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ABSTRACT

Self-supervised learning through contrastive representations is an emergent and
promising avenue, aiming at alleviating the availability of labeled data. Recent
research in the field also demonstrates its viability for several downstream tasks,
henceforth leading to works that implement the contrastive principle through inno-
vative loss functions and methods. However, despite achieving impressive progress,
most methods depend on prohibitively large batch sizes and compute requirements
for good performance. In this work, we propose the AUC-Contrastive Learning,
a new approach to contrastive learning that demonstrates robust and competitive
performance in compute-limited regimes. We propose to incorporate the contrastive
objective within the AUC-maximization framework, by noting that the AUC metric
is maximized upon enhancing the probability of the network’s binary prediction
difference between positive and negative samples which inspires adequate embed-
ding space arrangements in representation learning. Unlike standard contrastive
methods, when performing stochastic optimization, our method maintains unbiased
stochastic gradients and thus is more robust to batchsizes as opposed to standard
stochastic optimization problems. Remarkably, our method with a batch size of 256,
outperforms several state-of-the-art methods that may need much larger batch sizes
(e.g., 4096), on ImageNet and other standard datasets. Experiments on transfer
learning and few-shot learning tasks also demonstrate the downstream viability of
our method. Code is available at AUC-CL.

1 INTRODUCTION

As deep learning continues to pervade across several facets of our livelihood, we come to an increasing
realization that the developments in the field have outpaced the availability of data, especially labelled
data. An increasing apprehension of these limits over time has led to research towards a data efficient
and viable alternative of self-supervised learning (SSL). Recent SSL pretraining based methods
(Grill et al., 2020; Chen et al., 2020; Caron et al., 2020; Chen et al., 2021; Lee et al., 2021; Li et al.,
2021; Tomasev et al., 2022) have successfully recovered the performance of and often outperformed
supervised methods for the downstream tasks on classification, object detection, recognition, and
segmentation, to name a few, in the low data regime. Large scale language models such as BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019), XLM-R (Conneau et al., 2019), and GPT (Brown
et al., 2020), which have their roots in foundational methods such as Word2Vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014), serve as the exemplars of surprising cognizance of language(s)
using the self-supervised pretraining routine.

However, a significant drawback of these models is the requirement of steep computing capacities and
training times, largely due to the nature of the contrastive loss function. Several of the aforementioned
methods leverage the ubiquitous and ergonomic cross-entropy function as the main objective for
their training process. The objective function, albeit robust, often leads to an optimization bias in the
computation of the gradient. For example, Chen et al. (2022) illustrates this phenomenon using a
simple synthetic experiment, showing that mere usage of SGD based optimization can lead to several
sub-optimal solutions. More specifically, as shown by Yuan et al. (2022), the NT-Xent objective (a
variant of the cross-entropy loss) used in SimCLR (Chen et al., 2020) and several other works can
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lead to considerable optimization error: “SimCLR suffers an optimization error at least in the order

of O(1/
→
B) for the objective’s gradient norm. Even with T → ↑, its optimization error is always

dominated by O(1/
→
B).” This bias in the updates largely explains the degradation of performance in

SimCLR and related methods with smaller batch sizes, which notably arises from the denominator of
the contrastive objective (Chen et al., 2022).

In addition to the aforementioned works, Yeh et al. (2022); Chuang et al. (2020) also unambiguously
indicate an anomaly specific to the denominator of the contrastive loss. This leads to the conclusion
that, in expectation, the standard contrastive loss function is not an unbiased estimate of the true
objective, which actually encompasses infinitely many negative samples for each positive one. This
motivates us to study alternatives to overcome the intrinsic limitation of contrastive learning. To
this end, we propose a new contrastive loss by incorporating the “contrastive” idea into the AUC-
maximization framework. Specifically, since AUC only specifies two classes in the definition, we
propose to treat the two classes as positive and negative classes for each data point. These positive
and negative representations are then optimized through the AUC criterion, i.e., to maximize the area
under the ROC curve for positive and negative classes. By optimizing the new loss, one can not only
seamlessly model the positive-negative sample interactions as done in standard contrastive learning,
but also enjoy merits inherited from the AUC loss, e.g., Yuan et al. (2020) demonstrates the AUC loss
is more robust to noise compared to the cross-entropy loss. In addition, we show through an extensive
analysis that our loss function provides batch size independent gradient updates and assures us of
provable convergence under mild assumptions. In summary, our major contributions are as follows:

• We re-examine some limitations of the standard contrastive learning framework, and propose
a new contrastive loss that incorporates contrastive representation within the AUC maxi-
mization framework. Our framework comes with nice theoretical properties and inspires
superior performance under low batch size regimes.

• We thoroughly analyze the function and its gradient updates and show that our function
leads to unbiased gradient updates. Through extensive experiments, we demonstrate the
robustness of our framework to small batch sizes.

• We empirically demonstrate that our method outperforms several SOTA methods in SSL, as
well as in some popular few-shot learning and transfer learning benchmarks.

2 PRELIMINARIES AND RELATED WORK

2.1 SELF-SUPERVISED LEARNING

Self-supervision in machine learning has become increasingly promising due to the alleviation of the
requirement for labelled data. Successful applications in downstream tasks further reflect well on its
merits. The training mechanisms take varying formats that leverage several forms of co-occurrences.
Temporally relevant information is utilized in works such as Wang & Gupta (2015); Logeswaran &
Lee (2018); Singh et al. (2021); Pan et al. (2021); Gao et al. (2022). For vision based tasks, the highly
popular method of using multiple image augmentations towards encouraging feature space separation
is leveraged by several works (Dosovitskiy et al., 2014; Bachman et al., 2019; Tian et al., 2020; Gao
et al., 2021). Methods that implement alternative contrastive objectives along feature dimensions
include SimSiam (Chen & He, 2021), BYOL (Grill et al., 2020), DINO (Caron et al., 2021), VICReg
(Bardes et al., 2021), Barlow Twins (Zbontar et al., 2021), and HaoChen et al. (2021) which uses a
spectral contrastive objective.

Recent innovations falling under image sample contrastive methods that we consider relevant to this
work include the SimCLR (Chen et al., 2020), MoCo v3 (Chen et al., 2021), CLIP (Radford et al.,
2021), DCL (Yeh et al., 2022) and others, which utilize variants of the cross-entropy criterion. A
prominent characteristic of these works is the requirement for large batch sizes in order to enhance
performance, which often mandates a steep compute requirement and training time.

2.2 CONTRASTIVE LEARNING AND ITS LIMITATIONS

Contrastive Learning can date back to work in the early 90’s (Becker & Hinton, 1992; Bromley
et al., 1993), based on the motive of utilization of internally derived teaching signals in a neural
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network towards memory and data efficient systems. The core implementation has prevailed to
the recent times, which is based on minimization of the distance between features generated from
images/modalities belonging to a unique entity. In recent times, (Chen et al., 2020; 2021; Caron
et al., 2021; Chen & He, 2021), the field has successfully leveraged data augmentation strategies
towards training large networks that often rival the supervised paradigm. In its most elementary form,
the augmented versions of similar samples are drawn closer in the feature space and the dissimilar
ones pushed apart. However, owing to the lack of labels, these methods suffer from drawbacks that
concern efficient sampling of the negatives.

Standard contrastive learning such as NTXent (Chen et al., 2020) and InfoNCE (Oord et al., 2018)
use a variant of the cross entropy as the loss function. For a batch B (containing the indices of the
data samples) and the corresponding features vectors {zi}, the NTXent loss is formulated as

L
NTXent = ↓

1

n

∑

i,j→B
log

exp(sim(zi, zj)/ω)∑2n
k=1:k ↑=i exp(sim(zi, zk)/ω)

(1)

where sim(u, v) denotes the cosine similarity of features u and v; ω is the temperature pa-
rameter and n = |B|. Of particular interest to this work is the denominator g(w, i) =∑2n

k=1:k ↑=i exp(sim(zi, zk)/ω), where w refers to the parameters of the network. This takes the
form of a sum-exponent of similarities that ideally correspond to the negative class. However, the
gradient estimate of this function with minibatches, given by

ω↔wL
NTXent = ↓

1

n
↔wsim(zi, zj) +

1

n

↔g(w, i)

g(w, i)
, (2)

is a biased estimator of the true gradient (Chen et al., 2022). In practice, large batch sizes are needed
to trade off the accuracy and computational efficiency.

There have been some efforts made to mitigate this dependence from several perspectives. For
instance, Yeh et al. (2022) construct a decoupled objective that discards the presence of positive
samples in the InfoNCE criterion and demonstrate gains. Chuang et al. (2020) also remedy the
presence of positive samples in the denominator by constructing an estimator for bias correction. Ge
et al. (2021), Kalantidis et al. (2020) and Robinson et al. (2020) attempt negative mining to improve
performance without explicitly addressing the bias issue.

To our knowledge, very little work has explicitly addressed the bias phenomenon and suggested
solutions. Chen et al. (2022) demonstrate the bias phenomenon using a simple synthetic experiment
and propose an expectation maximization based algorithm which adaptively weighs the negative
samples in the minibatch. Yuan et al. (2022) quantify the bias in the order of O(1/

→
B) and suggest

a solution that maintains track of the denominator terms and uses its moving average to compute the
gradient at every step which comes at a cost to the memory and computation. Although these works
provide remedies, the principle working mechanism is based on an asymptotically diminishing bias.
We emphasise that our method not only is a simplistic principled approach, it is also provably free of
the bias and does not rely on momentum encoders, stop-gradient methods, negative mining or any
additional tricks for better performance.

2.3 AUC MAXIMIZATION

Area under the ROC curve (AUC) is one practical metric for evaluation of model performance,
which accounts for imbalances in dataset classes and overcomes the shortcomings of metrics such
as accuracy. In principle, maximization of AUC leads towards enhancement of the prediction score
of positive class, relative to the other negative classes. Some works that have studied pairwise
maximization methods towards this objective are Gao & Zhou (2015), Joachims (2005), Herschtal &
Raskutti (2004). However, a natural challenge to the optimization process for AUC that arises as a
consequence is the high computational complexity (O(N2)) which results from directly maximizing
the positive class scores against the paired negative samples which inhibits learning from large-scale
data. Ying et al. (2016) proposed an equivalence that allows for a min-max optimization objective that
alleviates the O(N2) complexity of the objective and allows for an efficient optimization objective.
Thereafter, improvements over this work were researched by Natole et al. (2018), Liu et al. (2018)
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and Yuan et al. (2020). Notably, Yuan et al. (2020) address laxities of the aforementioned methods,
namely the adverse effects of easily classifiable data and the sensitivity to noisily labelled data,
through a margin based component in the loss function. The works above inspired us to construct our
objective function that proves to be a prominent option for SSL based tasks that is very reliable in
limited compute related circumstances due to its robustness to batch size.

3 THE PROPOSED METHOD

We first discuss some work of standard AUC metric maximisation frameworks, which was originally
used for performance evaluation of classifiers. We then describe the motivation behind our formu-
lation from the perspective of these approaches and subsequently, we propose our new framework
for batchsize-robust contrastive representation learning by incorporating the contrastive idea into
the AUC maximization formulation; and conduct a theoretical analysis to show that the gradient
updates resulting from our framework are unbiased and therefore robust to batch size variance. The
convergence theory for our method is also developed.

3.1 NOTATIONS

Let D = {x1, ..., xn} denote the set of training images and let P denote the complete set of data
augmentations with a randomly picked data augmentation denoted by A(.) ↗ P . For a randomly
selected sample x ↗ D, consider the set Mi defined as Mi = {j : A(xj) for ↘A ↗ P, ↘xj ↗

D\{xi}}, which denotes the set of indices of all samples and their augmentations excluding those
of xi. Analogous to this, for a batch B, Bi = {j : A(xj) for ↘A ↗ P, ↘xj ↗ B\{xi}}. Let E(.)
define the encoder network comprising of the backbone network fw and the projector network gw,
used for the generation of feature vectors for every image. Upon completion of training, we discard
the projector gw. We denote the cosine similarity between two encoded samples u = E(xu) and
v = E(xv) by sim(u, v) defined by sim(u, v) = utv

||u||↓||v|| .

3.2 AUC MAXIMIZATION

We start by a brief review of the AUC maximization framework, which, as a problem for deep
learning, is best formulated with a differentiable form. This can facilitate learning by application of
backpropagation. Specifically, the AUC metric can be formulated using the Wilcoxon-Mann-Whitney
statistics (Mann & Whitney, 1947; Wilcoxon, 1992) as:
Definition 3.1. Given a classifier hw parameterized by w and labeled samples {x,x↔

|y = 1, y↔ =
↓1}, the area under the receiver operator characteristic curve is defined by,

AUC(w) = P(hw(x) ≃ hw(x↔) | y = 1, y↔ = ↓1). (3)

This formulation leads to an O(N2) complexity due to the explicit requirement of positive-negative
pairs for optimization. A widely used reformulation by introducing the square surrogate loss lends to
an ease of optimization and alleviates the high complexity (Ying et al., 2016; Natole et al., 2018; Liu
et al., 2018; Yuan et al., 2020), given by

L(w) = E[(1↓ hw(x) + hw (x↔))
2
| y = 1, y↔ = ↓1]. (4)

To make the problem in 4 more tractable, we use the following equivalent reformulation theorem
(Yuan et al., 2020).
Theorem 3.2. Minimising (4) is equivalent to the following min-max problem:

min
w→Rd

L(w) = min
w→Rd

max
ω→R

E[L⇐(w,ε)], where

L⇐(w,ε) ↭
[
(hw(x)↓ a(w))2 | y = 1

]
+

[
(hw (x↔)↓ b(w))

2
| y

↔ = ↓1
]

+max
ω

{
2ε(1↓ a(w) + b(w))↓ ε

2
}
. (5)

The optimal values of a, b,ε given w are a = a(w) := E[hw(x) | y = 1], b = b(w) := E[hw(x) |
y = ↓1] and ε = 1 + b↓ a, respectively.
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Figure 1: The proposed AUC-CL framework: The component A1 serves to enhance the proximity
of positive pairs whereas A2 enhances the distance between positive-negative pairs. Additionally, A3,
governed by the non-zero ε parameter augments the gap between the expected values of similarities
of positive and negative pairs, thus preventing collapse.

3.3 THE PROPOSED AUC-CL FRAMEWORK

We describe the incorporation of the contrastive idea into the AUC maximization framework. In
our setting, we adopt the cosine similarity metric to evaluate the feature space proximity of the data
samples. Given a sample x, we generate feature vectors from two random augmentations of the
sample, E(xu) and E(xv). Thus, for a batch of size |B| we derive two sets of augmented features,
each of size |B|. We then evaluate the cosine similarity matrix using the two sets, which forms the
matrix of scores that we eventually use in our objective function.

Note both the contrastive loss and the AUC formula contain positive and negative data, yet their
definitions are different. Therefore, one needs to make transformations between them in order to
achieve incorporation of contrastive loss into the AUC formula. To this end, we propose that each
positive and negative classes in the AUC formula should correspond to a pair of data samples in our
setting. Specifically, we consider a score sim(i, j) between samples xi and xj , each subjected to
random augmentation operators A and A

↔ respectively, where (i ↗ [1, |B|], j ↗ [1, |B|]) belong to the
positive class in the AUC formula if it is derived from augmentations of the same source image, i.e.,
i = j, and is denoted as yii+ = 1. Similarly, it is called negative class (denoted as (yij = ↓1)) if the
pair is derived from separate images i ⇒= j. Based on this, the original AUC maximization objective
in (5) is generalized to what we coin as the AUC contrastive learning:

min
w→Rd

max
ω→R

Exi↗D,A,A→↗P [L
↔
s(w,ε;xi,A,A

↔
,Bi)] (6)

where the loss L↔
s(w,ε;xi,A,A

↔
,Bi) at data xi and two data augmentations A and A

↔ are given by

L→
s(w,ω;xi,A,A→,Bi) =

[
(1→ sim(i, i+) +

∑

j↑Bi

sim(i, j))2 | yii+, yij
]

(7)

=
[
(sim(i, i+)→ a(w))2 | yii+

]
︸ ︷︷ ︸

a1(w)

+
∑

j↑Bi

[
sim(i, j)→ b(w))2 | yij

]

︸ ︷︷ ︸
a2(w)

+max
ω

{
2ω(1→ a(w) + b(w))→ ω2}

︸ ︷︷ ︸
a3(w)

.

Here, we evaluate the component a1(w) for the positive class and a2(w) for the negative class as the
notation suggests. Inspired by the conventional contrastive learning objectives, we take a sum over
the negative terms yij as a measure to enhance the impact of the negative sample pairs, which in turn
can improve the similarity scores for positive sample pairs. This leads to a significant improvement
in the performance.

A practical reformulation We propose a reformulation to the original problem in equation 6 to
improve practical performance. 1) First, according to Theorem 3.2, the optimal values for a(w) and
b(w) are: a(w) := E[sim(i, i+) | yii+], b(w) := E[

∑
j→Bi

[sim(i, j) | yij ]. We can substitute these
optimal values into equation 6 and directly optimize over the encoder parameter w. This could lead
to better convergence as one does not need to alternate between optimizing a and w. However, to
avoid approximation errors, the expectations need to be exactly evaluated. In practice, only stochastic
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approximations calculated from mini-batches are available. Thus, replacing a(w) and b(w) with
their stochastic estimations would induce bias if the evaluation function is non-linear, e.g., a1(w) and
the a2(w) terms in equation 6. As a result, we only do the substitution for a(w) and b(w) for the
linear terms, e.g., the a3(w) term. 2) Second, once we substitute a(w) and b(w) with their stochastic
approximations in term a3(w), the hyper-parameter ε has to be independent w.r.t. w in order to
avoid bias introduced in stochastic approximation. Thus, we simply fix ε in the experiments. We
conduct ablations with various values of ε to illustrate the robustness of our function to the values.
Additionally, one may opt to fix a and witness marginal improvements. We conjecture that this may
allow ease in optimization for the uniformity task of representation learning, which is non-trivial as
compared to the alignment task Wang & Isola (2020). As a result, we propose the following new loss
in practice as our objective function:

L
↔
s(w, b;xi,A,A

↔
,Bi) =

[
(sim(i, i+)↓ a)2 | yii+

]
︸ ︷︷ ︸

A1

+
∑

j→Bi

[
(sim(i, j)↓ b)2 | yij↘

]

︸ ︷︷ ︸
A2

(8)

+

{
2ε

[
1↓ sim(i, i+) | yii+ +

∑

j→Bi

sim(i, j) | yij↘
]
↓ ε

2

}

︸ ︷︷ ︸
A3

Based on the loss, we describe the algorithm for pretraining using our contrastive loss in Algorithm 1.
An intuitive illustration of the method and the functions of its components is given in the Figure 1.

3.4 CONVERGENCE ANALYSIS

Algorithm 1 : AUC-CL
Input: Dataset D = {x1, ..., xn}

Parameters and networks: w, fw, gw

1: for n=1 to N do

2: Sample a batch B ⇑ {xi ⇓ D}
B
i=1

3: for all i ↗ {1...B} do

4: xi, xi+ = A(xi),A↔(xi)
5: zi, zi+ = gw(fw(xi)), gw(fw(xi+))
6: end for

7: for all i ↗ {1...B} and j ↗ {1...B} do

8: sim(i, j) = zT
i zj

||zi||↓||zj ||
9: end for

10: Evaluate L
↔
s according to 8

11: w ⇑ optimizer(w, ϑwL
↔
s)

12: end for

Output: Encoder fw

We conduct the analysis of the gradient estima-
tors for various components of our function in
the under section A.1 in the Appendix using the
standard assumptions of smoothness and conti-
nuity. In a high level, we evaluate the gradients
of the various components of the Global Con-
trastive Objective given by equation 8 and the
stochastic gradient estimators of these compo-
nents which are used in batch wise optimization.
We then establish the smoothness properties of
these components and that the stochastic gradi-
ent estimator is an unbiased estimate of the true
gradient, using standard assumptions. Subse-
quently, using these properties, we establish the
following convergence result.

Theorem 3.3. Assume the cosine similarity

function sim(i, j)(w) is smooth and Lipschitz

continuous w.r.t. w and max{a, b} ⇔ ω .

Choose the stepsize ϖ = 1≃
T

. Then the stochas-

tic gradients in our algorithm are unbiased. Furthermore, for the optimization parameters v = (w, b),
we have the following convergence results

E↖↔L(vt)↖
2
⇔ O

( 1
→
T


,

where t is drawn from {0, ...., T ↓ 1} uniformly at random.

Remark 3.4. Theorem 3.3 indicates that our algorithm converges to a local optimum at a rate of
O
(

1≃
T


w.r.t. the number of updates T , which is independent of batch sizes. Whereas for the standard

contrastive loss with the cross-entropy related variants, the convergence rate is O(1/
→
ϱT +

→
ϱ +

1/
→
B) for the learning rate ϱ and batch size B (Yuan et al., 2022). Consequently, this suffers from

a convergence error that depends on the batch size B, which is at least O(1/
→
B) at the limit of

T ↙ ↑ and ϱ ↙ 0.
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4 EXPERIMENTS

Owing to the adaptable nature of our loss function, we simply adapt the widely existing framework of
SimCLR (Chen et al., 2020) and MoCo-v3 (Chen et al., 2021) codebases to AUC-CL. We retain the
architectural choices and other configurations and explore different batch sizes. In all the experiments
unless otherwise specified, similar to the work in Chen et al. (2021), we set the learning rate to be
lr ∝ BatchSize/256, where lr refers to the base learning rate parameter, a hyperparameter that we
experiment with and realize that a stable value is set at lr=1.0e-3 with higher values leading to slower
convergence and accuracies lower by 2%. Moreover, we adopt a learning rate warmup described by
Goyal et al. (2017) for 40 epochs followed by a cosine decay schedule (Loshchilov & Hutter, 2016).
Our default optimizer is the AdamW (Ilya et al., 2019).

Table 1: ImageNet Pretraining (ResNet-50).
Top-1 accuracy for linear evaluation results are
listed. Results marked "*" are reproduced using
LightlyAI.

Method Batch Size 100 ep 400 ep 800 ep

SimCLR 4096 66.5 69.8 70.1
BYOL 4096 66.5 73.2 ↓

MoCo-v3 4096 68.9 73.1 73.8
VICReg 2048 68.6 70.6 73.2
DINO⇐ 1024 68.3 72.9 ↓

BarlowTwins 1024 67.7 73.1 73.2
Zero-CL 1024 68.9 72.6 ↓

ARB 512 68.2 ↓ ↓

NNCLR+DCL 512 ↓ 71.2 74.9
MoCo-v2 256 67.4 71.0 72.2
SimCLR+DCL⇐ 256 65.1 69.5 ↓

SimCLR+DCLW⇐ 256 64.5 67.8 ↓

SimSiam 256 68.1 70.8 71.3
W-MSE 256 69.4 72.5 ↓

AUC-CL 256 69.5 73.5 75.5

Table 2: ImageNet Pretraining (ViT-S). Top-1
accuracy for linear evaluation 10-NN evalua-
tion for k-NN are listed after pretraining for
300 epochs.

Method Batch Size k-NN Linear

SimCLR 1024 ↘ 69.0
BYOL 1024 66.6 71.4
MoCo-v2 1024 62.0 71.6
MoCo-v3 1024 ↘ 72.5
MoCo-v3 4096 ↘ 73.2
SwaV 1024 64.7 71.8

AUC-CL 256 70.7 73.7

We follow the standard linear evaluation proto-
col for our models and report the Top-1 Ima-
geNet validation accuracy of a linear classifier
trained over pretrained frozen networks. For Im-
ageNet, we train using a random resized crop
strategy by cropping the images to 224x224 and
resizing to 256x256 during training and using
a center crop and resizing for validation data
and train for 90 epochs using SGD optimizer
and a batch size of 1024 with a learning rate of
0.1 with a cosine annealing decay schedule and
no weight decay. We train our models on four
NVIDIA RTX A5000 GPUs with a memory of
24.2 GB per GPU.

ImageNet We pretrain and finetune AUC-
CL on ImageNet using the ResNet-50 and
ViT-Small architectures using a batch size of
256. Additionally, we incorporate a multi-
crop strategy of augmentation introduced in
SwAV (Caron et al., 2020) for ImageNet with
2 ∝ 2242 + 8 ∝ 962 global and local crops re-
spectively. The results are given in Tables 1 and
2. We reproduce/omit the results for some of the
listed methods due to unavailability. Remark-
ably, our method outperforms several prominent
methods that use much larger batch sizes in or-
der to ensure strong performances. We also com-
pare against some of the more recent methods of
W-MSE (Ermolov et al., 2021), Zero-CL (Zhang
et al., 2022b) and ARB (Zhang et al., 2022a) that
are batch size robust. We present supplementary
findings utilizing a batch size of 1024 for other
methods, while maintaining our batch size at
256 for training over 800 epochs in the Appendix under Table 6.

ImageNet-100, Cifar-10 and Cifar-100 We conduct further experiments on standard benchmark
image datasets, namely Cifar-10 (Krizhevsky et al., a) and Cifar-100 (Krizhevsky et al., b). Moreover,
we also evaluate our function on a smaller scale of the ImageNet (Deng et al., 2009) denoted by
ImageNet-100 which consists of a subset of randomly selected 100 classes from the full dataset, in
keeping with the protocol followed by Wu et al. (2019) and Yuan et al. (2022). Following general
practice, we pretrain using the backbone of ResNet-18 and the set of standard augmentations as given
in Chen et al. (2020) and finetune using the same procedure. Table 3 lists our results. We use the
popular benchmark given by da Costa et al. (2022) for the other methods. For all the other listed
methods, the ImageNet-100 data was trained using a batch size of 128 for 400 epochs and we list
our results for the same. The Cifar datasets were trained using a batch size of 256 for 1000 epochs
whereas we list our results after pretraining merely for 500 epochs using a batch size of 128. As
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listed, AUC-CL outperforms all the listed methods. For the Cifar datasets, a significant margin is
gained upon training using merely half the batch size and number of epochs.

Table 3: Cifar and ImageNet-100 pretraining. Linear evaluation (Acc@1) results. All methods
trained on ImageNet-100 for 400 epochs using a batch size of 256. The Cifar datasets are trained on
for 1000 epochs using the same batch size. We train our method on the Cifar datasets for 500 epochs
and use a batch size of 128.

Method Cifar-10 Cifar-100 ImageNet-100 Method Cifar-10 Cifar-100 ImageNet-100
W-MSE 88.7 61.3 67.6 ARB 92.2 69.6 79.5
SwaV 89.2 64.9 74.0 NNCLR 91.9 69.6 79.8
SimSiam 90.5 66.0 74.5 MoCo-v3 93.1 68.8 80.4
DINO 89.5 66.8 74.8 BYOL 92.6 70.5 80.2
Zero-FCL 90.5 70.2 75.7 Barlow Twins 92.1 70.9 80.4
Zero-ICL 90.5 69.3 78.0 AUC-CL 93.6 69.7 81.9

Few-Shot Linear Probing We further evaluate our ViT-S model through downstream linear
probing for classification. We use the ELEVATER benchmark (Li et al., 2022) which conducts 5-shot
classification based tasks on 20 public image classification datasets. We run the benchmark with 3
random initializations and use their automated hyperparameter tuning pipeline. Here we compare
against other methods that are pretrained on ImageNet but use larger backbones, e.g., ViT-base. We
demonstrably perform better than the mentioned methods on several datasets. Notably, our method
outperforms on a greater majority of the datasets.

Table 4: ELEVATER benchmark. We compare against MoCo-v3 (Chen et al., 2021), DeiT (Touvron
et al., 2021) and MAE (He et al., 2022). We list the backbone networks for each. Data-1 to Data-20
correspond to Caltech101, CIFAR10, CIFAR100, Country211, DescriTextures, EuroSAT, FER2013,
FGVC Aircraft, Food101, GTSRB, HatefulMemes, KITTI, MNIST, Oxford Flowers, Oxford Pets,
PatchCamelyon, Rendered SST2, RESISC45, Stanford Cars and VOC2007 datasets respectively.

Method Arch. Data-1 Data-2 Data-3 Data-4 Data-5 Data-6 Data-7 Data-8 Data-9 Data-10 Mean Acc.

MAE ViT-B 59 34 21.2 2.8 35 64.4 21.3 7.0 7.7 17.5 33.4
MoCo-v3 ViT-B 80.8 78.5 60.5 4.8 57.1 77.1 20.5 11.8 36.6 31.4 50.2
DeiT ViT-B 86.2 70.1 61.5 4.4 52.9 62.5 14.5 24.1 41.9 46.7 54.1
AUC-CL ViT-S 87.2 76.7 61.8 4.6 57.7 77.8 19.5 28.8 38.7 49.7 54.9

Method Arch. Data-11 Data-12 Data-13 Data-14 Data-15 Data-16 Data-17 Data-18 Data-19 Data-20 # Wins

MAE Vit-B 51.4 46.1 63.4 50.9 17.2 54.9 50.1 38.9 6.3 18.3 2
MoCo-v3 ViT-B 50.7 46.7 64.1 79.5 76.3 54.7 50.1 61.1 13.4 47.9 2
DeiT Vit-B 51.1 47.6 83.8 82.7 87.8 51.5 50.1 63.4 27.7 70.9 5
AUC-CL Vit-S 50.5 51.5 77.6 86.5 76.5 62.4 50.4 65.5 24.9 49.9 11

Other Comparisons We compare against another batch size robust method SogCLR (Yuan et al.,
2022) using the ResNet-50 backbone and training on ImageNet and ImageNet-100 using identical
set of parameters and augmentations in order to retain fairness. The results are given in Table 5. We
again notice a significant margin of improvement over the listed methods and across the batch sizes
and epochs. Moreover, we witness a greater robustness to batch size wherein the performance shifts
are negligible with varying batch sizes. We further detail additional comparisons against MoCo-v3
A.3.2 and SimCLR A.3.3in the Appendix.

5 DISCUSSION

Figure 2: Batch size robustness. Linear evaluation results (top-1 accuracy) using various batch sizes
on the mentioned datasets compared against MoCo-v3. Our method retains stability in performance
with varying batch sizes with relatively smaller variance.
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Table 5: Comparison by pretraining on ImageNet and ImageNet-100 against SimCLR (Chen et al.,
2020) and SogCLR (Yuan et al., 2022) using the ResNet-50 backbone. Linear evaluation (acc@1)
results are listed. We retain the parameter and augmentation settings.

Batch Methods ImageNet ImageNet-100
size Epoch 100 200 400 100 200 400

128
SimCLR 62.6 64.0 64.1 68.5 72.7 75.7
SogCLR 64.9 66.2 67.4 72.2 76.7 79.3
AUC-CL 66.1 67.6 68.8 79.0 81.4 82.7

256
SimCLR 62.8 64.3 65.7 69.7 73.6 76.1
SogCLR 65.2 67.1 68.7 71.8 76.3 78.7
AUC-CL 66.2 67.7 69.1 78.9 81.2 82.8

512
SimCLR 63.8 65.6 66.7 70.9 74.1 75.9
SogCLR 65.0 67.2 68.8 71.8 75.8 78.2
AUC-CL 66.2 67.9 69.2 78.8 81.3 82.8

Intuition We illustrate a simplified intuition behind our formulation in the Figure 1. The squared
terms A1 and A2 enforce the similarity of the positive and negative pairs towards the values
of a and b. However, we observe that merely minimizing these two components and ignor-
ing A3 leads to a representational collapse. The component A3 therefore serves to counteract
this collapse of the objective leading to an increase in the similarities of the positive pairs and
a decrease in those of the negatives, thus balancing the effects of each component towards a
desirable optimum. A combination of the three terms, leads to representations learned by our
framework that would satisfy both positive-data compactness and negative-data repulsion, which
is not considered explicitly in standard contrastive learning. Rearranging, the positive terms[
(sim(i, i+)↓ a)2 + 2ε(1↓ sim(i, i+) | yii+)

]
encourage the augmented views to be consistent

in the feature space whereas
∑

j→Bi
[(sim(i, j)↓ b)2 + 2εsim(i, j) | yij↘] forces separation across

negatives, encouraging representations to match a high entropy prior distribution.

Adaptive margin robustness The function exhibits robustness to variations in batch size, attributed
to unbiased stochastic gradient estimators, as derived theoretically (A.1). Notably, this characteristic
isn’t exclusive to our formulation. Our function’s superior performance is evident, and we attribute
this to its inherent nature. The retention in performance (Figure 2) with smaller batch sizes is linked
to robustness to increased noise in the batch, where a smaller batch tends to have a noisier set of
similarity scores. Notably, our function introduces an adaptive margin term A3, a unique component
in our formulation. This term proves particularly relevant for handling noise in stochastic samples.
For instance, in cases where the sim(i, j) term is artificially high due to noise, sim(i, i) is strategically
adjusted to compensate for the noise, improving class clustering in the feature space and mitigating
the effects of inherent noise. Additionally, we conduct experiments to establish that the component
A3 whose influence is monitored by ε is critical to avert a mode collapse in Table 11 in the Appendix.

Convergence We empirically analyze the convergence of our function by comparing against known
arts in Figure 3 (Appendix). We train using ResNet-18 on Cifar-10 using the configuration mentioned
in A.3.3 and plot the k-NN Top-1 accuracy curves for the methods and notice that our method
converges noticeably sooner. Specifically, our method outperforms SimSiam (second best) by over
8% at the epoch 100. We conjecture that the component A2 may be instrumental in such rapid early
convergence. A2 monitors the uniformity objective Wang & Isola (2020). An unbiased estimate of
the component is therefore more asymptotically optimal and thus may be a significant contributing
factor in helping the model learn optimal feature spaces earlier than standard methods.

6 CONCLUSION

In this work, we investigate the popular SSL via contrastive learning and its variants. We delineate
the drawbacks of the corresponding objectives and propose a batchsize-robust objective inspired
from AUC maximisation of data. We further analyze our objective for convergence and prove the
function’s robustness in convergence to batch size. Furthermore, we conduct several experiments
under varying settings of representation learning, transfer learning and few shot classification, and
compare against the state of the arts to demonstrate the merits of our method agnostic to batch sizes.
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8 BROADER IMPACT

The publication on self-supervised contrastive learning introduces a method that exhibits robust-
ness to variations in batch size, advancing the field of unsupervised representation learning. This
innovation enhances scalability and efficiency, making deep learning techniques more accessible
across diverse computational infrastructures. By democratizing the utilization of self-supervised
learning methodologies, the research fosters broader accessibility to cutting-edge technologies and
holds potential for significant impacts across various applications, from natural language processing
to computer vision.

10



Published as a conference paper at ICLR 2024

REFERENCES

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
mutual information across views. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/ddf354219aac374f1d40b7e760ee5bb7-Paper.pdf.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. CoRR, abs/2105.04906, 2021. URL https://arxiv.org/abs/
2105.04906.

Suzanna Becker and Geoffrey E Hinton. Self-organizing neural network that discovers surfaces in
random-dot stereograms. Nature, 355(6356):161–163, 1992.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature verifi-
cation using a" siamese" time delay neural network. Advances in neural information processing

systems, 6, 1993.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsuper-
vised learning of visual features. CoRR, abs/1807.05520, 2018. URL http://arxiv.org/
abs/1807.05520.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments, 2020. URL https:
//arxiv.org/abs/2006.09882.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9650–9660, October 2021.

Changyou Chen, Jianyi Zhang, Yi Xu, Liqun Chen, Jiali Duan, Yiran Chen, Son
Tran, Belinda Zeng, and Trishul Chilimbi. Why do we need large batch sizes in
contrastive learning? a gradient-bias perspective. In NeurIPS 2022, 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/hash/
db174d373133dcc6bf83bc98e4b681f8-Abstract-Conference.html.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations, 2020. URL https://arxiv.org/abs/2002.
05709.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15750–15758,
June 2021.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision trans-
formers. CoRR, abs/2104.02057, 2021. URL https://arxiv.org/abs/2104.02057.

Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie Jegelka. De-
biased contrastive learning. Advances in neural information processing systems, 33:8765–8775,
2020.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Fran-
cisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised
cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116, 2019.

Victor Guilherme Turrisi da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, and Elisa Ricci. solo-learn: A
library of self-supervised methods for visual representation learning. Journal of Machine Learning

Research, 23(56):1–6, 2022. URL http://jmlr.org/papers/v23/21-1155.html.

11

https://proceedings.neurips.cc/paper/2019/file/ddf354219aac374f1d40b7e760ee5bb7-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ddf354219aac374f1d40b7e760ee5bb7-Paper.pdf
https://arxiv.org/abs/2105.04906
https://arxiv.org/abs/2105.04906
http://arxiv.org/abs/1807.05520
http://arxiv.org/abs/1807.05520
https://arxiv.org/abs/2006.09882
https://arxiv.org/abs/2006.09882
https://proceedings.neurips.cc/paper_files/paper/2022/hash/db174d373133dcc6bf83bc98e4b681f8-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/db174d373133dcc6bf83bc98e4b681f8-Abstract-Conference.html
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2104.02057
http://jmlr.org/papers/v23/21-1155.html


Published as a conference paper at ICLR 2024

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discriminative
unsupervised feature learning with convolutional neural networks. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances in Neural Information Processing

Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.
cc/paper/2014/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020.

Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for self-
supervised representation learning. In Marina Meila and Tong Zhang (eds.), Proceedings of the

38th International Conference on Machine Learning, volume 139 of Proceedings of Machine

Learning Research, pp. 3015–3024. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/ermolov21a.html.

Junyu Gao, Mengyuan Chen, and Changsheng Xu. Fine-grained temporal contrastive learning for
weakly-supervised temporal action localization. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 19999–20009, June 2022.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. CoRR, abs/2104.08821, 2021. URL https://arxiv.org/abs/2104.08821.

Wei Gao and Zhi-Hua Zhou. On the consistency of auc pairwise optimization. In Twenty-Fourth

International Joint Conference on Artificial Intelligence, 2015.

Songwei Ge, Shlok Mishra, Chun-Liang Li, Haohan Wang, and David Jacobs. Robust contrastive
learning using negative samples with diminished semantics. Advances in Neural Information

Processing Systems, 34:27356–27368, 2021.

Spyros Gidaris, Andrei Bursuc, Gilles Puy, Nikos Komodakis, Matthieu Cord, and Patrick
Pérez. Online bag-of-visual-words generation for unsupervised representation learning. CoRR,
abs/2012.11552, 2020. URL https://arxiv.org/abs/2012.11552.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent:
A new approach to self-supervised learning, 2020. URL https://arxiv.org/abs/2006.
07733.

Jeff Z. HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
deep learning with spectral contrastive loss. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 5000–5011. Curran Associates, Inc., 2021. URL https://proceedings.neurips.
cc/paper/2021/file/27debb435021eb68b3965290b5e24c49-Paper.pdf.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 16000–16009, June 2022.

Alan Herschtal and Bhavani Raskutti. Optimising area under the roc curve using gradient descent. In
Proceedings of the twenty-first international conference on Machine learning, pp. 49, 2004.

12

https://proceedings.neurips.cc/paper/2014/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.mlr.press/v139/ermolov21a.html
https://proceedings.mlr.press/v139/ermolov21a.html
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2012.11552
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2006.07733
https://proceedings.neurips.cc/paper/2021/file/27debb435021eb68b3965290b5e24c49-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/27debb435021eb68b3965290b5e24c49-Paper.pdf


Published as a conference paper at ICLR 2024

Loshchilov Ilya, Hutter Frank, et al. Decoupled weight decay regularization. Proceedings of ICLR,
2019.

Thorsten Joachims. A support vector method for multivariate performance measures. In Proceedings

of the 22nd international conference on Machine learning, pp. 377–384, 2005.

Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard
negative mixing for contrastive learning. Advances in Neural Information Processing Systems, 33:
21798–21809, 2020.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). a. URL http://www.cs.toronto.edu/~kriz/cifar.html.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
research). b. URL http://www.cs.toronto.edu/~kriz/cifar.html.

Kuang-Huei Lee, Anurag Arnab, Sergio Guadarrama, John Canny, and Ian Fischer. Compressive
visual representations, 2021. URL https://arxiv.org/abs/2109.12909.

Chunyuan Li, Jianwei Yang, Pengchuan Zhang, Mei Gao, Bin Xiao, Xiyang Dai, Lu Yuan, and
Jianfeng Gao. Efficient self-supervised vision transformers for representation learning, 2021. URL
https://arxiv.org/abs/2106.09785.

Chunyuan Li, Haotian Liu, Liunian Harold Li, Pengchuan Zhang, Jyoti Aneja, Jianwei Yang, Ping
Jin, Yong Jae Lee, Houdong Hu, Zicheng Liu, and Jianfeng Gao. Elevater: A benchmark and
toolkit for evaluating language-augmented visual models. Neural Information Processing Systems,
2022.

Mingrui Liu, Xiaoxuan Zhang, Zaiyi Chen, Xiaoyu Wang, and Tianbao Yang. Fast stochastic auc
maximization with o(1/n)-convergence rate. In International Conference on Machine Learning,
pp. 3189–3197. PMLR, 2018.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence representa-
tions, 2018. URL https://arxiv.org/abs/1803.02893.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv

preprint arXiv:1608.03983, 2016.

H. B. Mann and D. R. Whitney. On a Test of Whether one of Two Random Variables is Stochastically
Larger than the Other. The Annals of Mathematical Statistics, 18(1):50 – 60, 1947. doi: 10.1214/
aoms/1177730491. URL https://doi.org/10.1214/aoms/1177730491.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space, 2013. URL https://arxiv.org/abs/1301.3781.

Michael Natole, Jr., Yiming Ying, and Siwei Lyu. Stochastic proximal algorithms for AUC maximiza-
tion. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference

on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 3710–3719.
PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/natole18a.
html.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Indian Conference on Computer Vision, Graphics and Image Processing, Dec 2008.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Tian Pan, Yibing Song, Tianyu Yang, Wenhao Jiang, and Wei Liu. Videomoco: Contrastive video
representation learning with temporally adversarial examples. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11205–11214, June 2021.

13

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://arxiv.org/abs/2109.12909
https://arxiv.org/abs/2106.09785
https://arxiv.org/abs/1803.02893
https://doi.org/10.1214/aoms/1177730491
https://arxiv.org/abs/1301.3781
https://proceedings.mlr.press/v80/natole18a.html
https://proceedings.mlr.press/v80/natole18a.html


Published as a conference paper at ICLR 2024

Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In IEEE

Conference on Computer Vision and Pattern Recognition, 2012.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language

processing (EMNLP), pp. 1532–1543, 2014.

Ben Poole, Chen Sun, Cordelia Schmid, Dilip Krishnan, Phillip Isola, and Yonglong Tian. What
makes for good views for contrastive representation learning? In NeurIPS 2020, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. CoRR, abs/2103.00020,
2021. URL https://arxiv.org/abs/2103.00020.

Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with
hard negative samples. arXiv preprint arXiv:2010.04592, 2020.

Ankit Singh, Omprakash Chakraborty, Ashutosh Varshney, Rameswar Panda, Rogerio Feris, Kate
Saenko, and Abir Das. Semi-supervised action recognition with temporal contrastive learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 10389–10399, June 2021.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), Computer Vision – ECCV 2020, pp.
776–794, Cham, 2020. Springer International Publishing. ISBN 978-3-030-58621-8.

Nenad Tomasev, Ioana Bica, Brian McWilliams, Lars Buesing, Razvan Pascanu, Charles Blundell,
and Jovana Mitrovic. Pushing the limits of self-supervised resnets: Can we outperform supervised
learning without labels on imagenet?, 2022. URL https://arxiv.org/abs/2201.05119.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve
Jegou. Training data-efficient image transformers amp; distillation through attention. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine

Learning, volume 139 of Proceedings of Machine Learning Research, pp. 10347–10357. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/touvron21a.html.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In Hal Daumé III and Aarti Singh (eds.),
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Pro-

ceedings of Machine Learning Research, pp. 9929–9939. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/wang20k.html.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2015.

Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics, pp.
196–202. Springer, 1992.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), June 2019.

Chun-Hsiao Yeh, Cheng-Yao Hong, Yen-Chi Hsu, Tyng-Luh Liu, Yubei Chen, and Yann LeCun. De-
coupled contrastive learning. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria
Farinella, and Tal Hassner (eds.), Computer Vision – ECCV 2022, pp. 668–684, Cham, 2022.
Springer Nature Switzerland. ISBN 978-3-031-19809-0.

Yiming Ying, Longyin Wen, and Siwei Lyu. Stochastic online auc maximiza-
tion. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Ad-

vances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
c52f1bd66cc19d05628bd8bf27af3ad6-Paper.pdf.

14

https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2201.05119
https://proceedings.mlr.press/v139/touvron21a.html
https://proceedings.mlr.press/v119/wang20k.html
https://proceedings.neurips.cc/paper/2016/file/c52f1bd66cc19d05628bd8bf27af3ad6-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/c52f1bd66cc19d05628bd8bf27af3ad6-Paper.pdf


Published as a conference paper at ICLR 2024

Zhuoning Yuan, Yan Yan, Milan Sonka, and Tianbao Yang. Large-scale robust deep auc maximization:
A new surrogate loss and empirical studies on medical image classification. 2020. doi: 10.48550/
ARXIV.2012.03173. URL https://arxiv.org/abs/2012.03173.

Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, and Tianbao
Yang. Provable stochastic optimization for global contrastive learning: Small batch does not harm
performance. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 25760–25782. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/yuan22b.html.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In Marina Meila and Tong Zhang (eds.), Proceedings of the

38th International Conference on Machine Learning, volume 139 of Proceedings of Machine

Learning Research, pp. 12310–12320. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/zbontar21a.html.

Shaofeng Zhang, Lyn Qiu, Feng Zhu, Junchi Yan, Hengrui Zhang, Rui Zhao, Hongyang Li, and
Xiaokang Yang. Align representations with base: A new approach to self-supervised learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 16600–16609, June 2022a.

Shaofeng Zhang, Feng Zhu, Junchi Yan, Rui Zhao, and Xiaokang Yang. Zero-CL: Instance and
feature decorrelation for negative-free symmetric contrastive learning. In International Confer-

ence on Learning Representations, 2022b. URL https://openreview.net/forum?id=
RAW9tCdVxLj.

15

https://arxiv.org/abs/2012.03173
https://proceedings.mlr.press/v162/yuan22b.html
https://proceedings.mlr.press/v139/zbontar21a.html
https://proceedings.mlr.press/v139/zbontar21a.html
https://openreview.net/forum?id=RAW9tCdVxLj
https://openreview.net/forum?id=RAW9tCdVxLj


Published as a conference paper at ICLR 2024

A APPENDIX

A.1 PROOF OF 3.3

Proof. To optimize the objective in 8 with the standard widely available optimizers, we adopt the
following efficient mini-batch stochastic gradient estimator.

↔wL(w, b;xi,A,A
↔
,Bi) = 2 [(sim(i, i+)↓ a)↔wsim(i, i+) | yii+]

+ 2
∑

j→Bi

[2(sim(i, j)↓ b)↔wsim(i, j) | yij↘] + 2ε
[
↓↔wsim(i, i+) | yii+

]

+ 2ε
[ ∑

j→Bi

↔wsim(i, j) | yij↘
]
, (9)

↔bL(w, b;xi,A,A
↔
,Bi) = 2

∑

j→Bi

[
(b↓ sim(i, j)) | yij↘

]
,

where Bi is a random mini-batch of images drawn from Mi, which still excludes the image xi itself.
For the analysis, we consider the following simple update

wt+1 =wt ↓
ϖ

B

∑

i→B

↔wL(w, b;xi,A,A
↔;Bi)

bt+1 =bt ↓
ϖ

B

∑

i→B

↔bL(w, b;xi,A,A
↔
,Bi) . (10)

Our analysis adopts the following assumption. Note that the cosine similarity metric sim(i, j) for
any two augmentations xi, xj and two operations A,A

↔ is a function of w. Then, for the purpose of
analysis, we instead use the notation sim(i, j)(w) to capture the dependence on w.

Assumption A.1. We assume for any i, j,A,A
↔, the cosine similarity metric sim(i, j)(w) satisfies

• sim(i, j)(w) is L0-Lipschitz continuous and L1-smooth.

• max{a, b} ⇔ ω ,

for some positive constant ω > 0.

Note that the boundedness condition in the second item can be replaced by adding a projection
of w and b onto a bounded set like a ball for the updates in 10. However, for the simplicity, we
directly assume the boundedness, which is also observed during the optimization process in the
experiments. The global contrastive objective in our case that is based on the entire dataset D is is
given by minw→Rd,b Exi↗D,A,A→↗P [L↔

s(w, b;xi,A,A
↔
,Mi)] where

L(w, b;xi,A,A
↔
,Mi) =

[
(sim(i, i+)↓ a)2 | yii+

]
+

∑

j→Mi

[
sim(i, j)↓ b)2 | yij↘

]

+

{
2ε

[
1↓ sim(i, i+) | yii+ +

∑

j→Mi

sim(i, j) | yij↘
]
↓ ε

2

}
.

We first prove the smoothness of this objective function. Note that the cosine similarity sim(i, j)(w)
is bounded by 1, and hence we have max{|sim(i, j)(w)|, a, b} ⇔ ω + 1. Then, the gradient of the
this objective takes the form of

↔wL(w, b;xi,A,A
↔
,Mi) = [2(sim(i, i+)↓ a)↔wsim(i, i+) | yii+]

+
∑

j→Mi

[2(sim(i, j)↓ b)↔wsim(i, j) | yij↘]

+ 2ε
[
↓↔wsim(i, i+) | yii+

]
+ 2ε

[ ∑

j→Mi

↔wsim(i, j) | yij↘
]
,

↔bL(w, b;xi,A,A
↔
,Mi) = 2

∑

j→Mi

[
(b↓ sim(i, j)) | yij↘

]
.
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Based on the gradient form here, we can obtain, for any two parameters (w, b), (w↔
, b

↔)

↖↔wL(w, b;xi,A,A
↔
,Mi)↓↔wL(w↔

, b
↔;xi,A,A

↔
,Mi)↖

⇔
 [2(sim(i, i+)(w)↓ a)↔wsim(i, i+)(w) | yii+]↓

[2(sim(i, i+)(w↔)↓ a)↔wsim(i, i+)(w↔) | yii+]


+
∑

j→Mi

↖ [2(sim(i, j)(w)↓ b)↔wsim(i, j)(w) | yij↘]↓

[2(sim(i, j)(w↔)↓ b
↔)↔wsim(i, j)(w↔) | yij↘] ↖

+ 2ε
[↓↔wsim(i, i+)(w) | yii+

]
↓
[
↓↔wsim(i, i+)(w↔) | yii+

]

+ 2ε
∑

j→Mi

↖
[
↔wsim(i, j)(w) | yij↘

]
↓

[
↔wsim(i, j)(w↔) | yij↘

]
↖,

which, in conjunction with A.1 and using the fact that ab↓ a
↔
b
↔ = a(b↓ b

↔) + (a↓ a
↔)b↔, yields

↖↔wL(w, b;xi,A,A
↔
,Mi)↓↔wL(w↔

, b;xi,A,A
↔),Mi↖

⇔ 4(ω + 1)L1n↖w ↓w↔
↖+ 2L2

0n↖w ↓w↔
↖+ 2(n↓ 1)L0|b↓ b

↔
|+ 2εnL1↖w ↓w↔

↖

⇔ (4(ω + 1)L1n+ 2L2
0n+ 2εnL1)↖w ↓w↔

↖+ 2(n↓ 1)L0|b↓ b
↔
|

⇔
→
2(4(ω + 1)L1n+ 2L0(L0 + 1)n+ 2εnL1)︸ ︷︷ ︸

Lw


↖w ↓w↔↖2 + |b↓ b↔|2 (11)

Similarly, for the gradient w.r.t. b, we have

↖↔bL(w, b;xi,A,A
↔
,Mi)↓↔bL(w

↔
, b

↔;xi,A,A
↔
,Mi)↖

⇔ 2(n↓ 1)|b↓ b
↔
|+ 2(n↓ 1)L0↖w ↓w↔

↖ (12)

⇔ 2n(L0 + 1)
→
2︸ ︷︷ ︸

Lb


↖w ↓w↔↖2 + |b↓ b↔|2

First note that our stochastic gradient estimator ↔wL(w, b;xi,A,A
↔
,Bi) and

↔bL(w, b;xi,A,A
↔
,Bi) are unbiased estimators. To see this, based on the forms in 9, we

have

E↔wL(w, b;xi,A,A
↔
,Bi) =E[E↔wL(w, b;xi,A,A

↔
,Bi) | xi,A,A

↔]

=E[E↔wL(w, b;xi,A,A
↔) | xi,A,A

↔]

=↔wL(w, b)

where the first equality follows because Bi is sampled from Mi. A similar result is obtained for
↔bL(w, b;xi,A,A

↔
,Bi), i.e., E↔bL(w, b;xi,A,A

↔
,Bi) = ↔bL(w, b).

Based on the smoothness results in 11 and 12 and the unbiased estimation, we are now ready to prove
the main theorem. Let v = (w, b) denote all optimization parameters. From the smoothness results
in 11 and 12, we can establish the smoothness of the overall objective L(v) = L(w, b) as below. For
any v and v↔,

↖↔L(v)↓↔L(v↔)↖ ⇔


L2
b + L2

w↖v ↓ v↔
↖. (13)

Then, based on 13, we have

L(vt+1) ⇔L(vt) + ′vt+1 ↓ vt,↔L(vt)∞+


L2
b + L2

w

2
↖vt+1 ↓ vt↖

2
,
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which, by taking the expectation Et := E[·|vt] on the both sides and using our unbiased gradient
estimators, yields

EtL(vt+1) ⇔L(vt)↓ ϖ↖↔L(vt)↖
2 +


L2
b + L2

w

2
Et↖vt+1 ↓ vt↖

2

=L(vt)↓ ϖ↖↔L(vt)↖
2 +


L2
b + L2

w

2
ϖ
2Et


1

B

∑

i→B

↔bL(w, b;xi,A,A
↔
,Bi)


2

+

1

B

∑

i→B

↔wL(w, b;xi,A,A
↔;Bi)


2

. (14)

Note from the forms in 9 and A.1, we have

1

B

∑

i→B

↔wL(w, b;xi,A,A
↔;Bi)


2
⇔

↔wL(w, b;xi,A,A
↔;Bi)


2

⇔8(ω + 1)nL0 + 2εnL0

1

B

∑

i→B

↔bL(w, b;xi,A,A
↔;Bi)


2
⇔

↔bL(w, b;xi,A,A
↔;Bi)


2
⇔ 4n(ω + 1). (15)

Incorporating 15 into 14 yields

EtL(vt+1) ⇔L(vt)↓ ϖ↖↔L(vt)↖
2 + ϖ

2


L2
b + L2

w

2
(4n(ω + 1) + 8(ω + 1)nL0 + 2εnL0).

Unconditioning on vt, rearranging the above inequality and doing the telescoping over t from 0 to
T ↓ 1, we have

1

T

T↘1∑

t=0

↖↔L(vt)↖
2
⇔
L(v0)↓minv L(v)

ϖT
+ ϖ


L2
b + L2

w

2
(4n(ω + 1) + 8(ω + 1)nL0 + 2εnL0)

⇔O(
1

ϖT
+ ϖ) (16)

which, in conjunction with ϖ = 1≃
T

and the definition of t↔, finishes the proof.

A.2 AUC OPTIMIZATION AND CONTRASTIVE LEARNING

We further elucidate our motivations behind adaptation of the AUC optimization framework towards
contrastive learning. AUC as a metric was formulated for binary classification wherein, the objective
of the network is to enhance the prediction scores for “positive” samples in comparison to the
“negatives” (Equation 3.1). Thus by virtue of its construction, it aligns seamlessly for an application
in contrastive learning wherein due to the lack of labels, one is compelled to enforce separation
amongst classes through a binary objective with "positives" being the augmentations of the same
sample and "negatives", the augmentations of other samples within the batch. Additionally, AUC
was originally devised to address the imbalance of classes whereby accuracy as a metric may lead to
misleading evaluation of the network. A classic example of this phenomenon is often cited with a
dataset containing 100 samples, 99 of which are of the “positive” class and a network that predicts
every sample as a “positive” will therefore have attained a 99% accuracy. This aspect of the function
resonates well with the context of contrastive learning in our application, as for one image in our
batch of samples, the remaining images are considered to be “negative”.

A.3 ADDITIONAL RESULTS

A.3.1 LONGER PRETRAINING

In order to attain stronger convergence, we conduct the pretraining procedure using our method for
800 epochs on ImageNet with the ResNet-50 backbone. In Table 6, we compare against the prominent
methods for SSL. We retain the batch size of 256 for our method, wherein the remaining methods
have been trained using a larger batch size of 1024. The parameters and setup of the method follows
the description in 4. Yet again, our loss function avails a superior result using a far smaller batch size.
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Table 6: ImageNet Longer Pretraining (ResNet-50). Top-1 accuracy for linear evaluation results
are listed. We conduct pretraining for 800 epochs and compare against known arts.

Method Batch Size 800 ep

SimCLR Chen et al. (2020) 1024 69.1
InfoMin Poole et al. (2020) 1024 73.0
BarlowTwins Zbontar et al. (2021) 1024 73.2
OBOW Gidaris et al. (2020) 1024 73.8
BYOL Grill et al. (2020) 1024 74.4
DCv2 Caron et al. (2018) 1024 75.2
SwAV Caron et al. (2020) 1024 75.3
DINO Caron et al. (2021) 1024 75.3

AUC-CL 256 75.5

A.3.2 COMPARISON AGAINST MOCO-V3

Pretraining We train the MoCo-v3 architecture by replacing the objective function with ours whilst
retaining the architecture and parameter settings. Our results are based on a batch size of 128 on the
datasets Cifar-10, ImageNet-S and ImageNet using the ViT-small backbone, which are illustrated
in Table 7. Our models were trained for 100 epochs with the default parameter and augmentation
settings. Our model consistently outperforms the results when comparing to MoCo-v3 by values
higher than 2% for Cifar-10 and Cifar-100 datasets and by over 5% for ImageNet.

Table 7: Pre-training and linear evaluation vs MoCo-v3. ’a/b/c’ in the kNN column are acc. (%)
with k = 10, 20, 100, respectively. The Cifar results use the ResNet-18 backbone and the ImageNet
results use the Vit-Small backbone.

MoCo-v3 AUC-CL
Dataset KNN Linear KNN Linear

Cifar-10 84.6/84.5/84.4 91.4 87.6/87.2/86.1 93.6
Cifar-100 51.3/53.5/52.7 66.6 52.9/54.7/53.4 69.7
ImageNet-100 74.1/74.7/73.8 77.6 77.0/77.6/76.9 82.5
ImageNet 50.0/50.6/49.1 62.3 54.1/54.0/51.4 67.9

Transfer Learning We subsequently evaluate the model for transfer learning on the Cifar-10,
Cifar-100 datasets, Flowers-102 Nilsback & Zisserman (2008) and the Pets Parkhi et al. (2012)
datasets after pretraining on ImageNet. The protocol followed is identical as mentioned in Chen et al.
(2021) and the results are listed under Table 8

Table 8: Transfer Learning comparison with MoCov3 after pretraining on ImageNet. Numbers
next to the method indicate the batch size used. ’a/b’ represent the Top-1 and Top-5 accuracies (%).
The numbers listed under the ’Supervised’ category are borrowed from Dosovitskiy et al. (2020).

Cifar-10 Cifar-100 Flowers-102 Pets Average

Random Init. 77.8 48.5 54.4 40.1 55.2
Supervised 98.1 87.1 89.5 93.8 92.1
Moco-v3-256 97.1/100.0 84.6/97.7 88.6/96.7 85.0/98.6 88.8/98.2

AUC-CL-128 98.2/100.0 85.4/97.9 88.9/97.5 87.1/99.3 89.9/98.7

A.3.3 COMPARISON AGAINST SIMCLR

We illustrate the performance of our method on Cifar-10, Cifar-100 and STL-10 in Table 9, comparing
against SimCLR for varying batch sizes and epochs. In this experiment, we use a backbone of ResNet-
50. As is standard practice, we replace the first 7∝ 7 Conv layer with stride 2 with 3∝ 3 with stride 1
and remove the first max-pooling layer. The learning rate is fixed to 1e↓ 3. The training is conducted
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Table 9: SimCLR comparison. Top-1 KNN evaluation results on Cifar-10, Cifar-100 and STL-10
datasets.

BS 64 128 256

Dataset Epoch 200 300 500 200 300 500 200 300 500

SimCLR 79.6 81.8 84.15 82.8 83.4 86.2 83.8 85.8 86.9Cifar-10 AUC-CL 85.4 87.4 89.1 86.1 87.9 89.4 85.7 87.3 88.7

SimCLR 45.2 47.8 49.9 47.8 53.5 55.6 48.5 54.1 56.0Cifar-100 AUC-CL 52.9 56.0 57.2 53.7 56.1 57.3 53.7 55.9 57.1

SimCLR 69.8 69.7 73.6 72.1 72.9 74.1 75.6 75.7 76.2STL-10 AUC-CL 76.1 76.2 78.6 77.5 78.9 80.9 76.8 78.4 80.4

Table 10: Comparison against DCL for the listed batch sizes and datasets. The linear evaluation
scores following the protocol mentioned in DCL are listed. All models are trained for 200 epochs.
The backbone used for ImageNet was ResNet-50 whereas for the other datasets, the backbone was
set to ResNet-18.

Method BS/Dataset 128 256 512

DCL ImageNet 64.3 65.9 65.8
AUC-CL ImageNet 67.6 67.7 67.9

DCL Cifar-10 85.7 85.3 84.7
AUC-CL Cifar-10 88.4 87.9 88.3

DCL Cifar-100 58.9 58.5 58.4
AUC-CL Cifar-100 59.3 59.5 59.5

DCL STL-10 86.1 85.7 85.6
AUC-CL STL-10 86.5 86.3 86.5

for 500 epochs. We notice that our method significantly outperforms SimCLR for smaller batch
sizes by margins of +7% for both datasets, and retains a consistent performance across the batch
sizes. Upon convergence, our method outperforms SimCLR in Top-1 accuracy by an average of 3.8%.
Subsequent to the epoch 20, our method overcomes the performance of SimCLR, and towards the
end of training outperforms by over 3.2%. This trend is reflected across the datasets and batch-size,
epoch settings, with the margins of out-performance particularly stark for smaller batch sizes.

A.3.4 COMPARISON AGAINST DCL

We compare against the popular objective of DCL Yeh et al. (2022) directly for the datasets of
ImageNet, Cifar and STL. Here, identical to their work, we pretrain ResNet-50 and ResNet-18
architectures for ImageNet and the rest respectively, for 200 epochs. We follow the augmentation
parameters as per their work in order to retain fairness and train our models for varying batch sizes.
The results are listed in Table 10. We again witness a substantial margin of improvement over DCL
across the comparisons.

A.3.5 ROBUSTNESS TO ε

We conduct extensive ablations to experiment with the significance of the component A3 in our main
formulation 8. We train the model using the parameters and architecture described in section A.3.3
with a batch size of 128 on Cifar-10, while varying the value of the parameter ε which modulates
the influence of the component. The results are illustrated in Table 11. Here we show the KNN
evaluation results for at several epochs during training retaining identical settings. We establish that
A3 is crucial to our formulation and prevents the mode collapse phenomenon often observed in SSL
frameworks, where the features are mapped to a unique point in the hypersphere regardless of the
class distinction. Moreover, for all other values of ε, our formulation retains its performance across
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Table 11: Robustness to ε. We evaluate our loss function on the Cifar-10 dataset for varying values
of ε using the KNN protocol for k=200. The values are the Top-1 KNN evaluation accuracies at
various epochs and ε parameter settings.

Epoch/ε 0.0 0.1 0.5 0.7 1.0

50 25.1 77.7 78.3 77.6 76.8
100 10.0 82.9 83.4 82.4 81.5
150 10.00 85.18 85.70 84.76 84.41
200 10.00 86.80 86.61 85.89 85.98
250 10.00 87.40 87.64 87.21 87.06

Figure 3: k-NN curves: Plot of the k-NN accuracy curves for various methods trained on Cifar-10
for 500 epochs using ResNet-18. The values for the other methods were borrowed from LightlyAI

the epochs, with nominal differences, thus illustrating that the component is crucial to the formulation
as well as robust to variations in ε, which therefore requires no additional tuning.
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