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Abstract

In this work, a novel discretization of the incompressible Navier-Stokes equations for a gas-liquid flow is
developed. Simulations of gas-liquid flows are often performed by discretizing time with a predictor —
pressure — corrector approach and the phase interface is represented by a volume of fluid (VOF) method.
Recently, unsplit, geometric VOF methods have been developed that use a semi-Lagrangian discretization of
the advection term within the predictor step. A disadvantage of the current methods is that an alternative
discretization (e.g. finite volume or finite difference) is used for the divergence operator in the pressure
equation. Due to the inconsistency in discretizations, a flux-correction to the semi-Lagrangian advection
term is required to achieve mass conservation, which increases the computational cost and reduces the
accuracy. In this work, we explore the alternative of using a semi-Lagrangian discretization for the divergence
operators in both the advection term and the pressure equation. The proposed discretization avoids the need
to use a flux-correction to the semi-Lagrangian advection term as mass conservation is achieved through the
consistent discretization. Additionally, avoiding the flux-correction improves the accuracy while reducing
the computational cost of the advection term semi-Lagrangian discretization.



Introduction

Atomizing sprays are prevalent in daily life,
ranging from natural phenomena to industrial pro-
cesses. Gaining insight into the underlying physics
that drives these sprays is difficult, yet offers po-
tential for more efficient and accurate utilization in
various industries. Due to the nature of atomiza-
tion, a rapid transformation of liquid into an opaque
cloud, properly visualizing the dynamics present can
be complicated. Experimental techniques have been
employed to investigate these flows yet require com-
plex techniques and often times only offer a two-
dimensional representation of the spray [4, 16]. With
the increase in computational power over the last
couple of decades it is advantageous to use these re-
sources to investigate the dynamics present in spray-
type flows.

One characteristic of simulating atomizing, or
gas-liquid, flows is the challenge of resolving the
interface between the two phases and addressing
the resultant discontinuities along that interface.
This challenge has spurred a whole field of research
deemed interface tracking and interface capturing.
Interface tracking explicitly represents the interface
offering an accurate yet computationally expensive
solution, while, interface capturing represents the
interface implicitly, often with lower computational
cost [11, 12]. However, implicit methods sacrifice
accuracy in representing the interface. This limi-
tation has prompted much development within the
field of interface capturing to improve the accuracy
of these methods. One method considered state-of-
the-art within interface capturing is the volume-of-
fluid (VOF) method.

The volume-of-fluid (VOF) method uses a con-
served scalar quantity to represent the ratio of lig-
uid volume to cell volume within a computational
cell [17, 6, 9, 18]. This scalar, known as the liquid
volume fraction (VF), can be used to implicitly re-
construct the interface at each time step throughout
the domain. The VOF method offers conservation
of mass in the presence of the large density ratios
and/or range of length scales that are present in
atomizing sprays [8]. There exist a couple of dif-
ferent advection schemes for transporting the VF
through the domain. The earliest methods used a
split scheme, where the transport occurs in each di-
mension in separate steps, requiring re-evaluation of
the interface for each dimensional step [6]. Proper
implementation of these methods requires the han-
dling of dilation terms to conserve liquid volume,
which is equivalent to mass conservation [20].

To avoid the hurdles present in split VOF advec-
tion schemes, the unsplit VOF advection scheme was

developed. In general unsplit methods differ from
split methods by evaluating the transport of each
dimension in a single step. Within the category of
unsplit VOF methods there exist algebraic and geo-
metric techniques, yet this work will focus on unsplit
geometric VOF methods, for a broader perspective
on VOF methods see [12]. The premise of unsplit
geometric VOF schemes is to handle the transport
of any conserved quantity by integrating over vol-
umes formed by characteristics in space-time. Many
implementations of this idea have been developed in
two and three dimensions, notable examples include
[2, 10, 5, 7]. By interpolating cell velocities to the
vertex of each cell and projecting them back in time,
flux regions can be computed that represent the flow
into and out of that cell. We will be focused on de-
veloping upon the method proposed by Owkes and
Desjardins [14], which we will refer to as the semi-
Lagrangian method.

It can be computationally expensive to create
the flux regions formed by the semi-Lagrangian dis-
cretization. Therefore, using the semi-Lagrangian
to handle the transport of other conserved quanti-
ties would be advantageous, as the flux regions have
already been computed to transport the interface.
One implementation of this idea was done in [15]
which utilized the flux regions to handle momentum
transport offering accuracy and conservation of mass
and momentum.

While this method is considered state-of-the-art,
it still suffers from the need for a flux correction to
ensure conservation of mass, which is a common is-
sue for many of the contemporary VOF methods.
This lies in the discrepancy between the discretiza-
tion used to transport the interface and the dis-
cretization used to solve for a divergence-free veloc-
ity field.

Often these VOF methods to transport the in-
terface are used in conjunction with a predictor
— pressure — corrector approach, or projection
method, first developed by Chorin [3]. In essence,
the first step in this method is to solve for an in-
termediate velocity by solving the momentum equa-
tion and ignoring the pressure term. From here the
pressure can be found by solving a Poisson equa-
tion using the intermediate velocity and enforcing
the divergence-free constraint. Finally, the inter-
mediate velocity can be corrected by applying the
pressure term, creating a divergence-free flow field.
Throughout the rest of this paper, we will refer to
this method as the predictor-corrector method.

The need for a flux correction in the semi-
Lagrangian method arises due to the different dis-
cretizations of the divergence operator used in the



predictor-corrector method. Up to this point in
the literature, the semi-Lagrangian method has only
been used to handle interface transport and the cal-
culation of the intermediate velocity, while a differ-
ent finite volume or finite difference (FV/FD) dis-
cretization is used to solve for the pressure term.
Consequently, the divergence-free constraint is up-
held with respect to the FV/FD discretization and
not the semi-Lagrangian discretization that is used
to create the intermediate velocity. This requires
the flux regions produced by the semi-Lagrangian to
need a flux-correction to satisfy the divergence-free
constraint.

In this work, the proposed method employs the
semi-Lagrangian to transport mass and momentum
and additionally to discretize the pressure term. The
consistency obtained by using the semi-Lagrangian
throughout the predictor-corrector method offers the
benefit that the flux regions do not require a flux-
correction to conserve mass. This implementation
offers an increase in computational efficiency and ac-
curacy of the simulation as the flux-corrections are
computationally expensive and are non-physical in
nature. Furthermore, the proposed method theoret-
ically makes using the semi-Lagrangian method with
unstructured meshes or immersed boundary meth-
ods less complex. This optimization to the method
proposed in [15] has not been explored due to the cal-
culation of the pressure term. Contemporary pres-
sure solvers within the predictor-corrector method
solve the Poisson equation, which has been solved
with a multitude of numerical methods. Using the
semi-Lagrangian to solve for the pressure leads to
a Laplace-like equation that has not been identi-
fied elsewhere in the literature. Therefore, the main
hurdle within this research is developing methods to
solve for the pressure within this Laplace-like equa-
tion.

Methodology
0.1 Gowverning Equations

To handle the conservation of mass and momen-
tum for two fluids, the “one-fluid formulation” will
be used which is outlined by Tryggvason [19]. This
method uses varying fluid properties to account for
liquid and gas phases and a delta function to rep-
resent the surface tension force along the interface.
Introducing varying fluid properties to the incom-
pressible Navier-Stokes equations leads to the fol-
lowing set of equations:
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where w is the fluid velocity, ¢ is time, p is pressure,
g is gravity, o is the surface tension coefficient, x is
the local interface curvature, and n is the approxi-
mate interface normal vector, and p; and p; are the
varying fluid properties for viscosity and density, re-
spectively. We now have a form of the incompress-
ible Navier-Stokes equations that define the whole
flow field for two phases using one set of equations,
defined as the “one-fluid formulation”.

Within each computational cell of the mesh, we
need to define a liquid volume fraction (VF) that
represents the ratio of liquid to gas for that cell.
Starting with a heaviside function, or liquid distri-
bution function:
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that offers a continuous representation of the liquid
and gas within the domain. From here we need to
discretize the liquid distribution function with re-
gard to the computational mesh. This is defined as
the volume integral of the heaviside function within
the cell volume leading to:

1
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where o, is the VF at the pth computational cell,
and V}, is the volume of the cell.

This liquid volume fraction is defined to rep-
resent interface location and fluid properties, where
oy, = 1 defines a cell containing only the liquid phase
and oy, = 0 defines a cell containing only the gaseous
phase. From here we can use the VF to define our
mixture density and viscosity to handle the jump
discontinuities that exist for these properties along
the interface. The mixture density and viscosity at
the pth cell are defined as:

Pp = proyy — pg(l — ap) (5)
fp = iy — pig(1 — ap) (6)

where the subscript ¢ = g or [ for gas and liquid
variables, respectively.
The advection of a conserved quantity, f, is de-
fined as:
of
— +V-(fu)=0 7
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which comes from the material derivative of a con-
served quantity for incompressible flows.



0.2  Semi-Lagrangian Discretization

As mentioned before, the semi-Lagrangian
scheme uses cell vertex velocities to determine the
flux of a conserved quantity through a cell over a
time step. The scheme was developed with veloci-
ties stored along cell faces and any scalars such as
pressure stored at cell centers. These face velocities
are then interpolated to the cell vertices and pro-
jected back in time. Consequently, in two dimen-
sions, a face will have two vertices, and thus, two
velocities; whereas in three dimensions, a face will
have four vertices, and accordingly, four velocities.
Using these vertex velocities a flux region can be
created which represents the flux coming into or out
of that face of the computational cell. Taking into
account all the flux regions for a given cell, the total
flux through that cell can be determined.

One unique advantage of the semi-Lagrangian
scheme is its ability to handle the discontinuities
present in gas-liquid flows. For example, when han-
dling transport for a cell containing an interface the
corresponding flux region is recursively cut by the
computational mesh. Once sliced by the mesh the
flux volume is similarly cut by the phase interface
until regions local to a single cell and phase are cre-
ated. From here the conserved quantity to be trans-
ported can be integrated within the cut flux volume
effectively dealing with the discontinuities present
along the interface. Therefore, the semi-Lagrangian
scheme allows for the evaluation of the advection of
any conserved quantity through a cell for a given
time step even in the presence of interface disconti-
nuities.

We start by developing a relationship between
the material evolution of a conserved quantity ap-
plied to a fixed control volume and the advection of
the conserved quantity within a computational cell
due to these flux regions. The material evolution of a
conserved scalar quantity f(x,t) within a solenoidal
velocity field takes the form:
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where x is the spatial coordinate, u is the veloc-
ity field, and ¢ is time. If we integrate over a discrete
time step and a fixed control volume, and then apply
Gauss’s theorem we can get a relationship between
the change in the conserved scalar f within the con-
trol volume and the flux through the surface of the
control volume (C'V') described by:
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At this point, the surface of the C'V (cell faces)
needs to be partitioned into sub-surfaces 9C.S;.
Each subsurface will get a flux volume, ;(¢), which
has a bounding surface, w;(t), where positive and
negative values represent flux coming into and out
of the cell, respectively. Again, this time integrating
over the sub-surfaces and applying Gauss’ theorem
and Leibniz’s rule we can recast Eq. 8. This equa-
tion gives a relationship between the change in our
conserved quantity within the C'V | or cell face, and
the fluxes coming into and out of the cell faces of the
CV. This equation when made compact takes the
form:
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where Ny is the number of faces for the CV, and
Q; is the flux through each face i. Now we have
a relationship between the transport of a conserved
quantity through a cell and the flux of that quantity
through each face of the cell.

Essentially, the Semi-Lagrangian discretization
allows for a novel way to deal with divergence op-
erators within our governing equations. In the next
section, Sec. 0.3, we will expand on how the Semi-
Lagrangian can be used to discretize divergence op-
erators elsewhere in the computational algorithm.

0.3 Predictor-Corrector method/Projection method

Up to this point in the literature, a few different
unsplit geometric VOF methods have been devel-
oped that offer conservation of mass and momentum
yet require some form of flux-correction [7]. This re-
quirement is caused by an inconsistency within the
discretization techniques used to handle the trans-
port of conserved quantities. The crux of this is-
sue lies within how the predictor-corrector method
is discretized, specifically, how the divergence oper-
ator is discretized.

In this work, the predictor-corrector method is
used to integrate over time and employs the projec-
tion method developed by Chorin [3] to decouple the
velocity and pressure fields present in the conserva-
tion of momentum equation. Together these meth-
ods allow for iterative solutions to the incompressible
Navier-Stokes equations defined in Sec. 0.1. To illus-
trate the predictor-corrector method and eventually
the consistent discretization proposed in this work,



we start by discretizing time with the simplest Euler
step. In practice, more accurate, iterative, methods
are used but the key parts are equivalent. Discretiz-
ing the momentum equation with Euler’s method
leads to:

n+l _ ., n 1
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where the superscript indicates the time-step
("t = ™ + At). At this point the pressure and
velocity fields are still coupled, therefore an opera-
tor splitting technique that allows for the decoupling
of these two terms is applied resulting in:
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where u* is the intermediate velocity and v is the
velocity at the next time step. Eq. 12 is considered
the predictor step where an intermediate velocity is
calculated that neglects the pressure term and the
second equation, Eq. 13, is known as the corrector
step. The pressure in Eq. 13 is found such that u"*!
satisfies the continuity equation (Eq. 2). By solving
this equation in this step-wise manner an interme-
diate velocity is calculated and projected onto the
divergence-free subspace. This projection method
results from ideas present in the Hodge decomposi-
tion which says that any vector field on a simply con-
nected domain can be decomposed into divergence-
free and curl-free components, see Bloomquist [1] for
a more in-depth discussion on the use of the Hodge
decomposition in this application. Solving Eq. 13 for
u™t! and taking the divergence, and ensuring that
u™t! is divergence-free leads to:
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In summary, the predictor-corrector method
solves the continuity and momentum equations by
first solving Eq. 12 for u*, then Eq. 14 is solved for
p"tl and finally Eq. 13 is used to compute u"*!
completing the time step. Note that any scalars, in-
cluding the volume fraction, are transported at the
same time Eq. 12 is solved using consistent fluxes
between mass and momentum.

0.4 Traditional Inconsistent Discretization

Current discretizations (see e.g., [14]) of the
predictor corrector method use a semi-Lagrangian
method for advection terms (V- (uu')) and FV/FD
discretizaton of Eq. 14. The FV/FD discretization
is linear and allows for the distribution of the di-
vergence operator to the velocity term and pressure
leading to the traditional pressure Poisson equation
V2t = LV . u*. As referenced earlier, using the
semi-lagrangian for advection terms and to discretize
Eq. 12 but not Eq. 14 leads to the requirement of a
flux-correction.

0.5 Proposed Consistent Discretization

In this work the divergence operators in both
the advection term within Eq. 12 and Eq. 14 are dis-
cretized with a semi-Lagrangian formulation. How-
ever, the semi-Lagrangian operator is non-linear,
thus the divergence operator in Eq. 14 can not be
distributed. Therefore, Eq. 14 must be solved as is
and can not be simplified to a Poisson equation. In
its current implementation, the proposed method-
ology uses a discrete Newton method, described by
Ortega [13], to solve Eq. 14.

The proposed method alleviates the need for a
flux-correction by using a consistent discretization
for the divergence operators used in the advection
terms and the pressure equation. Removing the
flux-correction will reduce the computational cost of
evaluating the advection terms and avoid the non-
physical effects of adding the correction.

Results and Discussions

In this section, we present the initial findings of
our computational algorithm, offering a preliminary
glimpse into its potential efficacy and performance.
The test consists of a rising bubble discretized on
a 96 by 96 mesh and serves as a proof-of-concept
of the proposed methodology. Fig. 1 showcases the
simulation results, a bubble can be seen as well as
the expected deformation as the bubble is rising.

Not only does the initial result indicate the
proposed methodology functions as expected, but
it also illustrates the difference in computational
cost when compared to an algorithm similar to
what was proposed in [14]. The main difference
between these two algorithms was how the pres-
sure term was calculated. In the proposed method-
ology the flux-correction is avoided by the use of
the semi-Lagrangian for the divergence operator in
the pressure calculation in conjunction with semi-
Lagrangian advection of conserved quantities. On
the other hand, the contemporary method uses a
FV/FD method to handle the pressure calculation
while dealing with advection of conserved quanti-



ties using the semi-Lagrangian. The downside of
the contemporary method has to do with the in-
consistent discretizations of the divergence opera-
tors present in the pressure calculation and advec-
tion steps. It was observed that the computational
cost of the proposed methodology, in its current im-
plementation, was about 10% more computationally
expensive than [14].

The main avenue for increasing the computa-
tional efficiency of the algorithm deals with the pres-
sure calculation. The discretized Newton method
requires a rather expensive Jacobian to be created
at each time step. One method to increase the com-
putational efficiency would be to determine if the
Jacobian can be reused for a certain number of time
iterations.

(a) 962 mesh, t=0.0

(b) 962 mesh, t=1.5
Figure 1: Proof-of-concept results from a 962
simulation of a rising bubble.

Conclusion

In this paper, we have developed a novel com-
putational algorithm that offers a consistent dis-
cretization to handle interface advection and the
predictor-corrector method. This work builds off
ideas present in [15] where the semi-Lagrangian
method was employed to handle advection of scalars
(such as VF) and momentum. One potential down-
side of that implementation is the computation-

ally expensive flux-corrections required to conserve
mass and momentum. The proposed computational
algorithm not only employs the semi-Lagrangian
method to handle advection of scalars and momen-
tum, but also to solve for the pressure term within
the predictor-corrector method. Using the semi-
Lagrangian discretization to handle the pressure cal-
culation avoids the need for a computationally ex-
pensive flux-correction. As flux-corrections are non-
physical avoiding that step would improve the ac-
curacy of the simulation. Additionally, alleviating
the need for flux-corrections allows for less compli-
cated implementations of unstructured meshes and
immersed boundary methods. When using the semi-
Lagrangian discretization for an unstructured mesh
many cases cause non-intersecting fluxes or overlap-
ping fluxes after flux-corrections have been applied
leading to conservation errors [7].

The main takeaway from this work is that we
have developed a computational algorithm that of-
fers a consistent divergence discretization using the
semi-Lagrangian method and shown that it works.
Not only have we tentatively demonstrated the va-
lidity of the method but also described its potential
for increased accuracy and computational efficiency
when compared to other contemporary unsplit ge-
ometric VOF methods. Future work will focus on
the development of a more computationally efficient
method to solve for the pressure term, while more
thoroughly validating the method’s accuracy.
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