
Simulation Support for Fast and Accurate

Large-Scale GPGPU & Accelerator Workloads
Vishnu Ramadas, Matthew Poremba, Bradford M. Beckmann, Matthew D. Sinclair

University of Wisconsin-Madison, AMD Research

vramadas@wisc.edu Matthew.Poremba@amd.com Brad.Beckmann@amd.com sinclair@cs.wisc.edu

I. INTRODUCTION

In recent years deep neural networks (DNNs) have emerged

as an important application domain driving the requirements

for future systems. As DNNs get more sophisticated, their

compute requirements and the datasets they are trained on

continue to grow at a fast rate. For example, Gholami showed

that compute in Transformer networks [1] grew 750X over

2 years [2], while other work projects DNN compute and

memory requirements to grow by 1.5X per year [3], [4]. Given

their growing requirements and importance, heterogeneous

systems often add machine learning (ML) specific features

(e.g., TensorCores) to improve their efficiency. However, given

ML’s voracious rate of growth and size, there is a growing

challenge in performing early-system exploration based on

sound simulation methodology.

Traditionally, architectural simulators are used to perform

early exploration for this type of research. However, detailed

simulation of modern systems can take extremely long times in

existing tools. Furthermore, prototyping optimizations at scale

can also be challenging, especially for newly proposed acceler-

ators. Although tools such as Accel-Sim [5], [6], Gemmini [7],

MGPUSim [8], [9], and SCALE-Sim [10] enable some early

experiments, they are limited in their ability to target a wide

variety of accelerators and often focus on specific accelerators

instead of system-wide behavior. Likewise, approaches like

Path Forward [11] and Photon [12] reduce GPU simulation

time by approximating the ML application behavior. However,

these approaches focus on existing hardware – prototyping

new optimizations on them would be challenging.

In comparison, gem5 [13], [14] has support for vari-

ous CPUs, GPUs, and other important accelerators [15]–

[18]. However, efficiently simulating large-scale workloads on

gem5’s cycle-level models requires prohibitively long times.

Accordingly, we are enhancing gem5’s support to make these

workloads practical to run while retaining accuracy. This

will enable users to use the same early exploration platform,

gem5, for both homogeneous and heterogeneous systems.

Specifically, we are extending gem5’s existing simulation

infrastructure to create a scalable simulation framework that

models diverse system components with varying levels of

detail. We will also develop novel mechanisms that identify

the most important parts of the applications to simulate at

high fidelity while reducing simulation time and add support

for multi-chiplet and multi-node (e.g., multi-GPU and multi-

accelerator) simulations to drive a flexible, adaptable simula-

tion infrastructure that enables rapid prototyping of different

optimized AI and ML algorithms and architectures while

ensuring that the changes are representative of real, modern

hardware and software.

II. BACKGROUND

The gem5 simulator is a widely used, open-source, cycle-

level computer system simulator. At its core, gem5 contains

an event-driven simulation engine. On top of this simula-

tion engine gem5 implements a large number of models for

system components for CPUs (out-of-order designs, in-order

designs, and others), GPUs (AMD and ARM models), accel-

erators [17], [19], various memories, on-chip interconnects,

coherent caches, I/O devices, and many others. Moreover,

gem5 provides two modes: Syscall Emulation (SE) and Full

System (FS). SE mode simulates an application’s user mode

code in detail but emulates the OS instead of simulating it in

detail. Conversely, FS mode simulates both the OS and user

mode code in detail, allowing users to study the interaction

between the OS and architecture.

Our recent work enhanced and updated gem5’s GPU sup-

port [20] to add support for multi-chiplet setups [18] and

ML workloads [16], [21] in gem5’s SE mode. However, this

support focuses on relatively smaller ML workloads such as

DNNMark [22] and DeepBench [23] which call ML libraries

directly (unlike high-level frameworks like PyTorch or Tensor-

Flow). To improve on this, we recently released support for

running ML models in gem5’s FS mode in gem5 v23.1. As

a result, users can now run PyTorch and TensorFlow work-

loads on CPU-GPU systems in gem5 using modern versions

(e.g., v6) of AMD’s open-source ROCm stack. Unfortunately,

running ML models from these high-level frameworks in

gem5 is extremely slow: it would take roughly 78 days of

simulation time to reach the region of interest in massive

modern ML workloads running in PyTorch or TensorFlow.

Thus, significant work is needed to practically simulate these

large ML workloads in gem5.

III. ON-GOING WORK

Here we discuss our on-going efforts to improve gem5’s

support to practically run ML workloads and other large-

scale workloads (e.g., from high performance computing).

These optimizations, which we have open sourced to the

public, mainline gem5 codebase, trade-off fidelity for less

important portions of the workload for improved simulation

time, without compromising correctness. Moreover, we are



currently working on ways to further extend this to improve

simulation speed without compromising accuracy.

Reduce Fidelity for Less Important Workload Portions

with KVM: We extended gem5’s KVM CPU support to speed

up simulation for gem5 applications running on CPUs, GPUs,

and other accelerators. We currently harness gem5’s KVM

CPU to simulate the CPU code of a GPGPU workload at native

speed on the underlying machine. We simulate the workload

kernels at high fidelity using gem5’s GPU models while using

the KVM CPU for everything else. However, even after doing

so, if an application has several iterations or a large number of

phases (e.g., GPU kernels or application phases) that require

high fidelity simulation, further optimizations are required [5],

[11], [12].

Checkpoint Save/Restore Support: We also added support

for checkpointing applications and are adding support to allow

gem5 users to create their own checkpoints and restore from

them. For example, users could create a checkpoint for the

state of the system immediately before a region of interest

(ROI) executes or immediately before the first non-setup

phase executes. The checkpointed state can then be restored

during later simulations to skip over all instructions until

the annotation and effectively begin simulating from the ROI

onwards. This significantly improves simulation time by only

simulating these less important parts (e.g., if a user does not

care about reading inputs in [24]–[26]) once. Furthermore, for

GPU phases the ROCm stack can also be modified to generate

a checkpoint from hardware that contains all the required state

information, and recent work has demonstrated that similar

support exists for CPUs [27]. This checkpoint can then be

used with gem5 to start a simulation directly from the ROI.

Fast Forward Through Less Important Phases: We propose

to identify and fast forward through less important application

phases (e.g., start-up GPU kernels). Here, like prior work,

we observe that some code regions in a workload are more

important to the application’s overall behavior than others.

By converting less important GPU kernels to CPU phases

that can be executed natively via KVM or by executing them

by passing through the host machine’s GPU itself, we can

simulate the workload much faster by focusing the high fidelity

simulation on the most important application phases. Our

initial prototype (using HIP-CPU [28] and simple GPGPU

benchmarks from Rodinia [29], [30]) shows this approach

is highly effective – gem5’s simulation time is only 1.6×-

3× slower than bare metal (versus at least 200× slower

without these optimizations). Moving forward, we plan to

leverage the fact that high level frameworks have multiple

backends for kernels. Accordingly, applying this to large-scale

ML workloads will make their simulation tractable – allowing

relatively small ML workloads to complete very quickly and

making it possible to simulate much larger workloads that

currently have infeasibly long runtimes. However, significant

challenges exist for generating and migrating the state needed

to initiate cycle-level simulation after the fast forward phase.

Annotating Applications: Fast forwarding through less im-

portant phases requires a simple mechanism to identify which

phases/GPU kernels are most important. To do this, we will

initially manually annotate applications to identify which

kernels require high fidelity. However, this may not be feasible

for larger workloads. Thererfore, we will develop a novel

profiling scheme that analyzes large-scale ML workloads on

real machines and identifies which ROIs are most important

to simulate in high fidelity – by passing this information into

a scripting framework we will develop, we can automatically

identify the most important regions without requiring manual

annotation. By utilizing the aforementioned annotations for

the ROIs, we can also make it easy for users to create

checkpoints for ML workloads. Here, we propose to start

with our prior work on SeqPoints [31], which identifies a

subset of the computation in RNNs and Transformers that are

representative of the larger ML training computation. Applying

SeqPoints to gem5 will create a set of profiles and checkpoints

representative of the larger workloads that can be run in

gem5. Our analysis shows that these profiles are up to 345×

smaller than the entire ML workloads, enabling significant

savings for RNNs and Transformers. For other important ML

workloads, we will either adopt state-of-the-art approaches

(e.g., only simulating a single CNN iteration [32] or using

clustering [5]) or perform a detailed analysis of the workloads

to identify what subset of the workload must be simulated at

high accuracy.

Turnkey Ease of Use: One of the barriers to entry with using

simulators such as gem5 is the difficulty in getting the tools set

up properly initially. Although recent work has helped improve

this [16], [21], it does not work with our proposed work.

We have begun developing detailed documentation for guiding

users to setup their simulation environments. We also plan to

include a new chapter in the learning gem5 book as well as

example applications and uses in gem5-resources [21]. These

resources will allow new users to simply start running PyTorch

or TensorFlow applications without worrying about how to

properly configure gem5, and give them the tools needed to

create their checkpoints for additional applications.

IV. METHODOLOGY

We will evaluate our proposed work in the gem5 simulator,

and plan to continue open-sourcing this work. Our main met-

rics for evaluation will be a) simulation time (wall clock time)

compared to the current gem5 support for these applications

and b) accuracy (i.e., how well the simulated support models

the behavior of applications on a given system). Here, we

will leverage our recent work on improving the accuracy of

gem5’s models [33], [34]. Directly quantitatively evaluating

its efficacy compared to prior work (discussed in Section I) is

challenging since each uses a different simulator or ecosystem.

Moreover, our work evaluates the entire application, end-to-

end, whereas prior work specifically analyzes the accelerator

portion (e.g., the GPU kernels). However, where possible we

plan to both use the same/similar applications as PKA [5],

Photon [12], and Path Forward [11] to demonstrate how our

findings agree and contrast.



ACKNOWLEDGMENTS

This work is supported in by the Semiconductor Research

Corporation (SRC) and National Science Foundation grant

Frameworks-2311889.

REFERENCES

[1] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-LM: Training Multi-Billion Parameter Language Mod-
els Using Model Parallelism,” 2019.

[2] A. Gholami, “AI and Memory Wall,” 2021.

[3] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. H. Loh, M. Subramony,
and S. White, “Pioneering Chiplet Technology and Design for the
AMD EPYC™ and Ryzen™ Processor Families : Industrial Product,”
in ACM/IEEE 48th Annual International Symposium on Computer

Architecture, ser. ISCA, 2021, pp. 57–70.

[4] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, N. Patil, S. Prasad, C. Young,
Z. Zhou, and D. Patterson, “Ten Lessons from Three Generations Shaped
Google’s TPUv4i,” in Proceedings of the 48th Annual International

Symposium on Computer Architecture, ser. ISCA, 2021.

[5] C. Avalos Baddouh, M. Khairy, R. N. Green, M. Payer, and
T. G. Rogers, “Principal Kernel Analysis: A Tractable Methodology
to Simulate Scaled GPU Workloads,” in 54th Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO. New
York, NY, USA: Association for Computing Machinery, 2021, p.
724–737. [Online]. Available: https://doi.org/10.1145/3466752.3480100

[6] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An Extensible Simulation Framework for Validated GPU Modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture, ser. ISCA, 2020, pp. 473–486.

[7] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanovic, B. Nikolic, and Y. S. Shao,
“Gemmini: Enabling systematic deep-learning architecture evaluation
via full-stack integration,” in 2021 58th ACM/IEEE Design Automation

Conference (DAC), 2021, pp. 769–774.

[8] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A
simulation framework for CPU-GPU computing,” in Proceedings of the

21st international conference on Parallel Architectures and Compilation

Techniques, ser. PACT, 2012.

[9] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K.
Ziabari, Z. Chen, R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and
D. Kaeli, “MGPUSim: Enabling Multi-GPU Performance Modeling
and Optimization,” in Proceedings of the 46th International Symposium

on Computer Architecture, ser. ISCA ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 197–209. [Online].
Available: https://doi.org/10.1145/3307650.3322230

[10] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “A Systematic Methodology for Characterizing Scalability
of DNN Accelerators using SCALE-Sim,” in IEEE International Sym-

posium on Performance Analysis of Systems and Software, ser. ISPASS,
2020, pp. 58–68.

[11] Y. Li, Y. Sun, and A. Jog, “Path Forward Beyond Simulators: Fast
and Accurate GPU Execution Time Prediction for DNN Workloads,” in
Proceedings of the 56th Annual IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 380–394. [Online]. Available:
https://doi.org/10.1145/3613424.3614277

[12] C. Liu, Y. Sun, and T. E. Carlson, “Photon: A Fine-Grained Sampled
Simulation Methodology for GPU Workloads,” in Proceedings of the

56th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’23. New York, NY, USA: Association for Computing
Machinery, 2023, p. 1227–1241. [Online]. Available: https://doi.org/10.
1145/3613424.3623773

[13] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7,
2011.

[14] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, S. Bharadwaj, G. Black,
G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, M. Fariborz, A. Farmahini-
Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope, T. Grass,
B. Hanindhito, A. Hansson, S. Haria, A. Harris, T. Hayes, A. Herrera,
M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul, T. M.
Jones, M. Jung, S. Kannoth, H. Khaleghzadeh, Y. Kodama, T. Krishna,
T. Marinelli, C. Menard, A. Mondelli, T. Mück, O. Naji, K. Nathella,
H. Nguyen, N. Nikoleris, L. E. Olson, M. Orr, B. Pham, P. Prieto,
T. Reddy, A. Roelke, M. Samani, A. Sandberg, J. Setoain, B. Shingarov,
M. D. Sinclair, T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish,
I. Vougioukas, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon, and
Éder F. Zulian, “The gem5 simulator: Version 20.0+,” 2020.

[15] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane,
J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D.
Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost in
Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language
Level,” in 2018 IEEE International Symposium on High Performance

Computer Architecture, ser. HPCA, Feb 2018, pp. 608–619.

[16] K. Roarty and M. D. Sinclair, “Modeling Modern GPU Applications in
gem5,” in 3rd gem5 Users’ Workshop, June 2020.

[17] S. Rogers, J. Slycord, M. Baharani, and H. Tabkhi, “gem5-SALAM:
A System Architecture for LLVM-based Accelerator Modeling,” in
53rd Annual IEEE/ACM International Symposium on Microarchitecture,
2020, pp. 471–482.

[18] B. W. Yogatama, M. D. Sinclair, and M. M. Swift, “Enabling Multi-GPU
Support in gem5,” in 3rd gem5 Users’ Workshop, June 2020.

[19] Y. S. Shao, S. L. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks, “Co-
designing accelerators and SoC interfaces using gem5-Aladdin,” in 49th

Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO, 2016, pp. 1–12.

[20] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane,
J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D.
Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost in
Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language
Level,” in 2018 IEEE International Symposium on High Performance

Computer Architecture, ser. HPCA, Feb 2018, pp. 608–619.

[21] B. R. Bruce, A. Akram, H. Nguyen, K. Roarty, M. Samani, M. Fariborz,
T. Reddy, M. D. Sinclair, and J. Lowe-Power, “Enabling Reproducible
and Agile Full-System Simulation,” in IEEE International Symposium

on Performance Analysis of Systems and Software, ser. ISPASS, 2021.

[22] S. Dong and D. Kaeli, “DNNMark: A Deep Neural Network Benchmark
Suite for GPUs,” in Proceedings of the General Purpose GPUs, ser.
GPGPU. New York, NY, USA: ACM, 2017, pp. 63–72. [Online].
Available: http://doi.acm.org/10.1145/3038228.3038239

[23] S. Narang and G. Diamos, “An update to DeepBench with a focus
on deep learning inference,” https://svail.github.io/DeepBench-update/,
2017.

[24] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar,
D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius,
C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “MLPerf Inference
Benchmark,” in 2020 ACM/IEEE 47th Annual International Symposium

on Computer Architecture, ser. ISCA, 2020, pp. 446–459.

[25] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D. A.
Patterson, H. Tang, G. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen,
D. Dutta, U. Gupta, K. M. Hazelwood, A. Hock, X. Huang, B. Jia,
D. Kang, D. Kanter, N. Kumar, J. Liao, G. Ma, D. Narayanan,
T. Oguntebi, G. Pekhimenko, L. Pentecost, V. J. Reddi, T. Robie, T. S.
John, C. Wu, L. Xu, C. Young, and M. Zaharia, “MLPerf Training
Benchmark,” CoRR, vol. abs/1910.01500, 2019. [Online]. Available:
http://arxiv.org/abs/1910.01500

[26] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, and
C.-J. Wu, “The Vision Behind MLPerf: Understanding AI Inference
Performance,” IEEE Micro, vol. 41, no. 3, pp. 10–18, 2021.

[27] B. Gottschall, S. Santana, and M. Jahre, “Balancing Accuracy and Eval-
uation Overhead in Simulation Point Selection,” in IEEE International

Symposium on Workload Characterization, ser. IISWC, October 2023.



[28] A. Voicu, “HIP CPU Runtime,” https://github.com/
ROCm-Developer-Tools/HIP-CPU, 2023.

[29] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Comput-
ing,” in IEEE International Symposium on Workload Characterization,
ser. IISWC, Oct 2009, pp. 44–54.

[30] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, Liang Wang, and
K. Skadron, “A Characterization of the Rodinia Benchmark Suite with
Comparison to Contemporary CMP Workloads,” in IISWC, 2010, pp.
1–11.

[31] S. Pati, S. Aga, M. D. Sinclair, and N. Jayasena, “SeqPoint: Identifying
Representative Iterations of Sequence-based Neural Networks,” in IEEE

International Symposium on Performance Analysis of Systems and

Software, ser. ISPASS, August 2020.
[32] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Phanishayee, B. Schroeder,

and G. Pekhimenko, “TBD: Benchmarking and Analyzing Deep Neural
Network Training,” in IEEE International Symposium on Workload

Characterization, ser. IISWC, October 2018.
[33] C. Jamieson, A. Chandrashekar, I. McDougall, and M. D. Sinclair,

“GAP: gem5 GPU Accuracy Profiler,” in 4th gem5 Users’ Workshop,
June 2022.

[34] V. Ramadas, D. Kouchekinia, N. Osuji, and M. D. Sinclair, “Closing
the Gap: Improving the Accuracy of gem5’s GPU Models,” in 5th gem5

Users’ Workshop, June 2023.


