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Abstract. We give a complete combinatorial characterization of weakly d-Tverberg com-

plexes. These complexes record which intersection combinatorics of convex hulls neces-

sarily arise in any sufficiently large general position point set in R
d. This strengthens the

concept of d-representable complexes, which describe intersection combinatorics that arise

in at least one point set. Our characterization allows us to construct for every fixed d a graph

that is not weakly d
′-Tverberg for any d

′ 6 d, answering a question of De Loera, Hogan,

Oliveros, and Yang.

Keywords. Tverberg’s theorem, word representable, d-representable, nerve, general posi-

tion, strong general position, fully independent

Mathematics Subject Classifications. 52A35, 52C45

1. Introduction

Tverberg’s theorem states that any set of (d+ 1)(r− 1) + 1 points in R
d can be partitioned into

r parts so that the convex hulls of these parts share a common point. Over the last five decades

Tverberg’s theorem has inspired numerous extensions and variations [BS18]. Concurrently, in-

tersection patterns of convex sets have been investigated through d-representable complexes,

whose k-dimensional faces correspond to nonempty (k + 1)-fold intersections among a family

of convex sets in R
d [Tan13].

Recall that a simplicial complex is a downward-closed set system. A simplicial complex ∆

consisting of subsets of [n]
def
= {1, 2, . . . , n} is called weakly d-Tverberg if for any sufficiently

large point set P ⊆ R
d in general position there are pairwise disjoint sets P1, . . . , Pn ⊆ P such

that for every σ ⊆ [n] we have that
⋂

i∈σ conv(Pi) 6= ∅ if and only if σ ∈ ∆. Tverberg’s theorem
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states that the (r − 1)-simplex is weakly d-Tverberg for every d > 1, and (d + 1)(r − 1) + 1
points in R

d are sufficient to guarantee the existence of P1, . . . , Pr as above.

De Loera, Hogan, Oliveros, and Yang [DLHOY21] initiated the study of d-Tverberg com-

plexes, which are a restriction of weakly d-Tverberg complexes in which P1, . . . , Pn are required

to partition all of P . Every (weakly) d-Tverberg complex is d-representable, and in [DLHOY21]

it is shown that the converse fails for d = 2. Here we show that the converse fails with arbitrarily

large dimension gap. More precisely, for every fixed d > 1 we construct graphs (which are

3-representable, as follows from more general results of Wegner and Perel'man [Tan13, Section

3.1]) that are not weakly d′-Tverberg for any d′ 6 d. This answers a question raised by De Loera,

Hogan, Oliveros, and Yang.

Theorem 1.1. For every d > 1, there is a graph that is not (weakly) d′-Tverberg for any d′ 6 d.

Along the way to constructing these graphs, we give a complete combinatorial characteri-

zation of weakly d-Tverberg complexes. This characterization will involve finding words whose

letters come from [n], with certain alternating subwords corresponding to faces. Oliveros and

Torres [OT21] were the first to use this approach in the study of d-Tverberg complexes, defin-

ing general d-word-representable graphs and proving that certain families of such graphs—for

example, bipartite graphs—are d-Tverberg for appropriate values of d. Inspired by this strategy,

we define the class of d-colorfully representable complexes (Definition 1.3) and connect their

combinatorics to the geometry of finite point sets in R
d. While Oliveros and Torres primarily

worked constructively, we proceed in the opposite direction: our proof of Theorem 1.1 is based

on combinatorially recognizing obstructions that prevent a graph from being d-Tverberg.

Below, a word is simply a finite list of symbols from some chosen alphabet. A subword is

any word obtained by deleting some (possibly none) of the instances of letters in a word.

Definition 1.2. Let σ ⊆ [n] be a set of size r > 1, and let d > 1. A d-colorful word on alphabet

σ is a word W of length (d+1)(r− 1)+1 such that for every i ∈ [d+1] the restriction of W to

the indices (i− 1)(r− 1)+1 through i(r− 1)+1 inclusive contains every letter from σ exactly

once. We call these segments of consecutive indices blocks in W .

For example, the word 1243421342134 is a 3-colorful word on the alphabet {1, 2, 3, 4}.

Above, we have under- and overlined the four blocks in which every letter must appear exactly

once. We note that d-colorful words also appear in equivalent forms as “rainbow partitions” in

[P1́8] and “colorful Tverberg types” in [BLN17]. The relationship between the combinatorics

of these words and the geometry of Tverberg partitions—a topic which both these papers deal

with—will allow us to completely characterize weakly d-Tverberg complexes.

Definition 1.3. A simplicial complex ∆ ⊆ 2[n] is called d-colorfully representable if there is a

word W on alphabet [n] so that for every σ ⊆ [n], we have σ ∈ ∆ if and only if W contains a

d-colorful subword on alphabet σ.

Theorem 1.4. A simplicial complex is weakly d-Tverberg if and only if it is d-colorfully repre-

sentable.
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The forward direction of Theorem 1.4 is a consequence of the existence of linearly ordered

point sets inRd whose minimal Tverberg partitions correspond to d-colorful words—for example

the “stretched diagonal” of Bukh, Loh, and Nivasch [BLN17]. The converse follows from a

recent universality result of Pór [P1́8] on Tverberg partitions.

Figure 1.1: A simplicial complex and a word that 2-colorfully represents it.

Example 1.5. Consider the simplicial complex with facets 12, 14, and 234 on the vertex set

{1, 2, 3, 4}. This complex is 2-colorfully represented by the word W = 121412432432. Figure

1.1 shows this complex and subwords of W which correspond to the faces. In fact, the figure

only shows subwords corresponding to facets, but a d-colorful word on alphabet σ contains d-

colorful words on every smaller alphabet (see Lemma 5.1), so it suffices to find the maximal

d-colorful subwords.

Remark 1.6. We note that d-colorfully representable complexes naturally extend the definition

of general d-word-representable graphs formulated by Oliveros and Torres [OT21]. A graph is

general d-word-representable if one can find a word whose letters are the vertices of the graph,

and whose alternating subwords of length d+2 correspond to edges of the graph. Hence general

d-word-representable graphs are exactly the 1-skeleta of d-colorfully representable complexes.

In particular, the two notions coincide for triangle-free graphs.

Depending on one’s context, weakly d-Tverberg complexes may be a more natural tool than

d-Tverberg complexes. Weakly d-Tverberg complexes are consistent with the usual approach in

other Ramsey-type results that seek to classify the emergence of substructures locally instead of

global behavior, which is captured by Tverberg complexes in the strong sense.

2. Background

Before proving our main theorems, we first introduce some notation and summarize relevant

background material. The nerve of a collection C = {C1, . . . , Cn} of convex sets is the simplicial

complex

nerve(C)
def
=
{

σ ⊆ [n]
∣

∣

∣

⋂

i∈σ

Ci 6= ∅

}

.

We say that a simplicial complex ∆ ⊆ 2[n] is partition induced on a finite set P of points in

R
d if there is a partition {P1, . . . , Pn} of P so that the collection {conv(P1), . . . , conv(Pn)} has
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nerve equal to ∆. With this terminology we can rephrase the definition of (weakly) d-Tverberg

complexes. Below, a point set P ⊆ R
d is in general position if for every k 6 d+ 1, no set of k

points from P lie on a common (k − 2)-dimensional affine subspace.

Definition 2.1 ([DLHOY21]). A simplicial complex ∆ ⊆ 2[n] is d-Tverberg if there is a constant

C so that ∆ is partition induced on any point set P ⊆ R
d in general position with at least C

points.

Definition 2.2. A simplicial complex ∆ ⊆ 2[n] is weakly d-Tverberg if there is a constant C so

that ∆ is partition induced on a subset of any point set P ⊆ R
d in general position with at least

C points.

We will often order point sets P ⊆ R
d, and regard them as sequences. This allows us to

tie the combinatorics of d-colorful words to the geometry of Tverberg partitions. A Tverberg

partition of a finite point sequence is a collection of disjoint subsequences whose convex hulls

share a common point. Note that we are abusing terminology slightly, since a Tverberg partition

is not necessarily a partition of the entirety of our original sequence. A Tverberg partition is

called minimal if deleting any point yields a collection of subsequences whose convex hulls

no longer share a common point. The following multipartite generalization of Kirchberger’s

theorem, first proved by Pór [P9́8], implies that every minimal Tverberg partition with r parts in

R
d consists of at most (d + 1)(r − 1) + 1 points in total (see also the work of Arocha, Bárány,

Bracho, Fabila, and Montejano [ABB+09, Cor. 4]).

Proposition 2.3. Let P1, . . . , Pr be disjoint subsets of Rd. Then
⋂r

i=1 conv(Pi) 6= ∅ if and only

if there exist P ′

i ⊆ Pi so that
⋂r

i=1 conv(P
′

i ) 6= ∅ and
⋃r

i=1 P
′

i contains at most (d+1)(r−1)+1
points.

Given a collection of disjoint subsequences P1, . . . , Pr of a sequence P , one can form a word

on alphabet [r] by associating the points of Pi with the letter i for every i ∈ [r], and writing down

the sequence of these letters as they appear in P from start to end. We say that P1, . . . , Pr is a

d-colorful partition if this word is d-colorful. In particular, a d-colorful partition will consist of

exactly (d+1)(r− 1)+1 points in total. Again note the slight abuse of terminology: a colorful

partition is only a partition of a subset of the original sequence.

There are arbitrarily large point sequences in R
d whose minimal Tverberg partitions are ex-

actly the d-colorful partitions. One example is a collection of points on the moment curve,

chosen so that their coordinates increase heavily (see [P1́8, page 4] for a discussion). Another

example, provided by work of Bukh, Loh, and Nivasch [BLN17, Section 4], is the diagonal of

the stretched grid.

A further important fact, established by Pór [P1́8, Theorem 1.7], is that for every positive

integer m, any sufficiently large point sequence in strong general position in R
d contains a sub-

sequence of length m whose minimal Tverberg partitions are exactly the colorful ones. Strong

general position means, informally, that affine hulls of subsets of the point set intersect generi-

cally (see Definition 2.4).

We wish to apply Pór’s result to point sequences that are only in general position. To do

this, it suffices to argue that for every n, any sufficiently large general position set must contain a
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subset of n points in strong general position. The natural approach to proving this is to build up

a strong general position subset of a general position set in an iterative, greedy way. However,

one can become “stuck” when taking this approach: Doignon and Valette [DV77] showed that in

dimension d = 5 there exists a finite set in strong general position that is maximal. The following

section will circumvent this subtlety.

2.1. Large general position sets contain large strong general position subsets.

To start, we recall the formal definition of strong general position.

Definition 2.4. A finite set P ⊆ R
d is said to be in strong general position if for any r > 1 and

any pairwise disjoint subsets P1, . . . , Pr ⊆ S we have that

dim
r
⋂

i=1

aff(Pi) = max

{

−1, d−
r
∑

i=1

(d− dim aff(Pi))

}

. (?)

When R
d is regarded as a subset of RPd and affine hulls are replaced by projective hulls in the

above expression, we obtain the analogous notion of being fully independent [DV77].

Perhaps surprisingly, strong general position and full independence are not comparable no-

tions. To see this, first observe that the set of vertices of a parallelogram in R
2 is not in strong

general position (opposite sides span parallel lines) but this set is fully independent. On the other

hand, Doignon and Valette [DV77] constructed a 5-dimensional set with 12 points which is in

strong general position, and is not fully independent. Moreover, they showed that such sets are

exactly the maximal sets in strong general position. That is, a strong general position set is not

fully independent if and only if it is inclusion-maximal among strong general position sets.

We wish to establish that every sufficiently large general position set contains a relatively

large strong general position subset. It turns out that it is more straightforward to establish the

analogous result for sets that are both in strong general position and fully independent.

Theorem 2.5. For every n > 1 and d > 1, there exists N = N(n, d) > 1 so that every set of N

points in general position in R
d contains a subset of n points that is in strong general position

and fully independent.

Proof. Fix a set Q ⊆ RPd consisting of d points whose projective hull is the hyperplane at infin-

ity. Our starting point is the observation that if P ⊆ R
d is such that P ∪Q is fully independent,

then P is both fully independent and in strong general position. Indeed, P is fully independent

because P ∪ Q is, and the only way that P can fail to be in strong general position is for P

to contain disjoint subsets P1, . . . , Pr so that
⋂r

i=1 proj(Pi) is nonempty and contained in the

hyperplane at infinity—if this intersection contains any real points, then the intersection of the

corresponding affine hulls would have the same dimension, satisfying (?). But then observe that

proj(Q)∩
⋂r

i=1 proj(Pi)would be equal to
⋂r

i=1 proj(Pi), when it should in fact have dimension

one less, contradicting the fact that P ∪Q is fully independent.

With this observation in hand, it will suffice to argue that for every n > 1 and d > 1, there

exists a constant N = N(n, d) so that every set of N points in general position in R
d contains

a subset P of size n so that P ∪ Q is fully independent. To establish this, we argue that there



6 Florian Frick, R. Amzi Jeffs

is a constant C(n, d) so that if P ⊆ R
d contains n − 1 points and P ∪ Q is fully independent,

then any general position set X ⊆ R
d of size C(n, d) has p ∈ X so that P ∪ {p} ∪ Q is also

fully independent. The choice N(n, d) =
∑n

i=1 C(i, d) is then sufficient to prove the theorem

inductively. From the first N(n− 1, d) =
∑n−1

i=1 C(i, d) points in general position, we extract a

point set P of size n− 1, and the remaining C(n, d) points allow us to extract one further point

so that we have n points in total whose union with Q is fully independent.

To prove the existence of C(n, d), it suffices to argue that the set of points in R
d that can be

added to P ∪Q to obtain a larger fully independent set are those in the complement of a union

of subspaces with positive codimension, where the number of such subspaces depends only on

n and d. Doignon and Valette [DV77, Lemma 1] showed that if Z ⊆ RPd is fully independent

and a point p avoids all proper subspaces of the form

proj

(

Zr ∪

r−1
⋂

i=1

proj(Zi)

)

where Z1, . . . , Zr are disjoint subsets of Z, then Z ∪ {p} is also fully independent. Setting

Z = P ∪Q, we see that the number of subspaces that must be avoided is at most the number of

tuples of disjoint subsets of P ∪Q, which depends only on n and d, establishing the result.

The following theorem was proved for point sets in strong general position by Pór [P1́8], and

Theorem 2.5 allows us to state the result for point sets in general position.

Theorem 2.6 ([P1́8, Thm. 1.7]). Given d,m, r ∈ N with r > 2, there is N = N(d,m, r) ∈ N

such that every sequence of length N in R
d in general position contains a subsequence of length

m whose minimal Tverberg partitions are exactly the colorful ones.

3. Characterizing Weakly d-Tverberg Complexes

Lemma 3.1. Let P = (p1, p2, . . . , pm) be a sequence in R
d whose minimal Tverberg partitions

are exactly the d-colorful ones. A simplicial complex ∆ ⊆ 2[n] is partition induced on P if and

only if ∆ is d-colorfully represented by a word W of length m.

Proof. First suppose that ∆ is partition induced on P , say by a partition {P1, . . . , Pn}. Let W

be the word on [n] whose i-th letter is the unique j so that pi ∈ Pj . In other words, W is the

word obtained by labeling the points in P in sequence according to which part of the partition

they belong to. We claim that W d-colorfully represents ∆.

To prove this, let σ ⊆ [n]. We aim to show that σ is a face of ∆ if and only if W contains

a d-colorful subword on alphabet σ. Note that σ is a face of ∆ if and only if {Pj | j ∈ σ} is a

Tverberg partition. Since the minimal Tverberg partitions of P are exactly the colorful ones, we

conclude that σ is a face of ∆ if and only if there are P ′

j ⊆ Pj so that {P ′

j | j ∈ σ} is a d-colorful

Tverberg partition. The letters corresponding to points in the various P ′

j will form a d-colorful

subword of W on alphabet σ, and conversely such a d-colorful subword allows us to construct

appropriate P ′

j . This proves the first half of the lemma.
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For the converse, suppose that ∆ is d-colorfully represented by some word W with length

m. Define a partition {P1, . . . , Pn} of P , where Pj consists of the points pi so that the i-th letter

of W is j. A similar analysis shows that ∆ is partition-induced on P by this partition, proving

the result.

Theorem 1.4. A simplicial complex is weakly d-Tverberg if and only if it is d-colorfully repre-

sentable.

Proof. Let ∆ be a simplicial complex on the vertex set [n]. First suppose that ∆ is weakly

d-Tverberg. Choose a large sequence of pointsP inRd whose minimal Tverberg partitions are the

d-colorful partitions. By choosing P large enough, we can guarantee that ∆ is partition-induced

on a subsequence of P . A subsequence also has the property that its minimal Tverberg partitions

are exactly the d-colorful ones, and so Lemma 3.1 implies that ∆ is d-colorfully representable.

For the converse, suppose that ∆ is d-colorfully representable by a word W of length m.

By Theorem 2.6 every sufficiently large point sequence in general position in R
d contains a

subsequence of length m whose Tverberg partitions are exactly the colorful ones. Lemma 3.1

then implies that ∆ is partition-induced on this subsequence, so ∆ is weakly d-Tverberg. This

proves the result.

4. A Graph That Is Not Weakly d-Tverberg

We begin by introducing some additional notation. Given a word W on alphabet σ, let ∆d(W )
be the simplicial complex

∆d(W )
def
= {τ ⊆ σ | W contains a d-colorful subword on τ}.

In other words, ∆d(W ) is the simplicial complex1 that is d-colorfully represented by W . If W is

any word, let red(W ) denote the reduced word formed by deleting any consecutive occurrences

of the same letter. Observe that ∆d(W ) = ∆d(red(W )). Finally, if W is a word on alphabet σ,

and τ ⊆ σ, let W (τ) denote the restriction of W to τ , which is obtained by deleting all letters

not in τ . Note that ∆d(W (τ)) is the induced subcomplex of ∆d(W ) on vertex set τ .

Fix d > 1. For a positive integer n, let K(n)
def
= n(n−1)(d+2)2+1. Choose a fixed n large

enough that 2n >
(

K(n)
(d+2)2

)

, noting that this is possible because the latter quantity is polynomial

in n. From here on, we let K denote K(n) for our fixed choice of n. Now define a bipartite

graph Gd on a vertex set AtB as follows. First, A is simply a set of size n. The second part B

consists of 2n(2K + 1) vertices: for every σ ⊆ A, the part B contains 2K + 1 copies of a vertex

whose neighborhood is exactly σ.

We aim to prove the following result, from which Theorem 1.1 will follow.

Theorem 4.1. The graph Gd is not d′-colorfully representable for d′ 6 d.

1It is not a priori obvious that ∆d(W ) is a simplicial complex, but this follows from Lemma 5.1, which we

explain in our concluding remarks.
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The remainder of this section is dedicated to proving the theorem above. Since Gd contains

an isomorphic copy ofGd′ as an induced subgraph for every d′ 6 d, it will suffice to prove thatGd

is not d-colorfully representable. For contradiction, assume thatGd is d-colorfully representable,

and let W be a word that d-colorfully represents it. For the remainder of this section we treat W

as fixed.

Note that W is a word whose letters come from A tB, where A and B are the two parts of

the vertex set of Gd as defined above. Throughout this section we typically refer to elements of

A t B as “letters” since we are considering instances of them in the word W , though they are

also vertices of the graph Gd.

Chunks. We will often examine W (A), the restriction of W to the set of letters in A. A chunk in

W (A) is a maximal subword consisting of consecutive instances of the same letter. Note that a

chunk could consist of only a single letter. We will regard the letters in a chunk interchangeably

as letters in W and letters in W (A).

Claim 1: W (A) contains no more than n(n− 1)(d+2) distinct chunks. Hence red(W (A)) has

length at most n(n− 1)(d+ 2).

Proof of Claim 1: If W (A) has more than n(n− 1)(d+2) chunks, then red(W (A)) has length

larger than n(n − 1)(d + 2). Then some letter a appears more than (n − 1)(d + 2) times in

red(W (A)). Since consecutive letters in red(W (A)) are distinct, there are at least (n−1)(d+2)
gaps between the instances of a, filled by the remaining n − 1 letters. But then by pigeonhole

principle some remaining letter a′ 6= a appears in at least d+ 2 distinct gaps. Thus red(W (A))
(and hence W (A), and hence W ) contains a d-colorful subword on alphabet {a, a′}. Hence aa′

is an edge in Gd, contradicting the fact that A is an independent set in Gd.

Insertion patterns. Let b ∈ B. Observe that W (A ∪ {b}) is a d-colorful representation of the

induced subgraph of Gd on vertex set A ∪ {b}. Let Ib be a word obtained by deleting as many

instances of b from W (A ∪ {b}) as possible without changing the graph that it d-colorfully

represents. There could be many possibilities for Ib, but we will fix one from here on. We call

our fixed Ib the insertion pattern of b.

Note that Ib determines the neighborhood of the vertex b in Gd. Also note that when forming

Ib we never delete letters from A, and consequently we can regard the chunks of W (A) canon-

ically as subwords of Ib. Hence we will speak below of “chunks in Ib.” Finally, observe that at

most one instance of b occurs between two consecutive chunks in Ib—any further occurrences

would be redundant.

Chunk containment. An instance of b that occurs in Ib is contained in a chunk if there are

letters from that chunk both to its left and to its right. Note that each instance of b that occurs in

Ib is contained in at most one chunk, and could be contained in no chunks if it lies between two

adjacent chunks, or at the beginning or end of Ib.

Claim 2: Let W be the word obtained from W (A) by shortening every chunk to have length at

most d+ 2. Then for every b ∈ B, red(Ib) can be obtained by inserting non-consecutive copies

of b into W, and reducing the resulting word.
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Proof of Claim 2: We first claim that for any b ∈ B, no chunk in Ib contains more than d + 1
copies of b. Suppose for contradiction that some chunk consisting of copies of a letter a ∈ A

contains more than d + 1 copies of b. None of these copies of b are consecutive (otherwise we

could delete one without changing∆d(Ib)) and hence this chunk contains an alternating subword

on {a, b} of length at least 2d + 3 > d + 2. We now observe that we could delete a copy of

b from this chunk without changing the complex ∆d(Ib). Indeed, the remaining copies of b in

the chunk would still form an alternating subword of length d + 2 with a, and any alternating

subwords involving b and a letter a′ 6= a can use at most one copy of b from this chunk, and so

deleting one of the copies of b does not disrupt these alternating subwords either. There are no

d-colorful subwords on alphabets of size three or more in Ib, since ∆d(Ib) is a graph. We chose

Ib so that deleting any copy of b would change ∆d(Ib), and so we have arrived at a contradiction.

Since no chunk in Ib contains more than d + 1 copies of b, at most d + 2 letters from each

chunk are preserved in red(Ib). In particular, red(Ib) restricted to A is a subword of W, and

red(Ib) can thus be obtained from W by inserting copies of b and then reducing. Since red(Ib)
is reduced, we need not insert any consecutive copies of b. Hence the claim follows.

Claim 3: There exists σ ⊆ A so that for every b ∈ B with neighborhood σ, red(Ib) contains at

least (d+ 2)2 instances of the letter b.

Proof of Claim 3: Suppose for contradiction that every σ ⊆ A admits some b ∈ B with

neighborhood σ and red(Ib) containing fewer than (d+2) copies of b. Now, consider the process

described in Claim 2. The word W has length at most n(n− 1)(d+2)2 by Claim 1. Hence each

instance of b has at most K = n(n− 1)(d+2)2+1 places it can be inserted, and by Claim 2 the

choices of where to insert b determine red(Ib). With at most (d+2)2 instances of b to insert, we

obtain at most
(

K

(d+2)2

)

distinct possibilities for red(Ib), even as σ varies over the 2n >
(

K

(d+2)2

)

possible subsets of A. This contradicts the fact that σ can be recovered from red(Ib), and the

claim follows.

Claim 4: For any σ ⊆ A, there exist distinct letters b, b′ ∈ B whose neighborhood is σ, and

which have red(Ib) and red(Ib′) identical, up to replacing b by b′.

Proof of Claim 4: We again use Claim 2. There are at most 2K ways to insert copies of a letter b

intoW, but we constructedGd so that there are more than 2K vertices with neighborhood exactly

σ. Hence at least two of them have the same reduced insertion patterns.

Claim 5: Let σ ⊆ A be as in Claim 3, and let b and b′ be as in Claim 4 with this choice of σ.

Then W contains a d-colorful subword on the alphabet {b, b′}.

Proof of Claim 5: We have two relevant facts. First, red(Ib) and red(Ib′) are the same up to

replacing b by b′. Second, each of these reduced insertion patterns contains at least (d + 2)2

instances of b and b′ respectively. By Claim 2, the longest consecutive sequence in red(Ib)
which consists of b alternating with some letter a ∈ A has length at most d + 2. For each such

sequence, let us delete all alternations except for one, obtaining a new word Wb. Note that Wb

still has at least d + 2 copies of b in it, and instances of letters from A in Wb are in one-to-one

correspondence with chunks in W (A).
Let Wb′ be obtained by performing the corresponding deletions in red(Ib′). Each instance

of b in Wb (respectively, b′ in Wb′) can be associated to an instance of b (respectively, b′) in our
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original word W . Let W ′ be the subword of W on these instances of b and b′. Note that W ′

has length at least 2(d + 2), and does not contain three consecutive instances of b (respectively

b′) since each instance of b is paired with an instance of b′ which appears within or between the

same chunks in W . Hence red(W ′) has length at least d+ 2, and is a d-colorful subword of W

on alphabet {b, b′}. This proves the claim.

Summary. We argued that red(W (A)) has bounded length, and used this fact to show that there

must be some σ ⊆ A so that every letter in B with neighborhood σ appears a large number of

times, even when we forget the other letters in B and delete duplicate copies. Since there are

many letters in B with neighborhood σ, we were able to argue that two of them must appear

with the same patterns. In Claim 5 we showed that these identical patterns imply a d-colorful

subword of W on these two letters. But this is a contradiction, since there is not an edge between

these two letters in Gd. Hence Gd is not d-colorfully representable. This proves Theorem 4.1,

and hence Theorem 1.1.

5. Concluding Remarks and Questions

We conclude by establishing some basic facts about d-colorfully representable complexes and

(weakly) d-Tverberg complexes, and raising several questions. First, we show that any d-colorful

word on alphabet σ contains a d-colorful subword on every alphabet τ ⊆ σ. This implies that

every word d-colorfully represents some simplicial complex; that is, given a wordW on alphabet

[n], the set of σ so that W contains a d-colorful subword on σ actually does form a simplicial

complex, as we would hope. One could prove this fact geometrically by way of Lemma 3.1—

a colorful word on σ would give a Tverberg partition of a point set whose minimal Tverberg

partitions are colorful, and deleting a part would yield Tverberg partition with fewer parts, then

the lemma applied in converse would yield a colorful subword on a smaller alphabet. Below, we

give a purely combinatorial proof.

Lemma 5.1. If W is a d-colorful word on alphabet σ, then W contains a d-colorful subword

on τ for any τ ⊆ σ.

Proof. It suffices to prove the result when τ = σ\{i} for some i ∈ σ. Consider the (d+1)-many

blocks of length r in W , which overlap at d-many indices. Whenever i occurs at an overlap

index, let j be the letter immediately preceding it. We delete i and the occurrence of j in the

block starting at the overlap index. Further, we delete all other occurrences of i (these did not

appear at overlap indices in the original word).

We have deleted d+1 letters in total (one for each block that contains letter i in its “interior”,

and two for every pair of blocks which overlap with letter i) so we have obtained a word W ′ of

length (d+1)(r−2)+1. We claim thatW ′ is a d-colorful word on alphabet σ\{i}. Consider any

two consecutive blocks in the original word. After deletions, these become consecutive blocks

in W ′. We consider several cases.

If the original blocks overlapped with letter i, then the new blocks overlap at the letter imme-

diately preceding i in the original word, and our choice to delete the second occurrence of this

letter guarantees that the new blocks contain each letter from σ \ {i} exactly once. Otherwise,
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the original blocks did not overlap at letter i. In this case, the second block is altered only by

deleting the letter i, and so contains every letter from σ \ {i} exactly once. The first block is

altered by deleting letter i, and possibly another letter j, if i is the first letter in the block. If we

delete the letter j, our choice of j guarantees that it now appears at the first index in the new

block. In either case, the first block contains every letter from σ \{i} and the result follows.

Lemma 5.1 lets us quickly prove that every complex is d-colorfully representable for d large

enough. When combined with Theorem 1.4 we obtain the corollary that every complex is weakly

d-Tverberg for d large enough. The proof below is analogous to Oliveros and Torres’ proof that

every graph is general d-word-representable for d large enough [OT21, Proposition 2].

Proposition 5.2. Every simplicial complex ∆ with m facets is (m+1)-colorfully representable.

Proof. Let σ1, . . . , σm be the facets of ∆, and for each i ∈ [m] let Wi be an (m + 1)-colorful

word on alphabet σi. Consider the word W
def
= W1W2 · · ·Wm obtained by concatenating these

colorful words. We claim that ∆ is (m+ 1)-colorfully represented by W .

Clearly W contains an (m + 1)-colorful word on alphabet σ for every σ ∈ ∆. For the

reverse containment, let F be any non-face of ∆. Suppose for contradiction that F is a face of

∆m+1(W ). Then W contains an (m + 1)-colorful subword WF on alphabet F . The word WF

has m + 1 blocks of length |F |, each overlapping at their endpoints and containing the letters

of F exactly once. Since F is not a face of ∆, none of the blocks in WF can consist of letters

from a single Wi. Thus the rightmost letter of the first block in WF must appear after W1 in W ,

and more generally the rightmost letter of the i-th block in WF must appear after Wi in W . But

W is comprised of only m-many Wi’s, while WF has m + 1 blocks. Thus we have arrived at a

contradiction, and we conclude that ∆ is d-colorfully representable as desired.

Corollary 5.3. Every simplicial complex with m facets is weakly (m+ 1)-Tverberg.

Recall that a cone is a simplicial complex whose facets all share at least one common vertex.

We note that the classes of d-Tverberg complexes and weakly d-Tverberg complexes coincide for

cones. Combined with the corollary above, we obtain that every cone is d-Tverberg for d large

enough.

Proposition 5.4. Let ∆ be a simplicial complex that is a cone. Then ∆ is d-Tverberg if and only

if ∆ is weakly d-Tverberg.

Proof. Every d-Tverberg complex is also weakly d-Tverberg, so we only need to argue that if

∆ is weakly d-Tverberg then it is d-Tverberg. Let P be a point set in R
d which is large enough

that ∆ is partition induced on some subset S of P . By adding the points of P \ S to the part

corresponding to the cone vertex in ∆, we obtain a partition of the entire point set P inducing

the same nerve.

Corollary 5.5. Every cone with m facets is (m+ 1)-Tverberg.

We conclude by explaining that being weakly d-Tverberg is a monotone property in the pa-

rameter d. We are grateful to Attila Pór for pointing out the proof of this result, which we

originally posed as a question.
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Proposition 5.6. If ∆ ⊆ 2[n] is d-colorfully representable, then it is also (d + 1)-colorfully

representable. In particular, if ∆ is weakly d-Tverberg then ∆ is also weakly (d+ 1)-Tverberg.

Proof. Let W be a word on [n] which d-colorfully represents ∆. By applying a permutation, we

may assume that if i < j, then the first instance of i in W appears before the first instance of j.

Then consider the word W ′ which is obtained from W by concatenating all letters from [n] in

reverse order to the beginning of W . That is, W ′ def
= n(n− 1)(n− 2) · · · 321W .

Observe that if W contains a d-colorful word on alphabet σ, then W ′ must also contain a

(d + 1)-colorful word on σ, since we may use our newly concatenated letters to add one more

block to any d-colorful subword of W . Moreover, we claim that the converse holds. If W ′′

is a (d + 1)-colorful subword of W ′ on alphabet σ, then the only letters of W ′′ that are not

from W appear in the first block of W ′′. If the letter where the first and second blocks of W ′′

overlap comes from W , then we immediately obtain a d-colorful subword of W on alphabet

σ. Otherwise, the letter where this overlap occurs is equal to the minimum of σ. But then an

instance of this letter occurs in W before all instances of other letters in σ. Hence we also obtain

a d-colorful subword of W on σ in this case. This proves the result.

Our results above motivate several further questions, which we pose below. For the third ques-

tion, note that it is at least a decidable problem to determine whether or not a simplicial complex

is weakly d-Tverberg, since a word that d-colorfully represents it requires a bounded number

of letters to represent each face. However, it is not known if one can algorithmically decide

whether or not a simplicial complex is d-Tverberg. If recognizing d-Tverberg complexes is an

undecidable problem, this would additionally provide a negative answer to our second question

below.

Our construction of bipartite graphs that are not d-Tverberg used a very large number of

vertices. It is likely that there are much smaller bipartite graphs that are not d-Tverberg, and for

d = 3 Oliveros and Torres [OT21] proposed a candidate on ten vertices, motivating our fourth

question.

1. Is every d-Tverberg complex also (d+ 1)-Tverberg?

2. Do the classes of d-Tverberg and weakly d-Tverberg complexes coincide?

3. For a fixed d > 2, what is the computational complexity of deciding whether or not a

given simplicial complex is (weakly) d-Tverberg?

4. How many vertices are needed to construct a bipartite graph that is not 3-Tverberg?
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