisotropic GBE can be also

achieved by changing the characteristic function 1�k
j

accord-

ing to the GBE and keeping the kernel spherically symmetric

Gaussian. Nino and Johnson [30] achieved this by replacing

1�k
j

with σ i, j (n)1�k
j
. Although methods based on defining an

anisotropic kernel following the grain boundary energy and

mobility anisotropy are derived from energy minimization

[63], more study is required to understand if the simplified

version of Nino and Johnson [30] is indeed equivalent to a

weighted mean curvature flow and minimizes the energy.

B. Grain boundary energy

Experiments show that the grain boundary energy is a

function of five macroscopic parameters, i.e., lattice misori-

entation between the two adjacent grains (three degrees of

freedom), and the inclination of the grain boundary plane (two

degrees of freedom) [47]. There are different methods for the

representation of these five parameters. The most common

way is to represent the misorientation between the adjacent

grains and plane boundary inclinations separately. For exam-

ple, from experimental measurements considered in this study,

for each grain, the rotation of the lattice of each grain relative

to a fixed sample frame coordinate system is measured and

is represented through a set of Euler angles (φ1,	, φ2) for

rotation around the (Z, X, Z ) axes. Once the Euler angles are

given, the rotation matrix gi for rotating the sample frame to

the frame of grain i can be computed, and �g = gig
T
j will give

the transformation of the lattice of grain j to the lattice of

grain i, which is a representation of misorientation between

grains i and j. Independent of misorientation measurements

and calculations, the inclination of each point in the grain

boundary plane n is computed after the reconstruction and tri-

angulation of grain boundaries in DREAM.3D software [70].

Hence, a full five-parameter representation of the grain bound-

ary is given through a normal vector n and a transformation

matrix �g.

In this study, we use the BRK energy function to evaluate

the GBE for any given five parameters for a grain boundary in

Ni. The BRK GBE function is a nonlinear interpolation based

on 388 different measured grain boundary energies, provided

through a MATLAB function as Supplementary Data in [54].

This function is a piecewise interpolation that extends from

each cusp in the energy landscape and is consistent with the

symmetry of the material.

Despite the mentioned representation from the experi-

mental data where grain boundary misorientation and plane

boundary inclination are represented separately, the input of

BRK GBE model is two three-by-three matrices labeled P

and Q in which both grain boundary misorientation and plane

boundary inclination are combined and represented through

these two rotation matrices. A detailed procedure for convert-

ing Euler angles and normal vector to the PQ representation

is presented in Appendix.

C. Model validation

In this section, we validate that the choice of the anisotropic

kernel can realistically capture the grain evolution. We grow

a spherical grain located in its melt using different interface

energy functions of the form (2.6) by using kernel (2.5). The

result of our simulation is compared with the result of the front

tracking simulations computed by Mohles [71]. Following

[71], we consider different energy functions of the following

form:

GBE = 1 + α(|nx|
m + |ny|

m + |nz|
m) (2.6)

where nx, ny, nz are different components of boundary plane

normal. The equilibrium shape of the grain, which is expected

to be the Wulff shape of the energy function, is shown in Fig. 1

and matches the equilibrium shape simulated using the front

tracking method (Fig. 7 in [71]) for two sets of parameters
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FIG. 1. Simulated equilibrium shape (right) of an initially spherical grain in its melt in a box of size 643 (outlined by black lines) using

different surface energy (left) of the form (2.6).

m = 1, α = −0.5, and m = 4, α = −0.7. As expected, the in-

clination of the facets of the equilibrated grains aligns with the

direction of minimum energy ([1 1 1] for the GBE in Fig. 1(a),

and [1 0 0] for the GBE in Fig. 1(b)). Thus, the choice of the

anisotropic kernel can capture the expected behavior during

grain growth.

Furthermore, a sensitive test of the anisotropic simulation

is to observe the evolution of the GB plane distribution, as the

GB energy anisotropy influences this [72]. Given that the �3

GB of Ni has the minimum energy at the [111] twin position,

an increase in its relative area is both expected and observed

in the simulation. Figure 2 shows the continuous increase in

the relative area of twin boundaries for different timesteps

of a simulation, starting from An4 with a relative area of

twin boundaries of 547 multiples of a random distribution

(MRD) and the ending when the average grain size of An5 is

reached, using the BRK energy function (An4 and An5 refer

to experimental states defined in Sec. III).

FIG. 2. Relative area of twin boundary (MRD) for different

timesteps of a simulation started from An4 with the intensity of 547

and the end point of reaching the average grain size of An5.

D. Computational challenges of anisotropic simulation

One main difference between the isotropic and anisotropic

simulation is that in the isotropic simulation the kernel is the

same for all grain pairs, and hence it can be computed once

at the start of the simulation and used at any time later during

the simulation. However, in the full anisotropic simulation,

the convolution kernel is different for each grain pair and

there is no linear relation between kernels, as in the case of

GBE only being a function of misorientation. Hence, a key

challenge is that the experimental volume contains a large

number of different GB types with an approximate number

of distinct grain boundaries of 34000 in each microstruc-

ture. Additionally, to evaluate the nonspherically symmetric

anisotropic kernel (2.5) for each two-grain pair with a given

grain boundary misorientation, the GBE for all inclinations of

the boundary plane is required.

While the energies are potentially available from the

BRK function, evaluating them for all points in a kernel

is prohibitively expensive numerically. Therefore, we define

a coarser grid including 6192 different normal vectors uni-

formly distributed on a sphere. For each grain boundary

misorientation, we store the energy at these 6192 different

inclinations, at the start of the simulation. We then use the

nearest interpolation method to compute energy values on the

finer grid of the simulation.

E. Experimental data and simulations

This paper aims to compare the experimentally observed

microstructure evolution of a high-purity Ni sample during

annealing with simulated microstructures using both isotropic

and anisotropic grain boundary energy. The sample was

measured at six different times using nearfield high energy

x-ray diffraction microscopy [56,73]. The sample underwent

annealing for about 30 minutes at 800◦C between each mea-

surement. Previous studies have outlined the specifics of

data acquisition and interpretation [56,74,75]. Six repeated

measurements of the same sample volume were used to re-

construct the shapes and orientations of grains after successive

annealing treatments [74,75]. The data are represented as a set

of discrete voxels using DREAM.3D [55,70] and are referred

to as An0, An1, An2, An3, An4, and An5 throughout the

paper. The microstructures contained 2400 to 3000 grains

made up of voxels with dimensions of 2.3 × 2.3 × 4.0 µm3.

In the initial state, there was an average of 2347 voxels per
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FIG. 3. Experimentally measured and simulated microstructures. In each case, the diameter of the cylinder is about 1 mm.

grain. We note that the data used here is the same that was used

in our previous isotropic simulation [31], with one important

difference. In the previous study, all twinned grains were

merged to form single grains, in an effort to ameliorate the

known anisotropy of the energy. In contrast, all twins were

preserved in the present study.

The first five reconstructed microstructures (An0 to An4)

were considered as an initial state of different simulations

independently. Both isotropic and anisotropic simulation was

performed for each of the five initial states. The average grain

size increases throughout the simulation and experimental

annealing, and the simulations were terminated when the av-

erage grain size reaches the average grain size in the next

experimental anneal step [31]. All grain boundary proper-

ties (relative area, curvature, velocity) were calculated using

methods described in previous publications [42,44] and sum-

marized below.

F. Grain boundary properties

The analysis of the experimental data and simulations

involved calculation of the grain boundary relative areas,

curvatures, and velocities. The calculations begin by convert-

ing the voxelated grain boundaries to meshed interfaces in

DREAM.3D [70]. The relative areas of specific boundaries

were determined using the method of Glowinski and Moraw-

iec [76]. The grain boundary curvature was calculated as the

area weighted mean curvature of all of the mesh elements be-

longing to a certain boundary, using DREAM.3D [44,77]. The

migration velocity of each boundary was determined based on

the volume of voxels exchanged across the boundary; detailed

information can be found in previous publications [42,44].

III. RESULTS

The cylindrical Ni sample in the initial experimental state

(An0), and An1 are depicted in Figs. 3(a) and 3(b), where the

2972 and 2669 grains are colored by orientation. Figures 3(c)

and 3(d) show the evolved microstructure from An0 to An1

using isotropic and anisotropic simulations, respectively. A

cursory comparison shows only small differences between the

four microstructures. However, one exemplary feature is high-

lighted by the white oval. A twin (red) bisects a blue colored

grain. In the experiment and in the anisotropic simulation, the

twin is preserved. However, in the isotropic simulation, it is

eliminated. This is because when all grain boundary energies

are the same, spheroidal, energy minimizing grain shapes are

preferred over grains with high aspect ratios. In the remainder

of this section, we use distributions of properties to compare

the microstructure more systematically.

The behavior of the evolved microstructure during the

experiment, isotropic, and anisotropic simulations from dif-

ferent perspectives is compared. Since the simulations were

performed independently for different anneal stages as the

initial state of the simulation, the result of each simulation

is only compared with the next experimental anneal step. The

following notation is considered to present the results in this

section:

(1) An0–1: The experiment/simulation started with the

An0 microstructure and terminated when the average grain

size was equal to the average grain size of the An1 experiment.

(2) Initial state: Experimental data of An0.

(3) Experiment: Microstructure evolved experimentally

and stopped at An1.

(4) Anisotropic simulation: The output of the simulation

using an anisotropic kernel in Algorithm 1. The input is An0

experimental data and the simulation was stopped when the

average grain size reached the average grain size of An1.

(5) Isotropic simulation: The output of the simulation us-

ing an isotropic kernel in Algorithm 1. The input is An0

experimental data and the simulation was stopped when the

average grain size reached the average grain size of An1.

A similar notation is used for An1-2, An2-3, An3-4, and

An4-5.

Two main statistical features that are expected to be cap-

tured in the anisotropic simulation are the energy distribution

of grain boundaries and the relative area of �3 twin bound-

aries. Figures 4 and 5 show the relative area of the twin

boundaries for simulated and experimental anneal steps and

the microstructure energy per unit area of the grain bound-

aries. For each step, compared to the initial state, the relative

area of the twin boundaries increases in both the experiment

and anisotropic simulations, while it always decreases in the

isotropic simulation. Similarly, compared to the initial state,

the energy per unit area decreases (except for An3-4) and

the anisotropic simulation always decreases the energy. The

small increase in energy for An3-4 might be the result of

uncertainties in the experiment and reconstruction. Note that

since the uniform grain boundary energy of one is assigned to

all the boundaries in isotropic simulation, the energy per unit

area always remains one and is not relevant for the compar-

ison. The increase in the relative area of the twin boundary
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FIG. 4. The twin boundary relative area for experimental and

simulated data at different anneal states.

and the decrease in the average grain boundary energy in the

anisotropic simulation is always greater than in the experi-

ment; this will be discussed later in Sec. IV.

Figure 6 looks more closely at the energy distribution of

the simulated and experimental data for all anneal stages

combined together. The thick gray bars behind the thinner

bars show the energy distribution for the initial state of the

experiment and simulation, and the two thinner bars show the

GBE distribution for the anisotropic and next experimental

anneal state. For the lower-energy grain boundaries, there are

more boundaries in the final states of the experiment and sim-

ulation and for the higher-energy boundaries, there are fewer.

A comparison of these distributions shows that the experiment

FIG. 5. Energy per unit area for experimental and simulated data

at different anneal states.

FIG. 6. Distribution of simulated and experimental GBEs com-

bined for all anneal states.

and anisotropic simulation shift the distributions so that there

are more boundaries with lower energy.

Two sources of differences between the simulated and ob-

served microstructures are differences in the volume changes

of grains and differences in the neighborhoods. In [31], it was

shown that these effects are correlated. To examine whether

or not this occurs in the current simulation, we compare

the volume prediction error (V PE ) with the topological er-

ror (T E ) for individual grains. V PE and T E are defined as

follows:

�Ns = Nsim − Nexp(initial), (3.1)

�Ne = Nexp(final) − Nexp(initial), (3.2)

T E = �Ns − �Ne (3.3)

V PE =
Vs − Ve

Ve

(3.4)

where Nexp(initial) is the number of neighbors of grain in the

initial experiment state, Nexp(final) is the number of neighbors

of the same grain in the final experiment state, and Nsim is the

number of neighbors of the same grain in the final simulation

state. V PE is the fractional difference in volume predicted by

the simulation of the final anneal state (Vs) and experimental

final state (Ve). T E is the difference in �N for each grain

between simulation and experiment. In other words, T E is

the error in predicting topological evolution by the simulation.

Figure 7 plots the volume prediction error as a function of

topological error for isotropic and anisotropic simulations.

A low V PE indicates a small difference between the final

volume predicted and the actual final volume of the grain.

A high-T E value means there is a large error in predicting

the topological evolution of the grains. Similar behavior of

isotropic and anisotropic simulation in V PE vs T E suggests

that considering energy anisotropy does not improve this

aspect of the simulation.
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FIG. 7. The volume prediction error (V PE ) as a function of topo-

logical error (T E ). V PE is the fractional difference in predicted and

observed grain volume. T E is the difference in grain face evolution

between simulation and experiment.

Measurements of the grain boundary velocity and cur-

vature from the experimental data showed no correlation

between these quantities [42]. This unexpected result was

also reported for α-Fe [44] and SrTiO3 [43]. As illustrated

in Fig. 8, the simulated data also lacks a correlation be-

tween curvature and velocity, consistent with the experiment.

When interpreting this result, it is important to note that the

curvature data is always from the initial (experimental) data,

FIG. 8. Mean velocity as a function of curvature in experiment

and simulations.

so is independent of the simulation. Similarly, the velocity cal-

culation also incorporates information from the initial state, so

this undoubtedly influences the result. It is somewhat surpris-

ing that the isotropic simulation does not show a correlation

between velocity and curvature. When the same method was

used to simulate the evolution of α-Fe with isotropic grain

boundary energies, a strong correlation between velocity and

curvature was found [44]. The one difference is that the grain

shapes in the α-Fe were equiaxed, while the Ni microstructure

contains many nonequiaxed shapes that result from twinning.

Instantiating the simulation with this structure “imprints” this

anisotropy in the microstructure and this is apparently enough

to disrupt any correlation between velocity and curvature that

the simulation might otherwise produce. Therefore, the ab-

sence of a correlation between curvature and velocity in the

anisotropic simulation cannot solely be attributed to the grain

boundary energy anisotropy.

IV. DISCUSSION

The results of the simulations reproduce the decrease in the

average energy of grain boundaries through grain boundary

replacement [45], a key phenomenon found in the experi-

ment. The simulations show that the decrease in the average

energy is associated with a decrease in the fraction of

high-energy grain boundaries and an increase in the frac-

tion of low-energy grain boundaries. A key finding of this

paper- is that this phenomenon emerged simply by intro-

ducing an anisotropic energy distribution. In other words,

there was no need to introduce a new physical mecha-

nism in the model. The simulation is constructed to reduce

the total area. The results suggest that when multiple

possible grain boundary migration paths are possible, on

average, the one that is selected is the one that reduces

the area in such a way that lower-energy grain bound-

aries are increased in area at the expense of higher-energy

boundaries. This process leads to the results in Figs. 5

and 6. The accumulation of low-energy grain boundaries dur-

ing grain growth has been observed in experiment [47] and

in simulations [30,38,53] before, but this work goes further

to provide a direct comparison between experiment and sim-

ulation showing that observed features of the microstructure

emerge by assuming realistic anisotropic energies.

One important difference between the experiment and the

simulation is that the grain boundary replacement process is

more significant in the simulation. For example, the decrease

in the average energy at each time step in the experiment

is < 1% while in the simulation it was of the order of 4%

(see Fig. 5). The most likely source of this difference is the

difference between the energy anisotropy in the simulation

and experiment. The simulation used the BRK energies at 0 K

[54], while the experiment [56] was carried out at 1073 K.

The differences in the energies among boundaries is certainly

smaller at 1073 K, and this is expected to decrease the driving

force for the grain boundary replacement process. Simulations

conducted with scaled energies showed that decreasing the

energy differences slowed the decrease in the average energy,

with the isotropic case presented here being the extreme
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example. However, scaling the energies in a realistic

way proved challenging. The assignment of temperature-

dependent grain boundary properties would make it possible

to simulate the effect of temperature on microstructure

evolution.

When comparing the results of the simulation and ex-

periment, one should keep in mind that the simulation is

instantiated with experimental data, seeding the process with

the ground truth at that time step. Such a simulation is obvi-

ously better situated to reproduce the experiment than starting

from a nonphysical state. While one might guess that this

guarantees the simulation produces a realistic microstructure,

the results show otherwise. As illustrated in Fig. 4, the sim-

ulation with isotropic grain boundary energies evolves the

microstructure in the wrong direction; the relative areas of

twin boundaries decreases with time while the experiment and

anisotropic simulation both increase the relative areas of the

twins. In other words, even though the simulation is provided

with the correct starting point, it evolves in the wrong direc-

tion. The option of instantiating the simulation with a starting

point different from the observed microstructure could also

be informative, but this seems less likely to lead to a better

understanding of the physical process that occurs in real grain

growth.

Grain-by-grain comparisons of microstructure evolution

have been unsuccessful in the past [27,55,78] and the im-

plementation of anisotropic energies has not improved the

situation, as illustrated in Fig. 7. The basic problem is that

as soon as a single critical event (the disappearance of a grain

face for example) is predicted incorrectly, the microstructure

evolves along a different path. The energy distribution used

in the simulation is thought to be a reasonable approximation

of the energies at 0 K, but this approximation deviates from

the true energy distribution at the experimental temperature,

and this might contribute to differences in the evolutions. Even

if the energy was completely accurate, there is evidence that

some aspects of grain boundary migration are not entirely

reproducible in atomistic simulations [79]. In other words,

when grain boundary migration is simulated many times by

molecular dynamics, the outcome is not fully reproducible. If

so, there is no possibility of reproducing the exact sequence of

critical events in microstructure evolution, even if the physical

process in the experiment is fully deterministic.

The observed reduction in grain boundary energy pro-

vides an additional energy dissipation mechanism during

grain growth, as described previously [45]. This is an addi-

tional driving force that influences grain boundary migration

and is absent in simulations with isotropic grain boundary

energies. Previous reports that the grain boundary character

distribution evolves in response to assumed anisotropic en-

ergies [30,38,51,53] and the results presented here that the

assumption of realistic energies leads to simulated results

that reproduce many features of the experiment indicate that

anisotropic grain boundary energies are required input for

realistic simulations. While this seems to add a complexity

to the simulations, realistic, five-parameter, grain boundary

energy functions for the fcc [54] and bcc [80] structures are

available and, at least for the TD simulation, it is not necessary

to alter the energy minimizing procedure.

V. CONCLUSIONS

We have compared the experimentally observed mi-

crostructure evolution of a Ni sample with isotropic and

anisotropic simulations. In the anisotropic simulation, the

grain boundary energies were defined by the BRK en-

ergy function. The assumption of anisotropic grain boundary

energies leads to an increase in the relative areas of

low-energy twin boundaries and a change in the grain

boundary energy distribution that reduces the average grain

boundary energy. These changes result from the anisotropic

grain boundary energy, without any changes in the energy

minimizing algorithm, and do not occur when isotropic

energies are assumed. The results indicate that realistic sim-

ulations of grain growth in polycrystals require anisotropic

grain boundary energies that approximate those in the real

material.

A version of the code developed for this study is available

at Github [81]. And, the data used for this paper are available

online [82].
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APPENDIX: EULER ANGLES AND NORMAL

VECTOR TO PQ REPRESENTATION

Matrices P and Q are rotation matrices from the frame

of grain i and j to a reference frame where the normal of

the boundary plane is aligned with the x axis, respectively.

Hence,

(1) the first rows of P and Q represent the normal bound-

ary plane in the frame aligned with the lattice of grain i, and

the lattice of grain j, respectively;

(2) the rotation matrix from the lattice of grain j to the

lattice of grain i, i.e., �g = gig
T
j , is equal to PT Q.

Given a boundary plane normal n represented in the sample

frame from triangulation, the first row of P is g1n. Since P

is a rotation matrix, all its rows should be perpendicular to

each other, hence the second row of P can be any normal-

ized vector perpendicular to the first row. The third row is

perpendicular to rows 1 and 2, i.e., the cross product of row

1 and row 2. Finally, Q can be computed using the equality

of �g = PT Q. Note that the second row of matrix P is not

unique, hence P and Q are not unique, but any P and Q that

satisfies conditions 1 and 2 will result in the same energy

value.
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