Enumeration of interval graphs and d-representable complexes

Boris Bukh* R. Amzi Jeffst

March 2022

Abstract

For each fixed d > 1, we obtain asymptotic estimates for the number of d-representable simpli-
cial complexes on n vertices as a function of n. The case d = 1 corresponds to counting interval
graphs, and we obtain new results in this well-studied case as well. Our results imply that the
d-representable complexes comprise a vanishingly small fraction of d-collapsible complexes.

1 Introduction

Given a tuple C = (C1,Cy,...,C,) of convex sets, one may record their intersection pattern using
the nerve complex
nerve(C) & {a ‘ ﬂ C; # (/)}.
1€0
Observe that nerve(C) is a simplicial complex on the vertex set [n] < {1,2,...,n}.
A simplicial complex is called d-representable if it is the nerve of a tuple of convex sets in RY.
Such a tuple is called a d-representation of A. Given a d-representation, one may fix a point p, in

each nonempty region (.., C; and then replace each C; by the convex hull of the p, it contains,

i€o
obtaining a d-representation of the same complex in which each set is compact. Henceforth we will
only consider d-representations consisting of compact convex sets.

The class of d-representable complexes enjoys many useful topological and combinatorial proper-
ties. In particular, Helly’s theorem implies that a d-representable complex is completely determined
by its d-skeleton. Indeed, if A is d-representable and o C [n] is a set of size d + 2 or larger, then o is
a face of A if and only if every subset of o with size d + 1 is a face of A.

Perhaps the closest combinatorial analog of d-representability is d-collapsibility. A free face in
a simplicial complex is a face that is contained in a unique facet. A d-collapse is the operation of
deleting a free face with dimension d — 1 or less (and all faces that contain it). Finally, a simplicial
complex A is called d-collapsible if there is a sequence of d-collapses from A to the empty complex.

In 1975 Wegner [18] proved that d-representable complexes are d-collapsible by ordering the regions
corresponding to faces according to a generic linear function (see [15, Figure 3| for a modern sketch
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of the proof). There are d-collapsible complexes that are not d-representable, for any d > 1, and
there has been a variety of work exploring the properties of d-representable complexes, d-collapsible
complexes and the related (even more general) class of d-Leray complexes [9, 6, 10, 14, 16]. Tancer’s
survey [15] provides a good overview of results in this area prior to 2013.

In this work we study, for fixed d > 1, the growth of the number of d-representable complexes on
the vertex set [n] as a function of n. We also consider the number of d-collapsible complexes. For
each d > 1 we determine the rough rate of growth for these quantities and provide upper and lower
bounds on the constants involved.

One-dimensional case (counting interval graphs). We first discuss the case d = 1, which is of
particular interest. Since the 1-skeleton of a 1-representable complex determines the entire complex,
1-representable complexes are exactly the clique complexes of the well-studied class of interval graphs,
which record the nonempty pairwise intersections of n closed intervals' on the real line. Thus the
number of 1-representable complexes on the vertex set [n] is equal to the number of (labeled) interval
graphs on this vertex set.

There were several works [5, 8, 7, 20, 1] concerned with estimating the number of interval graphs.
The currently sharpest asymptotic result is due to Gavoille and Paul [7] who proved that the number
of interval graphs on n vertices is exp(2n logn — O(nloglog n)) The upper bound is straightforward,
as an n-vertex interval graph is determined by the relative order of 2n interval endpoints in its
1-representation. The nontrivial part of their result is in the proof of the lower bound. Unaware
of this result, weaker lower bounds were subsequently found by Yang and Pippenger [20] and Acan,
Chakraborty, Jo and Satti [1]. A different approach was taken by Hanlon [8] who found a recursive
expression for the generating function for the number of unlabeled interval graphs. In addition, there
were several works [19, 11] on quick algorithmic enumeration of non-isomorphic interval graphs.

By relating the enumeration of interval graphs to that of interval orders and applying results of
Brightwell and Keller [4], we find an improved asymptotic for the number of the interval graphs.

Theorem 1. The number of interval graphs on the vertex set [n] is 2" logn—(2+log(n*/6))n+0(logn)

Higher-dimensional case. Our results in dimension d > 2 are less precise than for d = 1.

Theorem 2. The number f4(n) of d-representable complexes on the vertex set [n| satisfies

d%nd logn — O(n?) < log f4(n) < ﬁnd logn + O(n?).

In particular, fi(n) = e®®"logn),

It turns out that it is not difficult to estimate the number of d-collapsible complexes on the vertex
set [n]. We obtain the following result.

! There seems to be no consensus as to whether the empty set is an interval. However, the class of interval graphs is
unaffected by the choice of a side in this question, for one may always replace each empty set in a 1-representation by
an interval that intersects no other.



Theorem 3. The number gq(n) of d-collapsible complexes on the vertex set [n] satisfies

Wndﬂ + O(nd) <logs ga(n) < (dil)!ndﬂ + O(nd).

In particular, gg(n) = ),

This implies that there are far more d-collapsible complexes than d-representable complexes.
That is surprising because nearly all published results for d-representable complexes in fact apply to
d-collapsible complexes.

Another curious consequence of these estimates is that there are more d-representable complexes
than (d — 1)-collapsible complexes. That this is not obvious can be seen from the work of Tancer [14]
who, for any d, described complexes that are 2-collapsible but not d-representable.

Thanks. We are grateful to the referee who made a number of useful suggestions. We are especially
grateful to them for catching a subtle off-by-one mistake in the proof of Theorem 9.

2 Representable complexes in general: proof of Theorem 2

We prove Theorem 2 modulo the case d = 1, which is established in Section 3 by proving Theorem 1.

Upper bound. Let (C1,Cy,...,C,) be a d-representation of a complex A on the vertex set [n].

def

Define N = (Z) Let m be a linear projection to the span of e; in R% and for o € ([Z}) define
- T((N;e, Ci). Observe that each I, is a (possibly empty) closed interval. We may regard the

i€o 7t
collection of intervals {I, | o € ([g])} as a l-representation of a simplicial complex I' on the vertex
set [IV].

We claim that I" completely determines the d-dimensional faces of A. Specifically, we claim that
for any 7 € ( d[:i]l) we have 7 € A if and only if the intervals {I\(; | ¢ € 7} share a common point.
One direction is clear: if p € [, C; then m(p) lies in all the appropriate intervals. For the reverse
inclusion, suppose that the intervals share a common point, and consider the fiber of 7 over this
point. This fiber is a (d — 1)-dimensional affine subspace of R?. Moreover, all d-fold intersections of
the collection {C; | ¢ € 7} contain a point in this fiber. Applying Helly’s theorem inside the fiber

(regarded as a copy of R?™1), we conclude that the fiber contains a point in (), C;. Thus 7 € A as

iET
desired.

Helly’s theorem (now applied in R?) implies that the d-skeleton of A determines all of A. The faces
dimension d and d — 1 in A are determined by I', and the remainder of the d-skeleton is determined

by choosing faces of dimension less than d — 1. Thus we have
fa(n) < f1(N) - 2(),

where (<” d) = ( dﬁl) + -+ (8) Taking logarithms and using Theorem 1, we obtain

2
d— 1)

log(fq(n)) <2Nlog N +O(N) + O(ndil) = n?logn + O(nd).



Lower bound. Below, we shall use the notation A * w to denote the cone over A with apex w,
which is the simplicial complex whose facets are obtained by adding a new vertex w to every facet
of A.

Proposition 4. Let V and W be disjoint sets. For each w € W, let Ay, be a (d — 1)-representable
complex on vertex set V. Then the simplicial complex

A=V y U (Ay *w)
weWw

on vertex set V UW is d-representable.

Proof. Pick a full-dimensional polytope P in R? with at least |W| many facets, and choose a point p
in the interior of P. Let {C\, | w € W} be a collection of (d—1)-dimensional simplices, each contained
in the interior of distinct facets of P. For each w € W, let {4y, | v € V'} be a (d — 1)-representation
of A, contained in C,,. Lastly, for each v € V', define

C, < conv ({p} U U Awﬂ,) .

weWw

We claim that the collection {C, | v € V} U{C, | w € W} is a d-representation of A. Clearly
all ¢, share a common point, namely p, and all C, are mutually disjoint from one another. Thus it
suffices to argue for each w € W and o C V' that Cy, contains a point in [, ., C, if and only if o is
a face of A,,. This follows by construction, since the intersection of {C, | v € V'} with C, is exactly
the (d — 1)-representation {A,, | v € V} of Ay, O

Ezample 5. Figure 1 shows the construction in Proposition 4 for the case V= {1,2,3}, W = {4,5,6, 7}
and d = 2. Here each vertex in W “picks out” a l-representable complex on the vertex set {1,2,3}.
Explicitly, Ay is three isolated vertices, As is a 2-simplex, Ag is the 1-simplex on {2, 3}, and A7 has
facets {1,3} and {2,3}. In the figure each C,, is slightly thickened and shown in black, while Cy, Ca,
and C' are slightly transparent.

Proposition 6. For any 0 < m < n we have fg(n) > fg—1(m)"~™.

Proof. We will create fy_1(m)"™ many distinct d-representable complexes on the vertex set [n].
Define V' to be the first m elements of [n], and let W be the last n — m elements of [n]. For each
w € W, let A, be a (d — 1)-representable complex on vertex set V. Observe that we may recover
A, from the d-representable complex A formed in Proposition 4 (in particular, A, is the link of the
vertex w in this complex). Thus every collection {A,, | w € W} of (d — 1)-representable complexes
determines a unique d-representable complex on the vertex set [n]. We have fyz_1(m) choices for each
A, and since we have n — m many vertices in W the bound follows. O

Corollary 7. For every d > 1 and sufficiently large n we have

2
log fa(n) > End logn + O(n?).
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Figure 1: The construction used in Proposition 4.

Proof. We proceed by induction on d. The base case d = 1 follows from Theorem 1, which we will
establish in Section 3. Since the function fy(n) is increasing in n, it suffices to consider the case when
n is a multiple of d. For the inductive step, let m = d%dln. Using Proposition 6 and the inductive

hypothesis, we compute

m

log fy(n) > log fa—1(m
= Tlog fa—1(%5
(@ (7t log(Utn) + O (n" )

) 2 ] (d—l)d71
(d—l)d_l dd—1
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-n%tlogn + O(n?)
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Better lower bound in dimension 2. The choice of the constant d%dl in the definition of m

above is optimal, and so 2/d? is the best constant that can be deduced from the construction in
Proposition 6. However, in Proposition 8 below we will use a slightly different construction to obtain
the constant % when d = 2, which is better than the constant 2% = % from Corollary 7. One can use
the inductive argument in Corollary 7 to prove the lower bound of d%nd logn 4+ O(n), for d > 2, by
using Proposition 8 as the base case. It would be interesting to determine the constant Sy such that

log fa(n) = Ban?logn + O(n).

Proposition 8. For sufficiently large n we have fo(n) > fi(n/4)**/?. In particular, it follows that
log fa(n) > %nQ logn + O(n?) for sufficiently large n.

Proof. Since fa(n) is increasing in n, it suffices to prove the result when n is a multiple of 4, say
n = 4m. We wish to construct fi(n/4)3/? = f;(m)®" distinct 2-representable complexes. Our



c®)
DI l\\C'(Q)
\
A
X A
/1 C
W
B Y F(l)F’E)\\\
F N
g Y N R

Figure 2: (a) The convex regions W, X, Y and Z in R? used in the proof of Proposition 8.
(b) The small secants chosen near each arc.

starting point is an arrangement of closed convex sets W, X, Y and Z in the plane, shown in
Figure 2. These sets have disjoint interiors, and any pair shares a line segment along the boundary.
These line segments are labeled A, B, C', D, E and F in the figure.

Consider replacing each segment by a smooth arc, oriented so that the arc bends closer to the
corresponding label in the figure. Choose m arbitrarily small disjoint line segments A1), A2 A(m)
whose endpoints lie on the arc A. Note that these segments are in convex position, in the sense that
they form a subset of the edges of a convex polygon. Similarly, choose m-many small disjoint line
segments in convex position with endpoints along B, C', D, E and F. We thus obtain 6m line
segments in total. Since these line segments are secants to the arcs A through F, respectively, we call
them simply secants.

By making our arcs sufficiently close to the original line segments and making the secants suffi-
ciently small, we can guarantee the following properties:

(i) For any i € [m], the convex hull of A® U B® UC® does not contain a point in any secant
except for AW, B and €,

(ii) For any i € [m], the secant D) together with all AY)s and all E(®)s forms a collection of 2m + 1

disjoint line segments in convex position.

(iii) Condition (ii) holds, but with (D, A, E) replaced by the triple (E, B, F'). Similarly, it also holds
with (D, A, E) replaced by (F,C, D).



Now, for every i € [m], fix a tuple (A4, AB,,...,Ar;) of 1-representable complexes on the vertex
set [m]. Place a l-representation of A, ; inside the secant A® | Let Agi), e ,A$f) c A® be the line
segments in the representation of A4 ;. Likewise, place 1-representations of all other complexes inside
their corresponding secants, denoting them by B](-i), C](i) and so forth. We obtain 6m 1-representations
arranged in the plane, with m-many near each of the segments A, B,C, D, FE and F.

We now define a 2-representation of a complex A on the vertex set

{Wi, ooy Wy 1y oy Ty YLy o e o s Yy 21y -+ Zm b

which can be regarded as a relabeling of [n]. For any i € [m], define Cy,, = conv(A® U BO U C0),
Moreover, define convex sets

m m
Co, = CODV(D(i) U U AZ(]) U U EZ.(j)>,
j=1 j=1
m m
Cy, d:Cfconv( EW U U BY U U F(] )
j=1
m m
C,, = conv (F(i) U U )
j=1 j=1
Now, by properties (i) and (ii) above, the sets Cy,NCyy,, . . ., Cz,,NCy,, form a 1-representation A 4 ;.
Thus we may recover Ay ; from A: it is the link of wj, restricted to the vertex set {z1,..., 2y }. Sim-
ilar reasoning allows us to recover Ap,...,Ar; (for example, Ap; is the link of z; restricted to the
vertex set {y1,...,Ym})-
Thus every choice of m-many 6-tuples (A, Ap,...,Ap;) of 1-representable complexes on the

vertex set [m] yields a unique 2-representable complex on vertex set [n]. There are fi(m)%™ ways to
choose m-many such 6-tuples, and so the first bound follows. The bound log fa(n) > %nQ logn+0O(n)
follows by taking logarithms and applying Theorem 1. O

3 Interval graphs and interval orders: Proof of Theorem 1

To prove Theorem 1 we will relate the number of interval graphs to the number of interval orders.
Given a tuple (I, ..., I,) of closed intervals, its interval order is the partial order on [n] where i < j
if and only if I; is completely to the left of I;. Observe that one may recover the interval graph
associated to a tuple from the interval order. Indeed, i and j are incomparable if and only if their
intervals overlap, and so the interval graph is the incomparability graph of the interval order.

Surprisingly, it is possible to go in the opposite direction: to turn an interval graph into an interval
order. That leads to to the following result, which shows that f;(n), the number of interval graphs,
is very close to the number of interval orders.

Theorem 9 (Sandwich theorem). Let g(n) denote the number of interval orders on [n]. Then
g9(n —2) < fi(n) < g(n).
The upper bound in Theorem 9 is immediate. For the lower bound, we construct an injective map

{Interval orders on [n — 2]} — {Interval graphs on [n]}.



Compressed representations. To start, we fix a convenient representation for each interval order
on [n — 2|. Namely, a representation is compressed if the following three conditions hold:

(i) Consecutive left endpoints (respectively, right endpoints) are the same.
(ii) The endpoints take values in [2n — 4].

(iii) The subset of integers in [2n —4] that are endpoints of some interval form a consecutive sequence
starting at 1.

Note that we can easily obtain a compressed representation from any representation by first sliding
consecutive endpoints of the same type together, then applying a monotone rescaling and shift to
achieve (ii) and (iii), none of which will change the interval order being represented. We will regard a
compressed representation as a pair of functions L: [n—2] — [2n—4] and R: [n—2] — [2n—4], where
L(7) (respectively, R(7)) is the coordinate of the left (respectively, right) endpoint of the i-th interval.
In a compressed representation, condition (iii) guarantees that left endpoints only occur at odd values,
while right endpoints only occur at even values. With this in mind, it will also be convenient to regard
a compressed representation as a pair of lists A = (Ay, Ag, ..., Ap—2) and B = (B1,Ba,...,B,_2)
where

A= {jen—-2]|L(j)=2i—1}, and

Bi = {j € [n— 2] | R(j) = 2i}.
In other words, A and B record the different endpoints which appear at the various coordinates in
[2n — 4]. Note that we may determine (L, R) from (A, B) and vice versa. Also note that because of
condition (iii), if A; is empty, then so are B; and A;11, and if B; is empty, then so are 4,11 and B;;.

The injective map. Once we have fixed a compressed representation for every interval order
on [n — 2|, we are ready to encode interval orders into interval graphs. Let (L, R) be a compressed
representation of an interval order on [n — 2], and let m < max{R(i) | i € [n — 2]}. We define new

intervals Jq, Jo, ..., J, where

Ji € L3i),R(i)+2] forie|n—2],

def

Jn—1 = [0,1], and
Jn E m+1,m+2).
Finally, let G be the interval graph represented by J = (J1, Ja2,. .., Jn). We claim that we can recover
(L, R) from G. In fact, we will recover (A, B) iteratively.
For any i € [n — 2|, let G; be the graph obtained from G by deleting n — 1, and all vertices in
U};l Bj. In particular, G is the result of deleting only the vertex n — 1. Geometrically, G; is the
interval graph obtained by deleting all intervals in J which lie strictly to the left of 2i + 1, except

possibly J,.

Proposition 10. Fiz i € [n— 3|, and let A be the set of vertices in U;-:l A; which appear in G;. For
each v € A, let N(v) be the closed neighborhood of v in G;. If n is not the only vertex in G;, then



(i) A is not empty,

(ii) the various N(v) for v € A are totally ordered by containment, so there is a unique inclusion-
minimal such neighborhood N,

(iii) B is the set of vertices v € A with N(v) = N, and
(iv) Ait1 is equal to N\ (AU {n}).

Proof. To prove item (i), observe that since G; contains a vertex not equal to n, the set B; must be
nonempty. Any v € B; is a vertex of G, and has L(v) < R(v) = 2i, which implies v € A.

For item (ii), observe that A is exactly the set of v € [n — 2] with L(v) < 2i — 1 and R(v) > 2i.
Given v € A, the right endpoint of J, is R(v) + 2. Among the various vertices u € [n — 2] that appear
in G;, we see that J, intersects J,, if and only if R(v) + 2 > L(u). This happens if and only if u € A
or u € A; for some j satisfying i +1 < j < (R(v) +2)/2. Consequently, for each v € A the set N(v)
is exactly AU U;:;(fgv)w)/z
with J,,). Thus the various neighborhoods of vertices in A are totally ordered by containment, with

Aj, where we use the convention A(,,49)/2 ' {n} (due to intersection

strictly larger neighborhoods arising from strictly larger values of R(v). This proves (ii).

From the above observations, we have N(v) = N if and only if R(v) = 2i, that is, if and only
if v € B;. At the beginning of the proof we observed that if v € B; then v € A. This proves (iii).
Finally, the formula above implies that N = A U A;;1, plus possibly the vertex n. This union is
disjoint, so N\ (AU {n}) = A;41, proving (iv). O

The proposition above implies that if we know G, A4y,..., A;, and By, ..., B;_; (and hence also G;),
then we may compute A;y1 and B;. Note that A; is equal to the neighborhood of n — 1 in G.
Thus, given only G, we may first compute A;, and then apply the proposition repeatedly to obtain
Ay, ..., Ao and By,...,B,_3. Finally, B,_o will simply consist of the vertices missing from all of
the already-computed B;. Thus we recover (A, B) from G, and hence recover our original interval
order. This proves that our map from interval orders to interval graphs is injective, as desired,
concluding the proof of Theorem 9.

Proof of Theorem 1. Brightwell and Keller [4, Theorem 6], building upon earlier works of Zagier
[21] and Bousquet-Mélou, Claesson, Dukes and Kitaev [3], proved that the number g(n) of interval
orders on [n] satisfies

6\" E E
~ (nh2 = B 2L =2
g(n) ~ (nl) \/ﬁ(ﬂz) < ot F 5
where the F; are constants. By applying Stirling’s approximation and simplifying, we obtain

g(n) — €2nlogn7(2+log(7r2/6))n+0(logn)'

Replacing n by n — 2, we see that the same asymptotic holds for g(n — 2). Thus by Theorem 9 we
obtain the same asymptotic equality for fi(n), proving Theorem 1.



4 Collapsible complexes: proof of Theorem 3

In the proof of Theorem 2 we constructed many d-representable complexes by starting with the case

d = 1 and using induction on d. For the inductive step, we merged several (d — 1)-representable

complexes on the same vertex set into a single d-representable complex. It turns out that the very

same operation turns a collection of (d — 1)-collapsible complexes into a single d-collapsible complex.
The following is the direct analogue of Proposition 4 for collapsible complexes.

Proposition 11. Let V and W be disjoint sets. For each w € W, let A, be a (d — 1)-collapsible
complex on vertex set V.. Then the simplicial complex

A=2Vy U (Ay *w)
weW
on the vertex set V.U W is d-collapsible.

Proof. For each w, fix a (d — 1)-collapsing sequence of A,. By adding w to the free faces in this
sequence, we obtain a sequence of d-collapses from A, * w to A,. Since the only faces of A that
contain w are those in A, * w, we may perform this sequence of d-collapses in A to remove all the
faces containing w. After doing this for every w € W, we are left with the simplex 2V, which is
d-collapsible. Thus A is d-collapsible. O

We use the preceding result to construct many d-collapsible complexes by starting with many
1-collapsible complexes.

Theorem 3 (restated). The number gq(n) of d-collapsible complexes on the vertex set [n] satisfies

Wnd—i_l + O(nd) < logy ga(n) < (dil)!”d—i_l + O(nd)'

In particular, gq4(n) = Gl

Proof of the lower bound. Since g4(n) is increasing in n, it suffices to prove that
1
logy ga(n) > Wndﬂ when n is divisible by d + 1. (1)

We prove this by induction on d. When d = 1, g4(n) is the number of labeled chordal graphs on the
vertex set [n], since 1-collapsible complexes are exactly the clique complexes of chordal graphs. Recall
that a split graph is a graph that can be partitioned into a clique and an independent set (with the
edges between being arbitrary). Split graphs are chordal, and one may construct gn*/4 split graphs
on the vertex set [n] by forming a clique on the first half of the vertices and adding arbitrary edges
between the first and second halves. This proves (1) when d = 1.

Assume d > 2. Let V be the first ﬁn vertices, and let W be the remaining #n vertices.
For each vertex w € W, let Ay, be a (d — 1)-collapsible complex on vertex set V. Observe that we
may recover A, from the d-collapsible simplicial complex A defined in Theorem 3, namely A,, is the
link of w in this complex. Thus we obtain a unique d-collapsible complex on the vertex set [n] for
every choice of the various A,,. This implies that gg(n) > gd,l(#‘lln)”/ (@+1)  Taking logarithms and
applying the inductive hypothesis, we obtain the lower bound as follows:

d
log ga(n) > logy (ga-1 (zfrm)™ ™) > Fi7 - do gigan = Gty =

10



Proof of the upper bound. It is well-known (see for example the discussion in [10]) that d-collapsible
complexes satisfy Helly’s theorem, and so are determined by their d-skeleta. Since the d-skeleton of
def n

an n-vertex complex can be specified by which of the N = ( d +1) + (Z) +-+ (8) possible faces belong
to it, it follows the number of d-collapsible complexes on [n] is at most 2V. O

5 Problems and remarks

e Bender, Richmond and Wormald [2] proved that almost all chordal graphs are split, and so the
lower bound on the number of 1-collapsible complexes in Theorem 3 is tight. We suspect that the
lower bound remains tight also in higher dimensions, i.e., that logy gq(n) = Wndﬂ +0(n9)
for all d > 1.

e The lower bound in the Sandwich Theorem (Theorem 9 in Section 3) can be improved to
%g(n —2) < fi(n). To obtain this bound one must first note that the interval graph we
construct has an essentially unique representation by intervals, up to reflection about a common
point. This follows from the fact that the interval graph has no “buried subgraphs” in the sense
of Hanlon [8]. Thus even when we regard the graph as unlabeled, this unique representation
allows us to recognize the vertices n and n — 1 as the outermost intervals, but not to tell these
two vertices apart. Hence, by choosing which two elements of [n] label these vertices, we can
upgrade the injective map in the proof of Sandwich Theorem to a map

{Interval orders on [n — 2]} x {(i,j) € [n]? | i # j} — {Interval graphs on [n]}
that is at most 2-to-1.

e Our results easily extend to the unlabeled case. Indeed, the proof of Sandwich Theorem yields

an injective map
{Unlabeled interval orders on [n — 2]} — {Doubly-rooted interval graphs on [n]}.

So, writing fz(n) and g(n) for the unlabeled versions of f;(n) and g(n), we obtain the inequality
ﬁﬁ(n —2) < fi(n) < g(n). As above, the factor of ﬁ can be upgraded to % by
appealing to Hanlon’s work [8]. Either way, from the enumeration of unlabeled interval orders
[4, Theorem 1] we deduce that fi(n) = emlosn—(1+log(w*/6))n+O0(logn)

Since the number of labeled and the number of unlabeled d-representable complexes differ by
a factor of at most n!, and fy(n) = @087 it follows that fy(n) = e®("1°8n) for d > 2 as

O(ndt+!

well. Similarly, the number of unlabeled d-collapsible complexes is e ) for d > 1, as per

Theorem 3.

e It is natural to consider, instead of the entire nerve, a skeleton thereof. Let fqx(n) be the number
of k-dimensional simplicial complexes that are k-skeletons of some d-representable complex on
the vertex set [n]. This paper treated the case k = d. The case (k,d) = (1,2) was treated in
[12], where it is shown that almost almost every intersection graph of convex sets in the plane
can be partitioned into 4 parts such that 3 of them induce a clique and the 4th one splits into
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two cliques with no edge running between them. The case d > 2k + 1 is trivial because every
k-complex is a k-skeleton of some d-representable complex [17, 13]. We do not know how fg
behaves for any other pair (k, d).

The constructions of large families of d-representable complexes (Propositions 4 and 8) suggest
the following problem. Say that a pair of convex sets C' and C’ are tangent to each other if
there is a point p € 9C N OC" such that both C and C” are smooth at p, have the same tangent
hyperplane at p, but lie on the opposite sides of the hyperplane. Both Propositions 4 and 8
implicitly construct families of (not necessarily distinct) convex sets with many tangencies. For
example, Proposition 8 constructs a family of n convex sets in the plane whose tangency graph

is the complete 4-partite graph with ~ %(g) edges. We do not know if the maximum number

: . Rd 5o dtl(n 2
of tangencies among n convex sets in R is 75 (5) + o(n?).
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