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Abstract

We study the problem of private vector mean estimation in the shuffle model of privacy
where n users each have a unit vector v(i) ∈ Rd. We propose a new multi-message protocol that
achieves the optimal error using Õ

(︁
min(nε2, d)

)︁
messages per user. Moreover, we show that any

(unbiased) protocol that achieves optimal error requires each user to send Ω(min(nε2, d)/ log(n))
messages, demonstrating the optimality of our message complexity up to logarithmic factors.

Additionally, we study the single-message setting and design a protocol that achieves mean
squared error O(dnd/(d+2)ε−4/(d+2)). Moreover, we show that any single-message protocol must
incur mean squared error Ω(dnd/(d+2)), showing that our protocol is optimal in the standard
setting where ε = Θ(1). Finally, we study robustness to malicious users and show that malicious
users can incur large additive error with a single shuffler.

1 Introduction

Vector mean estimation is a fundamental problem in federated learning, where a large number
of distributed users can provide information to collaboratively train a machine learning model.
Formally, there are n users that each have a real-valued vector v(i) ∈ Rd. In the vector mean
estimation problem, the goal is to compute the average of the vectors v = 1

n

∑︁n
i=1 v

(i), whereas
in the closely related vector aggregation problem, the goal is to compute the sum of the vectors
nv =

∑︁n
i=1 v

(i). As the privacy error scales with the norms of the vectors, we normalize and
thus assume that ∥v(i)∥2 ≤ 1. The vectors could represent frequencies of sequences of words
in smartphone data for predictive text suggestions, shopping records for financial transactions or
recommendation systems, various medical statistics for patients from different healthcare institutions,
or gradient updates to be used to train a machine learning model. Thus, vector mean estimation and
vector aggregation are used in a number of applications, such as deep learning through federated
learning [SS15, ACG+16, MMR+17], frequent itemset mining [SFZ+14], linear regression [NXY+16],
and stochastic optimization [CMS11, CJMP22].
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Due to the sensitive nature of many of these data types, recent efforts have concentrated on
facilitating federated analytics while preserving privacy. Differential privacy (DP) [DMNS06] has
emerged as a widely adopted rigorous mathematical definition that quantifies the amount of privacy
leaked by a mechanism for any given individual user. In particular, local differential privacy
(LDP) [KLN+11] demands that the distribution of the transcript of the communication protocol
cannot be greatly affected by a change in a single distributed user’s input. This approach enables
the distributed collection of insightful statistics about a population, while protecting the private
information of individual data subjects even with an untrusted curator who analyzes the collected
statistics.

Unfortunately, in order to ensure privacy, the local model often requires a high amount of noise
that results in poor accuracy of the resulting mechanisms. For example, in the simple case where
v(i) ∈ {0, 1}, i.e., binary summation, there exist private mechanisms with O (1) additive error in the
central setting where the data curator is trusted [DMNS16], but the additive error must be Ω(

√
n)

in the local model [BNO08, CSS12]. Consequently, the Encode, Shuffle, Analyze (ESA) model was
proposed as an alternative distributed setting that could potentially result in a lower error [BEM+17].
The shuffle model of privacy is a special case of the ESA framework introduced by [CSU+19], where
a trusted shuffler receives and permutes a set of encoded messages from the distributed users, before
passing them to an untrusted data curator. [CSU+19] and [EFM+19] showed that for the important
tasks of binary and real-valued summation, there are shuffle protocols that nearly match the accuracy
of the optimal central DP mechanisms. Of note, [BBGN19, BBGN20, GMPV20, GKM+21] study
the 1-dimensional real summation problem both under the lens of minimizing the error and the
message complexity to achieve optimal error. In particular, [GKM+21] show that there is an optimal
protocol that requires each user to send 1 + o(1) messages in expectation. However, the natural
extension of their approach to d-dimensional mean estimation requires a number of messages that is
exponential in d.

For d-dimensional mean estimation in the single-message setting, the most relevant works are
that of [SCM21, SCM22], who study minimizing the mean-squared error of protocols that aim
to compute the mean of vectors u(1), . . . , u(n) ∈ Rd, where each sampled vector u(i) consists of a
number of coordinates sampled from the input vector v(i) ∈ Rd. [SCM21, SCM22] treat the sampled
vectors u(i) as the true vectors and show a single-message shuffle protocol for estimating their mean.
However, the mean-squared error of the overall protocol can be large, due to the large variance
incurred by the procedure of sampling vectors u(i) from the true vectors.

Private vector mean estimation in the shuffle model is thus not well-understood, both under
single-message and multi-message settings. In particular the following natural questions are open:
first, in the multi-message setting, what is the total number of messages required in the shuffle
model in order to obtain optimal rates for vector mean estimation. Secondly, what are the optimal
algorithms for the single-messages setting.

Another desiderata in the design of distributed algorithms is that of robustness to malicious
agents. In our context, we would like the system to be somewhat robust to one or a small number
of clients that behave maliciously. For a problem like vector aggregation, a client can always
misrepresent their input, and thus impact the sum; when vectors are restricted to having norm at
most one, this can impact the true sum by at most two in the norm. The poisoning robustness of
a protocol is defined to be ρ if the impact of an adversarial client on the computed sum is upper
bounded, in Euclidean norm, by ρ. Thus a protocol that computes the exact sum has robustness 2.
We would like to design protocols with robustness that is not much larger. We note that robustness
of this kind has been previously been studied in other models of privacy [CSU21, Tal22]. In the
shuffle model with multiple messages, there are two different possible models from the robustness
point of view.
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In any implementation of a shuffle protocol that aims to achieve robustness, one must limit the
number of contributions a single client can make: indeed if a single malicious client can pretend to
be a million different clients without being detected, one cannot hope to achieve any reasonable
robustness. In typical implementations of a shuffler, such control can be achieved. For example, in
a mix-net implementation of shuffling [BEM+17], each client sends a non-anonymous but encrypted
message to the first hop, where this first server can see who sent the message but not the contents
of the message. This first hop can then validate that each sender sends at most one, or at most a
predetermined number of messages to the server. When this bound is B and there are n clients,
this server can implement this rate control using O (n) counters that can count up to B, for a total
of n log2(B + 1) bits of storage. We call this model, where each client can send a bounded number
of messages to a single shuffler, the multi-message shuffle model.

This is distinct from a multi-shuffler model, where a client is allowed to send 1 message to each of
B shufflers (or equivalently, B messages to a single shuffler with the constraint that there be at most
1 of each of B “types” of message). To ensure robustness, the shuffler would then need to rate-limit
each type of message. When implemented in a mix-net setting as above, this multi-shuffler would
require the first hop server to store O (nB) bits. It is easy to see that information-theoretically,
a server cannot ensure nB separate rate limits using o(nB) bits of state. For large B, this is
significantly more than the n log2(B + 1) bits that suffice for the multi-message shuffle.

Similarly in other implementations, e.g. those building on PrivacyPass or OHTTP tokens [DGS+18,
TW23, HIP+23], there is a server that implements the rate control at some step, and its cost scales
as nB for multiple shufflers, compared to n log2(B + 1) for a multi-message shuffle. Thus from
an overhead point of view, these two models are significantly different. As a concrete example,
when n = 108, and the vectors are d = 106-dimensional, a d-message shuffle requires a few hundred
megabytes of storage for the counters, whereas a multi-shuffle would require 12 terabytes of storage.
It is thus much preferable to design algorithms that are robust in the multi-message shuffle model,
rather than in the multi-shuffler model.

1.1 Our Contributions

In this work, we study the vector aggregation and vector mean estimation problems in the shuffle
model of privacy, both in the single-message and multi-message settings, and from the viewpoint of
robustness. We show the following results.

Multiple messages per user (Section 2). We consider the multi-message setting where users
are allowed to send multiple messages. We propose a new protocol in the shuffle model that
obtains optimal mean squared error of Õ

(︁
d
ε2

)︁
using Õ

(︁
min(d, nε2)

)︁
messages per user, matching

the performance of the central model of privacy [BST14] up to logarithmic factors.

Theorem 1.1. There exists an (ε, δ)-DP mechanism for vector aggregation that uses Õ
(︁
min(d, nε2)

)︁
messages per user and achieves mean squared error Õ

(︁
d
ε2

)︁
.

Moreover, we prove the following lower bound which shows that Ω(min(nε2, d)/ log(n)) messages
are necessary in the shuffle model in order to obtain the optimal rate. The lower bound holds for
any unbiased or summation protocol (as we define in Section 1.3).

Theorem 1.2. For any (unbiased or summation) (ε, δ)-Shuffle DP protocol for vector aggregation
that achieves the optimal mean squared error O

(︁
d
ε2

)︁
, must send k = Ω(min(nε2, d)/ log(n)) messages.
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Single message per user (Section 3). We also study the single-message setting where each
user is allowed to send only a single message. We show that there exists a private protocol that can
achieve mean squared error O

(︁
dnd/(d+2)ε−4/(d+2)

)︁
.

Theorem 1.3. For any ε ∈ (0, 1), δ ∈ (0, 1), and d, n ∈ N, there exists an (ε, δ)-DP protocol in the
one-message shuffle model with mean squared error Oδ

(︁
dnd/(d+2)ε−4/(d+2)

)︁
.

Though the mean squared error of Theorem 1.3 seems somewhat arbitrary, we show that it is
tight for a single message per user shuffle.

Theorem 1.4. Let P be an (ε, δ)-DP protocol for vector aggregation on the unit ball Bd−1
2 in the

one-message shuffle model with δ < 1
2 . Then the mean squared error of P satisfies MSE(P) =

Ω
(︁
dnd/(d+2)

)︁
.

Robustness to malicious users (Section 4). We subsequently study the robustness of shuffle
DP protocols to malicious users, who may distribute adversarial messages in an effort to induce the
maximal possible mean squared error by a protocol.

We first show that for additive protocols in the multi-message shuffle model, each malicious user

can induce additive mean squared error up to Ω
(︂

d
log2(nd)

)︂
, for a total of Ω

(︂
kd

log2(nd)

)︂
additive mean

squared error across k malicious users. More generally, we show the following result for the case of
s shufflers.

Theorem 1.5. Let ε = O (1) and δ < 1
nd . Then any (ε, δ)-DP mechanism for vector summation in

which s shufflers take messages corresponding to a disjoint subset of the coordinates and returns the
sum of the messages across n players with k malicious users has additive error mean squared error

Ω
(︂

kd
s log2(nd)

)︂
.

On the other hand, we show that our protocol is robust to malicious users when multiple shufflers
exist: in this case, k malicious users can only induce error O (k), rather than Ω(kd). Since the input
of each user is a vector with at most unit length, then our result essentially says that a malicious user
can at most hide its input vector by generating the protocol for a different vector. By comparison,

each malicious user in the context of Theorem 1.5 can be responsible for error Ω
(︂

d
log2(nd)

)︂
, which

can be significantly larger than the unit length of each input vector.
Thus our results show that a large class of accurate protocols in the multi-message shuffle model

are inherently non-robust. While the multi-shuffler model can allow for better robustness, it comes
at a significant additional cost. We remark that an trusted aggregator such as one built on top
of PRIO [CB17] can ensure high robustness as well as low overhead (c.f. [ROCT23]). While it is
more complex to implement a trusted aggregator (compared to a shuffler), our results point to an
important reason why a shuffler may not be sufficient when robustness is a concern.

1.2 Related Work

Mean estimation is a fundamental problem for data analytics and is the building block for many
algorithms in stochastic optimization such as stochastic gradient descent. As a result, privacy-
preserving frequency estimation has been extensively studied in applications of federated learning.

Real summation in the shuffle model. There has also been a line of work studying real
summation, i.e., vector summation with d = 1, in the shuffle model. In the single-message shuffle
model, [BBGN19] showed that the optimal additive error is Θ̃ε(n

1/6), whereas in the multi-message
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shuffle model, there exist protocols that achieve additive error O
(︁
1
ε

)︁
[BBGN20, GMPV20, GKM+21].

In particular, [BBGN20, GMPV20] use the split-and-mix protocol of [IKOS06] to achieve additive

error O
(︁
1
ε

)︁
, though at the cost of using at least 3 messages, each of length at least

log 1
δ

logn . Subsequently,

the protocol of [GKM+21] achieves near-optimal error, while using only 1 + o(1) messages per user
in expectation.

Lower bounds for the multi-message shuffle model. For the problem of mean estimation,
existing work does not have any lower bounds in the multi-shuffle model. However, for other
problems such as private selection or parity learning, several recent papers have demonstrated new
lower bounds for the multi-message model [CU21, CGKM20, BHNS20]. More precisely, [CU21]
proved new lower bounds of Ω(

√
D) on the sample complexity of selection from D candidates (and

other learning problems) under the pan-privacy model, which implies lower bounds for the shuffle
model. However, their results do not extend to our setting as high-dimensional mean estimation is
not difficult in the pan-private model and thus do not translate to strong lower bounds for privacy
in the shuffle model. Moreover, [CGKM20] proved lower bounds of D/k for private selection for
the multi-message model with k messages. Finally, [BHNS20] consider the the common element
problem (which aims to identify an element that is common to all users) and prove non-trivial lower
bounds for the multi-message model when k is small. However, these lower bounds are different
from ours in two distinct ways: first, none of them hold for the problem of high-dimensional mean
estimation, and secondly, they do not exhibit the same phase transition behavior that our lower
bounds show, where an optimal rate is achieved only when k ≥ d.

Mean estimation in the LDP model. [DR19, DWJ16] studied the vector mean estimation
problem in the LDP model, showing how to achieve optimal error without accounting for any
communication constraints. [BDF+18] developed a new algorithm, PrivUnit, and proved it is
optimal up to constants, and [AFT22] show that PrivUnit with optimized parameters is the optimal
mechanism. More recently, there have been several works that study LDP aggregation with low
communication cost such as [CKO20, FT21, AFN+23]. Another line of work considers improving
the communication cost in the setting where the input vector of each user is k-sparse [BS15, FPE16,
YB18, AS19, ZWC+22].

1.3 Preliminaries and problem setting

Notation. We let Sd−1 = {v ∈ Rd : ∥v∥2 = 1} denote the d-dimensional sphere. For a set S ⊆ Rd

and a vector v ∈ Rd, define dist(v, S) = infu∈S ∥v − u∥22. Let Bd−1 = {v ∈ Rd : ∥v∥2 ≤ 1} be the
unit ball in d dimensions.

We recall the standard definition of differential privacy.

Definition 1.6 (Differential privacy). [DMNS06] Given a privacy parameter ε > 0 and a failure
parameter δ ∈ (0, 1), a randomized algorithm A : D → R is (ε, δ)-differentially private if, for every
neighboring datasets D,D′ ∈ D and for all U ⊆ R,

Pr [A(D) ∈ U ] ≤ eε ·Pr
[︁
A(D′) ∈ U

]︁
+ δ.

We require the standard advanced composition of differential privacy.

Theorem 1.7 (Advanced composition of differential privacy [DR14]). Let ε, δ ≥ 0 and δ′ > 0. The
composition of k algorithms that are each (ε, δ)-differentially private is itself (ε̃, δ̃)-differentially
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private, where

ε̃ = ε
√︁

2k ln(1/δ′) + kε

(︃
eε − 1

eε + 1

)︃
, δ̃ = kδ + δ′.

Shuffle differential privacy. In the shuffle DP model, we have n users, each holding a vector
vi ∈ Sd−1. A protocol in this model is a pair of procedures (A,R) where R : Sd−1 → Zk is a local
randomizer that each user applies to produce k messages in Z. Then, a shuffler Π is applied to
all messages output by the users, before applying an aggregation A : Z⋆ → Rd over the shuffled
messages to return an output

v̂ = A(Π(R(v1), . . . ,R(vn)).

We say that a protocol (A,R) is (ε, δ)-Shuffle DP if the algorithm that outputs Π(R(v1), . . . ,R(vn))
is (ε, δ)-DP. Moreover, we define the mean squared error Err(A,R) of the protocol to be

sup
v1,...,vn∈Sd−1

E

⎡⎣⃦⃦⃦⃦⃦A(Π(R(v1), . . . ,R(vn)))−
n∑︂

i=1

vi

⃦⃦⃦⃦
⃦
2

2

⎤⎦ .

Throughout the paper, we use the notion of unbiased and summation protocols. More specifically,
we say that a protocol (A,R) is unbiased if for all v1, . . . , vn ∈ Sd−1

E[A(Π(R(v1), . . . ,R(vn))] =
n∑︂

i=1

vi.

We also let A+ denote the summation aggregation, that is,

A+(Π(R(v1), . . . ,R(vn))) =
∑︂

m∈Π(R(v1),...,R(vn))

m.

These notions will be useful for our lower and upper bounds.

1.3.1 Kashin representation

We use Kashin’s representation in our multi-message algorithms, which has the following property.

Lemma 1.8 (Kashin’s representation). [LV10] Let d ≥ 1. There exists a transformation UK ∈ R2d×d

and a constant CK such that

(1) UT
KUK = Id

(2) For all x ∈ Sd−1, ∥UKx∥∞ ≤ CK√
d
.

Here we use the subscript K simply to denote Kashin’s representation. We call the matrix UK the
Kashin transformation.

We remark that Kashin’s representation was first used for locally-private mean estimation
in [FGV21].
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2 Multiple Messages

In this section, we study algorithms for vector aggregation in the shuffle model of privacy when
each user is permitted to send multiple messages. In particular, we study the number of messages
that each user should send so that the resulting protocol can achieve the same mean squared error
as the optimal mechanism in the central setting of DP. We first show a lower bound for the number
of messages that must be sent per user to achieve the best possible error while guaranteeing DP.
We then give an algorithm with matching number of messages per user, while achieving the best
possible error for DP protocols.

2.1 Ω̃(min(nε2, d)) messages are necessary

In this section, we prove that any unbiased shuffle DP protocol that obtains optimal error must send

at least k ≥ Ω
(︂
min(nε2,d)

logn

)︂
messages per user. We prove this lower bound for summation protocols

in Section 2.1.1 and for any unbiased protocol in Section 2.1.2.
In our setting, we have n users with inputs v1, . . . , vn ∈ Rd where ∥vi∥2 ≤ 1. Each user applies a

local randomizer R(vi) which sends k messages, R(vi) = (m1
i , . . . ,m

k
i ), then an aggregation protocol

A is applied over the shuffled messages, producing an output µ̂ = A(Π(R(v1),R(v2), . . . ,R(vn))),
where Π is the shuffling operation.

2.1.1 Lower bound for summation protocols

We begin by proving the lower bound for summation protocols where A+(m1, . . . ,mnk) =
∑︁nk

i=1mi.
Throughout this section, we assume that the aggregation protocol A = A+ and that R : Sd−1 → Zk

where Z = Rd.

Theorem 2.1. Let ε, δ ≤ 1 and R : Sd−1 → Zk be an (ε, δ)-Shuffle DP randomizer. If Err(A+,R) ≤
O
(︁
d/ε2

)︁
then k ≥ Ω

(︂
min(nε2,d)

logn

)︂
.

Towards proving this result, we first prove the following symmetry property that is satisfied
by an optimal summation protocol. For a randomizer R, let R+(vi) denote the summation of all
messages in R(vi), that is, R+(vi) =

∑︁k
j=1R(vi)j . We defer the proof to Appendix A.1.1.

Lemma 2.2. Let ε ≤ 1, R : Sd−1 → Zk be (ε, δ)-Shuffle DP. There exists an (ε, δ)-Shuffle DP
randomizer R̂ : Sd−1 → Zk such that

(1) Err(A+, R̂) ≤ Err(A+,R)

(2) (Symmetry) For all u, v ∈ Sd−1,

E
[︃⃦⃦⃦
R̂+

(v)− v
⃦⃦⃦2
2

]︃
= E

[︃⃦⃦⃦
R̂+

(u)− u
⃦⃦⃦2
2

]︃

Proof. (sketch) The new randomizer R̂ works as follows: first, it samples a rotation matrix U ∈ Rd×d

(known public randomness) such that UTU = I, then sets

R̂(v) = UTR(Uv),

where UTR(Uv) denotes multiplying each message in R(Uv) by UT . The lemma then follows using
standard algebraic manipulations (see Appendix A.1.1 for full proof).
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The proof of the lower bound builds on the following reconstruction attack against summation
protocols. The attack essentially iterates over all subsets of messages of size k and adds their sum
to the output set. We argue that if the protocol has small error (less than n), then the input vector
will be close to a vector in the output set.

Algorithm 1 Reconstruction attack against summation protocols

Input: Shuffled set of messages W = {mi}i∈[nk] ∈ Rd

Output: A set S ⊆ Rd

1: Initialize S = ∅
2: for t = 1 to

(︁
nk
k

)︁
do

3: Pick a (new) set of k messages from W ; denote it by Wt

4: S ← S ∪ {
∑︁

m∈Wt
m}

5: end for
6: Return S

The following proposition states the guarantees of this reconstruction attack.

Proposition 2.3. Let v1, . . . , vn ∈ Sd−1, R : Sd−1 → Zk be randomizer that satisfies the symmetry
condition of Lemma 2.2. For an input set W = Π(R(v1), . . . , R(vn)), Algorithm 1 outputs a set
S ⊂ Rd of size

(︁
nk
k

)︁
such that

E [dist(v1, S)] = E
[︃
min
u∈S
∥v1 − u∥22

]︃
≤ Err(A+,R)

n
,

where the expectation is over the randomness of the algorithm.

Proof. Let ∆(v) = E [R+(v)− v] be the bias of R+ over v. Note that the error of the protocol over
dataset (u1, . . . , un) is

E

⎡⎣⃦⃦⃦⃦⃦A+(Π(R(u1),R(u2), . . . ,R(un)))−
n∑︂

i=1

ui

⃦⃦⃦⃦
⃦
2

2

⎤⎦
= E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

R+(ui)− ui

⃦⃦⃦⃦
⃦
2

2

⎤⎦
=

n∑︂
i=1

E
[︂⃦⃦
R+(ui)− ui

⃦⃦2
2

]︂
+

∑︂
i ̸=j∈[n]

E
[︁
R+(ui)− ui

]︁T
E
[︁
R+(uj)− uj

]︁
=

n∑︂
i=1

E
[︂⃦⃦
R+(ui)− ui

⃦⃦2
2

]︂
+

∑︂
i ̸=j∈[n]

∆(ui)
T∆(uj).

For input dataset X = (u, u, . . . , u), this implies

E
[︂⃦⃦
A+(Π(R(u),R(u), . . . ,R(u)))− nu

⃦⃦2
2

]︂
= nE

[︂⃦⃦
R+(u)− u

⃦⃦2
2

]︂
+

(︃
n

2

)︃
∥∆(u)∥22

≥ nE
[︂⃦⃦
R+(u)− u

⃦⃦2
2

]︂
.
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AsR satisfies the symmetry assumption that E[∥R+(v)− v∥22] = E[∥R+(u)− u∥22] for all u, v ∈ Sd−1,
and since the error is bounded by d/ε2, we have that

E
[︂⃦⃦
R+(v1)− v1

⃦⃦2
2

]︂
≤ d

nε2
.

Finally, note that R+(v1) ∈ S as the attack of Algorithm 1 iterates over all possible subsets of size
k and adds their sum to S. Hence, there exists t such that Wt = R(v1), in which case the algorithm
will add R+(v1) to S.

We can now provide the main idea for proving Theorem 2.1. We defer the full proof to Ap-
pendix A.1.2.

Proof. (sketch) Consider d ≤ nε2/100 and let P = {v1, v2, . . . , vM} be a ρ-packing of Sd−1 where
ρ = 1/10. We will prove the lower bounds by analyzing the algorithm over the following M datasets:

Xi = (vi, v1, . . . , v1).

The main idea is to show that if an algorithm is accurate, then our reconstruction attack Algorithm 1
will return a set S of size

(︁
nk
k

)︁
≈ 2k log(n) that contains vi. If k ≪ d, then the size of the reconstructed

set S is much smaller than the size of the packing P which contradicts privacy.
More formally, let Si be the output of the reconstruction attack (Algorithm 1) over the input

Π(R(vi),R(v1), . . . ,R(v1)), and let Oi be the projection of Si to the packing P ; that is, Oi =
{ProjP (v) : v ∈ Si}.

Proposition 2.3 states that E[dist(vi, Si)] ≤ d
nε2
≤ 1/100, hence we get that

Pr(vi ∈ Oi) ≥ Pr(dist(vi, Si) < ρ) ≥ 9/10,

where the first inequality follows as P is ρ-packing, and the second inequality follows from Markov’s
inequality.

On the other hand, note that

M∑︂
i=1

Pr(vi ∈ O1) =

M∑︂
i=1

E[1{vi ∈ O1}]

= E

[︄
M∑︂
i=1

1{vi ∈ O1}

]︄

≤ E[|O1|] ≤
(︃
nk

k

)︃
.

Hence there exists an 1 ≤ i ≤M such that

Pr(vi ∈ O1) ≤
(︁
nk
k

)︁
M

.

As the protocol is (ε, δ)-DP, we also have

Pr(vi ∈ O1) ≥ Pr(vi ∈ Oi)e
−ε − δ

≥ 9

10e
≥ 1/6.
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Combining these together, and given that M ≥ 2d for ρ = 1/10, we have that

2d ≤ 6

(︃
nk

k

)︃
≤ 6(en)k.

This implies that k ≥ Ω(d/ log(n)) whenever d ≤ nε2/100.
Now consider d ≥ nε2/100. The proof builds on a reduction (Proposition A.1) which converts

an optimal protocol for d-dimensional inputs into an optimal protocol for d′-dimensional inputs
where d′ = nε2/200 with the same number of messages. The lower bound then follows immediately
from the lower bound for small d.

We provide the full details of the proof and the missing proof for d ≥ nε2/100 in Appendix A.1.

2.1.2 Lower bound for unbiased protocols

In this section, we prove the same lower bound for any aggregation strategy as long as it is unbiased.
We assume that the aggregation protocol A is unbiased; that is, for all v1, . . . , vn ∈ Sd−1,

E [A(Π(R(v1),R(v2), . . . ,R(vn)))] =
n∑︂

i=1

vi.

The lower bound builds on the following reconstruction attack against unbiased protocols
(Algorithm 2). The attack follows the same recipe as the attack against summation protocols
(Algorithm 1) to iterate over all subsets of messages of size k. However, given k messages, now we
apply a different reconstruction scheme that uses the aggregation A with zero-mean dummy inputs,
and finally taking expectations.

Algorithm 2 Reconstruction attack against unbiased protocols

Input: Shuffled set of messages W = {mi}i∈[nk]
Output: A set S ⊆ Rd

1: Initialize S = ∅
2: for t = 1 to

(︁
nk
k

)︁
do

3: Pick a (new) set of k messages from W ; denote it by Wt

4: Calculate ut to be Eṽ2,...,ṽn∼Unif(Sd−1) [A (Π(Wt,R(ṽ2), . . . ,R(ṽn)))]
5: S ← S ∪ {ut}
6: end for
7: Return S

The following proposition states the guarantees of this reconstruction attack against unbiased
protocols. We defer the proof to Appendix A.2.1.

Proposition 2.4. Let v1, . . . , vn ∈ Sd−1 where v1 ∼ Unif(Sd−1), R : Sd−1 → Zk and A be an
unbiased protocol. For an input set W = Π(R(v1), . . . , R(vn)), Algorithm 2 outputs a set S ⊂ Rd of
size

(︁
nk
k

)︁
such that

E [dist(v1, S)] = E
[︃
min
u∈S
∥v1 − u∥22

]︃
≤ Err(A,R)

n
,

where the expectation is over the randomness of v1 and the algorithm.

We can now prove our main lower bound for unbiased protocols. The proof is similar to the
proof of Theorem 2.1 using the new construction attack. We defer it to Appendix A.2.2.

Theorem 2.5. Let ε ≤ 1, R : Sd−1 → Zk be (ε, δ)-shuffle DP, and A be an unbiased protocol. If

Err(A,R) ≤ O
(︁
d/ε2

)︁
then k ≥ Ω

(︂
min(nε2,d)

logn

)︂
.
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2.2 Optimal multi-message protocol

In this section, we briefly overview a private protocol that achieves the optimal mean squared error
for vector aggregation. The protocol requires that each user sends O (d) messages in expectation.

We adapt the 1-dimensional mechanism of [GKM+21] to vector aggregation by requiring that
each user separately performs the scalar aggregation on each coordinate and padding the resulting
messages to vectors in the natural manner, before sending the messages. Due to standard composition
theorems, the privacy parameter for each coordinate must have a smaller privacy budget, so that
the overall privacy loss across the d coordinates is still ε. We describe the local randomizer
in Algorithm 3 and the aggregation in Algorithm 4. Our algorithms use the optimal 1-dimensional

algorithm of [GKM+21]: we let R(ε,δ)
GKMPS denote their local randomizer with parameters (ε, δ)

Algorithm 3 Local randomizer for vector aggregation

Input: v(i) ∈ Sd−1, privacy parameters (ε, δ)
Output: S(i) ⊂ Rd

1: Let S(i) = ∅ and UK ∈ R2d×d be the Kashin transformation with constant CK

2: Set u(i) =
√
d

CK
UKv

(i)

3: for j = 1 to 2d do

4: Let Sj = R(ε0,δ0)
GKMPS(u

(i)
j ) where ε0 =

ε

2
√

2d log(2/δ)
and δ0 =

δ
2d

5: Update S(i) = S(i) ∪ {m · ej : m ∈ Sj}
6: end for
7: Output S(i)

Algorithm 4 Aggregation for vector aggregation

Input: Shuffled messages M ⊂ R2d

Output: v̂ ∈ Rd

1: Let UK ∈ R2d×d be the Kashin transformation with constant CK

2: Calculate û =
∑︁

m∈M m

3: Output v̂ = CK√
d
UT
K û

We have the following result for our protocol. The proof is standard and we defer it to Ap-
pendix A.3.

Theorem 2.6. Let R : Sd−1 → R2d be the local randomizer in Algorithm 3 and A : (R2d)⋆ → Rd

be the aggregation in Algorithm 4. Then, R is (ε, δ)-Shuffle DP randomizer, each users sends

d ·
(︂
1 + ˜︁Oε

(︂
log(1/δ)√

n

)︂)︂
messages in expectation, and the protocol has error

Err(A,R) ≤ O
(︃
d log(1/δ)

ε2

)︃
.

Finally, we note that it is possible to achieve this rate with O
(︁
nε2
)︁
messages using the protocols

in [CSOK23]: their protocols work in the shuffle model and send O
(︁
nε2
)︁
bits per users in T rounds.

However, their approach can also work in a single round if the coordinates are independent (which
is the case if the Kashin representation is applied). Overall, we conclude that there is a protocol for
the shuffle model that requires O

(︁
min(nε2, d)

)︁
messages.
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3 Single Message per User

In this section, we study private vector summation when each user is only allowed to send a single
message. We first give an algorithm for this setting in Section 3.1 and then show that the algorithm
is near-optimal in Section 3.2.

3.1 A Single-Message Protocol

In this section, we describe a simple protocol for private vector summation in the shuffle model that
achieves near-optimal error when each user can only send a single message and ε is constant. Indeed,
both the protocol and the corresponding analysis can be viewed as a generalization of [BBGN19]
from the aggregation of real numbers to real-valued vectors.

The protocol first picks a granularity r so that all messages will only correspond to vectors
whose coordinates are multiples of r. Each user i then randomly rounds each coordinate of their

input v(i) to one of the two neighboring multiples of r to form a vector ˜︂v(i). Each user then performs
randomized response to determine whether the message w(i) they send is their randomly rounded

input ˜︂v(i) or a message selected uniform at random from the set [r]d of all possible rounded messages.
The local randomizer appears in Algorithm 5.

The analyzer takes the set {w(i)}i∈[n] of messages and computes their vector sum z =
∑︁n

i=1w
(i).

It then adjusts each coordinate j ∈ [d] of z to account for the expected noise from randomized

response, so that the expectation of the corrected zj is precisely the sum of the inputs
∑︁n

i=1 v
(i)
j .

We provide the full details in Algorithm 6.

Algorithm 5 Local randomizer for single message per user

Input: v(i) ∈ Sd−1, parameters r, c, d, n
Output: w(i) ∈ {0, 1, . . . , r}d

1: γ ← c(r+1)
n

2: for j = 1 to j = d do

3: ˜︂v(i)j ∼ ⌊︂rv(i)j

⌋︂
+Ber

(︂
rv

(i)
j −

⌊︂
rv

(i)
j

⌋︂)︂
4: end for
5: Sample b ∼ Ber(γ)
6: if b = 0 then
7: w(i) ← ˜︂v(i)
8: else
9: w(i) ∼ Unif([r]d)

10: end if

Algorithm 6 Aggregation for bucket-based randomized response

Input: w(i) ∈ {0, 1, . . . , r}d for i ∈ [n] and c from Algorithm 5
Output: ˜︁v ∈ [0, n]d

1: z ← 1
r

∑︁n
i=1w

(i)

2: for j = 1 to j = d do

3: ˜︁vj ← 2zj−c(r+1)
2−2γ =

(︂
zj − c(r+1)

2

)︂
/(1− γ)

4: end for
5: Return ˜︁v

12



We first note that since each vector in [r]d can be encoded as a integer in [rd], then the privacy
guarantees of [BBGN19] for the local randomizer holds as follows:

Lemma 3.1 (Theorem 3.1 in [BBGN19]). The mechanism in Algorithm 6 is (ε, δ)-DP for the

number of buckets k = (r + 1)d and γ ≥ min
(︂
1,max

(︂
14k

(n−1)ε2
log 2

δ ,
27k

(n−1)ε

)︂)︂
.

We now upper bound the mean squared error of Algorithm 6.

Theorem 1.3. For any ε ∈ (0, 1), δ ∈ (0, 1), and d, n ∈ N, there exists an (ε, δ)-DP protocol in the
one-message shuffle model with mean squared error Oδ

(︁
dnd/(d+2)ε−4/(d+2)

)︁
.

Proof. Consider Algorithm 6. The mechanism is (ε, δ)-private by the choice of

γ ≥ min

(︃
1,max

(︃
14k

(n− 1)ε2
log

2

δ
,

27k

(n− 1)ε

)︃)︃
and Lemma 3.1.

The mean squared error is at most

sup
{v(i)}

E

⎡⎣ d∑︂
j=1

(˜︁vj − vj)
2

⎤⎦ = sup
{v(i)}

E

⎡⎣ d∑︂
j=1

(︄˜︁vj − n∑︂
i=1

v
(i)
j

)︄2
⎤⎦ .

For a real number x, let F (x) = x−c(r+1)/2
1−c(r+1)/n , so that F is the debiasing function applied coordinate-

wise to z.

sup
{v(i)}

E

⎡⎣ d∑︂
j=1

(˜︁vj − vj)
2

⎤⎦
= sup

{v(i)}
E

⎡⎣ d∑︂
j=1

(︄
F (zj)−

n∑︂
i=1

v
(i)
j

)︄2
⎤⎦

= sup
{v(i)}

E

⎡⎣ d∑︂
j=1

(︄
F

(︄
1

r

n∑︂
i=1

w
(i)
j

)︄
−

n∑︂
i=1

v
(i)
j

)︄2
⎤⎦ .

Note that by construction E [F (zj)] =
∑︁n

i=1 v
(i)
j , for all j ∈ [d]. Thus the cross terms cancel, so that

we further have

sup
{v(i)}

E

⎡⎣ d∑︂
j=1

(˜︁vj − vj)
2

⎤⎦
= sup

{v(i)}
E

⎡⎣ d∑︂
j=1

n∑︂
i=1

(︄
F

(︄
w

(i)
j

r

)︄
−

n∑︂
i=1

v
(i)
j

)︄2
⎤⎦

= sup
{v(i)}

d∑︂
j=1

n∑︂
i=1

V

[︄
F

(︄
w

(i)
j

r

)︄]︄
,
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where we use V to denote the variance. Note that after debiasing, the γ fraction of the coordinates
that were randomly generated from the uniform distribution, due to b ∼ Ber(γ), do not contribute
variance. Hence the mean-squared error is at most

sup
{v(i)}

E

⎡⎣ d∑︂
j=1

(˜︁vj − vj)
2

⎤⎦ =
nd

(1− γ)2
sup
x
(1)
1

V

[︄
w

(1)
1

r

]︄

≤ nd

(1− γ)2

(︃
1− γ

4r2
+

γ

2

)︃
.

Recall that we set γ = c(k+1)
n for a parameter c, which we require to guarantee

γ ≥ min

(︃
1,max

(︃
14k

(n− 1)ε2
log

2

δ
,

27k

(n− 1)ε

)︃)︃
,

to satisfy privacy. Then we have

sup
{v(i)}

E

⎡⎣ d∑︂
j=1

(˜︁vj − vj)
2

⎤⎦ ≤ nd

(1− γ)2

(︃
1

4r2
+

c(k + 1)

2n

)︃

≤ nd

(1− γ)2

(︃
1

4r2
+

c((r + 1)d + 1)

2n

)︃
.

By setting c(r + 1)d+2 = O (n) for c = O
(︁

1
ε2

log 1
δ

)︁
, we have that the above quantity is minimized

at r =
(︁
Oδ

(︁
n
c

)︁)︁1/(d+2)
. Thus since c = O

(︁
1
ε2

log 1
δ

)︁
, then the mean squared error is at most

Oδ

(︁
dnd/(d+2)ε−4/(d+2)

)︁
.

3.2 Lower Bound

In this section, we show that our protocol in Section 3.1 is near-optimal by proving that for any
ε = O (1), the mean squared error of any protocol that gives ε-DP in the shuffle model in which each
user sends a single message is Ω(dnd/(d+2)). The main intuition is that we can partition the space
into blocks of size length 1

r , so that there are rd hypercubes in total. Although r is a parameter that
can be chosen at the protocol’s discretion, there are two sources of error for any private protocol
that result in two opposing tensions on the value of r.

The first source of error is that due to the privacy guarantees, the output distribution for an
input v(i) to a player i may overlap with the output distribution for any input in [r]d. In this case,
the message may be decoded to some other vector with large distance from v(i), resulting in large
mean squared error. In particular, larger values of r force the output of the local randomizer to
have less signal about the true block containing the input v(i), since the output distribution must
intersect with that of more possible inputs. This is formalized in Lemma B.3.

The second source of error is that any vector inside a block may incur error from the message
representing the block, due to the partition of the space. In particular, the message may be decoded
correctly for the block, but the set of all vectors within the block has large diameter, and so the
resulting mean squared error is large. Specifically, smaller values of r result in blocks with larger
diameter, which again force the output of the local randomizer to have less signal about the true
input v(i) within each block. This is formalized in Lemma B.4. The resulting lower bound then
follows from optimizing r with respect to the two possible sources of error, resulting in the following
theorem.

14



Theorem 1.4. Let P be an (ε, δ)-DP protocol for vector aggregation on the unit ball Bd−1
2 in the

one-message shuffle model with δ < 1
2 . Then the mean squared error of P satisfies MSE(P) =

Ω
(︁
dnd/(d+2)

)︁
.

The proof of this result is technical and we defer it to Appendix B.

4 Robustness to Malicious Users

We first observe that our multi-message protocol is not robust against malicious users in the
single-shuffle setting, in the sense that a single malicious user can additively incur much larger than
constant mean squared error, even though their input vector has at most unit length. In fact, each

user can incur up to Ω
(︂

k
log2(nd)

)︂
additive mean squared error.

Theorem 4.1. Let ε = O (1) and δ < 1
nd . Then any (ε, δ)-shuffle DP mechanism for vector

summation that takes the sum of the messages across n players with k malicious users has additive

error Ω
(︂

kd
log2(nd)

)︂
.

Theorem 1.5 then follows from a simple power mean inequality. On the other hand, we observe
that Algorithm 4 is robust against malicious users in the setting where a separate shuffler is
responsible for the messages corresponding to each coordinate of a user.

Lemma 4.2. Suppose that a separate shuffler handles the messages for each coordinate from all
users in Algorithm 4. Then the mean squared error induced by k malicious users is at most O (k).
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A Missing Proofs from Section 2

A.1 Missing Proofs from Section 2.1.1

In this section, we provide the missing proof for the lower bound for the setting of summation
protocols (Section 2.1.1).

A.1.1 Proof of Lemma 2.2

Lemma 2.2. Let ε ≤ 1, R : Sd−1 → Zk be (ε, δ)-Shuffle DP. There exists an (ε, δ)-Shuffle DP
randomizer R̂ : Sd−1 → Zk such that

(1) Err(A+, R̂) ≤ Err(A+,R)

(2) (Symmetry) For all u, v ∈ Sd−1,

E
[︃⃦⃦⃦
R̂+

(v)− v
⃦⃦⃦2
2

]︃
= E

[︃⃦⃦⃦
R̂+

(u)− u
⃦⃦⃦2
2

]︃

Proof. The new randomizer R̂ works as follows: first, it samples a rotation matrix U ∈ Rd×d (known
public randomness) such that UTU = I, then sets

R̂(v) = UTR(Uv),

where UTR(Uv) denotes multiplying each message in R(Uv) by UT .
To prove privacy, we have to prove that Π(UTR(Uv1), U

TR(Uv2), . . . , U
TR(Uvn)) is (ε, δ)-DP.

As U is known, it is sufficient to prove that Π(R(Uv1),R(Uv2), . . . ,R(Uvn)) is (ε, δ)-DP. This
follows directly from the fact that Π(R(v1),R(v2), . . . ,R(vn)) is (ε, δ)-DP, and that the hamming
distance between X = (v1, . . . , vn) and X ′ = (v′1, . . . , v

′
n) is the same as the hamming distance

between XU = (Uv1, . . . , Uvn) and X ′
U = (Uv′1, . . . , Uv′n).

For utility, we have

Err(A+, R̂) = sup
v1,...,vn

E

⎡⎣⃦⃦⃦⃦⃦A+(Π(R̂(v1), R̂(v2), . . . , R̂(vn)))−
n∑︂

i=1

vi

⃦⃦⃦⃦
⃦
2

2

⎤⎦
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= sup
v1,...,vn

E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

R̂+
(vi)− vi

⃦⃦⃦⃦
⃦
2

2

⎤⎦
= sup

v1,...,vn
E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

UTR(Uvi)− vi

⃦⃦⃦⃦
⃦
2

2

⎤⎦
= sup

v1,...,vn
E

⎡⎣⃦⃦⃦⃦⃦UT
n∑︂

i=1

(R(Uvi)− Uvi)

⃦⃦⃦⃦
⃦
2

2

⎤⎦
= sup

v1,...,vn
E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

(R(Uvi)− Uvi)

⃦⃦⃦⃦
⃦
2

2

⎤⎦
= Err(A,R).

For the third claim, note that R̂(−v) = UTR(−Uv). As U and −U has the same distribution,
we can also write R̂(−v) = −UTR(Uv) which is the same as the distribution of −R̂(v).

For the final claim, note that

E
[︃⃦⃦⃦
R̂+

(v)− v
⃦⃦⃦2
2

]︃
= E

[︂⃦⃦
UTR(Uv)− v

⃦⃦2
2

]︂
= E

[︂⃦⃦
UT (R(Uv)− Uv)

⃦⃦2
2

]︂
= E

[︂
∥(R(Uv)− Uv)∥22

]︂
.

The claim follows as Uv1 and Uv2 have the same distribution for any v1 and v2 in the unit ball.

A.1.2 Proof of Theorem 2.1

Theorem 2.1. Let ε, δ ≤ 1 and R : Sd−1 → Zk be an (ε, δ)-Shuffle DP randomizer. If Err(A+,R) ≤
O
(︁
d/ε2

)︁
then k ≥ Ω

(︂
min(nε2,d)

logn

)︂
.

Proof. Let Err(A,R) ≤ C · d/ε2 for some universal constant 1 ≤ C <∞. Based on Lemma 2.2, we
can assume that the randomizer R satisfies the symmetry property:

E
[︂⃦⃦
R+(v)− v

⃦⃦2
2

]︂
= E

[︂⃦⃦
R+(u)− u

⃦⃦2
2

]︂
, for all u, v ∈ Sd−1.

First, we prove the lower bounds for d ≤ nε2/100C. Let P = {v1, v2, . . . , vM} be a ρ-packing
of the unit ball such that M = 2d log(1/ρ) (the existence of such packing is standard in the litera-
ture [Duc18]). We will prove the lower bounds by analyzing the algorithm over the following M
datasets:

Xi = (vi, v1, . . . , v1).

Let Si be the output of the reconstruction attack (Algorithm 1) over the input Π(R(vi),R(v1), . . . ,R(v1)),
and let Oi be the projection of Si to the packing P ; that is, Oi = {ProjP (v) : v ∈ Si}.

Proposition 2.3 states that E [dist(vi, Si)] ≤ Cd
nε2
≤ 1/100, hence we get that

Pr [vi ∈ Oi] ≥ Pr [dist(vi, Si) < ρ] ≥ 9/10,
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where the first inequality follows as P is ρ-packing, and the second inequality follows from markov
inequality.

On the other hand, note that

M∑︂
i=1

Pr [vi ∈ O1] =
M∑︂
i=1

E [1{vi ∈ O1}]

= E

[︄
M∑︂
i=1

1{vi ∈ O1}

]︄

≤ E [|Oi|] ≤
(︃
nk

k

)︃
.

Hence there exists an 1 ≤ i ≤M such that

Pr [vi ∈ O1] ≤
(︁
nk
k

)︁
M

.

As the protocol is (ε, δ)-DP, we also have

Pr [vi ∈ O1] ≥ Pr [vi ∈ Oi] e
−ε − δ

≥ 9

10e
≥ 1/6.

Combining these together, and given that M ≥ 2d for ρ = 1/10, we have that

2d ≤ 6

(︃
nk

k

)︃
≤ 6(en)k.

This implies that k ≥ Ω(d/ log(n)) whenever d ≤ nε2/100C.
Now we prove the lower bound for d ≥ nε2/100. The proof builds on the following proposition

which states that we can convert an optimal protocol for d-dimensional inputs into an optimal
protocol for d′-dimensional inputs where d′ = nε2/200 with the same number of messages. We defer
the proof to Appendix A.1.3.

Proposition A.1. Let d′ = nε2/200C ≥ 1 and d ≥ 2d′. Let R : Sd−1 → Zk be an (ε, δ)-shuffle DP
protocol with error Err(A+,R) ≤ O

(︁
d/ε2

)︁
. There exists R′ : Sd′−1 → Zk that is (ε, δ)-shuffle DP

such that Err(A+,R′) ≤ O
(︁
d′/ε2

)︁
.

Now, let A+ and R : Bd−1 → Zk be a protocol that obtains error Err(A+,R) ≤ O
(︁
d/ε2

)︁
using k messages. Proposition A.1 implies that there is a randomizer R′ : Bd′−1 → Zk such that
Err(A,R′) ≤ O

(︁
d′/ε2

)︁
for d′ = nε2/200C. As d′ ≤ nε2/100C, this shows that k ≥ Ω(d′/ log(n)) =

Ω(nε2/ log(n)).

A.1.3 Proof of Proposition A.1

To prove Proposition A.1, we need the following lemma which shows that we can convert any
summation protocol into another one where the error is split evenly across coordinates.

We use the following notation. For a permutation π : [d] → [d] and a vector v ∈ Rd, we let
v̂ = v(π) denote the shuffling of the coordinates of v based on π, that is v̂j = vπ(j).
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Lemma A.2. If R : Sd−1 → Zk is (ε, δ)-shuffle DP then there exists R̂ : {−1√
d
, 1√

d
}d → Zk that is

(ε, δ)-shuffle DP and for j ∈ [d] and v1, . . . , vn ∈ {−1√
d
, +1√

d
}d,

E

⎡⎣⃓⃓⃓⃓⃓⃓
(︄

n∑︂
i=1

R̂+
(vi)−

n∑︂
i=1

vi

)︄
j

⃓⃓⃓⃓
⃓⃓
2⎤⎦ ≤ Err(A+,R)

d
.

Proof. R̂ will use shared public randomness to shuffle the coordinates of each vector and flip the signs
of each coordinate. This will ensure that all coordinates will have the same marginal distribution
for their error.

More precisely, let π : [d]→ [d] be a random permutation of the coordinates picked uniformly at
random, and let s1, . . . , sd ∼ Ber(1/2). Our new randomizer R̂ over input v will first transform the
input vector v into v̂ where

v̂ = s · v(π),

where the multiplication is element-wise. Then, we run R(v̂) to get messages m̂1, . . . , m̂k. For each
of these messages, we apply the inverse transformation, and output m1, . . . ,mk where

mi = s · m̂i(π
−1).

Note that ⃓⃓⃓⃓
⃓⃓
(︄

n∑︂
i=1

R̂+
(vi)−

n∑︂
i=1

vi

)︄
j

⃓⃓⃓⃓
⃓⃓
2

=

⃓⃓⃓⃓
⃓

n∑︂
i=1

mi,j − vj

⃓⃓⃓⃓
⃓
2

=

⃓⃓⃓⃓
⃓sj

n∑︂
i=1

m̂i,π−1(j) − v̂π−1(j)

⃓⃓⃓⃓
⃓
2

=

⃓⃓⃓⃓
⃓

n∑︂
i=1

m̂i,π−1(j) − v̂π−1(j)

⃓⃓⃓⃓
⃓
2

=

(︄
n∑︂

i=1

R+(v̂i)−
n∑︂

i=1

v̂i

)︄
π−1(j)

.

As v̂1, . . . , v̂n are uniformly random vectors from {−1,+1}d/
√
d, we get that

(︂∑︁n
i=1 R̂

+
(vi)−

∑︁n
i=1 vi

)︂2
j

have the same distribution for all j ∈ [d]. The claim now follows since

E

⎡⎣ d∑︂
j=1

(︄
n∑︂

i=1

R̂+
(vi)−

n∑︂
i=1

vi

)︄2

j

⎤⎦ = E

⎡⎣ d∑︂
j=1

(︄
n∑︂

i=1

R+(v̂i)−
n∑︂

i=1

v̂i

)︄2

π−1(j)

⎤⎦
= E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

R+(v̂i)−
n∑︂

i=1

v̂i

⃦⃦⃦⃦
⃦
2

2

⎤⎦
≤ Err(A+,R).

We are now ready to prove Proposition A.1.
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Proof. (of Proposition A.1) R′ will work as follows for a d′-dimensional input v′: first, apply Kashin
representation U ∈ R2d′×d′ to get w = Uv′ ∈ R2d′ such that ∥w∥∞ ≤ 2/

√
d′. Then, we convert w

into a binary vector u by setting for all i ∈ [2d′]

ui =

{︄
2sign(wi)/

√
d′ with probability wi

√
d′+2
4

−2sign(wi)/
√
d′ with probability −wi

√
d′+2

4

Note that E[ui] = wi and that E[(wi − ui)
2] ≤ 4/d′ since |ui| ≤ 2/

√
d′.

Now, let R̂ be the randomizer guaranteed from Lemma A.2 for the randomizer R. Our local
ranodmizer R′ will do the following: it constructs v ∈ Rd by setting v = (u, 0, . . . , 0) then applies
R̂ over v to generate k messages m1, . . . ,mk. Finally, it truncates the messages to the first
2d′ coordinates and applies the inverse Kashin transformation to the messages, that is, sends
UTm1[1 : 2d′], . . . , UTmk[1 : 2d′]

Privacy of R′ follows immediately from privacy of R. It remains to prove an upper bound on
the error for R′.

Let v′1, . . . , v
′
n ∈ Bd′−1 and let u1, . . . , un be their corresponding binary vectors from the above

procedure. Let vi = (ui, 0, . . . , 0) ∈ Rd. Lemma A.2 guarantees that for all j ∈ [d] we have

E

⎡⎣⃓⃓⃓⃓⃓⃓
(︄

n∑︂
i=1

R̂+
(vi)− vi

)︄
j

⃓⃓⃓⃓
⃓⃓
2⎤⎦ ≤ Err(A,R)

d
.

Thus, when truncating to the first 2d′ coordinates of R̂, we have

E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

R̂+
(vi)[1 : 2d′]− vi[1 : 2d′]

⃦⃦⃦⃦
⃦
2
⎤⎦ ≤ d′

d
Err(A,R).

Now, let us analyze the error of R′. Note that

E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

R′+(v′i)− v′i

⃦⃦⃦⃦
⃦
2
⎤⎦ = E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

UT R̂+
(vi)[1 : 2d′]− v′i

⃦⃦⃦⃦
⃦
2
⎤⎦

= E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

R̂+
(vi)[1 : 2d′]− Uv′i

⃦⃦⃦⃦
⃦
2
⎤⎦

≤ E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

R̂+
(vi)[1 : 2d′]− ui + ui − wi

⃦⃦⃦⃦
⃦
2
⎤⎦

≤ 2E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

R̂+
(vi)[1 : 2d′]− ui

⃦⃦⃦⃦
⃦
2
⎤⎦+ 2E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

ui − wi

⃦⃦⃦⃦
⃦
2
⎤⎦

= 2E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

R̂+
(vi)[1 : 2d′]− vi[1 : 2d′]

⃦⃦⃦⃦
⃦
2
⎤⎦+ 2E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

ui − wi

⃦⃦⃦⃦
⃦
2
⎤⎦

≤ 2
d′

d
Err(A,R) + 8n

d′

≤ O
(︁
d′/ε2

)︁
,

where the last inequality follows since Err(A,R) ≤ O
(︁
d/ε2

)︁
and d′ ≥ nε2/200.
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A.2 Missing Proofs from Section 2.1.2

A.2.1 Proof of Proposition 2.4

Proposition 2.4. Let v1, . . . , vn ∈ Sd−1 where v1 ∼ Unif(Sd−1), R : Sd−1 → Zk and A be an
unbiased protocol. For an input set W = Π(R(v1), . . . , R(vn)), Algorithm 2 outputs a set S ⊂ Rd of
size

(︁
nk
k

)︁
such that

E [dist(v1, S)] = E
[︃
min
u∈S
∥v1 − u∥22

]︃
≤ Err(A,R)

n
,

where the expectation is over the randomness of v1 and the algorithm.

Proof. The proof builds on the arguments of Lemma 3.1 in [AFT22] used in the local privacy model.
Let P denote the uniform distribution over the sphere Sd−1. First, note that as Algorithm 2 iterates
over all possible subsets of messages of size k, we have that Wt = R(v1) for some t, hence the set S
has the point

ut = Eṽ2,...,ṽn∼P [A (Π(R(v1),R(ṽ2), . . . ,R(ṽn)))] ∈ S

We define R̂i to be
R̂i(vi) = Evj∼P,j ̸=i[A(Π(R(v1), . . . ,R(vn)))].

Note that R̂1(v1) ∈ S and that E[R̂i(v)] = v for all v ∈ Sd−1. We define

R̂≤i(v1, . . . , vi) = Evj∼P,j>i

⎡⎣A(Π(R(v1), . . . ,R(vn)))− i∑︂
j=1

vj | v1:i

⎤⎦ ,

and R̂0 = 0. We now have

Ev1,...,vn∼P

⎡⎣⃦⃦⃦⃦⃦A(Π(R(v1), . . . ,R(vn)))−
n∑︂

i=1

vi

⃦⃦⃦⃦
⃦
2

2

⎤⎦
= Ev1,...,vn∼P

[︃⃦⃦⃦
R̂≤n(v1, . . . , vn)

⃦⃦⃦2
2

]︃
= Ev1,...,vn∼P

[︃⃦⃦⃦
R̂≤n(v1, . . . , vn)− R̂≤n−1(v1, . . . , vn−1) + R̂≤n−1(v1, . . . , vn−1)

⃦⃦⃦2
2

]︃
(i)
= Ev1,...,vn∼P

[︃⃦⃦⃦
R̂≤n(v1, . . . , vn)− R̂≤n−1(v1, . . . , vn−1)

⃦⃦⃦2
2

]︃
+ Ev1,...,vn−1∼P

[︃⃦⃦⃦
R̂≤n−1(v1, . . . , vn−1)

⃦⃦⃦2
2

]︃
(ii)
=

n∑︂
i=1

Ev1,...,vi∼P

[︃⃦⃦⃦
R̂≤i(v1, . . . , vi)− R̂≤i−1(v1, . . . , vi−1)

⃦⃦⃦2
2

]︃
(iii)

≥
n∑︂

i=1

Evi∼P

[︃⃦⃦⃦
Ev1,...,vi−1∼P

[︂
R̂≤i(v1, . . . , vi)− R̂≤i−1(v1, . . . , vi−1)

]︂⃦⃦⃦2
2

]︃
(iv)
=

n∑︂
i=1

Evi∼P

[︃⃦⃦⃦
R̂i(vi)− vi

⃦⃦⃦2
2

]︃

where (i) follows since Evn∼P [R̂≤n(v1, . . . , vn)] = R̂≤n−1(v1, . . . , vn−1), (ii) follows by induction, (iii)
follows from Jensen’s inequality, and (iv) follows since Ev1,...,vi−1∼P [R̂≤i(v1, . . . , vi)] = R̂i(vi)− vi
and Ev1,...,vi−1∼P [R̂≤i−1(v1, . . . , vi−1)] = 0.
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Now, as R̂i has the same distribution for all i because of the shuffling operator, we get that

Evi∼P

[︃⃦⃦⃦
R̂1(v1)− v1

⃦⃦⃦2
2

]︃
≤ Err(A,R)/n.

Thus, as dist(v1, S) ≤
⃦⃦⃦
R̂1(v1)− v1

⃦⃦⃦2
2
, the claim follows.

A.2.2 Proof of Theorem 2.5

Theorem 2.5. Let ε ≤ 1, R : Sd−1 → Zk be (ε, δ)-shuffle DP, and A be an unbiased protocol. If

Err(A,R) ≤ O
(︁
d/ε2

)︁
then k ≥ Ω

(︂
min(nε2,d)

logn

)︂
.

Proof. The proof will follow the proof of Theorem 2.1 using the new reconstruction attack of Algo-
rithm 2. Let Err(A,R) ≤ C · d/ε2 for some universal constant 1 ≤ C <∞.

First, we prove the lower bounds for d ≤ nε2/100C. Note that Proposition 2.4 and Markov
inequality imply that there is a set A ⊂ Sd−1 such that Pr

v∼Unif(Sd−1)
[A] ≥ 1/2 and for all v ∈ A and

v2, . . . , vn ∈ Sd−1, letting Sv be the output of Algorithm 2 over the input Π(R(v), R(v2), . . . , R(vn)),
Markov inequality implies

Pr
[︁
dist(v, Sv) ≤ 4d/nε2

]︁
≥ 1/2.

As Pr
v∼Unif(Sd−1)

[A] ≥ 1/2, this implies that there is a ρ-packing of the unit ball P = {v1, v2, . . . , vM} ⊂

A such that M = 2d log(1/ρ)−1 and Pr(dist(vi, Svi) ≤ 4Cd/nε2) ≥ 1/2.
We will prove the lower bounds by analyzing the algorithm over the following M datasets:

Xi = (vi, v1, . . . , v1),

for i ∈ [M ].
Let Si be the output of the reconstruction attack (Algorithm 2) over the shuffled messages

Π(R(vi),R(v1), . . . ,R(v1)). We define the projection set of Si to the packing P to be Oi =
{ProjP (v) : v ∈ Si}. Proposition 2.4 now implies that for all i ∈ [M ], dist(vi, Si) ≤ Cd/nε2 ≤ ρ with
probability 1/2, hence as P is ρ-packing we have that

Pr [vi ∈ Oi] ≥ Pr [dist(vi, Si] ≤ ρ) ≥ 9/10.

On the other hand, note that for O1

M∑︂
i=1

Pr [vi ∈ O1] =

M∑︂
i=1

E [1{vi ∈ O1}]

= E

[︄
M∑︂
i=1

1{vi ∈ O1}

]︄

≤ E [|O1|] ≤
(︃
nk

k

)︃
.

Hence there exists an 1 ≤ i ≤M such that

Pr [vi ∈ O1] ≤
(︁
nk
k

)︁
M

.

25



As the protocol is (ε, δ)-DP, we also have

Pr [vi ∈ O1] ≥ Pr [vi ∈ Oi] e
−ε − δ

≥ 9

10e
− δ ≥ 1/6

Combining these together, and given that M ≥ 2d/2 for ρ = 1/10, we have that

2d ≤ 12

(︃
nk

k

)︃
≤ 6(en)k.

This implies that k ≥ Ω(d/ log(n)) whenever d ≤ nε2/100C.
Now we prove the lower bound for d ≥ nε2/100C. The proof builds on the following proposition

which states that we can convert an optimal protocol for d-dimensional inputs into an optimal
protocol for d′-dimensional inputs where d′ = nε2/200C with the same number of messages. We
defer the proof to Appendix A.2.3.

Proposition A.3. Let d′ = nε2/200C ≥ 1 and d ≥ 2d′. Let R : Sd−1 → Zk be an (ε, δ)-Shuffle
DP randomizer with aggregation A that is unbiased such that Err(A,R) ≤ O

(︁
d/ε2

)︁
. There exists

R′ : Sd′−1 → Zk and aggregation A′ that is unbiased and (ε, δ)-Shuffle DP such that Err(A′,R′) ≤
O
(︁
d′/ε2

)︁
.

Let A and R : Sd−1 → Zk be an unbiased (ε, δ)-Shuffle DP protocol that obtains error
Err(A,R) ≤ O

(︁
d/ε2

)︁
using k messages. Proposition A.3 implies that there is a randomizer

R′ : Sd′−1 → Zk and aggregation A′ that is (ε, δ)-Shuffle DP and unbiased such that Err(A′,R′) ≤
O
(︁
d′/ε2

)︁
for d′ = nε2/200C. As d′ ≤ nε2/100C, the lower bound we proved above shows that

k ≥ Ω(d′/ log(n)) = Ω(nε2/ log(n)).

A.2.3 Proof of Proposition A.3

The proof will follow the proof of Appendix A.1.3 with general aggregation A. To this end, in the
next lemma we show that we can convert any unbiased protocol into another unbiased one where
the error is split evenly across coordinates.

Lemma A.4. If R : Sd−1 → Zk is (ε, δ)-shuffle DP randomizer and A is unbiased, then there

exists R′ :
{︂

−1√
d
, 1√

d

}︂d
→ Zk and A′ that is (ε, δ)-shuffle DP and unbiased such that for j ∈ [d] and

v1, . . . , vn ∈
{︂

−1√
d
, +1√

d

}︂d
,

E

⎡⎣⃓⃓⃓⃓⃓⃓
(︄
A′(Π(R′(v1), . . . ,R′(vn)))−

n∑︂
i=1

vi

)︄
j

⃓⃓⃓⃓
⃓⃓
2⎤⎦ ≤ Err(A,R)

d
.

Proof. R′ will use shared public randomness to shuffle the coordinates of each vector and flip
the signs of each coordinate. This will ensure that all coordinates will have the same marginal
distribution for their error.

More precisely, let π : [d]→ [d] be a random permutation of the coordinates picked uniformly at
random, and let s1, . . . , sd ∼ Ber(1/2). Our new randomizer R′ over input v has

R′(v) = R(s · v(π)),
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where (s · v(π))j = sjvπ(j) is element-wise product.
Moreover, we define A′ given kn messages mi ∈ Z

A′(m1, . . . ,mkn) = s · A(m1, . . . ,mkn)(π
−1).

First, note that the privacy of R′ follows immediately from the privacy of R. Moreover, A′ is
unbiased as A is unbiased:

E
[︁
A′(Π(R′(v1), . . . ,R′(vn)))

]︁
= s · E

[︁
A(Π(R(s · v1(π)), . . . ,R(s · vn(π))))(π−1)

]︁
= s ·

n∑︂
i=1

s · vi(π)(π−1)

=
n∑︂

i=1

vi,

where the last equality follows since s · s = 1d and vi(π)(π
−1) = vi.

Now it remains to prove the claim about the error of R′ and A′. Letting v̂i = s · vi(π), note that
v = s · v̂(π−1), thus we get⃓⃓⃓⃓
⃓⃓
(︄
A′(Π(R′(v1), . . . ,R′(vn)))−

n∑︂
i=1

vi

)︄
j

⃓⃓⃓⃓
⃓⃓
2

=

⃓⃓⃓⃓
⃓⃓
(︄
s · A(Π(R(s · v1(π)), . . . ,R(s · vn(π))))(π−1)−

n∑︂
i=1

vi

)︄
j

⃓⃓⃓⃓
⃓⃓
2

=

⃓⃓⃓⃓
⃓⃓
(︄
s · A(Π(R(v̂1), . . . ,R(v̂n)))(π−1)−

n∑︂
i=1

s · v̂i(π−1)

)︄
j

⃓⃓⃓⃓
⃓⃓
2

=

⃓⃓⃓⃓
⃓⃓
(︄
A(Π(R(v̂1), . . . ,R(v̂n)))−

n∑︂
i=1

v̂i

)︄
π−1(j)

⃓⃓⃓⃓
⃓⃓
2

(1)

Summing over all coordinates,

E

⎡⎣ d∑︂
j=1

(︄
A′(Π(R′(v1), . . . ,R′(vn)))−

n∑︂
i=1

vi

)︄2

j

⎤⎦ = E

⎡⎣ d∑︂
j=1

(︄
n∑︂

i=1

A(Π(R(v̂1), . . . ,R(v̂n)))−
n∑︂

i=1

v̂i

)︄2

π−1(j)

⎤⎦
= E

⎡⎣⃦⃦⃦⃦⃦A(Π(R(v̂1), . . . ,R(v̂n)))−
n∑︂

i=1

v̂i

⃦⃦⃦⃦
⃦
2

2

⎤⎦
≤ Err(A,R).

Finally, the claim now follows since for all j ∈ [d], |(A′(Π(R′(v1), . . . ,R′(vn)))−
∑︁n

i=1 vi)j |2 have
the same distribution and hence the same expectation: indeed, let

A = |(A(Π(R(v̂1), . . . ,R(v̂n)))−
n∑︂

i=1

v̂i)|2 and t = π−1(j).

Equation (1) shows that |(A′(Π(R′(v1), . . . ,R′(vn)))−
∑︁n

i=1 vi)j |2 = At. Now note that v̂1, . . . , v̂n
are uniformly random vectors from {−1,+1}d/

√
d and π−1(j) is random coordinate from [d], hence

the distribution of At is the same for all j.
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We are now ready to prove Proposition A.3 which will follow the proof of Proposition A.1.

Proof. (of Proposition A.3) We will construct R′ and A′ as follows: for a d′-dimensional input
v′ ∈ Sd′−1, R′ will first apply the Kashin representation U ∈ R2d′×d′ to get w = Uv′ ∈ R2d′ such
that ∥w∥∞ ≤ 2/

√
d′. Then, it converts w into a binary vector u by setting for all i ∈ [2d′]

ui =

{︄
2sign(wi)/

√
d′ with probability wi

√
d′+2
4

−2sign(wi)/
√
d′ with probability −wi

√
d′+2

4

Note that E[ui] = wi and that E[(wi − ui)
2] ≤ 4/d′ since |ui| ≤ 2/

√
d′.

Now, let R̂ and Â be the randomizer and aggregation guaranteed from Lemma A.2 for the
randomizer R and aggregation A. Our R′ will construct v ∈ Rd by setting v = (u, 0, . . . , 0) then

R′(v′) = R̂(v).

Moreover, we define A′ : Znk → Rd′ to be

A′(m1, . . . ,mnk) = UT Â(m1, . . . ,mnk)[1 : 2d′]

We nee to argue that R′ is (ε, δ)-Shuffle DP, that A′ is unbiased, and to prove the claim about
utility.

Privacy of R′ follows immediately from privacy of R̂. As for unbiasedness, let v′1, . . . , v′n ∈ Sd′−1

and let u1, . . . , un and w1, . . . , wn be their corresponding vectors from the above procedure. Let
vi = (ui, 0, . . . , 0) ∈ Rd. Note that

E
[︁
A′(Π(R′(v′1), . . . ,R′(v′n)))

]︁
= E

[︂
UT Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]

]︂
= UT

n∑︂
i=1

E
[︁
vi[1 : 2d′]

]︁
= UT

n∑︂
i=1

E [ui]

= UT
n∑︂

i=1

wi

= UT
n∑︂

i=1

Uv′i

=

n∑︂
i=1

v′i.

It remains to prove an upper bound on the error of R′ and A′. First, note that Lemma A.2
guarantees that for all j ∈ [d] we have

E[|

(︄
Â(Π(R̂(v1), . . . , R̂(vn)))−

n∑︂
i=1

vi

)︄
j

|2] ≤ Err(A,R)
d

.

Thus, when truncating to the first 2d′ coordinates of R̂, we have

E[

⃦⃦⃦⃦
⃦Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]−

n∑︂
i=1

vi[1 : 2d′]

⃦⃦⃦⃦
⃦
2

] ≤ 2d′

d
Err(A,R).
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Now, let us analyze the error of R′. Note that

E

⎡⎣⃦⃦⃦⃦⃦A′(Π(R′(v′1), . . . ,R′(v′n)))−
n∑︂

i=1

v′i

⃦⃦⃦⃦
⃦
2
⎤⎦

= E

⎡⎣⃦⃦⃦⃦⃦UT Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]−
n∑︂

i=1

v′i

⃦⃦⃦⃦
⃦
2
⎤⎦

= E

⎡⎣⃦⃦⃦⃦⃦Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]−
n∑︂

i=1

Uv′i

⃦⃦⃦⃦
⃦
2
⎤⎦

≤ E

⎡⎣⃦⃦⃦⃦⃦Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]−
n∑︂

i=1

ui − ui + wi

⃦⃦⃦⃦
⃦
2
⎤⎦

≤ 2E

⎡⎣⃦⃦⃦⃦⃦Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]−
n∑︂

i=1

ui

⃦⃦⃦⃦
⃦
2
⎤⎦+ 2E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

ui − wi

⃦⃦⃦⃦
⃦
2
⎤⎦

= 2E

⎡⎣⃦⃦⃦⃦⃦Â(Π(R̂(v1), . . . , R̂(vn)))[1 : 2d′]−
n∑︂

i=1

vi[1 : 2d′]

⃦⃦⃦⃦
⃦
2
⎤⎦+ 2E

⎡⎣⃦⃦⃦⃦⃦
n∑︂

i=1

ui − wi

⃦⃦⃦⃦
⃦
2
⎤⎦

≤ 4
d′

d
Err(A,R) + 8n

d′

≤ O
(︁
d′/ε2

)︁
,

where the last inequality follows since Err(A,R) ≤ O
(︁
d/ε2

)︁
and d′ ≥ nε2/200.

A.3 Missing Proofs for Section 2.2

Our d-dimensional algorithm builds on the 1-dimensional algorithm by [GKM+21]. We let R(ε,δ)
GKMPS

denote the local randomizer with parameters (ε, δ) and A+ is their aggregation (which is summation
over messages). Their protocol has the following guarantees for 1-dimensional summation.

Lemma A.5. [GKM+21] There is a local randomizer R(ε,δ)
GKMPS : [0, 1] → R⋆ that is (ε, δ)-Shuffle

DP such that each user sends 1 + ˜︁Oε

(︂
log(1/δ)√

n

)︂
in expectation and has error

Err(R(ε,δ)
GKMPS,A

+) ≤ O
(︁
1/ε2

)︁
.

We also used advanced composition in our privacy proof.

Lemma A.6 (Advanced composition [DR14]). If A1, . . . , Ak are randomized algorithms that each is
(ε, δ)-DP, then their composition (A1(D), . . . , Ak(D)) is (

√︁
2k log(1/δ′)ε+ kε(eε − 1), δ′ + kδ)-DP

where D is the input dataset.

Now we present the guarantees of our protocol.

Theorem 2.6. Let R : Sd−1 → R2d be the local randomizer in Algorithm 3 and A : (R2d)⋆ → Rd

be the aggregation in Algorithm 4. Then, R is (ε, δ)-Shuffle DP randomizer, each users sends
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d ·
(︂
1 + ˜︁Oε

(︂
log(1/δ)√

n

)︂)︂
messages in expectation, and the protocol has error

Err(A,R) ≤ O
(︃
d log(1/δ)

ε2

)︃
.

Proof. First, note that the guarantees of Kashin representation imply that each |u(i)j | ≤ 1, hence we
can use RGKMPS. The claim from privacy follows from the fact the RGKMPS is (ε0, δ0)-Shuffle DP
and advanced composition of d such mechanisms.

Now we analyze the error of the protocol. We have

E

⎡⎣⃦⃦⃦⃦⃦v̂ −
n∑︂

i=1

v(i)

⃦⃦⃦⃦
⃦
2

2

⎤⎦ = E

⎡⎣⃦⃦⃦⃦⃦CK√
d
UT
K û−

CK√
d
UT
K

n∑︂
i=1

u(i)

⃦⃦⃦⃦
⃦
2

2

⎤⎦
=

C2
K

d
E

⎡⎣⃦⃦⃦⃦⃦û−
n∑︂

i=1

u(i)

⃦⃦⃦⃦
⃦
2

2

⎤⎦
=

C2
K

d
E

⎡⎣⃦⃦⃦⃦⃦ ∑︂
m∈M

m− u(i)

⃦⃦⃦⃦
⃦
2

2

⎤⎦
≤

C2
K

d

d

ε20

≤ O
(︃
d log(1/δ)

ε2

)︃
,

where the last inequality follows from the guarantees of the RGKMPS protocol which has error 1/ε20
in each coordinate. The claim follows.

B Missing Proofs from Section 3

To prove the lower bound, we first note that it suffices to assume that the local randomizer has
bounded outputs and that the analyzer simply adds up all of the messages sent by the users, as
shown by the next lemma.

Lemma B.1. Let P = (R,A) be an n-party protocol for vector aggregation in the single-message

shuffle model. Let V be a random variable on
[︂
− 1√

d
, 1√

d

]︂d
and suppose that users sample their

inputs from the distribution V n. Then there exists a protocol P ′ = (R′,A′) with user outputs
u1, . . . , un ∈ Rd such that:

(1) A′(u1, . . . , un) =
∑︁n

i=1 ui and R′ maps to
[︂
− 1√

d
, 1√

d

]︂d
.

(2) MSE(P ′, V ) ≤ MSE(P, V )

(3) If S ◦ Rn is (ε, δ)-DP, then S ◦ (R′)n is (ε, δ)-DP.

Proof. The proof is similar to Lemma 4.1 in [BBGN19], generalizing from scalars to vectors. Let
R′ = f ◦ R be the post-processing local randomizer that uses the posterior mean estimator

f(u) = E [V | V = u] is the minimum MSE estimator. Then R′ maps to
[︂
− 1√

d
, 1√

d

]︂d
as claimed.
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Observe that for any estimator h of Z := V1 + . . .+ Vn given the input U = {u1, . . . , un}, we
have

MSE(h, U) = E
[︁
(h(u)− Z)2 | U

]︁
= E

[︁
Z2 | U

]︁
− 2h(u) · E [Z | U ] + (h(u))2.

This quantity is minimized over the choice of h at h(u) = E [Z | U ].
Finally, since f is a post-processing local randomizer, then S ◦ (R′)n is (ε, δ)-DP by the post-

processing property of DP.

Lemma B.2. Let P = (R,A) be an n-party protocol for vector aggregation in the single-message

shuffle model such that R :
[︂
− 1√

d
, 1√

d

]︂d
→
[︂
− 1√

d
, 1√

d

]︂d
and A is vector summation. Suppose V n

are n copies of a random variable V . Then

MSE(P, V n) ≥ nE
[︁
∥R(V )− V ∥22

]︁
.

Proof. The proof generalizes Lemma 4.2 in [BBGN19] from scalar inputs to vector inputs. Note
that we can decompose the mean-squared error as follows.

MSE(P, V n) = E

[︄
∥
∑︂
i=1

R(Vi)− Vi∥22

]︄
=
∑︂
i

E
[︁
∥R(Vi)− Vi∥22

]︁
+
∑︂
i ̸=j

E [⟨R(Vi)− Vi,R(Vj)− Vj⟩] ∥

=
∑︂
i

E
[︁
∥R(Vi)− Vi∥22

]︁
+
∑︂
i ̸=j

⟨E [R(Vi)− Vi] ,E [R(Vi)− Vi]⟩

≥ nE
[︁
∥R(V )− V ∥22

]︁
.

Consider the partition P of the hypercube [0, 1]d into rd disjoint hypercubes with side length
1
r . Let I =

{︁
m
r −

1
2r | m ∈ [r]

}︁
and J = Id. For each a ∈ J , we use J(a) to denote the hypercube

of P that contains J . For any b ∈ J , we use the notation pa,b to denote the probability that the
randomizer maps a to I(b).

Lemma B.3. Let r ≥ 32. For any b ∈ J , we have

1

rd

∑︂
a∈J\b

(︄
min

(︄
∥a− b∥2 −

√
d

2r
, 0

)︄)︄2

≥ d

2048
.

Proof. Let B be a hypercube with length 1
8 centered at b. Note that we have Pr [a ∈ J \B] ≥ 1

2 .

For a ∈ J \B, we have ∥a− b∥2 ≥
√
d

16 . Then for r ≥ 64, we have
(︁
∥a− b∥2 − 1

2r

)︁2 ≥ d
322

. Hence we
have

1

rd

∑︂
a∈J\b

(︃
∥a− b∥2 −

1

2r

)︃2

≥ 1

2
· d

322
=

d

2048
.
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Lemma B.4. The mean-squared error of the randomizer R on the random variable V is at least:

E
[︁
∥R(V )− V ∥22

]︁
≥
∑︂
b∈J

min

(︃
d(1− pb,b)

4r2+d
,min
a∈J

pa,b ·
d

2048

)︃
.

Proof. For the cases where the randomizer maps V to a value outside of its hypercube, we have:

E
[︁
∥R(V )− V ∥22

]︁
=
∑︂
b∈J

E
[︁
∥R(b)− b∥22

]︁
·Pr [V = b]

=
1

rd

∑︂
b∈J

E
[︁
∥R(b)− b∥22

]︁
≥ 1

rd

∑︂
b∈J

(1− pb,b) ·
d

4r2

=
∑︂
b∈J

d(1− pb,b)

4r2+d
.

We also have

E
[︁
∥R(V )− V ∥22

]︁
=

1

rd

∑︂
b∈J

E
[︁
∥R(b)− b∥22

]︁
≥ 1

rd

∑︂
b∈J

∑︂
a∈J\b

pa,b

(︄
min

(︄
∥a− b∥2 −

√
d

2r
, 0

)︄)︄2

≥ 1

rd

∑︂
b∈J

min
a∈J

pa,b
∑︂
a∈J\b

(︄
min

(︄
∥a− b∥2 −

√
d

2r
, 0

)︄)︄2

≥
∑︂
b∈J

min
a∈J

pa,b ·
d

2048
,

where the last inequality is from Lemma B.3. Hence, we have

E
[︁
∥R(V )− V ∥22

]︁
≥
∑︂
b∈J

min

(︃
d(1− pb,b)

4r2+d
,min
a∈J

pa,b ·
d

2048

)︃
.

Lemma B.5 (Lemma 4.5 in [BBGN19]). Let R : [0, 1]d → [0, 1]d be a local randomizer such that
the shuffled protocolM = S ◦Rn is (ε, δ)-DP with δ < 1

2 . Then for any a, b ∈ J with a ̸= b, we have

either pb,b, < 1− e−ε

2 or pa,b ≥ 1
n ·
(︁
1
2 − δ

)︁
.

We are now ready to prove the lower bound.

Proof. By Lemma B.2, we have MSE(P, V n) ≥ nE
[︁
∥R(V )− V ∥22

]︁
. By Lemma B.4, we have

E
[︁
∥R(V )− V ∥22

]︁
≥
∑︁

b∈J min
(︂
d(1−pb,b)

4r2+d ,mina∈J pa,b · d
2048

)︂
. Therefore by Lemma B.5,

MSE(P, V ) ≥ n
∑︂
b∈J

min

(︃
d(1− pb,b)

4r2+d
,min
a∈J

pa,b ·
d

2048

)︃
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≥ n
∑︂
b∈J

min

(︃
de−ε

4r2+d
,
1

n
·
(︃
1

2
− δ

)︃
· d

2048

)︃
≥ nrdmin

(︃
de−ε

4r2+d
,
1

n
·
(︃
1

2
− δ

)︃
· d

2048

)︃
.

The quantity is maximized for r = O
(︁
n1/(d+2)

)︁
with value Ω

(︁
dnd/(d+2)

)︁
.

C Missing Proofs from Section 4

Theorem 4.1. Let ε = O (1) and δ < 1
nd . Then any (ε, δ)-shuffle DP mechanism for vector

summation that takes the sum of the messages across n players with k malicious users has additive

error Ω
(︂

kd
log2(nd)

)︂
.

Proof. Suppose A is a protocol in which 1) each user receives an input v and outputs d messages
from a randomizer R(v), 2) after shuffling, the protocol collects the messages and outputs the sum
of the messages. We consider casework on the distribution of the output of the randomizer R.

Firstly, suppose that for an input vector v, Pr
[︂
maxm∈R(v) ∥m∥2 ≥ 1√

dα

]︂
≥ 1

dn2 , for some

parameter α > 1 to be fixed. Note that a single malicious user can then run the randomizer R
on inputs v(1) and v(2) a total of O

(︁
dn2
)︁
times and with probability 0.99, find a message m such

that ∥m∥2 ≥ 1√
dα

. Note that the malicious user can send the message m a total of d times, which

contributes L2 norm
√
d

α . Since each malicious user previously had a unit vector, then the mean

squared error induced by each malicious user is at least d
α2 . Therefore, k malicious users can induce

mean squared error kd
α2 .

Secondly, suppose that for an input vector v, we have sup
⟨︂

m
∥m∥2 , v

⟩︂
> 100

√
lognd√
d

. We claim this

would violate privacy. Note that for a random vector u, we have by the rotational invariance of
Gaussians,

Pr

[︃⟨︃
m

∥m∥2
, u

⟩︃
>

100
√
log nd√
d

]︃
<

1

10n2d2
.

With probability at least 1
10nd , none of the nd messages has correlation at least 100

√
lognd
d with

u. Thus we would be able to distinguish between the cases where the inputs are the neighboring
datasets (v, v, . . . , v) and (u, v, . . . , v), which contradicts (ε, δ)-differential privacy for ε = O (1) and
δ < 1

nd ,

It remains to consider the case where maxm∈R(v)∪R(u) ∥m∥2 < 1√
dα

and sup
⟨︂

m
∥m∥2 , v

⟩︂
≤

100
√
lognd√
d

. Note that in this case, we have⟨︄∑︂
i∈[d]

mi, v

⟩︄
=
∑︂
i∈[d]

∥mi∥2 ·
⟨︃

mi

∥mi∥2
, v

⟩︃

≤ sup
i∈[d]
∥mi∥2 · d · sup

i∈[d]

⟨︃
mi

∥mi∥2
, v

⟩︃
≤ 100

√
log nd√
d

· d · 1√
dα

=
100
√
log nd

α
.
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Thus for α > 200
√
log nd and an elementary vector v, we have that⟨︄∑︂

i∈[d]

mi, v

⟩︄
≤ 1

2
,

and thus the mean squared error for the input (v, v, . . . , v) would be at least n
2 .

Hence for n > kd, the mean squared error induced by k malicious users is at least Ω
(︂

kd
log2(nd)

)︂
.

Theorem 1.5. Let ε = O (1) and δ < 1
nd . Then any (ε, δ)-DP mechanism for vector summation in

which s shufflers take messages corresponding to a disjoint subset of the coordinates and returns the
sum of the messages across n players with k malicious users has additive error mean squared error

Ω
(︂

kd
s log2(nd)

)︂
.

Proof. For i ∈ [s], let di be the number of coordinates for which the i-th shuffler is responsible.
Then we have d1 + . . .+ ds. By Theorem 4.1, there exists a set of messages for which k malicious

users can induce mean squared error Ω
(︂

kd2i
log2(nd)

)︂
through sum of the messages in the i-th shuffler.

Now, we have that the mean squared error is
∑︁

j∈[n] ∥xj∥22 C
(︂∑︁

i∈[s]
kd2i

log2(nd)

)︂
, which is minimized

at Ω
(︂

kd2

s log2(nd)

)︂
for d1 = . . . = ds =

d
s by a standard power mean inequality.
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