

Labeling Memory Accesses: To identify each global memory

data structure, like prior work [5], [27], [92], [119], [120] we

label each data structure and their access mode: Read-Only (R)

or Read/Write (R/W). Although monolithic GPUs generally

only need R and R/W labels [76], [119], chiplet-based GPUs

must also know where these accesses are scheduled. Without

scheduling information it is unknown which chiplet(s) have the

most up-to-date copy and thus the system must conservatively

generate acquires/releases for all chiplets.

There are several ways for the compiler/programmer to pass

this information to the CP. Listing 1 shows an example of the

new API calls we added to HIP’s open source ROCm [11]

for this purpose. We use hipSetDevice to bind a stream i

to chiplet(s) j. Specifically, for each data structure in a given

kernel, the programmer uses our new hipSetAccessMode

call to specify if the data structure will be R or R/W in that

kernel. We extended ROCm to add this information to the

kernel packet, allowing the global CP’s packet processor to

access it. Optionally, programmers can instead use our new

hipSetAccessModeRange to specify finer-granularity in-

formation by providing both access mode and address range(s)

within a data structure that chiplet(s) will be operating on

(Listing 2). Although the compiler/programmer should be able

to determine most GPU access patterns statically (e.g., record

and replay [107], virtual ISAs [75], or effect inference [128]),

when this is not possible hipSetAccessMode should be

used. For example, if a kernel accesses different data structures

depending on control flow, the software must specify all

regions that may be accessed by the kernel. Similar to GPU

consistency models, the compiler/programmer must correctly

mark the ranges or the outputs may be incorrect.

Tracking Accesses in CP: Figure 5 shows how CPElide uses a

2n-bit bit-vector (n is the number of chiplets) to track which

data structures are accessed, their mode (R, R/W), and by

what chiplets. Each table row tracks a data structure, and

the columns specify the virtual address ranges for different

chiplets, the access mode, and the 2n-bit bit-vector tracks what

state (States) the data structure will be in.

Coarsening Data Structure Labels: CPElide tracks up to 8

data structures per kernel (Section III-A). If a kernel accesses

more than 8 data structures CPElide coarsens the information

for before adding it to the Chiplet Coherence Table. To do

this we first search the table to find if any data structures are

contiguous in memory. If any are found, CPElide combines

their entries. The combined entry tracks all chiplets any of

these data structures were assigned to, and its data structure

identifier in the chiplet vector stores the more conservative

of the states to ensure correctness. For example, if one data

structure is R and the other is R/W, the combined state of

the chiplet vector will be R/W. However, if no such structure

is found, then we coarsen the data structures closest to

one another in memory. Although this may perform more

acquire/releases than necessary, since the memory between

them is not accessed, it ensures correctness. Finally, while not

observed, if parts of a data structure are accessed in different

modes and software cannot statically determine their ranges,

NOT
PRESENT

STALE

VALID

DIRTY

ALR

ALWInvalidate

ALR/
ALW/

Invalidate

Flush on
ARR

 ALR/
ARR/
Flush

Flush on
ARW

ARR/
ARW/
Flush

ALW ARW

ARR/
ARW

Legend
ALW: Anticipated Local Write
ALR: Anticipated Local Read
ARW: Anticipated Remote Write
ARR: Anticipated Remote Read
* : Transition generates Invalidation
 of local cache

ALR*

ALW*

Invalidate

Fig. 6: Internal state tracking mechanism for a data structure

in the CPElide Table for a given chiplet.

CPElide creates a chiplet vector per range.

States: Each Chiplet Coherence Table entry has four possible

states, represented by 2 bits per chiplet in the chiplet vector:

• Not Present (00): This state indicates that a data structure

does not exist in chiplet i’s L2 cache.

• Valid (01): After a kernel that only reads (access mode

R) a data structure, if its data is in chiplet i’s L2 cache,

it will be Valid. Thus, if later chiplet j wants to write

this data structure, chiplet i’s copy must be invalidated

or marked as Stale.

• Dirty (10): After a given kernel that reads or writes

(access mode R/W) a data structure, if its data remains

in chiplet i’s L2 cache, its values may be Dirty. Thus,

if later chiplet j wants to access this data, we must first

flush it from chiplet i.

• Stale (11): The Stale state indicates when a data structure

might be in chiplet m’s cache, but its values are not the

most up-to-date (unlike Not Present, which guarantees

the data is not in a chiplet’s caches). For example, if

another chiplet k wrote the data structure after chiplet m

accessed it, and chiplet m has not accessed the data again

subsequently, the data structure may still be in m’s L2

cache. Thus, chiplet m must be invalidated before it is

safe for m to access it again.

Figure 6 shows CPElide’s state diagram, which tracks the

state of each data structure in the Chiplet Coherence Table. The

circles denote the aforementioned 4 possible states of a data

structure in the Chiplet Coherency Table. The arrows indicate

the required state transition when the conditions indicated by

the text alongside the arrows occur. For example, the Valid

state’s loop indicates that the data structure’s state remains in

Valid whenever one of the following conditions (indicated as

ALR/ARR/Flush in Figure 6) occur: ALR: a local read; ARR:

a remote read; or a Flush: an on-going L2-cache operation

that may have been initiated by updates on a different data

structure. In the table, each Chiplet Vector entry represents the

state at a particular chiplet for one data structure. Unlike most

coherence protocols, CPElide does not need transient states

since it is not waiting for operations to complete – instead

it denotes how the data is being accessed in each chiplet.

The transitions show how a Chiplet Coherency Table entries’

state changes when different events like Acquires, Releases,

the global CP uses an acknowledgments (ACKs) count to

ensure they complete, as discussed in Launching Kernels.

Generating Release Requests: CPElide only sends a release

(flush) when a data structure will be accessed in a new kernel

and that kernel will be scheduled on chiplet(s) other than those

where it is in Dirty. This ensures a chiplet never reads a

stale value. However, if the next kernel accessing this data

is scheduled on the same chiplet(s) as the previous kernel,

CPElide elides the release if the WGs continues accessing the

same address range(s) in a data structure, on the same chiplets.

Generating Acquire Requests: CPElide only sends an ac-

quire (invalidation) when a new kernel will access a data

structure and this kernel will be scheduled on a chiplet(s)

where the data structure is in Stale. This ensures that a chiplet

does not read stale values, without requiring implicit acquire

requests across all chiplets before each kernel.

Removing Entries: When CPElide generates an acquire or

release, it also updates the chiplet vectors per Figure 6. If the

chiplet vector’s state is Not Present (00) for all chiplets, we

remove the entry from the table. Thus, if an acquire/release is

generated for all chiplets, all table entries will be removed.

Indirect & Irregular Accesses: Although most GPGPU

applications have regular access patterns [43], [133], [139],

some are more irregular [23], [26], [61], [90], [105], [135].2

For irregular accesses, CPElide identifies how a data structure

will be accessed in a given kernel. In Section V, we show that

CPElide effectively supports workloads with indirect accesses.

However, if this information cannot be determined statically

for pointer-based accesses, like the baseline CPElide con-

servatively performs implicit acquires and releases at kernel

boundaries. Although dis-contiguous address ranges are not

common in irregular GPGPU workloads, CPElide supports

both contiguous and dis-contiguous address ranges. However,

applications with dis-contiguous address ranges may increase

Chiplet Coherence Table entries, which we could compensate

for by increasing the table size (Section III-A) if neces-

sary. Similarly, although rare, CPElide also supports GPGPU

workloads that use recursion [115], [132]. For languages

like OpenCL, CPElide can utilize access mode information

for all data structures in the kernel declarations (Listing 1).

For languages like CUDA and HIP, which do not have per-

kernel labels, CPElide would require conservatively labeling

the data structures and access modes for all kernels that

may be recursively called. Alternatively, in GPU ISAs where

additional instructions could be added we could add special

instructions to perform this labeling per kernel.

IV. METHODOLOGY

A. Baseline GPU Architecture

We model a tightly coupled CPU-GPU architecture with

a unified shared memory address space and coherent caches.

All CPU cores and GPU CUs are connected via an inclusive

L3, which is also the directory. Figures 1 and 3 illustrate

2The data structures in all applications we study (Table II) use either 1D
or 2D arrays.

GPU Feature Configuration

GPU Clock 1801 MHz

CUs/Chiplet; Complexes/Chiplet 60; 1

SE/Chiplet, SA/SE 4, 1

Num Chiplets 2, 4, 6

Total CUs 120, 240, 360

Num SIMD units/CU 4

Max WF/SIMD unit 10

Vector/Scalar Reg. File Size / CU 256/12.5 KB

Num Compute Queues 256

LI Instruction Cache / 4 CU 16 KB, 64B line, 8-way

L1 Data Cache / CU 16 KB, 64B line, 16-way

L1 Latency 140 cycles

LDS (Local Data Share) Size / CU 64 KB

LDS Latency 65 cycles

L2 Cache/chiplet 8 MB, 64B line, 32-way

Local/Remote L2 Latency 269/390 cycles

L2 Write Policy Write-back with write allocate

L3 Size 16 MB, 64B line, 16-way

L3 Latency 330 cycles

Main Memory 16 GB HBM, 4H stacks, 1000 MHz

Inter-chiplet Interconnect BW 768 GB/s
Scheduling Policy Static Kernel Partitioning

TABLE I: Simulated baseline GPU parameters

our baseline GPU, which is similar to prior work [116],

[117]. Each GPU chiplet has an L1 cache and LDS per CU,

and an L2 cache shared across the chiplet’s CUs. The per-

chiplet L2 caches are connected via inter-chiplet links using a

crossbar [116]. Section IV-C1 discusses more design choices.

B. System Setup

Although CPElide could be implemented in existing GPUs

by re-programming the CPs, GPU vendors have not disclosed

an API [79], [80], [114], [140]. Thus, we simulate CPElide

in gem5 [42], which our group recently extended to support

multiple chiplets [141].3 Although other simulators also sup-

port modern GPUs [18], [65], [126], we chose gem5 because

it has the most detailed CP model and models GPUs with high

fidelity [42]. Specifically, we use ROCm 1.6 [11] and gem5

v21.1 [19], [84], which we extended to model local and global

CPs, and implemented CPElide in the global CP. We modified

the workloads to label the address ranges and access modes

similar to the Section III-B examples.

Table I summarizes the common key system parameters,

which is based on an AMD Radeon VII GPU and which

our group previously validated to tune gem5 relative to real

hardware [55], [65], [112], [113], [137]. To measure energy

consumption we leverage prior work’s per-access GPU en-

ergy models [30], [31], [45], [104], [140], scaled to handle

multi-chiplet GPUs. Since CPElide only impacts the memory

subsystem, we only report energy numbers for it. Similar to

prior work, the modeled local/global CP latency is 2 µs [42],

[96], [110]. The CPs frequency is 1.5 GHz [98] and the CPs

private memory’s access latency is 31 cycles [74]. Since our

tables use ∼2 KB (Section III-A), they fit in the CP’s private

memory and do not change the GPU’s area. The global CP and

local CP are connected via high bandwidth crossbar, with 65

cycles of unicast latency and 100 cycles of broadcast latency.

3Although our group’s prior work refers to the gem5 support as “multi-
GPU”, it does not have an inter-GPU interconnect and its chiplets are
configured similar to a MCM-GPU in Figure 3 [116], [117].

We factor this overhead into CPElide. However, since there are

few messages and communication only happens at the start of

some kernels, the overall impact is negligible.

Although our changes (Section III-B) add some complexity

to CPs, they only add ∼2% to the CP’s total lines of code.

We also estimate CPElide’s computational requirements by

executing our changes (Section III-B) on a CPU with similar

specifications to the CP. Specifically, CPElide’s algorithm

consists of: reading/writing the Chiplet Coherence Table for

the kernel’s data structures and generating the appropriate

acquires/releases. Although the first component varies with

number of data structures per kernel, on average our ap-

plications access 4 data structures per kernel. Overall, the

CP requires 6 µs to perform CPElide’s new operations. We

incorporate this overhead into CPElide, although since GPU’s

enqueue kernels before launch and nearly all kernel’s runtime

exceeds 6 µs, this latency is usually hidden for all but the first

kernel. Thus, our changes have a small impact on the CP’s

complexity and performance.

C. Configurations

To determine CPElide’s efficacy, we evaluate the follow-

ing configurations: (scheduling and page placement policies

discussed in Section IV-C1):

Baseline: Baseline implements the multi-chiplet GPU de-

scribed in IV-A. It use gem5’s VIPER GPU coherence proto-

col, extended for chiplet-based GPUs [141]. Baseline forwards

remote requests to the home node and writes through remote

stores and writes back local stores.

CPElide: Our proposed CPElide approach (Section III) uses

Baseline’s coherence protocol, forwarding policy, and write

policies, but elides acquires and releases as appropriate.

HMG (NHCC): HMG [116] is a state-of-the-art chiplet-based,

MGPU coherence protocol. Although HMG was primarily

designed for MGPU systems, since we focus on a MCM-

GPU (Section II-A), we compare against HMG’s MCM-GPU

variant. Since HMG’s code is not publicly available, we

implemented it in gem5. Our HMG uses a L2 coherence

directory with 12K entries for each GPU chiplet, with each

entry covering four cache lines (i.e., the directory covers 64K

cache lines). This sizing is equivalent to largest directory

size HMG studied.4 In HMG the home node always contains

each memory location’s most up-to-date value. Thus, unlike

Baseline and CPElide, HMG writes through all caches entries

to its home node. Further, HMG also sends writes through

to memory and retains a valid copy in the home and sender

L2 caches. Although HMG evaluates write-through caches, it

also discusses a potential write back L2 cache variant. We

also implemented and evaluated this variant, but it performed

significantly worse (13% geomean) than the write through L2

variant because it reduces HMG’s precise tracking benefits.

Thus we use HMG’s write through variant in our evaluation.

4gem5 uses 64B cache lines, while NVArchSim uses 128B cache lines.
Thus, gem5 has double the number of cache lines for a given cache size. As
a result, in gem5 HMG has twice as many directory entries as NVArchSim
for a given cache size, reducing HMG’s directory pressure.

Application Input

Moderate-to-high inter-kernel reuse

BabelStream [32], [33] 524288

Backprop [25] 65536

BFS [25] graph128k.txt

Color-max [26] AK.gr

FW [26] 512 65536.gr

Gaussian [25] 256x256

HACC [78] 0.5 0.1 512 0.1 2 N 12 rcb

Hotspot3D [25] 512 8 20 power 512x8 temp 512x8

Hotspot [25] 512 2 20 temp 512 power 512

LUD [25] 512.dat

Lulesh [78] 1.0e-2 10

Pennant [78] noh.pnt

RNN-GRU [94], [95] BS:4, TS:2, Hidden Layers: 256

BS:16, TS:4, Hidden Layers: 512

RNN-LSTM [94], [95] BS:4, TS:2, Hidden Layers: 256

BS:16, TS:4, Hidden Layers: 512

Square [12], [21] 524288 1 2 2048 256

SSSP [26] AK.gr

Low inter-kernel reuse

BTree [25] mil.txt

CNN (Conv+Pool+FC) [35] 128x128x3, BS:4

DWT2d [25] rgb.bmp 4096x4096

NW [25] 8192 10

Pathfinder [25] 200000 100 20

SRAD v2 [25] 2048 2048 0 127 0 127 0.5 2

TABLE II: Evaluated Benchmarks

1) Design Decisions: We also made the following design

choices for the different configurations (Section IV-C):

Scheduler: We use static, kernel-wide WG partitioning to

divide a kernel’s WGs into groups [16], [89]. These groups

are sent to individual chiplets, where the local CP’s local

dispatcher round robin schedules them onto individual CUs.

Although Locality & Data Movement (LADM) [64] proposes

more nuanced compile-time static analysis of kernels, we use

static kernel-wide partitioning since it is most common.

Page Placement Policy: To isolate CPElide’s effects as much

as possible, all configurations use the state-of-the-art First

Touch page placement policy [16], [116]. The first touch

policy determines the home node (chiplet) for a given physical

address. However, sometimes first touch is ineffective [38] and

different placement policies can skew performance.

D. Benchmarks

We examine 24 popular traditional GPGPU, graph analyt-

ics, HPC, and ML applications with diverse memory access

patterns from gem5-resources [21]. Table II summarizes these

workloads, which have up to 510 dynamic kernels and 11

Chiplet Coherence Table entries, and never overflow the

Chiplet Coherence Table. We excluded unsupported appli-

cations in gem5 (e.g., those using textures [25]). For all

applications we configured their input sizes to ensure the

chiplet-based GPU had reasonable occupancy and memory

footprints [51]. Moreover, given our modeled system (Sec-

tion IV-A) we modified all applications to use UVM. We

also updated all applications to use page-aligned memory

allocations to reduce unintentional false sharing [6]. Like prior

work [47], [51], [66] we group the applications into those with:

(a) moderate to high inter-kernel reuse and (b) low to no inter-

kernel reuse. We compute this by calculating the miss rate

reduction from inter-kernel reuse with no flush/invalidation

overhead.

E. Sensitivity Study: Number of Chiplets

The ROCm version integrated with gem5 for multi-chiplet

experiments [141] only supports up to 7 chiplets, due to ROCm

1.6 memory aperture size constraints. Thus, to understand

the impacted of the number of chiplets, we evaluated all

applications and configurations for 2, 4, 6, and 7 chiplets. In

Section VI we discuss how CPElide applies to systems with

additional chiplets. Moreover, we use strong scaling – same

amount of work, but divided across the chiplets – since this

is representative of an application running on a chiplet-based

GPU of a given size.

V. RESULTS

Figure 8 shows the Baseline’s, HMG’s, and CPElide’s

normalized performance, across all applications, for 2-, 4-, 6-

and 7- chiplet GPUs. We subdivide this figure into two groups:

moderate to high inter-kernel reuse and low inter-kernel reuse.

Figure 9 shows the memory subsystem’s normalized energy

consumption for a 4-chiplet GPU, divided into L1 instruction

and data caches, LDS, L2 cache, NOC, and DRAM. Figure 10

shows the normalized network traffic for a 4-chiplet GPU,

measured in flits and divided into multiple components: L1-

to-L2, L2-to-L3, and remote. Overall, CPElide improves per-

formance (13%, 19%), energy consumption (14%, 11%), and

network traffic (14%, 17%) over both the Baseline and HMG,

for 4-chiplet GPUs. These trends also continue for 2-, 6-, and

7-chiplet GPUs. Moreover, CPElide does not hurt performance

for applications with little or no reuse.

A. 4-Chiplet GPUs: CPElide vs Baseline

Moderate-to-High Inter-Kernel Reuse: CPElide usually im-

proves performance for workloads with larger (> 15%) inter-

kernel reuse in 4-chiplet GPUs (Figure 8). Since these appli-

cations have significant inter-kernel reuse, they benefit from

CPElide preserving their inter-kernel locality. However, the re-

sults vary with each application’s access patterns. Applications

with iterative GPU kernels and uniform access patterns (e.g.,

BabelStream and Square) can easily divide WGs into chunks

that can be scheduled on independent chiplets with limited

remote accesses and their working sets fit into the chiplet’s

aggregate L2 capacity. Thus, CPElide outperforms Baseline

by 31% on average for them. Likewise, the RNN’s have

producer-consumer style inter-kernel reuse, including input

matrix weights. CPElide preserves this reuse, improving their

performance by 11% on average. Finally, Hotspot3D performs

a memory bound 3D stencil; inter-kernel L2 reuse for its read-

only arrays help CPElide outperform Baseline by 37%.

More irregular applications like Color, SSSP, and BFS

have many read-only memory accesses [52]. Thus, avoiding

unnecessary acquires improves their inter-kernel reuse and

performance: 16% for Color, 14% for SSSP, and 6% for BFS

(BFS has less potential inter-kernel reuse). Similarly, Pennant

and Lulesh use indirect addressing or have unstructured data

structures causing irregular memory access patterns [78].

However, since these accesses are limited to a subset of

addresses that fit into the aggregate L2 capacity, CPElide

improves their performance by 38% and 16%, respectively.

GPU applications also frequently access data in three

phases: loading data into the LDS, performing compute opera-

tions on the data, and finally writing data back to global mem-

ory. Here inter-kernel cache locality only helps for the first

(read into LDS) and the last (write to global memory) phases.

Thus, these application’s benefits depend on ratio between the

phases: compute-bound applications see little benefit, whereas

memory-bound applications with few ALU operations benefit

more: e.g., Backprop (10%) and LUD (48%).

Other applications have weak correlation between inter-

kernel reuse and performance. Hotspot is compute-bound with

sufficient on-chip memory bandwidth to keep the CUs busy

– hence CPElide’s speedup for it is low. Hotspot is also

bottlenecked by compute stalls. Thus, loading the LDS faster

via more L2 hits does little to alleviate this problem. Moreover,

sometimes (e.g., FW, Gaussian, HACC) there is sufficient

memory-level parallelism to hide the L2 cache misses caused

by implicit kernel boundary synchronization. Thus, although

CPElide improves their L2 inter-kernel reuse, other accesses

must go to main memory. Consequently, hitting more in the

L2 cache does not significantly improve their performance.

Low-to-No Inter-Kernel Reuse: Unsurprisingly, CPElide and

Baseline perform similarly for workloads (e.g., BTree, CNN,

DWT2D, NW, and Pathfinder) with limited or no inter-kernel

reuse. Since these applications do not have significant reuse,

eliding acquires and releases does not significantly affect them.

B. 4 Chiplet System: CPElide vs. HMG vs. Baseline

Moderate-to-High Inter-Kernel Reuse: For applications with

little to no remote accesses (e.g., BabelStream, Square),

CPElide elides all flushes and invalidations except the final

ones (Figure 8). However, since HMG uses write-through L2s,

it always writes through to memory, generating much more L2-

L3 traffic than CPElide. This significantly slows down HMG

versus CPElide: 37% for BabelStream and 40% for Square.

Compared to Baseline, HMG caches remote traffic, evicting

some local data from the cache and generating invalidation

traffic. Consequently, HMG performs slightly worse than Base-

line, which cannot provide inter-kernel reuse.

Likewise Color, SSSP, and FW have input-dependent mem-

ory accesses which cause many remote accesses, since the

first-touch page policy is subpar when the access pattern is

irregular [38]. HMG caches all remote accesses at their home

node. Thus when the data locality in remote accesses is low, it

generates considerable invalidation traffic, and reduces space

for that chiplet’s local reads and writes, preventing HMG from

reusing more local data. On average, CPElide is 26% faster

than HMG for the graph analytics workloads. Baseline also

sometimes outperforms HMG for these workloads. Although

Baseline cannot provide inter-kernel reuse (unlike HMG), it

better leverages intra-kernel L2 cache reuse for local reads and

writes due to HMG caching data in the home node. Lulesh’s

irregular access patterns cause considerable HMG invalidation

traffic, enabling CPElide to outperform HMG by 33%.

remote traffic than CPElide due to invalidations from tying

four cache lines to a directory entry, which causes additional

invalidations and evicts local data on remote accesses. Overall

CPElide reduces network traffic by 17% over HMG.

Low-to-No Inter-Kernel Reuse: For limited inter-kernel reuse

applications (e.g., BTree, SRAD v2), Baseline often outper-

forms HMG. Here HMG binding four cache lines to one di-

rectory entry causes many directory evictions. These evictions

also generate many remote invalidations, hurting HMG’s per-

formance. Consequently, Baseline outperforms HMG for these

workloads by 15% on average, while Baseline and CPElide

perform similarly. Although initially surprising, recent work

corroborated that HMG suffers in these situations [38]. Thus,

while HMG sometimes outperforms CPElide, in aggregate

CPElide outperforms HMG by intelligently eliding synchro-

nization operations. HMG fares much better against Baseline

by leveraging inter-kernel reuse. However HMG’s write policy,

remote read caching, and binding 4 cache lines to one directory

entry sometimes hurt it compared to Baseline.

Energy Consumption: Overall, in a 4-chiplet GPU CPElide

reduces average energy consumption by 14% and 11% over

Baseline and HMG, respectively (Figure 9). Unsurprisingly,

neither CPElide nor HMG significantly improves energy con-

sumption for the L1 or LDS relative to Baseline since neither

affects their behavior. Moreover, since these accesses are cheap

their overall energy contribution is low. For example, even

though LUD has many LDS accesses, the LDS’s energy per

access is much lower relative to the NOC and DRAM. Thus

LDS does not significantly affect LUD’s energy footprint.

Interestingly, neither CPElide nor HMG significantly affect

L2 energy – since the L2 must be accessed in both regardless

of whether the access hits or misses. Thus, CPElide’s and

HMG’s main differences come from reducing network traffic

and main memory accesses. While both CPElide and HMG

reduce these components energy over Baseline, CPElide’s

ability to retain more data in chiplets relative to HMG, via

eliding acquires and releases, reduces its average DRAM

energy by 4% over HMG. Similarly reducing network traffic

reduces CPElide’s NOC energy by 7% on average over HMG.

Generally, the reasons for these differences are similar to

Section V-B’s performance discussion. For example, HMG’s

better reuse for the RNNs helps it to provide slightly lower

energy consumption for them, while CPElide provides much

better energy consumption for applications like BFS where

HMG’s write-through L2s generate much more L2-L3 traffic,

increasing NOC energy.

C. Number of Chiplets

Generally, the 4-chiplet GPU CPElide and HMG trends also

hold for 2-, 6- and 7- chiplet GPUs (Figure 8). However, there

are some exceptions. For example, CPElide does not improve

Backprop’s, Hotspot3D’s, and SSSP’s 2-chiplet performance

since its aggregate L2 cache capacity is insufficient for their

larger memory footprint. Conversely, HMG fairs considerably

better for SRAD v2 and DWT2D with 2-chiplets – since

there are fewer places for remote requests to go, there is less

invalidation traffic and fewer directory invalidations. HMG

also improves performance for benchmarks which suffered

from low locality in remote reads, since fewer remote cache

lines are cached since there are fewer remote nodes. Thus,

local cache line reuse increases. Consequently, for 2-chiplet

GPUs CPElide’s overall improvement over HMG decreases by

9% relative to the 4-chiplet GPU. For 6- and 7- chiplet GPUs

benchmarks like Hotspot3D and LUD have better hit rates with

CPElide, slightly improving their performance over 4-chiplets.

Conversely, with more number of chiplets HMG’s performance

for benchmarks like Hotspot3D suffers: its remote traffic

significantly increases, reducing remote locality, since the

working set is distributed across more chiplets. However, as

in Section V-B, HMG slightly outperforms CPElide (4%)

for the RNNs due to their good remote read locality and

CPElide not caching remote reads. Broadly these performance

trends continue for 7 chiplets: CPElide’s normalized average

speedup over Baseline is 17% and HMG normalized average

speedup is 6% worse than Baseline – largely due to the

increased number of remote nodes. Overall for 6- and 7-

chiplets CPElide’s average performance improvement over

HMG increases by 1% and 2% respectively relative to the

4-chiplet configuration, continuing to show CPElide scales

better than HMG as chiplets increase. Since future GPUs

are likely to have more chiplets per GPU, and CPElide’s

gains increase (slightly) as chiplets scale, CPElide improves

scalability. The performance improvements percentages are

similar for higher chiplet configurations since we use strong

scaling (Section IV-E). Moreover, Figure 8 normalizes the

results to Baseline for each number of chiplets – as chiplets in-

crease, absolute runtime decreases. In Section VI we also show

CPElide improves performance for multi-stream applications

and that CPElide’s additional overhead is small for systems

with even more chiplets – further demonstrating CPElide’s

benefits and scalability.

VI. DISCUSSION

Chiplet-based GPU versus Multi-GPU systems: To the best

of our knowledge, CPElide is the first to leverage CP infor-

mation to mitigate synchronization overheads in chiplet-based

GPUs. As discussed in Section II-A, MCM-GPUs and MGPUs

present different challenges. We focus on a single GPU with

multiple chiplets because there are opportunities for improved

reuse within a single GPU (Section V). However, CPElide

can also be applied to MGPU systems where each GPU has

multiple chiplets – by improving MCM-GPU performance,

CPElide can also potentially help MGPU systems.

CPElide Scalability: Due to issues with the version of ROCm

we use (Section IV-E) we were only able to simulate systems

with up to 7 chiplets. However, to study how CPElide scales

to larger numbers of chiplets, we performed a scaling study

where we added additional acquires and/or releases at kernel

boundaries to mimic those additional chiplets would need. For

example, for hypothetical 8- or 16-chiplet configurations we

use 2 and 4 sets of acquires/releases at kernel boundaries,

respectively. This study is conservative since it adds additional

sequential overhead to the 4-chiplet system – some of these

acquires/releases would be performed in parallel in a larger

system, but are serialized in our study. Thus, it overestimates

CPElide’s overhead for systems with more chiplets. Neverthe-

less, the additional overhead for hypothetical 8- and 16-chiplet

systems (graph omitted for space) are small: 1% and 2%

average slowdown for 8- and 16-chiplet systems, respectively.

Accordingly, CPElide continues to scale well for systems

larger numbers of chiplets.

Fine-grained Hardware Range Based Flush: Although

CPElide uses range-based tracking to determine which ad-

dresses to flush/invalidate, it must still flush or invalidate the

entire cache even if it is only necessary for some cached

addresses since CPElide is in the global CP. To avoid flushing

or invalidating the entire cache requires additional address

translation support: CPElide’s software hints track virtual

addresses but GPU L2 caches are physically addressed. Thus

to perform hardware range-based flushes, CPElide would need

to translate the virtual address ranges to physical addresses.

Since most GPU vendors use page-aligned array allocations,

flushes/invalidations of these address ranges can be broken

into page-wise requests. These requests can be sent to the

core, translated into the corresponding physical pages, and

then bypass the L1 cache (which must always be flushed at

synchronization points) to perform targeted flushes at the L2.

This technique may require multiple cache walks depending on

the address range’s size. However, if writeback time exceeds

cache walk time, then critical path latency will be unaffected.

Annotation Implications: CPElide requires access mode and

optionally address range software hints (via Section III-B’s

programming interface) – which may be challenging. How-

ever, prior work observed that many GPGPU workloads have

simple, linear/affine data structures [43], [133], [139]. Thus,

identifying this information in most GPGPU workloads is rela-

tively straightforward. Moreover, recent compiler and runtime

work showed that identifying such information can potentially

be automated, especially for workloads with relatively simple

access patterns (like most GPGPU workloads) [36], [71], [72],

[75], [107]. Accelerators (including GPGPUs) also increas-

ingly utilize high-level frameworks [2], [13] or libraries [10],

[67], [100], [102], [134]. These libraries and frameworks core

code is largely written by expert developers who can provide

the appropriate hints. Accordingly, most programmers can

utilize these highly tuned kernels with embedded access in-

formation. Thus, while like others [5], [27], [92] we manually

annotate programs (Section IV-D) to demonstrate CPElide’s

efficacy, library, high-level framework, or compiler integration

will avoid requiring most programmers to modify applications.

Multi-Stream Workloads: Although our workloads do not

use multiple streams, CPElide will also help multi-stream

workloads that concurrently run independent kernels from

different streams. Data movement and locality are also chal-

lenging here since concurrent kernels may contend for shared

caching resources. Accordingly, CPElide’s ability to track

data placement and elide unnecessary implicit synchronization

can improve performance. To demonstrate this we evaluated

streams, the only GPU benchmark in gem5-resources [21]

that used multiple streams. We also extended a subset of

our benchmarks (Table II) to run multiple parallel streams to

mimic concurrent jobs, similar to prior work [62]. Overall,

on average CPElide outperformed HMG by 12% for these

workloads (graph not shown due to space constraints) for

4-chiplet systems. Largely the trends mirror single-stream

workloads with similar access patterns, although for some with

moderate-to-high inter-kernel reuse CPElide and HMG see

additional benefits over Baseline due to higher synchronization

costs. Thus, CPElide also helps multi-stream workloads.

Managing Implicit Synchronization at Driver: Like the

CP, the GPU driver also knows which data structures each

kernel accesses. Thus, the GPU driver could manage implicit

synchronization. However, since the driver does not know

which chiplet(s) a kernel’s WGs will be scheduled on, the

CP would have to frequently send this information to the

driver (as discussed in Section VII). Prior work has shown this

adds significant latency, hurting performance [28], [79], [140].

Conversely, CPElide is tightly integrated with the GPU at the

global CP, where scheduling decisions are made. Nevertheless,

applying CPElide at the GPU driver would also be novel.

Directories: Although CPElide’s tracking mechanism bears

some similarity to directory-style coherence protocols, they

serve different, complementary purposes. Directory protocols

primarily focus on fine-grained, cache line granularity coher-

ence ordering between requests. Conversely, CPElide’s tracks

larger coarse-grained data structures. Instead CPElide only

enforces ordering at implicit synchronization points, not on a

request-by-request basis like many directories. Thus, CPElide

complements existing directory protocols, focusing on when

to perform and elide synchronization operations.

Kernel Fusion: GPU software frequently use optimizations

such as kernel fusion [34], [37], [39], [68], [123], [131], [144]

to combine operations into a single kernel to avoid reduce data

movement and redundant global memory accesses. However,

kernel fusion can increase register and LDS pressure and may

limit parallelism. Thus, for larger applications it may not scale

and the application still requires implicit synchronization.

Other Coherence Protocols: We focused on applying

CPElide to the existing GPU coherence and consistency.

However, since CPElide targets kernel boundary overheads,

it can also be applied to other GPU coherence protocols. For

example, CPElide is compatible with HMG and Halcone [91],

and monolithic GPU coherence protocols like hLRC [4],

hUVM [76], DeNovo [119], or Spandex [5]. However, we

compared against HMG because it is the state-of-the-art for

multi-chiplet GPUs. CPElide’s benefits will likely be strongly

correlated with the cost of implicit synchronization at kernel

boundaries in each coherence protocol. For example, CPU

style coherence protocols with active sharer tracking have low

cost acquires and releases, but additional overhead via more

states and invalidation traffic.

Other Accelerators/GPUs: Kernels are a GPU-specific way

of partitioning work. Other accelerators partition work into

different types of phases and granularities. Nevertheless, since

Feature HMG [116] Spandex [5], [119] hLRC [4] Halcone [91] SW DSM [57], [143] HW DSM [82], [138] CPElide

No coherence protocol changes X X X X X X ✓

No L2 cache structure changes X X X X ✓ X ✓

Reduces Kernel Boundary synchronization overhead ✓ ✓ ✓ ✓ ✓ ✓ ✓

Avoids remote coherence traffic X X X ✓ X X ✓

Designed for chiplet-based systems ✓ X X X X X ✓

Access to scheduling information to reduce overhead X X X X X X ✓

TABLE III: Comparing CPElide to prior work.

CPElide targets phase (kernel) boundary synchronization, it

can be applied to other accelerators that utilize a similar

interface. Importantly, many accelerators [7], [14], [29], [50],

[58], [111] as well as ARM and NVIDIA GPUs also use em-

bedded microprocessors (like CPs) as an interface. However,

since accelerators access memory differently and often prefer

different levels of integration [5], this may require a flexible

coherence interface [5], [15], [125]. Regardless, CPElide can

work with a wide range of accelerators and GPUs.

VII. RELATED WORK

Table III compares CPElide to prior work across several

important metrics. This prior work significantly advanced the

field, but either do not target implicit synchronization like

CPElide or cannot provide all of the same benefits.

GPU Coherence & Consistency: Halcone [91] and

HMG [116] designed MGPU chiplet-based GPU coherence

protocols. However, as shown in Section V CPElide outper-

forms HMG. Halcone [91] extends timestamp-based mono-

lithic GPU coherence protocols for multi-GPU systems by

adding hierarchical timestamps. However, it is unclear how

Halcone works in a single GPU with multi-chiplets and it

assumes low bandwidth links between GPUs, which is less

important in a single GPU with multi-chiplets. Thus, CPElide

provides benefits over the state-of-the-art and is the first to

target kernel boundary synchronization overheads in chiplet-

based GPUs and redesign the CP to track access information.

Furthermore, CPElide is compatible with many monolithic

GPU coherence protocols (Section VI).

Multi-core CPU Coherence: Prior multi-core CPU work like

BulkSC [24] and DeNovo [27] use dynamic sets of instructions

or software information to reduce explicit synchronization

overhead. Although this bears some similarity to CPElide’s

eliding of implicit kernel boundary synchronization, neither

BulkSC nor DeNovo target implicit synchronization.

Shadow Tags: Shadow tags could reduce the overhead of in-

validating valid data [127], but have sizable storage overhead,

accessing the shadow tag structure affects the critical path, and

flushing per-chiplet dirty data at kernel boundaries would still

be expensive.

Reducing Chiplet-based GPU NUMA Penalty: CARVE

improves NUMA GPU performance by extending the GPU

cache capacity [142], while LADM uses static analysis to

improve intra-kernel locality via better scheduling [64]. Both

CARVE and LADM corroborate that implicit synchronization

at kernel boundaries ruins the inter-kernel locality, hurting

performance. Other work optimized WG scheduling and/or

placement algorithms [16], [70]. Intelligent schedulers like

these could be used in conjunction with CPElide, which has

detailed information about where data is being accessed and

tight coupling with the WG scheduler. However, intelligent

schedulers do not target implicit synchronization. AMD pro-

posed an architecture where the LLC (the L3) and HBM are

logically shared across the chiplets, but physically sub-divided

across them – each chiplet has a portion of the L3 and the

HBM [117]. CPElide is more attractive with this architec-

ture: unlike HMG, CPElide will not incur remote latencies

for non-local data. TD-NUCA tracks and optimizes block

placement across shared LLC banks to mitigate non-uniform

latency effects [22]. However, it does not preserve inter-kernel

reuse within private caches like CPElide. To preserve reuse

in a chiplet-based GPU, run-time scheduling information is

required, which CPElide leverages via the CP.

Coarse-grained Tracking in Distributed Shared Memory:

Software and Hybrid DSM’s: CPElide also shares some simi-

larities with software and hybrid Distributed Shared Memory

(DSM), which also perform coarse-grained memory tracking

– often via software coherence at a page granularity [44],

[57], [73], [143]. However, these software (or hybrid) level

approaches require additional support (e.g., duplicate page

copies). They also require runtime scheduling information

to accurately track data structure states (Section III-B) –

which is unavailable at the GPU compiler/software level.

This information could be passed at runtime to the host

software by extending ROCm. However, there would be a

significant latency penalty to wait for the host software, hurting

performance [28], [79], [140]. Conversely, CPElide leverages

low level access and scheduling information available in the

CP to synchronize only when necessary, at different granulari-

ties, without additional copies, and without host-side software

latency overheads. Although CPElide could be enhanced by

static compiler analysis [44], [64], it is not always possible.

Hardware DSM’s: Hardware-based DSMs monitor the coher-

ence status of large, aligned memory regions in hardware

to snoop external requests and provide region snoop re-

sponses [82]. However, this requires a warm-up phase and can

lead to false sharing if the regions are not appropriately sized.

This is unnecessary in CPElide, which leverages scheduling,

access mode, and data range information to make coherence

decisions before a kernel starts. Other proposals such as

DirSW shift some of the coherence burden to software to

identify independent regions [138]. However, this is difficult in

GPUs since many kernels use complex data indexing mecha-

nism leveraging multi-dimensional thread grid structures. Most

GPU’s also lack OS support, which DirSW relies on.

VIII. CONCLUSION

Emerging chiplet-based heterogeneous systems presents

challenges: the additional hierarchy they introduced makes im-

plicit synchronization even more expensive and hampers inter-

kernel reuse. To overcome this we propose CPElide, which

redesigns GPU CPs to track which chiplets access specific

data and intelligently elides implicit acquires and releases –

only performing them when and where required. Overall, on

average CPElide improves performance (13%, 19%), energy

(14%, 11%), and network traffic (14%, 17%) over current

approaches, respectively, without requiring hardware changes.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for

their feedback that helped improve this paper. This work is

supported in part at the University of Wisconsin-Madison by

a Fall Research Competition grant, as well as the National

Science Foundation under grant SHF-2238608. Sinclair is also

a Visiting Research Scholar at AMD Research & Advanced

Development. However, this work was solely performed at the

University of Wisconsin and did not involve Sinclair’s work

at AMD.

REFERENCES

[1] T. M. Aamodt, W. W. L. Fung, and T. G. Rogers, General-Purpose

Graphics Processor Architectures. Morgan and Claypool, Synthesis
Lectures on Computer Architecture, 2018.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

[3] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan,
J. Ketema, D. Poetzl, T. Sorensen, and J. Wickerson, “GPU
Concurrency: Weak Behaviours and Programming Assumptions,”
in Proceedings of the Twentieth International Conference on

Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 577–591. [Online]. Available:
https://doi.org/10.1145/2694344.2694391

[4] J. Alsop, M. S. Orr, B. M. Beckmann, and D. A. Wood, “Lazy
release consistency for gpus,” in 49th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 2016, Taipei, Taiwan,

October 15-19, 2016, 2016, pp. 26:1–26:13. [Online]. Available:
https://doi.org/10.1109/MICRO.2016.7783729

[5] J. Alsop, M. D. Sinclair, and S. V. Adve, “Spandex: A Flexible
Interface for Efficient Heterogeneous Coherence,” in Proceedings of

the 45th Annual International Symposium on Computer Architecture,
ser. ISCA. Piscataway, NJ, USA: IEEE Press, 2018, pp. 261–274.
[Online]. Available: https://doi.org/10.1109/ISCA.2018.00031

[6] J. Alsop, M. D. Sinclair, A. Gutierrez, S. Bharadwaj, X. Zhang,
B. Beckmann, A. Dutu, O. Kayiran, M. LeBeane, B. Potter, S. Puthoor,
and T. T. Yeh, “Optimizing GPU Cache Policies for MI Workloads,”
in IEEE International Symposium on Workload Characterization, ser.
IISWC, 2019.

[7] R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh,
A. Hassibi, L. Ceze, and D. Burger, “General-Purpose Code Accelera-
tion with Limited-Precision Analog Computation,” in ACM/IEEE 41st

International Symposium on Computer Architecture, ser. ISCA, 2014,
pp. 505–516.

[8] AMD, “AMD’s Asynchronous Shaders White Paper,” 2012.
[Online]. Available: https://developer.amd.com/wordpress/media/2012/
10/Asynchronous-Shaders-White-Paper-FINAL.pdf

[9] ——, “HIP: Heterogeneous-computing Interface for Portability,” https:
//github.com/ROCm-Developer-Tools/HIP/, 2018.

[10] ——, “rocBLAS Library,” https://rocm-documentation.readthedocs.io/
en/latest/ROCm Tools/rocblas.html, 2020.

[11] ——, “ROCm: Open Platform For Development, Discovery and Educa-
tion around GPU Computing,” https://gpuopen.com/compute-product/
rocm/, 2021.

[12] ——, “HIP-Examples,” https://github.com/ROCm-Developer-Tools/
HIP-Examples, 2023.

[13] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky,
B. Bao, P. Bell, D. Berard, E. Burovski, G. Chauhan, A. Chourdia,
W. Constable, A. Desmaison, Z. DeVito, E. Ellison, W. Feng,
J. Gong, M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar,
L. Kirsch, M. Lazos, M. Lezcano, Y. Liang, J. Liang, Y. Lu,
C. K. Luk, B. Maher, Y. Pan, C. Puhrsch, M. Reso, M. Saroufim,
M. Y. Siraichi, H. Suk, S. Zhang, M. Suo, P. Tillet, X. Zhao,
E. Wang, K. Zhou, R. Zou, X. Wang, A. Mathews, W. Wen,
G. Chanan, P. Wu, and S. Chintala, “PyTorch 2: Faster Machine
Learning Through Dynamic Python Bytecode Transformation and
Graph Compilation,” in Proceedings of the 29th ACM International

Conference on Architectural Support for Programming Languages

and Operating Systems, Volume 2, ser. ASPLOS ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 929–947.
[Online]. Available: https://doi.org/10.1145/3620665.3640366

[14] Apple, “Dispatch,” https://developer.apple.com/documentation/
dispatch.

[15] ARM, “AMBA 5 CHI Architecture Specification Architecture Specifi-
cation,” https://developer.arm.com/documentation/ihi0050/c/, 2018.

[16] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A. Jaleel, C.-J. Wu, and D. Nellans, “MCM-GPU: Multi-Chip-Module
GPUs for Continued Performance Scalability,” in Proceedings of the

44th Annual International Symposium on Computer Architecture, ser.
ISCA ’17. New York, NY, USA: ACM, 2017, pp. 320–332. [Online].
Available: http://doi.acm.org/10.1145/3079856.3080231

[17] A. Arunkumar, E. Bolotin, D. Nellans, and C.-J. Wu, “Understanding
the Future of Energy Efficiency in Multi-Module GPUs,” in 25th IEEE

International Symposium on High Performance Computer Architecture,
ser. HPCA, 2019, pp. 519–532.

[18] Y. Bao, Y. Sun, Z. Feric, M. T. Shen, M. Weston, J. L. Abellán,
T. Baruah, J. Kim, A. Joshi, and D. Kaeli, “NaviSim: A Highly
Accurate GPU Simulator for AMD RDNA GPUs,” in Proceedings

of the International Conference on Parallel Architectures and

Compilation Techniques, ser. PACT ’22. New York, NY, USA:
Association for Computing Machinery, 2023, p. 333–345. [Online].
Available: https://doi.org/10.1145/3559009.3569666

[19] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39,
no. 2, pp. 1–7, 2011.

[20] H.-J. Boehm and S. V. Adve, “Foundations of the C++ Concurrency
Memory Model,” in Proceedings of the 2008 ACM SIGPLAN

Conference on Programming Language Design and Implementation,
ser. PLDI, 2008, p. 68. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=1375581.1375591

[21] B. R. Bruce, A. Akram, H. Nguyen, K. Roarty, M. Samani, M. Fariborz,
T. Reddy, M. D. Sinclair, and J. Lowe-Power, “Enabling Reproducible
and Agile Full-System Simulation,” in IEEE International Symposium

on Performance Analysis of Systems and Software, ser. ISPASS, 2021.

[22] P. Caheny, L. Alvarez, M. Casas, and M. Moreto, “TD-NUCA: Runtime
Driven Management of NUCA Caches in Task Dataflow Programming
Models,” in International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, ser. SC, 2022, pp. 1–15.

[23] D. Cederman, B. Chatterjee, and P. Tsigas, “Understanding the Per-
formance of Concurrent Data Structures on Graphics Processors,” in
International Conference European Conference on Parallel Processing,
ser. Euro-Par. Springer, 2012, pp. 883–894.

[24] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC: Bulk
Enforcement of Sequential Consistency,” in Proceedings of the

34th Annual International Symposium on Computer Architecture,
ser. ISCA ’07. New York, NY, USA: Association for Computing
Machinery, 2007, p. 278–289. [Online]. Available: https://doi.org/10.
1145/1250662.1250697

[25] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Comput-

ing,” in IEEE International Symposium on Workload Characterization,
ser. IISWC, 2009, pp. 44–54.

[26] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding Irregular GPGPU Graph Applications,” in IEEE Inter-

national Symposium on Workload Characterization, ser. IISWC, Sept
2013, pp. 185–195.

[27] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand,
S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo:
Rethinking the Memory Hierarchy for Disciplined Parallelism,”
in Proceedings of the 2011 International Conference on Parallel

Architectures and Compilation Techniques, ser. PACT ’11. USA:
IEEE Computer Society, 2011, p. 155–166. [Online]. Available:
https://doi.org/10.1109/PACT.2011.21

[28] Y. Choi and M. Rhu, “PREMA: A Predictive Multi-Task Scheduling
Algorithm For Preemptible Neural Processing Units,” in 26th IEEE

International Symposium on High Performance Computer Architecture,
ser. HPCA, 2020, pp. 220–233.

[29] L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng, E. Plondke,
C. Koob, A. Ingle, C. Tabony, and R. Maule, “Hexagon DSP: An
Architecture Optimized for Mobile Multimedia and Communications,”
IEEE Micro, vol. 34, no. 2, pp. 34–43, 2014.

[30] W. J. Dally, “Hardware for Deep Learning,” SysML Keynote, Feb 2018.

[31] P. Dalmia, R. Mahapatra, and M. D. Sinclair, “Only Buffer When You
Need To: Reducing On-Chip Memory Traffic Using Local Atomic
Buffers on GPUs,” in 28th IEEE International Symposium on High-

Performance Computer Architecture, ser. HPCA, 2022.

[32] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “GPU-
STREAM v2.0: Benchmarking the Achievable Memory Bandwidth of
Many-Core Processors Across Diverse Parallel Programming Models,”
in High Performance Computing, M. Taufer, B. Mohr, and J. M.
Kunkel, Eds. Cham: Springer International Publishing, 2016, pp. 489–
507.

[33] ——, “Evaluating Attainable Memory Bandwidth of Parallel Program-
ming Models via BabelStream,” Int. J. Comput. Sci. Eng., vol. 17,
no. 3, p. 247–262, jan 2018.

[34] G. Diamos, S. Sengupta, B. Catanzaro, M. Chrzanowski, A. Coates,
E. Elsen, J. Engel, A. Y. Hannun, and S. Satheesh, “Persistent RNNs:
Stashing Recurrent Weights On-Chip,” in Proceedings of the 33nd

International Conference on Machine Learning, ser. ICML, 2016, pp.
2024–2033.

[35] S. Dong and D. Kaeli, “DNNMark: A Deep Neural Network
Benchmark Suite for GPUs,” in Proceedings of the General Purpose

GPUs, ser. GPGPU. New York, NY, USA: ACM, 2017, pp. 63–72.
[Online]. Available: http://doi.acm.org/10.1145/3038228.3038239

[36] A. Ejjeh, L. Medvinsky, A. Councilman, H. Nehra, S. Sharma, V. Adve,
L. Nardi, E. Nurvitadhi, and R. A. Rutenbar, “HPVM2FPGA: Enabling
True Hardware-Agnostic FPGA Programming,” in IEEE 33rd Interna-

tional Conference on Application-specific Systems, Architectures and

Processors, ser. ASAP, 2022, pp. 1–10.

[37] I. El Hajj, J. Gomez-Luna, C. Li, L.-W. Chang, D. Milojicic, and W.-
m. Hwu, “KLAP: Kernel Launch Aggregation and Promotion for Opti-
mizing Dynamic Parallelism,” in 49th Annual IEEE/ACM International

Symposium on Microarchitecture, ser. MICRO, 2016, pp. 1–12.

[38] Y. Feng, “Understanding Scalability of Multi-GPU Systems,” in ACM

Workshop on General Purpose GPUs, ser. GPGPU’23, 2023.

[39] J. Fousek, J. Filipovič, and M. Madzin, “Automatic Fusions of
CUDA-GPU Kernels for Parallel Map,” SIGARCH Comput. Archit.

News, vol. 39, no. 4, p. 98–99, Dec. 2011. [Online]. Available:
https://doi.org/10.1145/2082156.2082183

[40] Y. Fu, E. Bolotin, N. Chatterjee, D. Nellans, and S. W. Keckler, “GPU
Domain Specialization via Composable On-Package Architecture,”
ACM Trans. Archit. Code Optim., vol. 19, no. 1, dec 2021. [Online].
Available: https://doi.org/10.1145/3484505

[41] B. R. Gaster, D. Hower, and L. Howes, “HRF-Relaxed: Adapting HRF
to the Complexities of Industrial Heterogeneous Memory Models,”
ACM Trans. Archit. Code Optim., vol. 12, no. 1, pp. 7:1–7:26, Apr.
2015. [Online]. Available: http://doi.acm.org/10.1145/2701618

[42] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane,
J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D.
Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost in
Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language
Level,” in IEEE International Symposium on High Performance Com-

puter Architecture, ser. HPCA, 2018, pp. 608–619.

[43] D. Ha, Y. Oh, and W. W. Ro, “R2D2: Removing ReDunDancy Utilizing
Linearity of Address Generation in GPUs,” in Proceedings of the 50th

Annual International Symposium on Computer Architecture, ser. ISCA
’23. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3579371.3589039

[44] H. Han and C.-W. Tseng, “Compile-time Synchronization Optimiza-
tions for Software DSMs,” in Proceedings of the First Merged Inter-

national Parallel Processing Symposium and Symposium on Parallel

and Distributed Processing, 1998, pp. 662–669.

[45] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “EIE: Efficient Inference Engine on Compressed
Deep Neural Network,” in Proceedings of the 43rd International

Symposium on Computer Architecture, ser. ISCA. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 243–254. [Online]. Available:
https://doi.org/10.1109/ISCA.2016.30

[46] B. Hechtman, S. Che, D. Hower, Y. Tian, B. Beckmann, M. Hill,
S. Reinhardt, and D. Wood, “QuickRelease: A Throughput-Oriented
Approach to Release Consistency on GPUs,” in 20th International

Symposium on High Performance Computer Architecture, ser. HPCA,
Feb 2014, pp. 189–200.

[47] J. Hestness, S. W. Keckler, and D. A. Wood, “A Comparative Analysis
of Microarchitecture Effects on CPU and GPU Memory System Behav-
ior,” in IEEE International Symposium on Workload Characterization,
ser. IISWC, 2014, pp. 150–160.

[48] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster, M. D.
Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-race-free
Memory Models,” in Proceedings of the 19th International Conference

on Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS. New York, NY, USA: ACM, 2014, pp. 427–
440. [Online]. Available: http://doi.acm.org/10.1145/2541940.2541981

[49] L. Howes and A. Munshi, “The OpenCL Specification, Version 2.0,”
Khronos Group, 2015.

[50] HSA Foundation, “HSA Platform System Architecture Specifi-
cation,” https://hsafoundation.com/wp-content/uploads/2021/02/HSA-
SysArch-1.2.pdf, 2021.

[51] B. Hu and C. J. Rossbach, “Altis: Modernizing GPGPU Benchmarks,”
in IEEE International Symposium on Performance Analysis of Systems

and Software, ser. ISPASS, 2020, pp. 1–11.

[52] M. Huzaifa, J. Alsop, A. Mahmoud, G. Salvador, M. D. Sinclair, and
S. V. Adve, “Inter-Kernel Reuse-Aware Thread Block Scheduling,”
ACM Trans. Archit. Code Optim., vol. 17, no. 3, Aug. 2020. [Online].
Available: https://doi.org/10.1145/3406538

[53] D. James, “AMD’s answer to Nvidia’s NVLink is xGMI, and it’s
coming to the new 7nm Vega GPU,” Sep 2018. [Online]. Available:
https://www.pcgamesn.com/amd-xgmi-vega-20-gpu-nvidia-nvlink

[54] ——, “Nvidia has “de-risked” multiple chiplet GPU designs – “now
it’s a tool in the toolbox”,” https://www.pcgamesn.com/nvidia/graphics-
card-chiplet-designs, September 2019.

[55] C. Jamieson, A. Chandrashekar, I. McDougall, and M. D. Sinclair,
“GAP: gem5 GPU Accuracy Profiler,” in 4th gem5 Users’ Workshop,
June 2022.

[56] N. E. Jerger, A. Kannan, Z. Li, and G. H. Loh, “NoC Architectures for
Silicon Interposer Systems: Why Pay for more Wires when you Can
Get them (from your interposer) for Free?” in 47th Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO, Dec 2014,
pp. 458–470.

[57] D. Jiang, H. Shan, and J. P. Singh, “Application Restructuring
and Performance Portability on Shared Virtual Memory and
Hardware-Coherent Multiprocessors,” in Proceedings of the Sixth

ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, ser. PPOPP ’97. New York, NY, USA: Association
for Computing Machinery, 1997, p. 217–229. [Online]. Available:
https://doi.org/10.1145/263764.263792

[58] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,

M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” in Proceedings of

the 44th Annual International Symposium on Computer Architecture,
ser. ISCA. New York, NY, USA: ACM, 2017, pp. 1–12. [Online].
Available: http://doi.acm.org/10.1145/3079856.3080246

[59] A. Kannan, N. E. Jerger, and G. H. Loh, “Enabling Interposer-based
Disintegration of Multi-core Processors,” in 48th Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO. IEEE,
2015, pp. 546–558.

[60] ——, “Exploiting Interposer Technologies to Disintegrate and Reinte-
grate Multicore Processors,” IEEE Micro, vol. 36, no. 3, pp. 84–93,
2016.

[61] I. Karlin, J. Keasler, and R. Neely, “LULESH 2.0 Updates and
Changes,” Lawrence Livermore National Laboratory, Tech. Rep.
LLNL-TR-641973, August 2013.

[62] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee, M. Li,
B. Maher, D. Mudigere, M. Naumov, M. Schatz, M. Smelyanskiy,
X. Wang, B. Reagen, C.-J. Wu, M. Hempstead, and X. Zhang,
“RecNMP: Accelerating Personalized Recommendation with near-
Memory Processing,” in Proceedings of the ACM/IEEE 47th

Annual International Symposium on Computer Architecture, ser.
ISCA. IEEE Press, 2020, p. 790–803. [Online]. Available:
https://doi.org/10.1109/ISCA45697.2020.00070

[63] S. W. Keckler, “Life After Dennard and How I Learned to Love the
Picojoule,” Keynote at MICRO, 2011.

[64] M. Khairy, V. Nikiforov, D. Nellans, and T. G. Rogers, “Locality-
Centric Data and Threadblock Management for Massive GPUs,” in
53rd Annual IEEE/ACM International Symposium on Microarchitec-

ture, ser. MICRO, 2020, pp. 1022–1036.

[65] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim: An
Extensible Simulation Framework for Validated GPU Modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture, ser. ISCA, 2020, pp. 473–486.

[66] M. Khairy, M. Zahran, and A. Wassal, “SACAT: Streaming-Aware
Conflict-Avoiding Thrashing-Resistant GPGPU Cache Management
Scheme,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 6, pp. 1740–1753, 2017.

[67] J. Khan, P. Fultz, A. Tamazov, D. Lowell, C. Liu, M. Melesse,
M. Nandhimandalam, K. Nasyrov, I. Perminov, T. Shah, V. Filippov,
J. Zhang, J. Zhou, B. Natarajan, and M. Daga, “MIOpen: An Open
Source Library For Deep Learning Primitives,” 2019.

[68] F. Khorasani, H. A. Esfeden, N. Abu-Ghazaleh, and V. Sarkar, “In-
Register Parameter Caching for Dynamic Neural Nets with Virtual
Persistent Processor Specialization,” in Proceedings of 51st IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO, 2018.

[69] Khronos Group, “OpenCL,” http://www.khronos.org/opencl/.

[70] H. Kim, R. Hadidi, L. Nai, H. Kim, N. Jayasena, Y. Eckert, O. Kayiran,
and G. Loh, “CODA: Enabling Co-Location of Computation and Data
for Multiple GPU Systems,” ACM Trans. Archit. Code Optim., vol. 15,
no. 3, Sep. 2018. [Online]. Available: https://doi.org/10.1145/3232521

[71] V. Kiriansky, Y. Zhang, and S. Amarasinghe, “Optimizing Indirect
Memory References with milk,” in Proceedings of the 2016

International Conference on Parallel Architectures and Compilation,
ser. PACT ’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 299–312. [Online]. Available: https://doi.org/10.
1145/2967938.2967948

[72] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe,
“The Tensor Algebra Compiler,” Proc. ACM Program. Lang., vol. 1,
no. OOPSLA, oct 2017. [Online]. Available: https://doi.org/10.1145/
3133901

[73] L. Kontothanassis, R. Stets, G. Hunt, U. Rencuzogullari, G. Altekar,
S. Dwarkadas, and M. L. Scott, “Shared Memory Computing on
Clusters with Symmetric Multiprocessors and System Area Networks,”
ACM Trans. Comput. Syst., vol. 23, no. 3, p. 301–335, aug 2005.
[Online]. Available: https://doi.org/10.1145/1082469.1082472

[74] J. B. Kotra, M. LeBeane, M. T. Kandemir, and G. H. Loh, “Increas-
ing GPU Translation Reach by Leveraging Under-Utilized On-Chip
Resources,” in 54th Annual IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO, 2021, pp. 1169–1181.

[75] M. Kotsifakou, P. Srivastava, M. D. Sinclair, R. Komuravelli,
V. Adve, and S. Adve, “HPVM: Heterogeneous Parallel Virtual
Machine,” in Proceedings of the 23rd ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, ser. PPoPP.
New York, NY, USA: ACM, 2018, pp. 68–80. [Online]. Available:
http://doi.acm.org/10.1145/3178487.3178493

[76] K. Koukos, A. Ros, E. Hagersten, and S. Kaxiras, “Building
Heterogeneous Unified Virtual Memories (UVMs) Without the
Overhead,” ACM Trans. Archit. Code Optim., vol. 13, no. 1, pp.
1:1–1:22, Mar. 2016. [Online]. Available: http://doi.acm.org/10.1145/
2889488

[77] R. Kuper, S. Pati, and M. D. Sinclair, “Improving GPU Utilization in
ML Workloads Through Finer-Grained Synchronization,” in 3rd Young

Architects Workshop, ser. YArch, April 2021.

[78] Lawrence Livermore National Labs, “CORAL-2 Benchmarks,” https:
//asc.llnl.gov/coral-2-benchmarks, 2020.

[79] M. LeBeane, K. Hamidouche, B. Benton, M. Breternitz, S. K.
Reinhardt, and L. K. John, “ComP-Net: Command Processor
Networking for Efficient Intra-Kernel Communications on GPUs,”
in Proceedings of the 27th International Conference on Parallel

Architectures and Compilation Techniques, ser. PACT ’18. New York,
NY, USA: Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3243176.3243179

[80] M. LeBeane, B. Potter, A. Pan, A. Dutu, V. Agarwala, W. Lee, D. Ma-
jeti, B. Ghimire, E. V. Tassell, S. Wasmundt, B. Benton, M. Breternitz,
M. L. Chu, M. Thottethodi, L. K. John, and S. K. Reinhardt, “Ex-
tended Task Queuing: Active Messages for Heterogeneous Systems,”
in Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, ser. SC, 2016, pp. 933–
944.

[81] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: A Unified Graphics and Computing Architecture,” IEEE Micro,
vol. 28, no. 2, pp. 39–55, March-April 2008.

[82] M. H. Lipasti, B. Falsafi, J. F. Cantin, J. E. Smith, and A. Moshovos,
“Coarse-Grain Coherence Tracking: RegionScout and Region Coher-
ence Arrays,” IEEE Micro, vol. 26, no. 01, pp. 70–79, jan 2006.

[83] G. H. Loh, N. E. Jerger, A. Kannan, and Y. Eckert, “Interconnect-
Memory Challenges for Multi-chip, Silicon Interposer Systems,” in
Proceedings of the 2015 International Symposium on Memory Systems,
ser. MEMSYS ’15. New York, NY, USA: ACM, 2015, pp. 3–10.
[Online]. Available: http://doi.acm.org/10.1145/2818950.2818951

[84] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, S. Bharadwaj, G. Black,
G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, M. Fariborz, A. Farmahini-
Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope, T. Grass,
B. Hanindhito, A. Hansson, S. Haria, A. Harris, T. Hayes, A. Herrera,
M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul, T. M.
Jones, M. Jung, S. Kannoth, H. Khaleghzadeh, Y. Kodama, T. Krishna,
T. Marinelli, C. Menard, A. Mondelli, T. Mück, O. Naji, K. Nathella,
H. Nguyen, N. Nikoleris, L. E. Olson, M. Orr, B. Pham, P. Prieto,
T. Reddy, A. Roelke, M. Samani, A. Sandberg, J. Setoain, B. Shingarov,
M. D. Sinclair, T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish,
I. Vougioukas, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon, and
Éder F. Zulian, “The gem5 simulator: Version 20.0+,” 2020.

[85] J. Luitjens, “CUDA Streams: Best Practices and Common Pitfalls,”
2014.

[86] D. Lustig, S. Sahasrabuddhe, and O. Giroux, “A formal analysis of
the nvidia ptx memory consistency model,” in Proceedings of the

Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019,
p. 257–270. [Online]. Available: https://doi.org/10.1145/3297858.
3304043

[87] J. Manson, W. Pugh, and S. V. Adve, “The Java Memory Model,”
in Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, ser. POPL ’05. New York,
NY, USA: Association for Computing Machinery, 2005, p. 378–391.
[Online]. Available: https://doi.org/10.1145/1040305.1040336

[88] T. Martin, R. Litwiller, N. Pathak, and R. W. Ramsey, “United States
Patent Application #2023/0376318 A1: Distributed Geometry,” U.S.
Patent 2023/0 376 318 A1, November, 2023.

[89] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi,
A. Jaleel, A. Ramirez, and D. Nellans, “Beyond the Socket:
NUMA-aware GPUs,” in Proceedings of the 50th Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO-50. New

York, NY, USA: ACM, 2017, pp. 123–135. [Online]. Available:
http://doi.acm.org/10.1145/3123939.3124534

[90] P. Misra and M. Chaudhuri, “Performance Evaluation of Concurrent
Lock-free Data Structures on GPUs,” in IEEE 18th International

Conference on Parallel and Distributed Systems, ser. IPDPS, 2012,
pp. 53–60.

[91] S. A. Mojumder, Y. Sun, L. Delshadtehrani, Y. Ma, T. Baruah, J. L.
Abellán, J. Kim, D. Kaeli, and A. Joshi, “HALCONE : A Hardware-
Level Timestamp-based Cache Coherence Scheme for Multi-GPU
Systems,” arXiv preprint arXiv:2007.04292, 2020.

[92] A. Mukkara, N. Beckmann, and D. Sanchez, “PHI: Architectural
Support for Synchronization- and Bandwidth-Efficient Commutative
Scatter Updates,” in Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO. New
York, NY, USA: ACM, 2019, pp. 1009–1022. [Online]. Available:
http://doi.acm.org/10.1145/3352460.3358254

[93] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. H. Loh, M. Subramony,
and S. White, “Pioneering Chiplet Technology and Design for the
AMD EPYC™ and Ryzen™ Processor Families : Industrial Product,”
in ACM/IEEE 48th Annual International Symposium on Computer

Architecture, ser. ISCA, 2021, pp. 57–70.

[94] S. Narang, “DeepBench,” https://github.com/baidu-research/
DeepBench, 2016.

[95] S. Narang and G. Diamos, “An update to DeepBench with a focus
on deep learning inference,” https://svail.github.io/DeepBench-update/,
2017.

[96] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-
Buedo, and A. W. Moore, “Understanding PCIe Performance for
End Host Networking,” in Proceedings of the 2018 Conference

of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 327–341. [Online]. Available:
https://doi.org/10.1145/3230543.3230560

[97] NVIDIA, “CUDA HyperQ Example,” http://developer.
download.nvidia.com/compute/DevZone/C/html x64/6 Advanced/
simpleHyperQ/doc/HyperQ.pdf, 2013.

[98] ——, “NVIDIA RISC-V Story,” 4th RISC-V Workshop,
2016. [Online]. Available: https://riscv.org/wp-content/uploads/2016/
07/Tue1100 Nvidia RISCV Story V2.pdf

[99] ——, “Nvidia, cuda stream management,” 2018. [Online]. Avail-
able: http://developer.download.nvidia.com/compute/cuda/2 3/toolkit/
docs/online/group CUDART STREAM.html

[100] ——, “NVIDIA cuDNN: GPU Accelerated Deep Learning,” https://
developer.nvidia.com/cudnn, 2018.

[101] ——, “NVIDIA CUDA C Programming Guide,” http://docs.nvidia.
com/cuda/cuda-c-programming-guide/, NVIDIA Corp., 2024.

[102] NVIDIA Corp., “NVIDIA cuBLAS,” https://developer.nvidia.com/
cublas, 2016.

[103] ——, “NVLink Fabric: A Faster, More Scalable Interconnect,” https:
//www.nvidia.com/en-us/data-center/nvlink/, 2018.

[104] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W.
Keckler, and W. J. Dally, “Fine-grained dram: energy-efficient dram
for extreme bandwidth systems,” in Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitecture. ACM,
2017, pp. 41–54.

[105] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W.
Tseng, “UTS: An Unbalanced Tree Search Benchmark,” in Languages

and Compilers for Parallel Computing, G. Almási, C. Caşcaval, and
P. Wu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 235–250.

[106] S. Pal, D. Petrisko, M. Tomei, P. Gupta, S. S. Iyer, and R. Kumar, “Ar-
chitecting Waferscale Processors - A GPU Case Study,” in 25th IEEE

International Symposium on High Performance Computer Architecture,
ser. HPCA, 2019, pp. 250–263.

[107] K. Parasyris, G. Georgakoudis, E. Rangel, I. Laguna, and J. Doerfert,
“Scalable Tuning of (OpenMP) GPU Applications via Kernel Record
and Replay,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, ser. SC
’23. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3581784.3607098

[108] U. Pirzada, “NVIDIA Next Generation Hopper GPU Leaked – Based
On MCM Design, Launching After Ampere,” https://wccftech.com/
nvidia-hopper-gpu-mcm-leaked/, November 2019.

[109] S. Puthoor, A. M. Aji, S. Che, M. Daga, W. Wu, B. M. Beckmann,
and G. Rodgers, “Implementing Directed Acyclic Graphs with the
Heterogeneous System Architecture,” in Proceedings of the 9th Annual

Workshop on General Purpose Processing Using Graphics Processing

Unit, ser. GPGPU ’16. New York, NY, USA: ACM, 2016, pp. 53–62.
[Online]. Available: http://doi.acm.org/10.1145/2884045.2884052

[110] S. Puthoor, X. Tang, J. Gross, and B. M. Beckmann, “Oversubscribed
Command Queues in GPUs,” in Proceedings of the 11th Workshop

on General Purpose GPUs, ser. GPGPU-11. New York, NY, USA:
ACM, 2018, pp. 50–60. [Online]. Available: http://doi.acm.org/10.
1145/3180270.3180271

[111] Qualcomm, “Qualcomm Hexagon DSP,” https://developer.qualcomm.
com/sites/default/files/docs/adreno-gpu/developer-guide/dsp/dsp.html,
2021.

[112] V. Ramadas, D. Kouchekinia, N. Osuji, and M. D. Sinclair, “Closing
the Gap: Improving the Accuracy of gem5’s GPU Models,” in 5th gem5

Users’ Workshop, June 2023.

[113] V. Ramadas, D. Kouchekinia, and M. D. Sinclair, “Further Closing the
GAP: Improving the Accuracy of gem5’s GPU Models,” in 6th Young

Architects’ Workshop, ser. YArch, April 2024.

[114] V. Ramakrishnaiah, B. Beckmann, P. Ehrett, R. Van Oostrum,
and K. Lowery, “Cache Cohort GPU Scheduling,” in Proceedings

of the 16th Workshop on General Purpose Processing Using

GPU, ser. GPGPU ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 19–25. [Online]. Available:
https://doi.org/10.1145/3649411.3649415

[115] B. Ren, S. Balakrishna, Y. Jo, S. Krishnamoorthy, K. Agrawal,
and M. Kulkarni, “Extracting SIMD Parallelism from Recursive
Task-Parallel Programs,” ACM Trans. Parallel Comput., vol. 6, no. 4,
Dec 2019. [Online]. Available: https://doi.org/10.1145/3365663

[116] X. Ren, D. Lustig, E. Bolotin, A. Jaleel, O. Villa, and D. Nellans,
“HMG: Extending Cache Coherence Protocols Across Modern Hier-
archical Multi-GPU Systems,” in 26th IEEE International Symposium

on High Performance Computer Architecture, ser. HPCA, 2020, pp.
582–595.

[117] S. J. Saleh, S. Naffziger, M. S. Bhagavat, and R. Agarwal, “GPU
Chiplets Using High Bandwidth Crosslinks,” December 2020, uS Patent
App. 16/456,287.

[118] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. Emer, C. T. Gray, B. Khailany, and S. W. Keckler,
“Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-
Based Architecture,” in Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO ’52.
New York, NY, USA: Association for Computing Machinery, 2019, p.
14–27. [Online]. Available: https://doi.org/10.1145/3352460.3358302

[119] M. D. Sinclair, J. Alsop, and S. V. Adve, “Efficient GPU Synchroniza-
tion without Scopes: Saying No to Complex Consistency Models,” in
Proceedings of the 48th Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO, December 2015, pp. 647–659.

[120] ——, “Chasing Away RAts: Semantics and Evaluation for Relaxed
Atomics on Heterogeneous Systems,” in Proceedings of the 44th

Annual International Symposium on Computer Architecture, ser. ISCA.
New York, NY, USA: ACM, 2017, pp. 161–174. [Online]. Available:
http://doi.acm.org/10.1145/3079856.3080206

[121] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M.
Aamodt, “Cache Coherence for GPU Architectures,” in 19th Interna-

tional Symposium on High Performance Computer Architecture, ser.
HPCA, 2013, pp. 578–590.

[122] R. Smith, “NVIDIA Develops NVLink Switch: NVSwitch,
18 ports for DGX-2 & more,” Mar 2018. [Online].
Available: https://www.anandtech.com/show/12581/nvidia-develops-
nvlink-switch-nvswitch-18-ports-for-dgx2-more

[123] M. Springer, P. Wauligmann, and H. Masuhara, “Modular Array-Based
GPU Computing in a Dynamically-Typed Language,” in Proceedings

of the 4th ACM SIGPLAN International Workshop on Libraries,

Languages, and Compilers for Array Programming, ser. ARRAY 2017.
New York, NY, USA: Association for Computing Machinery, 2017, p.
48–55. [Online]. Available: https://doi.org/10.1145/3091966.3091974

[124] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Program-
ming Standard for Heterogeneous Computing Systems,” Computing in

Science & Engineering, vol. 12, no. 3, pp. 66–73, 2010.

[125] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel, “CAPI: A

Coherent Accelerator Processor Interface,” IBM Journal of Research

and Development, vol. 59, no. 1, pp. 7:1–7:7, 2015.

[126] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K.
Ziabari, Z. Chen, R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and
D. Kaeli, “MGPUSim: Enabling Multi-GPU Performance Modeling
and Optimization,” in Proceedings of the 46th International Symposium

on Computer Architecture, ser. ISCA ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 197–209. [Online].
Available: https://doi.org/10.1145/3307650.3322230

[127] Sun Microsystems, Inc., “OpenSparc T2 System-on-chip (SoC) Mi-
croarchitecture Specification,” http://www.opensparc.net/opensparc-t2/
index.html, May 2008.

[128] A. Tzannes, S. T. Heumann, L. Eloussi, M. Vakilian, V. S. Adve,
and M. Han, “Region and Effect Inference for Safe Parallelism (T),”
in 30th IEEE/ACM International Conference on Automated Software

Engineering, ser. ASE, 2015, pp. 512–523.

[129] T. Vijayaraghavany, Y. Eckert, G. H. Loh, M. J. Schulte, M. Ignatowski,
B. M. Beckmann, W. C. Brantley, J. L. Greathouse, W. Huang,
A. Karunanithi, O. Kayiran, M. Meswani, I. Paul, M. Poremba,
S. Raasch, S. K. Reinhardt, G. Sadowski, and V. Sridharan, “Design
and Analysis of an APU for Exascale Computing,” in 2017 IEEE

International Symposium on High Performance Computer Architecture,
ser. HPCA, Feb 2017, pp. 85–96.

[130] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “NVBit: A
Dynamic Binary Instrumentation Framework for NVIDIA GPUs,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO ’52. New York, NY, USA:
Association for Computing Machinery, 2019, p. 372–383. [Online].
Available: https://doi.org/10.1145/3352460.3358307

[131] G. Wang, Y. Lin, and W. Yi, “Kernel Fusion: An Effective
Method for Better Power Efficiency on Multithreaded GPU,” in
Proceedings of the 2010 IEEE/ACM Int’l Conference on Green

Computing and Communications & Int’l Conference on Cyber,

Physical and Social Computing, ser. GREENCOM-CPSCOM ’10.
USA: IEEE Computer Society, 2010, p. 344–350. [Online]. Available:
https://doi.org/10.1109/GreenCom-CPSCom.2010.102

[132] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “LaPerm: Local-
ity Aware Scheduler for Dynamic Parallelism on GPUs,” in ACM/IEEE

43rd Annual International Symposium on Computer Architecture, ser.
ISCA, June 2016, pp. 583–595.

[133] K. Wang and C. Lin, “Decoupled Affine Computation for SIMT
GPUs,” in Proceedings of the 44th Annual International Symposium

on Computer Architecture, ser. ISCA ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 295–306. [Online].
Available: https://doi.org/10.1145/3079856.3080205

[134] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D.
Owens, “Gunrock: A High-Performance Graph Processing Library on
the GPU,” in Proceedings of the 21st ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, ser. PPOPP.
New York, NY, USA: Association for Computing Machinery, 2016.
[Online]. Available: https://doi.org/10.1145/2851141.2851145

[135] Z. Wei and J. JaJa, “Optimization of Linked List Prefix Computations
on Multithreaded GPUs using CUDA,” in IEEE International Sympo-

sium on Parallel & Distributed Processing, ser. IPDPS, 2010, pp. 1–8.

[136] J. Wickerson, M. Batty, B. M. Beckmann, and A. F. Donaldson,
“Remote-Scope Promotion: Clarified, Rectified, and Verified,” in
Proceedings of the 2015 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA 2015. New York, NY, USA: Association for
Computing Machinery, 2015, p. 731–747. [Online]. Available:
https://doi.org/10.1145/2814270.2814283

[137] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU Microarchitecture Through
Microbenchmarking,” in IEEE International Symposium on

Performance Analysis of Systems Software, ser. ISPASS, 2010,
pp. 235–246.

[138] D. A. Wood, S. Chandra, B. Falsafi, M. D. Hill, J. R. Larus,
A. R. Lebeck, J. C. Lewis, S. S. Mukherjee, S. Palacharla, and
S. K. Reinhardt, “Mechanisms for Cooperative Shared Memory,” in
Proceedings of the 20th Annual International Symposium on Computer

Architecture, ser. ISCA ’93. New York, NY, USA: Association
for Computing Machinery, 1993, p. 156–167. [Online]. Available:
https://doi.org/10.1145/165123.165151

[139] T. T. Yeh, R. N. Green, and T. G. Rogers, “Dimensionality-Aware
Redundant SIMT Instruction Elimination,” in Proceedings of the

Twenty-Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020,
p. 1327–1340. [Online]. Available: https://doi.org/10.1145/3373376.
3378520

[140] T. T. Yeh, M. D. Sinclair, B. M. Beckmann, and T. G. Rogers,
“Deadline-Aware Offloading for High-Throughput Accelerators,” in
27th IEEE International Symposium on High Performance Computer

Architecture, ser. HPCA, 2021, pp. 479–492.
[141] B. W. Yogatama, M. D. Sinclair, and M. M. Swift, “Enabling Multi-

GPU Support in gem5,” in 3rd gem5 Users’ Workshop, June 2020.
[142] V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans, and O. Villa,

“Combining HW/SW Mechanisms to Improve NUMA Performance of
Multi-GPU Systems,” in 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture, ser. MICRO, 2018, pp. 339–351.
[143] Y. Zhou, L. Iftode, and K. Li, “Performance Evaluation of Two

Home-Based Lazy Release Consistency Protocols for Shared Virtual
Memory Systems,” in Proceedings of the Second USENIX Symposium

on Operating Systems Design and Implementation, ser. OSDI ’96.
New York, NY, USA: Association for Computing Machinery, 1996, p.
75–88. [Online]. Available: https://doi.org/10.1145/238721.238763

[144] F. Zhu, J. Pool, M. Andersch, J. Appleyard, and F. Xie, “Sparse
Persistent RNNs: Squeezing Large Recurrent Networks On-Chip,” in
Proceedings of 6th International Conference on Learning Representa-

tions, ser. ICLR, 2018.

	Introduction
	Background
	Multi-Chiplet GPU Architecture
	GPU Command Processors
	GPU Coherence & Consistency

	Design
	Proposed CPElide Architecture
	Proposed Changes
	Functionality

	Methodology
	Baseline GPU Architecture
	System Setup
	Configurations
	Design Decisions

	Benchmarks
	Sensitivity Study: Number of Chiplets

	Results
	4-Chiplet GPUs: CPElide vs Baseline
	4 Chiplet System: CPElide vs. HMG vs. Baseline
	Number of Chiplets

	Discussion
	Related Work
	Conclusion
	References

