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ABSTRACT

This paper presents a comprehensive set of datasets containing tran-
sient thermal maps of commercial multi/many-core CPU, GPU, and
TPU processors. These thermal maps were obtained using a thermal
IR imaging system and include data from a range of processors:
Intel i5-3337U dual-core CPU, Intel i7-8650U quad-core CPU, AMD
Ryzen 7 4800U 8-core CPU, NVIDIA GeForce RTX 4060 GPU, and
Google Coral M.2 TPU. Additionally, we review recently proposed
thermal map estimation methods developed using various Deep
Neural Network (DNN) techniques, including Long Short-Term
Memory (LSTM), Generative Adversarial Networks (GAN), and
transformer-based models. We provide a detailed discussion and
comparison of these models trained on the thermal map datasets.
These datasets aim to support and stimulate advanced research in
thermal map estimation and modeling within the research commu-
nity.
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1 INTRODUCTION

With the ongoing trend of rapid integration and technology scaling,
contemporary high-performance multi/many-core processors are
encountering increasingly severe thermal limitations. Research has
demonstrated that elevated temperatures exponentially degrade the
reliability of semiconductor chips [1], posing a significant industry
concern. This issue is exacerbated for Al chips, such as commercial
GPUs from NVIDIA, where power consumption can exceed 1000W.
For example, the H100/H200 GPUs have a thermal design power
(TDP) of 700W, while the latest Blackwell GPU B200 reaches a TDP
of 1200W [2].

To address this trend, runtime power and thermal control schemes
are being implemented in most, if not all, new generations of pro-
cessors. These control schemes play a crucial role in modern proces-
sors [3, 4]. However, for these control schemes to be effective, they
require accurate real-time thermal information, ideally a spatial
thermal map of the entire chip area [5, 6]. On-chip temperature sen-
sors alone cannot provide comprehensive chip-wide temperature
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information due to their limited number, primarily constrained by
the area and power overheads [7]. As a result, accurate real-time
estimation of the full-chip thermal map and identification of some
hot spots becomes critical.

Several existing methods rely on on-chip temperature sensors.
However, the availability of physical sensors is typically limited,
and their placement may not accurately capture the true hotspots
on the chip. As a result, temperature regulation decisions based
solely on these sensors can be misleading [8]. Consequently, a more
popular approach is to augment the data from the few on-chip
sensors with estimated temperatures of prominent hotspots using
thermal models based on estimated power traces [9]. These methods
provide higher spatial resolution by enabling real-time monitoring
of temperatures for all hotspots on the chip [10-13]. However,
existing thermal modeling methods still possess certain limitations,
such as the difficulty of obtaining functional unit powers and limited
accuracy.

Recently machine learning based full-chip thermal maps of com-
mercial multi-core processors and hot spot detection have been
proposed by leveraging the universal modeling capability of deep
neural networks [14-18]. Those methods leverage online real-time
utilization and monitoring information such as core frequency,
voltage, and various utilization or performance metrics, which are
naturally supported by most commercial processors [19]. Software
tools such as Intel’s Performance Counter Monitor (PCM) [20] and
AMD’s uProf [21] provide the means to profile these metrics. These
methods demonstrate the feasibility of fast online thermal map
estimation for the first time. Methods include the Long Short-Term
Memory (LSTM) based method [14, 15], the Generative Adversarial
Network (GAN) based method [16], and the recent transformer-
based model for AMD multi-core CPUs based on uProf utilization
metrics [18]. For TPUs, thermal map modeling using the hyper-
parameters of the Deep Neural Network (DNN) network workload
was demonstrated [17].

In this article, we present some measured thermal maps and real-
time utilization and monitoring data for five commercial multi/many-
core CPU/GPU/TPU processors, which has been released at [22].
The processors comprise an Intel i5-3337U dual-core CPU, an Intel
i7-8650U quad-core CPU, an AMD Ryzen 7 4800U 8-core CPU, an
NVIDIA GeForce RTX 4060 GPU, and a Google Coral M.2 TPU. No-
tably, thermal maps from the NVIDIA GeForce RTX 4060 GPU are
unveiled here for the first time. Our aim is to disseminate this data to
the community, fostering further research on efficient thermal map
estimation and hot spot identification for these significant commer-
cial CPUs and emerging AI GPUs and TPUs. Moreover, alongside
this data, we provide a summary of existing machine learning based
thermal modeling techniques derived from these data, including
methods employing LSTM-, GAN-, and transformer-based models.

This article is organized as follows. Section 2 outlines the ther-
mal modeling framework and IR thermography setup employed
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for collecting the thermal and utilization and monitoring data. Sec-
tion 3 explains the thermal data collected as well as the perfor-
mance metrics and monitoring data from the mentioned commercial
CPU/GPU/TPUs. Section 4 review the machine learning based full-
chip thermal map estimation methods based on the real-time uti-
lization and monitoring metrics. Section 5 presents some numerical
results and provides comparisons of those machine learning-based
models. Section 6 concludes the article.

2 THERMAL MAP ESTIMATION FRAMEWORK

In this section, we will provide a concise overview of the proposed
approach, accompanied by a description of the thermal camera
setup employed to gather essential data from the chips during its
operational load.

2.1 Estimation flow overview
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Figure 1: Framework and data acquisition flow

Fig. 1 depicts the framework of the proposed approach. The
proposed approach comprises three main components. Firstly, we
gather data by logging the chip’s metrics during workload execu-
tion. Concurrently, we capture comprehensive thermal map mea-
surements of the entire chip using a thermal infrared (IR) imaging
system. Subsequently, we utilize the collected data to train the
online thermal prediction model.

The model training process involves the input and output. The
input includes recorded performance metrics, which act as indica-
tors for generating predictions. The output consists of the offline
measured thermal maps, serving as the model’s training targets.
When the model converges, it can be employed for online thermal
prediction.

In the subsequent section, we will discuss the performance met-
rics and thermal maps data acquisition setup for each chip. Fur-
thermore, in Section 4, we will delve deeper into the DNN thermal
models. The rest of the framework is covered in the following
subsections.

2.2 Thermal IR imaging system

Accurate measurement of chip surface temperature maps is a pre-
requisite for the success of machine learning methods. To achieve
this, an advanced infrared thermal imaging system, as shown in
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Fig. 2, is deployed for measurement. However, the top surface of the
core module is usually obscured by the heat sink. To obtain the ther-
mal map, a bottom-side liquid cooling system [8] is adopted instead
of the traditional top-side heat dissipation method. As heat dissipa-
tion from the bottom side requires passing through the PCB board,
the efficiency is significantly reduced compared to top-side heat
dissipation. Therefore, a thermoelectric (Peltier) device is installed
on the PCB beneath the processor module to improve efficiency.
As a result, the front side of the processor is fully exposed to the
infrared camera without any possible interference from intervening
materials.

Figure 2: Thermal Imaging system setup

The model of the IR camera is FLIR A325sc. It can capture thermal
images with a maximum resolution of 240 X 320 pixels (px) at
a maximum frequency of 60Hz. The factory-calibrated IR sensor
ensures accuracy within a temperature range of —20°C to 120°C
and resolves the IR spectral range of 7.5um to 13um.

2.3 Operational loads

To better reflect real-world scenarios, the dataset should cover
the anticipated usage situations as comprehensively as possible.
Therefore, it is necessary to run various workloads on the system
during data collection to simulate actual operations. In this work,
different workloads were assigned to these chips. For the CPUs, the
workloads included daily activities such as idling, word processing,
and data compression. Some benchmark suites are also performed.
For task-specific processors such as GPUs and TPUs, we focus
more on their performance in highly specialized domains. Conse-
quently, their workloads consist of machine learning models.

3 THERMAL MAP AND UTILIZATION
METRICS FOR COMMERCIAL PROCESSORS

3.1 Intel i5-3337U dual-core CPUs

The first multi-core processor we presented is the Intel Core i5-
3337U, which is a 2-core / 4-thread CPU processor released in 2012
and used in many laptop computers in the past. Fig. 3 shows the
thermal image of this processor.

The primary high-level performance monitoring software sup-
ported by Intel is Intel’s Performance Counting Monitor (IPCM) [20].
IPCM provides the system-level utilization metrics that we will be
utilizing in this work. These provide a comprehensive high-level
view of the processor’s utilization with system-level metrics such
as energy usage, package and core frequency, instruction counts,
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cache hit/miss rates, etc., as well as the sensed temperature from
the embedded sensors. Table 1 shows the complete list of IPCM
performance metrics from both the package and core-wise domains.
In total, IPCM provides 86 performance metrics (I; to Ig) for the
Intel i5-3337U.

Figure 3: Thermal map of Intel i5-3337U

Table 1: IPCM metrics for the Intel i5-3337U

Pkg. Pkg. Corel.1 | Corel.2 | Core2.1 | Core2.2
exec inst nom exec exec exec exec
IPC inst nom% IPC IPC IPC IPC
freq C2res% freq freq freq freq
afreq C3res% afreq afreq afreq afreq
L3 miss Céres% L3 miss | L3 miss | L3 miss | L3 miss
L2 miss CTres% L2 miss | L2 miss | L2 miss | L2 miss

L3 hit energy J) | L3hit | L3hit | L3hit L3 hit

L2 hit temp L2 hit L2 hit L2 hit L2 hit
L3 MPI L3MPI | L3MPI | L3 MPI | L3 MPI
L2 MPI L2MPI | L2MPI | L2 MPI | L2 MPI

read rate Cores% | CoOres% | CoOres% | COres%
write rate Clres% | Clres% | Clres% | Clres%
inst count C3res% C3res%

ACYC Céres% Céres%

physIPC CT7res% CT7res%
physIPC% temp temp

3.2 Intel Intel i7-8650U quad-core CPU

The second multi-core processor we presented is the Intel i7-8650U,
which is a 4-core / 8-thread CPU processor released in 2017. Fig. 4
(a) shows the thermal map of the processor with one hot spot (one
core is active). Fig. 4 (b) shows the thermal image of this process
in which we can clearly see that the temperature at the thermal
sensor is quite different than the true hot spot. The complete list
of all 170 PCM metrics that we collect and employ for the thermal
modeling of Intel i7-8650U is shown in Table 2.

3.3 AMD Ryzen 7 4800U 8-core CPU

The third multi-processor we presented is the AMD Ryzen 7 4800U
chip, which has 8 cores and 16 threads and was released in 2020.
For this processor, the utilization and monitor metrics are provided
by AMD via AMD uProf 4.0 program [21], which is the performance
monitoring software. This software allows us to gather system-level
utilization metrics as well as core-wise power characteristics from
the chip. By utilizing these metrics, we can gain insights into the
chip’s performance and thermal behavior.

AMD uProf 4.0 offers two types of performance metrics that are
relevant to our study. The first type comprises CPU power met-
rics, including package and core energy usage, core frequency, and
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(a) i7-8650U with one hot spot

B Hotspot 87.5°C
Bl 79
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(b) i7-8650U with temperatures at sensor and true hot spot

Figure 4: Thermal maps of Intel i7-8650U
Table 2: Performance metrics (Intel PCM)

Pkg. Socket | Socket | Corelto8
INST EXEC Céres% EXEC
ACYC IPC C7res% IPC
TIME FREQ C2res% FREQ
PhysIPC | AFREQ C3res AFREQ
PhysIPC% | L3MISS Céres L3MISS
INSTnom | L2MISS CT7res L2MISS

C8res% L3HIT
C9res% L2HIT
C10res% L3MPI

INSTnom% | L3HIT
COres% L2HIT
C2res% L3MPI

C3res% L2MPI SKTO L2MPI
Céres% READ COres%
C7res% WRITE Clres%
C8res% TEMP C3res%
Cres% COres% Céres%
C10res% Clres% C7res%
Energy C3res% TEMP

temperature readings from embedded sensors, among others. The
second type consists of PMU event counters, which track various
events such as instruction counts, cache hits, and branch predic-
tions. In Table 3, we present the list of AMD uProf 4.0 performance
metrics from these two domains. The CPU Power Metrics domain
encompasses 42 metrics, while the PMU Events domain includes
58 different types of events. It is important to note that some PMU
events have specific unit masks to distinguish different conditions,
resulting in further categorization. As a result, we have selected a
total of 116 metrics for the PMU Events domain. Combining both
domains, we have a total of 158 metrics selected for the AMD Ryzen
7 4800U chip.

3.4 NVIDIA GeForce RTX 4060 GPU

This section presents information for the NVIDIA GeForce RTX
4060 GPU (3072 CUDA cores, 8 GB GDDR6 Memory, released in
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Figure 5: Thermal map of AMD R7 4800U

Table 3: Selected Performance Metrics (AMD R7 4800U)
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Figure 6: Thermal map of NVIDIA RTX 4060

Table 4: Selected GPU Metrics (NVIDIA GeForce RTX 4060)

CPU power metrics
ThreadEffectiveFrequency 0-15 ThreadPerformanceState 0-15 SocketOPower ‘ Temperature ‘
CorePower 0-7 SocketOTemperature ‘ core GPU temperature ‘ ‘ ‘
PMU events \ GPU Operation Mode \
FpRetSseAvxOps FpRetiredSerOps FpDispFaults performance state fan speed current GOM
LsBadStatus2 LsLocks LsRetCIClush pending GOM
LsRetCpuid LsDispatch LsSmiRx ‘ Memory ‘
LsIntTaken LsSTLF LsStCommitCancel2 ,
LaMabALL eRefllsFroms LeLIDTIOM installed memory reserved memory allocated memory
sMabAlloc sRefillsFromSys sL1 iss
LsMisalLoad LsPreflnsteDi ik LenefSwhref free memory protected memory allocated protected memory
sMisalLoads sPrefInstrDisp sInefSwPre
LsSwPfDcFills LsHwPfDCFills LsAllocMabCount free protected memory compute mode compute capability
LsNotHaltedCyc IcCacheFillL2 IcCacheFillSys Utilization
BpL1TIbMissL2TIbHit BpL1TIbMissL2TIbMiss BpL1BTBCorrect gpu utilization memory utilization encoder utilization
BpL2BTBCorrect BpDynIndPred BpDeReDirect decoder utilization jpeg utilization ofa utilization
BpL1TIbFetchHit DeDisUopQueueEmpty DeDisUopsFromDecoder Frequency
DeDisDispatchTokenStalls1 DeDisDispatchTokenStalls0 ExRetInstr -
ExRetCops ExRetBrn ExRetBrnMisp graphics clock SM clock memory clock
ExRetBrnTkn ExRetBrnTknMisp ExRetBrnFar video encoder/decoder clock
ExRetNearRet ExRetNearRetMispred ExRetBrnIndMisp Encoder Stats
ExRetMmxFplInstr ExRetCond ExDivBusy session count average fps average latency
ExDivCount ExRetMsprdBrnchInstrDirMsmtch ExTaggedIbsOps Mode
ExRetFusBrnchInst L2RequestG1 L2RequestG2
[2CacheReqStat L2PfHitL2 L2PfMissLZHitLz current ECC mode pending current ECC mode current MIG mode
L2PfMissLzL3 pending MIG mode current GSP firmware mode

‘ Error Counter (corrected & uncorrected)

2023). NVIDIA provides a command-line management and monitor-
ing tool for its GPUs, known as the NVIDIA System Management
Interface (NVIDIA-SMI). Through this utility, we can query the
device state and gather GPU metrics to obtain information about
the GPU’s performance and thermal behavior.

NVIDIA-SMI supports several types of GPU metrics, each type
consisting of several items. Table 4 provides a list of the metrics
we selected, including the readings from sensors such as GPU core
temperature, as well as metrics on current GPU memory usage,
frequency, operating mode, and more. It’s worth noting that the
Error Counter category includes counts for both corrected and
uncorrected errors, effectively doubling the number of counters. In
total, we have 53 metrics for the NVIDIA GeForce RTX 4060 GPU
chip.

3.5 Google Coral M.2 TPU

The last processor we provided is Google Coral M.2 TPU, which
was released in 2020. The M.2 TPU board has one or two Edge TPU

device memory DRAM register file memory
L1 cache L2 cache texture memory
CBU SRAMs entire chip
‘ Retired Pages ‘
‘ single bit ECC ‘ double bit ECC ‘ pending retirement ‘

coprocessors, as shown in Fig. 7 (a). Each Edge TPU coprocessor
is capable of performing 4 trillion operations per second (4 TOPS),
using 2 watts of power. But different than other commercial CPUs
and GPUs, as we presented earlier, Google TPUs do not have real-
time utilization and monitoring metrics information.

To mitigate this issue, we instead use the hyperparameters of the
AT workloads as the inputs for training the thermal map models.
The rationale is that the TPU hardware resources that the network
demands are tightly related to the network model architecture,
size, operations, etc. Hence, we are able to characterize the TPU’s
power from the workloads’ hyperparameters, such as operation
type, count, workload size, etc.
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Table 5: Selected Workload Features (Coral M.2 TPU, Google

Edge)

Overall

image_shape

pooling_mode

onchip_mem_rem

num_op_tpu

width_multiplier

model_size

offchip_mem_used

num_op_cpu

depth_multiplier | onchip_mem_used total_op_cnt infer_time
Operational Statistics
add full_connect pad reduce_max
avg_pool_2d 12_norm quant relu
concat max_pool_2d reshape strsle
conv2d mean sft_max hard_swish
depconv2d mul sub

We divide the network’s hyperparameters as features into two
groups, called the overall features and operational statistics. Neural
network models that are coded to run on CPU need to be compiled
to a TPU readable version. In our study, EdgeTPU Compiler [23]
is employed to transform a CPU version network model to a TPU
version. On the one hand, the overall features, such as model size
and memory usage, are recorded through the process. On the other
hand, we collect statistical information for the type and count of
operations indicated by the network in the meantime. We mark
that for different TPUs, different tools may be involved. However,
network information should always be reachable. Today’s world
has a vast number of neural networks and hundreds of kinds of op-
erations. To find the most popular operational features of network
models, we explored a number of the most popular and widely used
open-source deep neural network models from TensorFlow [24].
Table 5 shows the 31 features selected for the network workloads.

74.5

-~
—_

(b) The Coral TPU thermal map

73.0

(a) Coral M.2 TPU module

Figure 7: Google Coral M.2 TPU module (a) and its thermal
map (b)

4 DNN-BASED FULL-CHIP THERMAL MAP
ESTIMATOR

Recently, several methods have been proposed to leverage real-time
on-chip utilization and monitoring information for generating ther-
mal and power maps. These methods predominantly employ DNN
techniques utilizing real-time performance metrics. We summarize
these methods in this section, and their performance comparison
will be discussed in the next section.
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4.1 LSTM-based method

Long Short-Term Memory (LSTM) networks are a type of Recurrent
Neural Network (RNN) designed to capture long-term dependencies
and handle vanishing gradient problems. LSTMs are particularly
suited for holding time series tasks.

Sadigbatcha et al. proposed an LSTM-based approach named
Realmaps, which utilizes Intel PCM metrics to estimate full-chip
thermal maps in commercial off-the-shelf multi-core processors [14,
15]. Realmaps has demonstrated promising results regarding accu-
racy and inference speed for real-time applications.

However, LSTM often struggles to achieve high accuracy due
to its inherent limitations in capturing complex temporal patterns
over extended sequences.

4.2 GAN-based method

Generative Adversarial Networks (GAN) consist of two neural net-
works, a generator and a discriminator, which compete against each
other in a zero-sum game. The generator creates synthetic data
samples, while the discriminator attempts to distinguish between
real and generated samples. GAN has shown impressive results in
generating images.

Therefore, to further improve the thermal prediction accuracy,
an enhanced method using a Convolutional Neural Network (CNN)
model based on the GAN architecture was introduced, known as
ThermGAN. This approach has shown superior accuracy compared
to LSTM-based methods [16].

Furthermore, the GAN model was extended to model Google
TPU chips for the first time [17]. This study demonstrated that, even
for TPUs with limited online utilization and monitoring metrics,
thermal models could be successfully developed using only the
hyper-parameters of DNN models running on TPUs.

However, the training process of GAN can be highly unstable,
requiring careful tuning of hyperparameters and architecture. Ad-
ditionally, GAN is not inherently designed to handle time series
data, making it challenging to apply them effectively to tasks that
involve sequential inputs, like what we have here.

4.3 Transformer-based method

Transformer is a type of neural network architecture that has revolu-
tionized the field of natural language processing and is increasingly
applied to various sequential data tasks. Unlike traditional RNNs
and LSTMs, Transformers do not process data in a sequential man-
ner. Instead, they utilize a self-attention mechanism that allows
them to attend to all positions in the input sequence simultaneously.
This capability makes Transformers highly effective at capturing
long-range dependencies and complex patterns in time series data.
Consequently, Transformers can achieve higher accuracy in tasks
that involve sequential inputs, as they are better equipped to handle
the intricacies of temporal dynamics. Their ability to process inputs
in parallel also makes them more efficient and scalable compared
to traditional sequential models.

More recently, a transformer-based DNN method called ThermTrans-

former was proposed to estimate the full-chip thermal map of AMD
multicore chips using uProf utilization metrics [18]. This method
outperforms both GAN-based and LSTM-based approaches due to
the transformer’s powerful modeling capability for time-series data
through the attention mechanism.

5 NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present some numerical results for full-chip
thermal map estimation methods using the dataset provided. As
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Table 6: Accuracy comparison among different methods

Jincong Lu and Sheldon X.-D. Tan

Dataset Accuracy Term | ThermTransformer [18] ‘ ThermGAN [16] ‘ Realmaps [15] ‘
Average RMSE 0.360 0.596 2.190
AMD R7 4800U Maximum RMSE 2.776 10.880 19.762
RMSE deviation 0.234 0.958 2.684
Average RMSE 0.187 0.381 2.075
NVIDIA RTX 4060 | Maximum RMSE 0.831 2.290 9.885
RMSE deviation 0.134 0.249 1.892
0.4458 | 57.70 0.2151 | 66.07 0.2164 | 66.97
% 66 e
53 64 : 8 80
62 80 75
60
58 70
56 65
54
1.0
0.5
0.5
0.0 0.0

Figure 8: Measured thermal maps (row #1), estimated thermal maps (row #2), and error maps (row #3). The numbers above the
maps indicate the Temperature RMSE | Average Temperature (unit: °C). Each column indicates the result at one particular time

step.

mentioned in the previous section, we have Realmaps, ThermGAN,
and ThermTransformer. We evaluate all three methods on two com-
mercial processors: (1) AMD Ryzen 7 4800U 8-core microprocessor,
which features the Zen 2 (Renoir) architecture and is commonly
used in thin and light laptop computers. (2) NVIDIA GeForce RTX
4060, which has 3072 CUDA cores, 8 GB GDDR6 Memory, and was
released in 2023.

The implementation of the proposed models is based on Python
3.8 and utilizes TensorFlow (2.11.0) [24], a widely adopted open-
source machine learning library. The model is trained on a Linux
server equipped with an Xeon E5-2699v4 2.20GHz processor and
an NVIDIA Titan RTX GPU. All the DNN models are trained on the
same dataset, and the training process terminates when there is no
significant improvement in performance. The training procedure
typically takes a few to several hours to complete.

We begin by examining the accuracy of predicting thermal maps
using the proposed method on the given dataset. To evaluate the ac-
curacy, we calculate the Root-Mean-Square Error (RMSE) between
the generated thermal map and the measured thermal map across
all pixels we are interested in. The results are presented in Table 6.

In the AMD Ryzen 7 4800U dataset, the temperature ranges from
44.11t0 90.08°C. The average RMSE of the ThermTransformer on the
test set is 0.360°C, with a standard deviation of only 0.234°C. These
results are remarkably accurate considering the range of the data.
ThermTransformer demonstrates approximately 1.66x higher accu-
racy than ThermGAN on average and 6.09x higher accuracy than

RealMaps. In terms of the maximum RMSE, ThermTransformer is
about 3.92x and 7.12x more accurate than ThermGAN and RealMaps,
respectively. This trend also applies to the NVIDIA RTX 4060
dataset.

Fig. 8 illustrates the estimated and measured thermal maps us-
ing ThermTransformer, showcasing examples from the AMD CPU
dataset. Each column in the figure represents the comparison results
at a specific time step. We display the results in three-time steps. It
is evident that the model has successfully learned the contour of
the real thermal map.

6 CONCLUSION

This paper provides a comprehensive set of datasets featuring tran-
sient thermal maps for a variety of commercial multi/many-core
CPU, GPU, and TPU processors, captured through thermal IR imag-
ing. The datasets encompass processors such as the Intel i5-3337U
dual-core CPU, Intel i7-8650U quad-core CPU, AMD Ryzen 7 43800U
8-core CPU, NVIDIA GeForce RTX 4060 GPU, and Google Coral
M.2 TPU. We hope that these datasets will foster further research
and advancements in thermal map estimation and modeling within
the research community.
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