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GROMOV-HAUSDORFF DISTANCES, BORSUK-ULAM THEOREMS,
AND VIETORIS-RIPS COMPLEXES
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ABsTRACT. We explore emerging relationships between the Gromov-Hausdorff distance, Borsuk—
Ulam theorems, and Vietoris—Rips simplicial complexes. The Gromov—Hausdorff distance between
two metric spaces X and Y can be lower bounded by the distortion of (possibly discontinuous)
functions between them. The more these functions must distort the metrics, the larger the Gromov—
Hausdorff distance must be. Topology has few tools to obstruct the existence of discontinuous
functions. However, an arbitrary function f: X — Y induces a continuous map between their
Vietoris—Rips simplicial complexes, where the allowable choices of scale parameters depend on how
much the function f distorts distances. We can then use equivariant topology to obstruct the
existence of certain continuous maps between Vietoris—Rips complexes. With these ideas we bound
how discontinuous an odd map between spheres S¥ — S™ with & > n must be, generalizing a
result by Dubins and Schwarz (1981), which is the case k = n + 1. As an application, we recover
or improve upon all of the lower bounds from Lim, Mémoli, and Smith (2022) on the Gromov—
Hausdorff distances between spheres of different dimensions. We also provide new upper bounds

on the Gromov—Hausdorff distance between spheres of adjacent dimensions.

1. INTRODUCTION

The Gromov-Hausdorff distance between metric spaces X and Y, denoted by dgu(X,Y), quan-
tifies the extent to which X and Y fail to be isometric. The Gromov—Hausdorff distance is used in
many areas of geometry [24, 32, 34, 75|. In applications to shape and data comparison/classification,
one desires to estimate either the Gromov-Hausdorff distance between spaces |70, 71, 67] or the
Gromov—Wasserstein distance [68, 87, 76, 13|, which is one of its optimal transport induced variants.
However, both distances are hard to compute, both analytically and algorithmically [69, 82, 83, 12].
Despite the interest in this type of distances, exact values of the Gromov—Hausdorff distance are
known in only a small number of cases; see Section 2.

Our paper is the result of a polymath-style collaboration, which began as an attempt to explain

the following motivating question. In [64], Lim, Mémoli, and Smith prove the first strong bounds
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for the Gromov-Hausdorff distance between spheres of different dimensions. We were surprised to
observe that the values in [64] (see Table 1) had recently appeared in the literature in a different
context, namely as the scale parameters when Vietoris—Rips complexes of spheres change homotopy
type. The Vietoris—Rips complex VR(X;r), which coarsens a metric space X with respect to
some scale parameter r > 0, is commonly used in applied topology to approximate the shape
of a dataset [26], and has its historical origins in algebraic topology [90] and geometric group
theory [48]. The lower bound 2 - dgu(S™, S™™!) > r, from [64] reminded us of the fact that the
first change in homotopy type of VR(S™;r) occurs when r = r, |3, 63, 57|, where r,, is the geodesic
distance between two vertices of the regular (n + 1)-simplex inscribed in S™. Similarly, the equality
2 - dgu(S',5?) = 2 deu(St,5%) = ri = % from [64] reminded us of the homotopy equivalence
VR(SY; 2 +¢) ~ $3 from |1, 5, 74].

Motivating Question. What is the connection between the Gromov—Hausdorff distance between
spheres and Vietoris—Rips complexes of spheres?

To provide an answer to this question’, we combine and extend two generalizations of the Borsuk—
Ulam theorem: one by Dubins and Schwarz [38] used in Lim, Mémoli and Smith [64] to study the
Gromov—Hausdorff distance, and the second by Adams, Bush, and Frick [5, 6] on the equivariant
topology of Vietoris—Rips complexes. The Borsuk—Ulam theorem, a classic result in equivariant
topology, states that there is no continuous Z/2 equivariant map f: S¥ — S™ for k > n [66]. Here
the Z/2 action on each sphere is the antipodal map, and f is called Z/2 equivariant or odd if it
commutes with the Z/2 actions; that is, if f(—2) = —f(z) for all z € S*.

We relate Gromov—Hausdorff distances, Borsuk—Ulam theorems, and Vietoris—Rips complexes as
follows. Estimating the Gromov—Hausdorff distance dgp(X,Y’) involves bounding the distortion
dis(f) of a (possibly discontinuous) function f : X — Y, which measures the extent to which f
fails to preserve distances: the more that functions between X and Y must distort the metrics, the
larger dgu(X,Y) must be. When X and Y are spheres, Lim, Mémoli and Smith [64] show that it
suffices to consider odd functions; this is the so-called “helmet trick”. We transform an odd function
f: 8% — S™ into a continuous odd map [VR(S¥;7)| — |[VR(S™;r + dis(f))| for any r > 0, letting
the Vietoris—Rips complexes absorb discontinuities. We then obstruct the existence of such maps
with the equivariant topology of Vietoris—Rips complexes, measured via the following quantity.

Definition 1.1. For k > n, we define c,, , := inf{r > 0 | there exists an odd map S* — VR(S";r)}.

Due to a theorem of Hausmann [50], we have a homotopy equivalence VR(S™;r) ~ S™ for
sufficiently small 7, and moreover there is an odd map VR(S™;r) — S™. The Borsuk—Ulam theorem
then implies that no odd map S* — VR(S™;r) exists for such r unless & < n. In particular, cnn =0,
but ¢, > 0 for k > n. Therefore, intuitively, the quantity ¢, j represents the amount by which S™
needs to be “thickened” until it admits an odd map from S*.

Our main result is the following lower bound on dgy (S™, S*).
Main Theorem. For all k > n, the following inequalities hold:
2. dau(S™, S%) > inf {dis(f) | f: 8% = S is odd} > inf {r > 0|3 odd S* — VR(S“;T)} = e

1See Section 2 for other connections, including the stability of persistent homology.
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TABLE 1. Bounds for the quantity 2-dgy(S™, S*) for small values of n and k. Here
Tp = arccos ({—ﬁ) and ¢, = inf{r > 0 | 3 an odd map S* — VR(S™;r)}. The
entries in black appear in [64, Figure 2|, and the entries in blue are new. Our Main
Theorem recovers or improves upon all known lower bounds, and the upper bound

by %’r along the superdiagonal is established in Theorem 1.2.

Let us explain the two inequalities in our Main Theorem, and compare them to existing results.
The first inequality in our Main Theorem is the aforementioned “helmet trick” by Lim, Mémoli,
and Smith [64, Lemma 5.5|, which states that to bound dgu(S™, S*), it is enough to consider the
distortion of odd functions. Lim, Mémoli, and Smith then prove that the distortion of any such
function is bounded below by r,, using Dubins and Schwarz’s generalization of the Borsuk—Ulam
theorem mentioned above [38] (more details will be described below). This implies 2-dgu(S™, S¥) >
ry for all k& > n. Combining this with explicit constructions of upper bounds, they proved that
2 - dau(S™, S¥) = r, holds exactly for n < k < 3 and gave nontrivial bounds in all dimensions.
Despite these tight results, one unsatisfactory feature of the general lower bound 2-dgn (S™, S¥) > r,
for k£ > n is that the right-hand side does not depend on k, whereas it is known that for n fixed
and k — oo, 2 - dgu(S™, S¥) — 7 > r, [64, Proposition 1.8]. The present paper establishes lower
bounds which improve upon these.

The second inequality in our Main Theorem, which we prove in Section 4, lower bounds the
distortion of an odd map S* — S™ with k£ > n in terms of the equivariant topology of Vietoris—
Rips complexes of spheres. The motivation for studying odd maps S* — VR(S™;7) comes from
Adams, Bush, and Frick [6], who observe the following. Even though we do not have a complete
understanding how the homotopy types of VR(S™;r) change as the scale parameter r increases, we
can control the equivariant topology of VR(S™;r) in terms of packings and coverings in projective
space. In particular, if there exists a sufficiently efficient covering of RP™ by k points, then there does
not exist an odd map S*¥ — VR(S™;r) [6], which allows us in Section 5 to estimate the quantity
cpk in terms of the covering number of k points in RP™. In this same section we furthermore
determine some values of ¢, j, exactly using the current limited understanding of the homotopy types
of VR(S™; 7). When combined together, these estimates show that the lower bound 2-dgy(S™, S¥) >

Cn,k from our Main Theorem is never worse (and frequently improves upon) those from [64]; see
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Remark 5.5 and Table 1. In Section 6, we supplement these new lower bounds with the following
upper bounds when k£ = n + 1 (which improve upon those from [64]).

Theorem 1.2. For every n > 1, we have 2 - dgu(S™, S"11) < 2?”

The second inequality of the Main Theorem is of independent interest due to its relationship with
the following natural question: the Borsuk—Ulam theorem asserts that there exists no continuous
odd map from S* — 8™ for k > n, so given an odd function from S*¥ — S™, how discontinuous
must it be? In [38], Dubins and Schwarz quantify the discontinuity of odd functions S"*! — S™ by
showing that the modulus of discontinuity of any odd function S"*! — S™ is at least r,,. Moreover,
they exhibit a function which realizes this bound. In Section 7 we generalize the Dubins—Schwarz
inequality, by adapting the proof of the second inequality in the Main Theorem to use the modulus
of discontinuity instead of the distortion.

Theorem 1.3 (Generalized Dubins-Schwarz inequality). Any odd function f: S¥ — S™ with k > n
has modulus of discontinuity at least cy 1, and this bound is tight. In particular, for every e > 0,

there exists an odd function S* — S™ with modulus of discontinuity Cnk + €.

In summary, this paper explores and combines emerging relationships between the Gromov—
Hausdorff distance, Borsuk—Ulam theorems, and Vietoris—Rips simplicial complexes. While it was
previously known that these topics were pairwise related (see Figure 1 and Section 2), our Main
Theorem exhibits an explicit mutual connection between these concepts.

Researchers from different research communities, such as applied topology, topological combi-
natorics, geometric group theory, metric geometry, and quantitative topology, have different per-
spectives and levels of expertise on the Gromov—Hausdorff distance, Borsuk—Ulam theorems, and
Vietoris—Rips simplicial complexes. There may be few experts on all three topics. As such, we
include a thorough survey of these topics and the existing relationships among them in Sections 2
and 3, in hopes that this paper will serve as an efficient way to teach these topics to a variety of
research communities. Additionally, we have collected a large number of remaining open questions
in Section 8, many of which we hope will yield to multi-pronged attacks, after bridges have been
formed between these different communities.

2. RELATED WORK

We organize our description of related work using Figure 1.

The Gromov—Hausdorff (GH) distance. The Gromov—Hausdorff distance provides a metric on
isometry classes of compact metric spaces [41, 44, 45, 89]. Despite its importance in geometry |24,
32, 34, 75] and shape comparison [70, 71, 67|, exact Gromov—Hausdorff distances are only known
in a small number of cases. These include the Gromov—Hausdorff distance between a line segment
and a Euclidean circle [54], between spheres of dimension at most three 64|, and between some
pairs of discrete metric spaces such as simplices [69, 53] and between the vertex sets of regular
polygons (64, 88].
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FIGURE 1. Our project fills a hole in the mathematical landscape. See the open

questions in Section 8 for areas where more work is needed.

Vietoris—Rips (VR) complexes. Vietoris—Rips simplicial complexes were first considered by
Vietoris in the context of developing a cohomology theory for metric spaces [61, 90|, and intro-
duced independently by Rips in geometric group theory as a natural way to thicken (i.e. coarsen) a
space |22, 48]|. More recently, they have become commonly used tools in applied and computational
topology [40, 39|, used in applications to data analysis [26, 28, 42| and sensor networks [36, 37|, for

example.

Borsuk—Ulam (BU) theorems. The Borsuk-Ulam theorem is a classic result from topology,
stating that any continuous map from the n-sphere to n-dimensional Euclidean space identifies
antipodal points, or equivalently that there is no continuous odd map from the k-sphere to the n-
sphere for k£ > n. It has numerous applications to discrete geometry and combinatorics [66], many of
which are still being discovered and explored, such as applications to low-distortion embeddings of
finite metric spaces into Euclidean space [85] (here the Borsuk—Ulam theorem is used in a different
fashion to our approach of bounding distortion), inscribing parallelograms into spatial curves [14],
and hardness results for graph colorings [15]. Various recent applications of equivariant topology
go beyond the antipodal symmetry of the Borsuk—Ulam theorem; see [20].

VR—-GH. A well-known connection between Vietoris—Rips complexes and Gromov-Hausdorff dis-
tances is the stability of persistent homology: If X and Y are totally bounded metric spaces, then
twice the Gromov-Hausdorff distance between X and Y is bounded from below by the bottleneck
distance between the Vietoris—Rips persistent homology barcodes of X and Y [31, 30, 33]. However,
stability alone does not provide sharp lower bounds on the Gromov-Hausdorff distances between
spheres of different dimensions. In fact, those lower bounds have been computed exactly in [63,
Corollary 9.3] where it is proved that they equal % of the filling radius [46, 56| of the sphere with
smaller dimension. In the cases (n,k) € {(1,2),(1,3),(2,3)}, these bounds yield exactly one-half
of the actual corresponding values of the Gromov-Hausdorff distances [64]. We show how to inject

ideas from equivariant topology into the VR-GH story so as to obtain sharper bounds.
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GH-BU. The paper [64] computes dgr(S™, S*) exactly for n < k < 3 and gives nontrivial upper
and lower bounds for all n < k. Some of their lower bounds are related to generalizations of the
Borsuk—Ulam theorem, such as [38], and these lower bounds strictly improve upon the lower bounds

provided by the stability of persistent homology.

BU-VR. The papers [5, 6] use information about the homotopy connectivity of Vietoris—Rips
complexes defined on spheres at various scales to prove generalizations of the Borsuk—Ulam theorem
for maps from spheres into higher-dimensional Euclidean spaces. Cohomological techniques, without
knowledge of the connectivity of Vietoris—Rips complexes, are used in [35] to obtain similar, and

sometimes stronger, results.

GH-BU-VR. The Gromov-Hausdorff distance, Borsuk—Ulam theorems, and Vietoris—Rips com-
plexes are not only related pairwise. Indeed, we think of our paper as a witness point showing that
there is a nontrivial triple intersection between these topics. For example, our Main Theorem lower
bounds the Gromov-Hausdorff distance dgp(S™, S¥) for k > n in terms of odd maps from from S*
into the Vietoris—Rips complex VR(S™;r), and we obstruct the existence of such odd maps using

the Borsuk—Ulam theorem.

3. BACKGROUND AND NOTATION

For topological spaces X and Y:

e A map f: X — Y is a continuous function.

e A function f: X — Y is any function, possibly discontinuous.
For a metric space X:

e We denote by dx: X x X — R the metric on X.
e We let B(x;r) = {2/ € X | dx(2/,z) < r} denote the open ball of radius r about x. For
X' C X, welet B(X';r) = Uzex/B(x;7) be the union of the balls.
e The diameter of a subset A C X is diam(A) = sup, o ¢4 dx(a,a’).
We define the n-sphere as S := {x € R""! | ||z|| = 1}. We always equip S™ with the geodesic
metric in which great circles have length 27 (with the exception on Section 7.4, when we also
consider the Euclidean metric). For z,2’ € S™ C R""! the geodesic metric satisfies the equality

dgn(z,2") = arccos ({z,2')) = 2arcsin (W;jﬂl) '
3.1. Background on the Gromov—Hausdorff distance.

Distortion. Given any two bounded metric spaces (X, dx) and (Y, dy) and any non-empty relation
R C X x Y, the distortion of R is defined as
dis(R) = sup |dX(x, x') — dy(y,y’)’ .
(), (2 y')ER
In particular, the graph of any function g: X — Y is a relation Ry € X x Y, and we denote the
distortion of this relation by dis(g) := dis(R,). In this case,
dis(g) = sup_|dx(z,2") — dy(g(z), g(z))].

z,x'eX
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A relation is a correspondence if its projections onto X and onto Y are surjective. Note that the
relation R, is a correspondence if and only if g is surjective.

Given functions g: X — Y and h: Y — X between metric spaces, the codistortion (see Figure 2)
of g and h is defined as

codis(g,h) = sup |dx(z,h(y)) —dy(g(x),y)|
reX,yeY

The codistortion codis(g, h) allows one to bound the extent to which the functions g and h fail
to be inverses of each other. Indeed, if codis(g,h) < €, then one has dx(z,h(g(x))) < € and
dy(g(h(y)),y) <eforeveryz € X andy €Y.

. ) (@)
x~ 'y
~_
N y

FIGURE 2. Ilustration of the codistortion.

Hausdorff distance. Let Z be a metric space. If X and Y are two closed submetric spaces of Z
then the Hausdorff distance between X and Y is

dp(X,Y)=inf{r >0| X CB(Y;r)and Y C B(X;r)}.

XTIQ XTQ.
X
B(YnQ er)‘

FIGURE 3. Let the metric spaces X (blue) and Y (red) inherit the Euclidean metric
from the plane. If we thicken X by 71, then Y C B(X;r1), but X € B(Y;r1),
so dig(X,Y) > r1. When thickening each space by 79, we see Y C B(X;re) and
X C B(Y;re), sody(X,Y) <rs.




In other words, the Hausdorfl distance calculates the smallest real number r such that if we thicken
Y by r it contains X and if we thicken X by r it contains Y.

Gromov—-Hausdorff distance. The Gromov-Hausdorff distance dgu(X,Y") between two bounded
metric spaces X and Y is defined as the infimum, over all metric spaces Z and isometric embeddings
v: X — Z and ¢: Y — Z, of the Hausdorff distance between v(X) and ¢(Y) |41, 49]. Unlike the
Hausdorff distance, the Gromov-Hausdorff distance considers sets X and Y that are not part of
the same metric space. However, to compute it we need to embed X and Y in different common
metric spaces Z, and then take the infimum of the Hausdorff distance over those Z. It follows
from [55] that the Gromov-Hausdorff distance between any two bounded metric spaces X and Y

can alternatively be defined as

2-deu(X,Y) = i%f dis(R),
where R ranges over all correspondences between X and Y. It was also observed in [55] that

2 -dgu(X,Y) = inf max{dis(g), dis(h), codis(g, h)}, (1)

g,h

where g: X — Y and h: Y — X are any functions. It follows that 2-dgp(X,Y) is at least as large
as the infimum, over all functions g: X — Y, of the distortion of g. Interestingly, our best known
lower bounds on the Gromov-Hausdorff distance between spheres only rely on lower bounding the
distortion (not the codistortion).

3.2. Background on Borsuk—Ulam theorems. The Borsuk—Ulam theorem is a result from al-
gebraic topology with wide-ranging applications:

Theorem 3.1 (Borsuk [21]|). For any map f: S™ — R", there ezists x € S™ with f(z) = f(—=x).
We give two equivalent formulations; we leave the equivalence as a simple exercise:

Theorem 3.2. Any odd map g: S™ — R"™ has a zero.

Theorem 3.3. There does not exist an odd map h: S™ — S™~1.

For n = 0,1, these statements either are trivial or are simple consequences of the intermediate
value theorem. For larger n, proofs typically use machinery from algebraic topology (for example,
the degree or the Lefschetz number of a map), though more elementary proofs are also available.
For outlines of several styles of proofs of the Borsuk—Ulam theorem, see [86, 66].

The Borsuk—Ulam theorem is foundational to the field of topological combinatorics, as exemplified
by Lovéasz’s 1978 proof [65] of Kneser’s conjecture about the chromatic number of Kneser graphs.
The Borsuk—Ulam theorem finds applications across various mathematical disciplines, for example
in functional analysis (e.g., to prove the Hobby—Rice theorem [51]), in differential equations (e.g.,
to prove that there are infinitely many solutions for a system of nonlinear elliptic partial differential
equations |72]), and in mathematical economics (e.g., to prove the existence of equilibrium with
incomplete markets [52]).

We now introduce some basic notions from equivariant topology. All of the below is specialized

to Z/2, the cyclic group of order two, but also evidently generalizes to other groups.
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e A 7/2 space is a topological space X equipped with an involution map, denoted by x — —zx,
such that —(—x) =z for all z € X. We say a Z/2 space X is free if —z # x for all x € X.

e Given a subset X' C X of a Z/2 space, we define —X' := {—z | x € X'}. Furthermore, we
say X' is centrally-symmetric (or Z/2 invariant) if X' = —X'.

o If X and Y are Z/2 spaces, then a function f: X — Y is Z/2 equivariant (or odd) if
f(=z) = —f(z) for all x € X. (Similarly, we may describe a map as being odd.)

e If X is a Z/2 space, then the identity map on X is an odd map.

o If XY, Z are Z/2 spaces, and f: Y — Z, g: X — Y are odd, then f o g is odd.

e The sphere S™ is a Z/2 space, since it inherits the involution map of R"*1.

We now give one representative application of the Borsuk—Ulam theorem, a topological general-

ization of Radon’s theorem on convex sets [78]:

Theorem 3.4 (Bajmoczy, Barany [16]). Let A"l be the (n + 1)-dimensional simplex in R™"*2.
Then for any map f: A" — R", there exist x,y € A" on disjoint faces with f(x) = f(y).

Proof sketch. Assume for contradiction that there are no such z and y. We define two topological

spaces from A"t and R, by taking a deleted product of each in slightly different ways:

e Let (A"*1)% be the space of pairs (z1,22) € (A"1)2, such that z1, 22 are on disjoint faces.
e Let (R™)% be the space of pairs (y1,32) € (R™)?, such that y; # ys.
Note that both (A"™1)% and (R™)% are Z/2 spaces; the involution map in each case swaps the two
coordinates. Then under our assumption, f induces an odd map f%: (A"T1)4 — (R™)% given by
(z1,22) — (f(x1), f(x2)). The verification that f3 is odd goes as follows:

JA(=(z1,22)) = fR(x2,21) = (f(w2), f(21)) = —(f (1), f(22)) = — fA (21, 72).

It can be shown that there exist odd maps S™ — (A1) and (R")% — S™!. Then the composite
map

ST (A"THE - RMHR — ST
is odd, contradicting Borsuk-Ulam (specifically, Theorem 3.3). Therefore, there exist z,y € A™+!
on disjoint faces, such that f(z) = f(y), as desired. O

The proof above suggests defining the concepts of indexr and coindex below, which allow us to use
spheres of various dimensions as a measuring stick for the topological complexity of a Z/2 space.
Here we give definitions and a few basic facts; see |66, Chapter 5| for more background.

e The Z/2 index (or just index) of a Z/2 space X is defined to be

ind(X) = min{k > 0 | there exists an odd map X — S*}.

The Z/2 coindex (or just coindex) of a Z/2 space X is defined to be

coind(X) := max{k > 0 | there exists an odd map S¥ — X}.

For all n > 0, we have ind(S™) = coind(S™) = n, by the Borsuk-Ulam theorem.
For all Z/2 spaces X, we have coind(X) < ind(X), by the Borsuk-Ulam theorem.

If there exists an odd map X — Y, then ind(X) < ind(Y’) and coind(X) < coind(Y).
9



e If the Z/2 space X is not free, then ind(X) = coind(X) = co because we may construct an
odd map S* — X for any k > 0 by taking the constant map to a fixed point of the Z/2

action on X.

In the proof of Theorem 3.4, the existence of an odd map S™ — (A"1)% shows that coind((A"T1)%) >
n, and the existence of an odd map (R™)% — S™~! shows that ind((R")%) < n—1. But then, using
the existence of the odd map f3: (A"™1)% — (R")%, we have

n < coind((A™1)3%) < coind((R™)A) < ind((R™)4) <n —1,

a contradiction. We will use the concepts of index and coindex later in the paper.

We will also make use of the concept of a k-connected space: A space X is k-connected if the
homotopy groups m;(X) are trivial for all ¢ < k. For example, X is 0-connected if and only if X is
path-connected, and X is 1-connected if and only if X is simply connected. If a CW complex X is
k-connected, and if a CW complex Y is f-connected, then their join X *Y is (k + ¢ + 2)-connected.
An important property for us is the following:

If a Z/2 space X is (k — 1)-connected, then ind(X) > coind(X) > k. (2)

See Proposition 5.3.2 (iv) of [66], and its proof, for an explanation of this fact. The proof proceeds
as follows. Pick any point in X, and then reflect under the Z/2 action, to get an odd map S° — X.
Since (X)) is trivial, we can connect these two points by a path, and then reflect that path via the
7./2 action to get an odd map S — X. Since 71(X) is trivial, we can fill in this map of the circle
with a disk, and then reflect via the Z/2 to get an odd map S? — X. We continue inductively in
this manner, where at the second-to-last step we have obtained an odd map S¥~! — X. Since mj,_1
is trivial, we can fill in with a k-dimensional disk, and reflect to get an odd map S*¥*' — X, as
desired.
Finally, we define Z/2 versions of some standard concepts from topology:

e A 7Z/2 metric space is a Z/2 space X which is also a metric space, and that satisfies
dx(z,2") = dx(—x,—2') for all z,2" € X.

e Let X, Y be Z/2 spaces, and let fy, fi: X — Y be odd maps. Then a Z/2 homotopy from
foto fiisamap H: X x[0,1] —» Y, such that H(—,0) = fo, H(—,1) = f1, and H(—,t) is
odd for all ¢ € [0,1]. In this case, we say fo and f are Z/2 homotopic.

e Let X,Y be Z/2 spaces. We say that X,Y are Z/2 homotopy equivalent, denoted X =~ 5 Y,
if there exist odd maps f: X — Y and ¢g: Y — X, such that f o g is Z/2 homotopic to the
identity map on Y, and g o f is Z/2 homotopic to the identity map on X.

Note that if X =~z Y, then ind(X) = ind(Y’) and coind(X) = coind(Y").
3.3. Background on Vietoris—Rips complexes.

Simplicial complexes. We identify a simplicial complex with its geometric realization. For ex-
ample, if {zo,..., 2y} is a simplex in a simplicial complex, then we may write " \;x; to refer
to a point in the geometric realization of this simplicial complex, where the barycentric coordinates
Ai > 0 satisfy >, A\; = 1. A simplicial map between two simplicial complexes indeed deserves the

name “map,” since it induces a continuous function between geometric realizations.
10



Vietoris—Rips complexes. For X a metric space and r > 0, the Vietoris—Rips simplicial complex
VR(X;r) has vertex set X, and a nonempty finite subset o C X is a simplex when diam(c) < 7.
See Figure 4.

The Vietoris—Rips complex is a clique complex (also called flag complex), which means that for
every non-empty finite ¢ C X, the simplex o is in VR(X;7) if and only if the edge {u,v} is in
VR(X;r) for every pair u,v € 0. This property makes the Vietoris—Rips complex of a finite space
suitable to be encoded in a computer, as the information of the 1-skeleton determines the whole
complex.

The Vietoris—Rips complex was defined independently by Leopold Vietoris [90] and Eliyahu Rips
and has been studied for different reasons along the years; see |79, 50| for some history. If r is
large enough, Rips used it to show that every hyperbolic group G acts geometrically (by proper and
cocompact isometries) on a contractible space, which is none other than VR(G;r). Here, the group
G is equipped with the metric induced by the shortest path distance in the Cayley graph I'(G, S)
with respect to some generating set S for G. A key consequence of this result is that hyperbolic
groups are finitely presented [43, Proposition 17, Chapter 4|. Although it seems that Rips did not
publish the result himself, Gromov attributes it to him in Lemma 1.7.A and Section 2.2 of [47].

eSSy of

FIGURE 4. A metric space X with 17 points, and its Vietoris—Rips complex VR(X;r) at four

different increasing values of r > 0.

When 7 > 0 is small, on the other hand, a theorem due to Hausmann [50] implies that for a given
compact Riemannian manifold M, there exists some 0 < e such that M ~ VR(M;r) whenever
0 < r < e. Researchers in applied topology are interested in the topology of VR(X;r) over all
values r > 0 as a tool to coarsely study the shape of a finite point cloud X. See, for instance,
Section 2.3 of [26]. These experimental studies of the “shape of data” are aided by the fact that the
Vietoris—Rips complex is a clique or flag simplicial complex whose persistent homology is relatively
efficient to compute [17]. In this paper, we allow the scale parameter r to become large enough so
as to change the topology (e.g., the (co)index) of the simplicial complex.

For X a Z/2 metric space and r > 0, we extend the involution on X to an involution on VR(X;r)
by defining

— (2 hiw) =32, Ai(—i)
If X is a free Z/2 metric space, then note that VR(X;r) is a free Z/2 space whenever r <
infyex dx(x, —z). In particular, VR(S™;r) is a free Z/2 space for r < 7.
A simplicial map between two simplicial complexes induces a continuous map on the geometric

realizations of those smplicial complexes. Therefore, the following lemma shows that Vietoris—Rips
11



complexes are a tool for transforming arbitrary functions between metric spaces into continuous
maps between topological spaces; see also [31, Lemma 4.3]. Despite the popularity of Vietoris—
Rips complexes, this perspective of using Vietoris—Rips complexes to study discontinuous functions

appears to be new.

Lemma 3.5. A function f: X — Y between metric spaces induces a simplicial map f : VR(X;7r) —
VR(Y;r +dis(f)) for any r > 0. If f is an odd function, then f is also odd.

Proof. Define f: VR(X;r) — VR(Y;dis(f) + r) by sending a vertex x € X to f(z) € Y, and then
extending linearly to simplices. In other words, f([xo,...,2m]) = [f(z0),..., f(zm)]. Observe that
if diam (o) < r then, by the definition of distortion, diam(f (o)) < r-+dis(f). Thus, f is well-defined,
simplicial, and continuous (on the underlying geometric realizations), i.e. it is a map.

If both X and Y are Z/2 metric spaces and f is an odd function, then we see that f is an odd

map:

?(_ Do AiTi) = 7(21 Ai(=xi)) = D2 Mif(—xi) = 22 Mi(=f(@i) = = 22 A f (@a). (3)

O

Lemma 3.5 shows how to turn a possibly discontinuous function into a continuous one; a precursor
of this idea is present in [38]. In a similar spirit, [19, 23, 77, 80| study the induced maps on
the fundamental group of the Vietoris—Rips complexes of metric spaces via the discrete homotopy
approach: one allows paths and homotopies to have discontinuities of size . By considering maps
between metric spaces that induce maps between Vietoris—Rips complexes up to a finite amount of

shift, Cencelj et al. [29] studied the coarse geometry or large-scale properties of metric spaces.

Vietoris—Rips metric thickenings. Let X be a metric space and let » > 0. The Vietoris—Rips
metric thickening VR™(X;r) of X at scale r is the set of probability measures p in X whose support
supp(u) is finite and has diameter at most r, equipped with the 1-Wasserstein metric of optimal
transport [3]. The superscript m denotes “metric”, since the metric thickening VR™(X; r) is a metric
space, whereas the simplicial complex VR(X;7) may not be metrizable if X is not discrete. By
identifying each point z; € X with the Dirac measure J,,, we can write elements 4 € VR™(X;r)
as convex combinations g = Y "4 N0z, where A; > 0, > . A\ = 1, and zo,...,z, € X with
dx(xi,xj) < r for all 0 < 4,5 < m. In this way there is a natural isometric embedding from X
into VR™(X;r), via the injective map = — 6,. Furthermore, note that the underlying set of the
metric thickening VR™(X;7) is equal to the underlying set of (the geometric realization of) the
simplicial complex VR(X;r), although the topology of these two spaces may differ [3]. In analogy
with Hausmann’s theorem for simplicial complexes [50], metric thickenings are known to recover
the homotopy type of the underlying metric space in certain situations |3, 11].

Occasionally, it will be convenient to work with the metric thickenings instead of simplicial
complexes. However, we will not emphasize metric thickenings and instead refer the reader to [5, 8,

9, 10] for further work on these spaces.
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4. PROOF OF THE MAIN THEOREM

We are prepared to prove our Main Theorem, which lower bounds the distortion of odd maps
between spheres, and hence also the Gromov—Hausdorff distance between spheres of different di-
mensions. We will make use of Vietoris—Rips complexes in order to transform an odd function f
between spheres into a continuous odd map between Vietoris—Rips complexes of spheres, where
the allowable choices of scale parameters depend on how much the function f distorts distances.
Towards these ends, we consider the coindex of Vietoris—Rips complexes of spheres. We recall the

definition of ¢, j, from Section 1.
Definition 1.1. For k > n, we define ¢, , := inf{r > 0 | there exists an odd map S¥ — VR(S™;r)}.

That is, ¢y is the infimum over all » > 0 for which k& < coind(VR(S™;7)). We think of ¢, as
the amount we need to “thicken” S™ until it admits an odd map from S*.

Let k> n, and let f: S¥ — S™ be an odd function. In our Main Theorem, we prove dis(f) > Cn k-
We remark that Proposition 5.2 of [64] proves that the distortion of a function is lower bounded by
its modulus of discontinuity, which in turn can be controlled as in [38]. In Section 7 we show that
our lower bound on distortion can be strengthened into an analogous lower bound on the modulus
of discontinuity of odd functions S* — S™.

Our proof of the Main Theorem relies on the following lemma. We say a subset A of a metric
space X is an e-covering if for every point x € X, there exists a point a € A with dx(a,x) < €, i.e.
with € B(a,¢).

Lemma 4.1. For X C S* a finite S-covering with X = —X (that is, X is centrally-symmetric),

there exists an odd map ¢: S¥ — VR(X;e).

Proof. We use the following “partition of unity” idea from the proof of stability in [10, 73]. It suffices
to consider ¢ < 7, since otherwise VR(X;¢) is not a free Z/2 space and coind(VR(X;¢)) = co. Let
{pz}zex be a Z/2 invariant partition of unity subordinate to the cover { B (ac, %)}zex of S¥. That
is,

e p, is a nonnegative continuous real-valued function supported in B (a:, %) for each x € X,

Y cxpa(y)=1forallyeS* and

o p_o(—y) = pz(y) for all z € X and y € S
To see that such a Z/2 invariant partition of unity exists, note that it can be obtained from a
(standard) partition of unity on the quotient space RP".

Define the map ¢: S¥ — VR(X;¢) by ¢(y) == > zex Pz(y) . Note that any point x whose
coefficient in ¢(y) is positive must have dgr(x,y) < § because p, is supported on B (:U, %) Therefore,
diam({z € X | pz(y) > 0}) < &, so ¢(y) is a well-defined point in VR(X;e). Note that ¢ is
continuous since each p, is. Lastly,

S(—y) =D pe(—y) 2= paly) x= Y paly) (—2),
reX reX r€—X
which, after applying X = — X, is equal to

D ) (=2) =D pal—y) x = —o(y).

zeX zeX
13



Thus, ¢ is an odd map. ]

We remark that choosing a different partition of unity will produce a map that is homotopic
to ¢. Indeed, given two partitions of unity {pl}.ex and {p?}.cx, the homotopy between the

corresponding maps ¢1(y) == Y. ,cy pu(y) = and ¢2(y) == Y.,y p2(y) = can be given by a straight
line homotopy H(—,t) :=tp1 + (1 — t)¢po.

partition
of unity

Sk VR(X;e) — VR(S™;dis(f) +¢)
}—>

[f(xO)v"'vf $m]

[z0, ..., Tm]

)

k Y - A vk qn

(L
\

(V)

FIGURE 5. Proof, in our Main Theorem, that odd functions f: S¥ — S™ for k > n
have distortion at least c; .

We are now ready to prove our Main Theorem.

Main Theorem. For all k > n, the following inequalities hold:
2. den(S™, S%) > inf {dis(f) | f: SF— S is odd} > inf {7“ > 03 odd S* — VR(S”;T)} -

Proof. Let k > n, and let f: S* — S™ be an odd function. We must show that dis(f) > Cn k-
Let € > 0. Choose a finite Z/2 invariant §-covering X C S*. By Lemma 4.1 we get an odd map
Sk — VR(X;e), and by Lemma 3.5 the restriction map f|x: X — S™ induces a continuous odd
map VR(X;e) — VR(S™;dis(f) 4+ €). Their composition

S* — VR(X;e) — VR(S™; dis(f) + ¢)

is continuous and odd, showing that dis(f) 4+ ¢ > ¢, 1 for all € > 0. Hence dis(f) > ¢ 1.

The first inequality in the Main Theorem is the helmet trick from [64]|, which for the sake of
completeness we briefly explain here. Lemma 5.5 from [64] states that any function h: S¥ — S™
can be modified to obtain an odd function f: S¥ — S™ with dis(h) > dis(f). Therefore

2-dgu(S",8%) = inf max{dis(g),dis(h), codis(g, h)} by (1)

g: S"—Sk
h: Sk—sSm

v

inf {dis(h) | h: S% — Sn}
> inf {dis(f) | f: S 5 8™ s odd} .
O
The quantitative power of our Main Theorem will come from Section 5, where we explain how
to recover the known values of ¢, . For example, we will see that ¢, 5+1 = r, (Theorem 5.2), and

thus our Main Theorem indeed recovers [64, Theorem B| when & = n + 1. We will see ¢; 9 =

C12041 = fé—’jﬁ (Theorem 5.1), and therefore 2 - dgu (S, S¥) > % for k = 2¢,2¢ + 1. Furthermore,
14



we will see that for all £ > n, ¢, 1, can be bounded from below in terms of the covering number of k&
points in the projective space RP™ (Theorem 5.3). The combination of these theorems implies that
the bound 2 - dgy (S™, S*) > Cp,k in our Main Theorem either recovers or improves upon the best
known lower bounds on dgg(S™, S*) from [64]. In other words, the bound 2 - dgu (S™, S¥) > Cn i 18
potentially tight; see Remark 5.5. Therefore, our Main Theorem shows that a powerful technique for
studying the Gromov—Hausdorff distance between spheres is to obstruct the existence of equivariant
maps to Vietoris—Rips complexes of spheres. And, in the opposite direction, further knowledge
about Gromov-Hausdorff distances between spheres will place new constraints on the topology of

Vietoris—Rips complexes of spheres.

Remark 4.2. The same proof technique of our Main Theorem shows that for any Z/2 space Y,
any odd map S*¥ — Y has distortion at least inf{r > 0| 3 an odd map S* — VR(Y;r)}.

In analogy with [64, Theorem D], the proof technique of our Main Theorem can provide a more
general statement. Let H>(S*) denote the closed upper hemisphere of the sphere, namely H> (S*) :=
{(xl, ... ,xk+1) e Sk | Tht1 = 0}

Theorem 4.3. Let X and Y be bounded metric spaces such that X isometrically embeds into S™
and Y admits an isometric embedding of H>(S¥), for k > n. Then

2-dgu(X,Y) > inf{r > 0|3 an odd map S* — VR(X;7)} > cpi.-

5. KNOWN VALUES OF ¢y i

In this section, we add quantitative power to our Main Theorem by describing the known values
of the constants ¢, j = inf {r > 0|3 odd S¥ — VR(S™; r)} These results depend on the topology
of Vietoris—Rips complexes and thickenings of spheres. Indeed, the topology of VR(S"; ) constrains
how large the scale r must be in order for the complex to admit an odd map from the k-sphere.

We begin with some basic properties that follow from the definition of ¢, . The inclusion Sk s
Sk shows that Cngk < cp g for k < K. Furthermore, the inclusion VR(SN,;T) — VR(S™;r) shows
that ¢, < ¢ g for n > n' and k < k’. Since 7 is the diameter of S™, it follows that VR(S™; ) is
contractible, and therefore ¢, < 7 for all k > n.

Next, we observe that ¢, j has several different equivalent definitions. The value of ¢, is un-
changed if one uses the convention “diam(c) < r” (instead of our convention “diam(c) < 7”) to define
which simplices o are in the Vietoris-Rips complex. Similarly, the value of ¢, j is unchanged if one
instead uses Vietoris—Rips metric thickenings — this follows from the e-interleavings constructed
in [10, 73], which in this setting can be made Z/2 equivariant.

We have ¢, ,, = 0 since VR™(S™;0) = S", or alternatively, since VR(S";¢€) >z, S™ for all ¢ > 0
sufficiently small. It is not hard to see that cp = 7 for all £ > 0.

Theorem 5.1. For all £ > 1, we have c1 041 = c1,20 = %.

Proof. These values are related to the homotopy types of the simplicial complexes VR(S!;7) and of

the metric thickenings VR™(S'; 7). The homotopy types of these simplicial complexes are provided

in [1] as VR(S';7) ~ S2+1 for 28 < r < 204D see Figure 6. The homotopy types of these

20+1 203
metric thickenings are proven in [74] as VR™(8%;7) ~ 21 for 2t <7 < 27;%:},)1).
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For r > 2247317 VR(SY;7) is 2£—connected We apply (2) to obtain an odd map S%*! — VR(S; 7).
2@ +1 On the other hand, Section 5.1 of [5] produces an odd map
VR™(S';7) — R\ {0} g0 SHTL for v < %, the same construction also produces an odd map
VR(S';r) — R%\ {0}. Therefore, the Borsuk-Ulam theorem implies there cannot exist odd maps

52 — VR™(S':r) or S% — VR(S';r) for r < 225 This shows Cl2041 > Cl 20 > % Hence

This shows that ¢ 2/ < ¢1,2041 <

20+
C1,2041 = C1,2¢0 = ;ﬁ—fﬁ, as desired. =

VR(S;7) ; VR(S™;7)

Sie
S gn 4 SO(m+1)
3 k * 7

1 S — n+2

S gn S %

FIGURE 6. The homotopy types of VR(S!;r) and VR(S™;7).

Theorem 5.2. For all n > 1, we have ¢y nt2 = Cppg1 = Tn-

Proof. These values follow from knowledge about the homotopy types of VR™(S™;r) and VR(S™;r).
The related results [3, Proposition 5.3] and [63, Corollary 7.1] show that VR™(S™;r) ~ S™ and
VR(S™;r) ~ 8" for all r < r,, respectively. Furthermore, [3, Theorem 5.4]> provides a homotopy

equivalence VR™(S"; ry,) >~ S™x SO(nH) ; see Figure 6. Since S™ is (n—1)-connected and %:;1) is 0-

connected, their join S™x w is (n+ 1)-connected. This shows that ¢, p+1 < ¢pny2 < rp. On the

other hand, |3, Proposition 5.3] produces an odd map VR™(S";r) — R*+1\ {0} /9 S™ for v <rp;
the same construction also produces an odd map VR(S™;7) — R"t1\ {0}. Therefore, the Borsuk-
Ulam theorem implies there cannot exist odd maps "1 — VR™(S";7) or S"*! — VR(S™;r) for

r < ry. This shows ¢, ny2 > ¢png1 > oo Hence ¢ynq0 = ¢ppg1 = 1y, as desired. O

The exact values of ¢, j, are not known for n > 2 and k£ > n+ 3, but we will provide some bounds
in the remaining theorem and remarks of this section.

We first provide a bound on ¢, in terms of coverings of projective space. For X a metric space,
let covx (k) be the infimum over all € > 0 such that there exists a finite set A C X of cardinality
|A| < k such that the balls of radius € about A cover X, i.e. such that A is an e-covering of X. Let
RP™ be the projective space obtained as the quotient S™/(x ~ —z), and equipped with the quotient
metric. Explicitly, dgpn ({z, —2}, {2/, —2'}) = min(ds» (2, 2"), dsn (2, —2')), so RP™ has diameter §

Adams, Bush, and Frick show in Theorem 3 of [6] that if 6 > covgpn(k), then there is an odd
map VR™(S™; 7 — 26) — S*¥~1, and so coind(VR™(S™; 7 — 26)) < ind(VR™(S™; 7w — 26)) < k — 1.
In other words, there is no odd map S¥ — VR™(S™; 7 — 26) unless 6 < covgpn (k). Upon replacing
7 — 28 with r, we see that there is no odd map S*¥ — VR™(S™;r) unless r > m — 2 covgpn (k). This
is the proof of the following theorem, which follows from [6, Theorem 3|, and which is tight when
both n =1 and k is odd.

2We refer the reader to [9, Section 5.1] for a gentler introduction to this result.
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Theorem 5.3. For all k > n > 1, we have c,j, > m™ — 2 covrpn (k).

For any n > 1, we have limg_,, 2 covgpn (k) = 0. Therefore, Theorem 5.3 implies that for any

n > 1, we have limy_,oc cp 1 = 7.

Corollary 5.4. Fiz n > 1. The distortion of an odd function f: S* — S™ tends towards its

mazimum possible value ™ as k goes to infinity.

gn RP"
FIGURE 7. (Incomplete) covers of S and RP™.

Remark 5.5. Our Main Theorem either recovers or improves upon the best previously known lower
bounds on Gromov-Hausdorff distances between spheres, namely [64], which proves 2-dgg(S™, S¥) >
max{r,, ™ —2covgn(k+1)} for k > n. Recall that our Main Theorem states that 2 - dgu(S™, S*) >
cn k- Torecover the first term r, from this maximum, use Theorem 5.2 and note that ¢, > ¢ 41 =
ryp, for k > n. To improve upon the second term 7 — 2covgn(k + 1) from this maximum, note that
Cn,k > T — 2covrpn (k) by Theorem 5.3, and that it is easier to cover the quotient space RP™ than
it is to cover the sphere 5", since distances can only decrease upon taking quotients; see Figure 7.
Furthermore, the 7, and m — 2covgn(k + 1) lower bounds in [64] are proven using two separate
arguments, which are now unified, generalized, and improved upon by our single lower bound c¢,, .

One specific instance of improvement is n = 1, when we obtain 2 - dgy(S', 5%¢) > Clo0 = 2%—% and

2. dgu(St, S+ > Clo041 = %; note ¢y > 71 for k > 4.

Remark 5.6. Theorem 2 of [6] gives an upper bound on the values of ¢, j in terms of packings of
points in RP", and in particular implies that ¢, < m for all k¥ > n.

Remark 5.7. The following calculation further illustrates that the elucidation of the subsequent
homotopy types of Vietoris-Rips complexes of spheres can help estimate the numbers ¢, ;. Partial
results for the case of S? can be obtained thanks to early work by Katz. Indeed, by [63, Corollary

7] and [57, 59], we know that VR(S?;r) ~ S? x %Z = 5% % %&3) for all ro < r < arccos (\7—%)

Since S? * %23) is 6-dimensional with a free Z/2 action, there is no odd map S” — S? x %&3), and

therefore we can conclude that cy7 > arccos (\7—%) It is currently open whether the same lower

bound holds for ¢z or ca 5.

Remark 5.8. The 12 vertices of a regular icosahedron inscribed in S? can be chosen to be

1 1 1 — V41
W(O,il,ﬂ:gf)), m(:l:l,:l:gf),O), and W(:I:gf),(),:l:l), where ¢ = T+ is the golden ra-
tio. The three vertices ———(1, ¢,0), ———(¢,0,1), and —=— (¢, 0, —1) form a face, and since

/1+¢2 /1+¢2 /1+¢2
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the geodesic distance between the center of this triangle and one of the vertices is arccos <\/ 5‘”'125\/‘?’> ,

we can conclude that covgz(12) < arccos < 5+125\/5> Since this set of 12 points in S? is centrally-

symmetric, it produces a set of 6 points in RP? showing that covgp2(6) < arccos ( 5+125‘/5>. By

our Main Theorem and Theorem 5.3, we achieve

2- dGH(S2, Sk) > co > Co6 > T — 2c0vRp2(6) > ™ — 2 arccos <\/ 5+125‘/5> for k£ > 6.

This holds for more values of k than [64, Proposition 1.11], which only gives
2. dGH(SQ,Sk) >m—2covge(k+1) > 7 —2covg2(12) > 7 — 2 arccos ( 5+125‘/5> for k> 11.

See also |6, Example 4.5].

Remark 5.9. The 600-cell is a convex regular 4-polytope with 600 tetrahedral cells and 120
antipode-preserving vertices in S®. One can choose those 120 vertices in the following way: 8 vertices
obtained from (0,0, 0,+1) by permuting coordinates, 16 vertices of the form (:I:%, :I:%, :I:%, :I:%), and
the remaining 96 vertices are obtained by taking even permutations of <:t%, :l:%, i%ﬂ, 0), where

¢ = @ is the golden ratio. The Euclidean distance between the two closest vertices is ¢!, and
hence the geodesic distance between them is . By direct computation, the four vertices (1,0,0,0),
(%, %, ¢T_1,O>, (¢ ! —‘%1,0), (¢ o~ 0, %) form a tetrahedral cell. Since the geodesic distance

32 PR
between the center of this cell and one of the vertices is arccos (1;}/5), we can conclude that

covgs(120) < arccos (1;:}%5) This implies that covgps(60) < arccos <1;'\>/§5> Finally, from our

Main Theorem and Theorem 5.3, we obtain

2 dan(S°,8%) > c360 2 ™ — 2 covgps(60) > 7 — 2 arccos (1+\/5) .

See |6, Remark 4.2].

6. A NOVEL UPPER BOUND ON THE GROMOV-HAUSDORFF DISTANCE dgy(S™, S™H1)

We will give a new upper bound on 2-dgn(S™, S"*1), improving the existing bounds for all n > 3.
In particular, we will prove the following theorem.

Theorem 1.2. For every n > 1, we have 2 - dgu(S™, S"11) < 27”

We first introduce several geometric objects, and recall the current best upper bounds. For all
n > 1, we may inscribe a regular (n+1)-simplex in S™. Any pair of vertices of the inscribed simplex
lie the same geodesic distance apart, and this distance is exactly the quantity r,, = arccos (—n%rl .
The facets of the inscribed simplex may be projected radially outward, obtaining (n + 2) sets that
cover S™, and which are additionally closed, geodesically convex, and pairwise isometric. We call

these radially projected facets regular geodesic simplices in S™. Santal6 [81] computed the diameter
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of these simplices, which is

_n+tl
arccos ( n+3) for n odd,

n
arccos <—, /m) for n even.

This diameter is achieved between points at the centers of opposite faces which each contain half the

tn =

vertices of the simplex (rounded appropriately when there are an odd number of vertices). Notice
that r, < t,, for every n. In fact, equality holds only for n = 1, when ry = %” =1t1. Asn — oo we
have r, — 5 and t,, — 7. In particular, ¢, > %” for all n > 2.

The quantities 7, and ¢, played an important role in the work of Lim, Memoli, and Smith [64],
who showed that 7, < 2-dgu(S™, S"™!) < t,. They also obtained exact results for small n, showing
that 2-dgn (S, 5?) = %’r = 2-dgu(S',S%) and 2-dgu(S?, S®) = r3. Theorem 1.2 improves the upper
bound on 2 - dgu(S™, S™*1) for all n > 3, and also improves the upper bound asymptotically—the
previous bound converged to m, while Theorem 1.2 bounds it strictly away from 7.

To build towards a proof of Theorem 1.2, we first make a simple observation regarding the

distortion of relations which only pair together points that lie a bounded distance from one another.

Lemma 6.1. Let (X,dx) be a metric space, and let Y C X be a subspace with induced metric dy .
Let R C X XY be any relation, and define

e = sup{dx(z,y) | (z,y) € R}.
Then the distortion of R is at most 2¢.

Proof. Let (z,y) and (2,y’) be in R. We wish to bound |dx(x,2’') — dy(y,vy’)]. Applying the
triangle inequality twice, we see that

dx(z,2') <dx(z,y) +dx(y,y) +dx (', 2") < 2e +dx(y,y') =2+ dy(y,y).

Hence dx(z,2') — dy(y,y') < 2e. A symmetric application of the triangle inequality shows that
dy (y,y") — dx(z,2") < 2e. Together these inequalities imply the desired bound. O

Recall that H>(S"™!) denotes the closed upper hemisphere of S™*1 and let N € Hx(S"!)
denote the north pole. We will make use of the map 7: H>(S"™1)\ {N} — S™ which sends a
point in the upper hemisphere to the unique nearest point on the equator. In other words, for
r € H>(S"1) \ {N}, we define 7(x) to be the result of setting the final coordinate in x to zero,
and then normalizing.

In the proof of Theorem 1.2 below, we require two important facts. The most crucial is that
to bound dgu(S™, S™1) it suffices to bound the distortion of correspondences between the upper
hemisphere H>(S""1) and the equator S™ (see Lemma 5.5 of [64]). Second, note that if z # N
and ' are points in H>(S"™!) and dgn+1(z,2') > Z, then dgnt1(7(2),2’) > dgn+1(x,2’). Indeed,
dgn+1(z,2") > T if and only if (x,2’) <0, and since both 2 and 2" have nonnegative last coordinate
we see that (7(x),2') < (x,2’), which implies that dgn+1(7(x),2") > dgnt1(x,2’).

Proof of Theorem 1.2. We first construct a correspondence between S™ and S™*!, and then we

bound its distortion.
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FIGURE 8. The decomposition of H>(S™*1) used in the proof of Theorem 1.2.

Constructing the correspondence. Let P = {p1,pa,...,pnt+2} be the vertices of an inscribed
regular (n+ 1)-simplex in S™. For each i € [n+2] :={1,2,...,n+2}, let F; be the geodesic convex
hull of P\ {pi}. So, for i € [n+ 2] the set Fj is a regular geodesic simplex in S”, and its barycenter
is —p;. Define

E = {pe H>(S""") [ dgnt1(p,N) > §}.
Further, for i € [n + 2] define

Ci={pe€ H=(S"™") |p#N, 7(p) € F;, and dgns1(p, N) < F}U{N}.

So, E is a “thickened equator” consisting of the points with distance less than & to the equator,

and the various C; are cones with apex N over the various Fj, restricted to a closed ball of radius
s

7 around N; see Figure 8. Finally, we define a correspondence R between H>(S™1) and S™ as

follows:
R ={(p,7(p)) |p€ E} U{(p,—p:) | p € C; for some i € [n+ 2]}.

Note that this is a correspondence since E and the various C; cover HZ(S"H), and since (p,p) € R
for every p € S™.

Bounding the distortion. We will argue that the distortion of R is at most %’T To this end, let
(z,y) and (2/,y) be elements of R. To bound |dgn+1(x,2") — dgn(y,y’)| we consider the following

cases.

Case 1: Both x and x’ lie in E. By Lemma 6.1, the relation between FE and S™ consisting of pairs
(z,7(z)) has distortion at most §. Here we have y = 7(z) and ' = 7(2'), so |dgn+1(z, ") —dsn (y,y/)]

is at most g

Case 2: Neither x nor x' lie in E. Here we must have dgnt1(z,N) < I and dgnt1(2/, N) < Z.
Hence dgn+1(z,2') < Z. Moreover, y and y' both lie in P, so dgn(y,y’) < r, < &, Thus we have
|dgnir(2,2') — dsn (y,y)| < max{dgn+1(z,2'),dsn(y,y')} < 3.

Case 3: ¥ € E,2' ¢ E, and dgn+1(x,2') < §. Since dgn+1(x,2) < 7, it will suffice to show that

dsn(y,y) — dgnt1(x,2") < %’r Observe that y = 7(x), so dgnt1(z,y) < §. Moreover, for some

i € [n+ 2] we have 2/ € C; and ¥ = —p;. Every point in C; has nonnegative inner product with
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—pi, 80 dgn+1(2',y') < 5. Applying the triangle inequality twice, we obtain

dsn(y,y) < dgni1(y,2) + dgni (2,2") + dgna (2',y')
< % + dgnt1 (:C,$/) + %
Hence dgn (y,y') — dgn+1(z,2') < %” as desired.
Case 4: v € E,2' ¢ E, and dgn+1(x,2") > §. Since dgn1(z,2") > T, it will suffice to show that
dgnt1(z,2') — dgn(y,y’) < Z. We have y = 7(z), and since dgn+1(z,2’) > 5 this implies that
dgnt1(z,2") < dgni1(y,2') < dgnt1(y,y’) + dgnt1(2’,y"). Consequently, dgnii(z,2') — dgn(y,y') <

dgn+1(2’,y"). Our analysis in the previous case showed that dgn+1(2,y") < 7, so the result follows.

O

7. GENERALIZED DUBINS—SCHWARZ INEQUALITY

The Borsuk-Ulam theorem states that an odd function S®*! — S™ is discontinuous, but how dis-
continuous must it be? One possible quantitative answer is in terms of the modulus of discontinuity
of a function, which is positive if and only if the function is discontinuous. Initial results in this
direction are given by Dubins and Schwarz in [38, Corollary 3]: The modulus of discontinuity of an

n+1
distance between two vertices of the regular (n + 1)-simplex inscribed in S™. More generally, for

odd function S"*! — S™ is bounded from below by 7,, where 7, := arccos (_—1> is the (geodesic)

any k > n the modulus of discontinuity and distortion of an odd function S* — S™ is at least ry;
this follows from the prior facts after pre-composing the odd function S*¥ — S™ with an inclusion
S+l <y Sk However, this lower bound 7, does not depend on k. In this section, we provide
improved lower bounds on the modulus of discontinuity of an odd function S¥ — S™, which are
weakly increasing and not constant as k increases.

Let X be a topological space, let Y be a metric space, and let f: X — Y be a function. Then as
defined in [38], the modulus of discontinuity of f is

5(f) =1inf{d > 0| Vx € X, 3 an open neighborhood U, of z s.t. diam(f(U,)) < §}.

Note that f is discontinuous if and only if §(f) > 0. Restating a result from Dubins and Schwarz [3§]
with the geodesic metric instead of the Euclidean metric, we obtain the following:

Theorem 7.1 (Dubins-Schwarz inequality; Corollary 3 and Scholium 1 of [38]). Any odd function
f: 8™ — 8™ has modulus of discontinuity 6(f) > 7, and this bound is attained.

Thus, we recover not only the Borsuk—Ulam theorem stating that f is discontinuous, but furthermore
we obtain a quantitative bound on how discontinuous f must be.

In this section, we generalize the Dubins-Schwarz inequality for odd functions S* — S™ for k > n.
Our primary theorem in this section is the following.

Theorem 1.3 (Generalized Dubins-Schwarz inequality). Any odd function f: S* — S™ with k > n
has modulus of discontinuity 6(f) > cp k-

This theorem generalizes |38, Corollary 3| since ¢, p41 = 7. Since Theorem 5.3 implies limy_,o ¢p ;, =

m, we obtain the following corollary.
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Corollary 7.2. Fiz n > 1. The modulus of discontinuity of an odd function f: S* — S™ tends
towards its maximum possible value w as k goes to infinity.

Remark 7.3. The modulus of discontinuity always lower bounds the distortion by [64, Proposi-
tion 5.2]. Therefore Theorem 1.3 implies the bound dis(f) > ¢, x for odd functions f: S¥ — S™ from
our Main Theorem. Nevertheless, for ease of exposition, we have presented our results on distortion
first, before moving now to the slightly more complicated case of modulus of discontinuity.

In Section 7.1 we prove Theorem 1.3 giving a lower bound on the modulus of discontinuity, and
in Section 7.2 we show that this lower bound is tight. In Section 7.3 we generalize the domain S*
in Theorem 1.3 to instead be any Z/2 space X with coindex at least k. Lastly, in Section 7.4 we
consider spheres equipped with the Euclidean metric.

7.1. Lower bound on the modulus of discontinuity. To prove Theorem 1.3, we need the
following lemma, which is similar to Lemma 3.5 except with distortion replaced by the modulus of
discontinuity.

Lemma 7.4. Let f: X — Y be a function between metric spaces, with X compact. Then for any e >
0, there is a sufficiently small a. > 0 such that f induces a map f : VR(X;a:) — VR(Y;86(f) +¢).
If f is an odd function, then f is also odd.

Proof. We first show that for any € > 0, there exists a. > 0 such that for any z,2’ € X with
dx(z,2") < a., we have dy (f(x), f(z')) < 6(f)+e. From the definition of modulus of discontinuity,
for any « € X, there exists r, > 0 such that diam(f(B(x;r;))) < d(f)+e. Consider the open cover
{B (:U; %z) }rex of X. As X is compact, there is a finite sub-cover { B (iUi; %) h<i<n. Choose as to

satisfy 0 < ae < min {%, ce T“;N } Let x, 2’ be any pair of points in X such that dx(z,2") < a..
Tz,

Since {B (a:i; %)}KZSN is a cover of X, there is some B (xi; 7) that contains x. Then,

Tzi

dx (2, z;) < dx(2',2) +dx(z,2;) < - + ot < Ty

That is, both z and 2’ are inside B(z;;7y,), and therefore dy (f(x), f(2')) < diam(f(B(z;ry))) <

f)+e.
Define f : VR(X;a.) — VR(Y;d(f) + ¢) by sending a vertex z € X to f(x) € Y, and then

extending linearly. Equivalently, f([zo,...,2m]) = [f(20),..., f(zm)]. By the above paragraph,
dy (f(z), f(2')) < 6(f) + & whenever dx(x,2") < ae, and therefore f is a well-defined map. If f is

odd, the verification that f is also odd is the same as in (3). O

We remark that the above lemma is in some sense sharp: if r < §(f), then for any a > 0 the
proposed map f : VR(X;a) — VR(Y;r) defined by sending a vertex z € X to f(z) € Y and
extending linearly would not be well-defined.

We can now prove Theorem 1.3, using a similar structure to the proof of our Main Theorem.

Proof of Theorem 1.3. Let k > n, and let f: S¥ — S™ be an odd function. We must show that
O(f) > cpp. Let € > 0. By Lemma 7.4, there is some a. > 0 such that f induces a map

f: VR(S*;a.) — VR(S™6(f) +¢). Choose a finite Z/2 invariant (a./2)-covering X C S*¥. By
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Lemma 4.1, we get an odd map S* — VR(X;ae). Restrict the domain of f to obtain an odd map
VR(X;a:) = VR(S™;0(f) 4+ €). The composition

S* = VR(X;ac) = VR(S™;6(f) +¢)
is continuous and odd, showing that 6(f) +& > ¢, for all e > 0. Hence 6(f) > cp k- O

Remark 7.5. The same proof technique shows that any odd map S¥ — Y has modulus of discon-
tinuity at least inf{r > 0| coind(VR(Y;r)) > k}.

7.2. Tightness of the lower bound on modulus of discontinuity. We now show that Theo-
rem 1.3 is tight, generalizing the tightness of Theorem 7.1.

Theorem 7.6. For any k > n and € > 0, there exists an odd function f: S* — S™ with modulus of
discontinuity 6(f) < cpp + €.

To prove Theorem 7.6, we will need the following lemma. In this subsection, for the purpose of
clarity, we use different notation to differentiate between a simplicial complex K and its geometric
realization |K|, even though in other sections of this paper we identify simplicial complexes with

their geometric realizations.

Lemma 7.7. Let X be a topological space, let Y be a metric space, and let v > 0. If there exists
a map X — |VR(Y;r)|, then there exists a function f: X — Y with modulus of discontinuity

0(f) <r.

Proof. Let sd(VR(Y';7)) be the barycentric subdivision of VR(Y; r), which means that a k-simplex
of sd(VR(Y;r)) is a chain of proper inclusions o9 C ... C oy, where each o; is a simplex in
VR(Y;r). A refinement of o9 C ... C o0y is a chain of proper inclusions that contains each of
00, .--,0% and potentially additional simplices of VR(Y;7); such a refinement corresponds to a
coface of o9 C ... C oy in sd(VR(Y;r)). Two basic properties of barycentric subdivisions are
that we have a natural bijection |VR(Y;r)| = [sd(VR(Y;7))| as sets, and that the interiors of the
simplices of sd(VR(Y’;r)) form a partition of [sd(VR(Y;7))| (so long as we consider the interior of
a vertex to be that vertex).

Let h: X — |VR(Y;r)| be a map. Define the function f: X — Y as follows. Pick an arbitrary
function v: VR(Y;r) — Y which assigns each simplex ¢ € VR(Y;7) to a vertex of that simplex.
For z € X, if h(z) € [VR(Y;7)| = [sd(VR(Y;7))| is in the interior of the simplex o9 C ... C o} in
sd(VR(Y;7)), then we define f(x) = v(0p). When one writes h(x) using barycentric coordinates in
[VR(Y';7)|, we note that o is the set of vertices in Y achieving the largest barycentric coordinate
of h(x). If there is a unique such vertex, then f(x) is equal to this vertex, and otherwise ties are
broken using the function v; see Figure 9.

We now show that the modulus of discontinuity of f satisfies §(f) < r. Let z € X. Let h(z)
be in the interior of the simplex o9 C ... C 0% in sd(VR(Y;7)). Let S C |sd(VR(Y;7))| be
the union of the interiors of all cofaces of o9 C ... C o in sd(VR(Y;7)). Then S is an open
set in [sd(VR(Y;7))| = |[VR(Y;7)|, and since h is continuous, the preimage h~!(S) is an open
neighborhood about z in X. We claim that diam(f(h~1(S))) < r. Indeed, let 2/, 2" € h~1(S) C X.

By the definition of S, this means that h(z’) is in the interior of some simplex of sd(VR(Y’;r))
23



X IVR(Y;7r)| = [sd(VR(Y;r))]
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FIGURE 9. Figure accompanying the proof of Lemma 7.7, in the case when X = S?
and Y = S1. Only four 2-simplices of [VR(Y;7)| is drawn. If h(z) is any point in
the gray shaded region, then necessarily f(z) =y.

that is a coface of o9 C ... C oy, i.e. a refinement of o9 C ... C 0. Hence f(a') is a vertex of
0p. By the same argument, f(z”) is a vertex of og. Since og is a simplex in VR(Y;r), it follows
that dy (f(z'), f(z")) < r. Because 2’ and 2" are arbitrary points in h=1(S), we have shown that
diam(f(h=1(S))) < r. Finally, since h~'(S) is an open neighborhood about z in X, it follows that
6(f) <. O

Proof of Theorem 7.6. Let k > n and € > 0. We must build an odd function f: S* — S™ with
modulus of discontinuity §(f) < cp i + €.

We remark that Theorem 2 of [6] implies that ¢, ; < 7 for all k > n. If ¢, , +& > , then one can
simply let f be an arbitrary odd function, since 6(f) < diam(S™) = 7. Hence it suffices to consider
the case when r == ¢, +¢e <.

By the definition of ¢, j in Definition 1.1, there exists an odd map h: S¥ — [VR(S™;r)|. Since
r < 7, no simplex of VR(S™;r) is equal to its antipode, by which we mean that if o = {yo,...,ym} €
VR(S™;r), then 0 # —0 = {—yo,..., —Ym}. Hence we can choose an odd function v: VR(S™;r) —
S™ that assigns each simplex o € VR(S™;r) to a vertex of that simplex, where odd means that
v(—0o) = —v(o) for all ¢ € VR(S™;7). Build the map f: S¥ — S™ as in the proof of Lemma 7.7,
i.e., forx € S* if h(z) € [VR(S™;7)| = [sd(VR(S™;7))] is in the interior of the simplex og C ... C oy,
in sd(VR(Y; 7)), then we define f(z) = v(op). Since h is odd and since v is odd, it follows that f
is odd. Furthermore, by the proof of Lemma 7.7, we know that 6(f) <r =c¢,; +e¢. O

Example 7.8. We construct an explicit example in the case n = 1. In [5, Section 5|, Adams,

Bush, and Frick construct an injective odd map 0Bap o — VR™(S%; %

Barvinok—Novik orbitope to the Vietoris—Rips metric thickening of the circle. The radial projection

) from the boundary of the

map S*H — 9Byys in R2*2 is a homeomorphism. Furthermore, for any ¢ > 0 we can use the

techniques of [10, 73] to build an odd map VR™(S%; %) — |[VR(SY % + ¢)|; this follows from

the e-interleavings constructed in [10, 73], which in this setting can be made Z/2 equivariant. So
by composition we obtain an odd map

S = OBapg < VR™(SY 225) = |VR(S'; 225 +¢)| -
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By Lemma 7.7, we obtain an odd function f: S?*! — S with modulus of discontinuity &(f) <

22271(1 +¢& = c12¢41 + €. By restricting to the equator, we also obtain an odd function f: 52ty g1

with 6(f) < 222% +e=crte.

7.3. Generalization of the lower bound on modulus of discontinuity. We may generalize
the domain S* in Theorem 1.3 to any Z/2 space X with coindex at least k:

Theorem 7.9. Let X be a Z/2 space with coind(X) > k. Then any odd function f: X — S™ with
k > n has modulus of discontinuity 6(f) > cp k. (In particular, this holds if X is (k—1)-connected.)

This follows from the fact that precomposing a function f: X — S” with a map g: S* — X
cannot increase the modulus of discontinuity of f; more precisely, §(f) > 6(fog). In order to prove
this fact (Lemma 7.10), we define a pointwise version of the modulus of discontinuity.

Let X be a topological space, let Y be a metric space, and let f: X — Y. Then for z € X, the
modulus of discontinuity of f at x is

d(f,z) := inf{diam(f(U)) | U is an open neighborhood of x}.
Note that 0(f) = sup,cx 0(f,2). Then we have the following lemma:

Lemma 7.10. Let X,Y be topological spaces, let Z be a metric space, let f: Y — Z be a function,
and let g: X —'Y be a map. Then

(1) For allz € X, §(f,g9(z)) > d(fog,x).

(2) 0(f) = 6(fog).

Proof. For (1), let U be an open neighborhood of g(z) in Y. Then ¢g~!(U) is an open neighborhood
of 2 in X, and (f 0 g)(g~"(U)) C f(U). Therefore,

diam(f(U)) > diam((f o 9)(g~(U))) = 8(f o g, ).

Taking the infimum over all such U, we obtain 6(f, g(x)) > 6(f o g,x). For (2), we have
8(f) = sup6(f,y) = sup 6(f, g(x)) = sup 6(f o g,x) = 6(f o g).
yey zeX zeX

This completes the proof. O

Proof of Theorem 7.9. Since coind(X) > k, there exists an odd map g: S¥ — X. Consider the
composite function fog: S¥ — S™. Since g is a map, we have §(f) > 6(f og), by Lemma 7.10. We
also have 6(f o g) > ¢y, by Theorem 1.3. Therefore, §(f) > cp . O

7.4. Lower bound on the Gromov—Hausdorff distance between Euclidean spheres. In
this subsection we use the Euclidean metric on spheres, instead of the geodesic metric. For any
integer n > 0, let S% denote the n-dimensional unit sphere equipped with the Euclidean metric; the
Euclidean distance between z, 2’ € S is ||z — 2'||. We will lower bound the distortion of odd maps
Sg — Sp with k > n, and then use this to lower bound the Gromov-Hausdorff distance between
Sk and S%.

We first note that the generalized Dubins—Schwarz inequality (Theorem 1.3) can be formulated in
terms of the Euclidean metric on spheres. The following result comes from combining Theorem 1.3
with the fact that for any two points z, 2" on the unit sphere, we have ||z — 2/|| = 2sin (w)
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Corollary 7.11. Any odd function f: S]’fJ — S% with k > n has modulus of discontinuity 6(f) >

2sin (“5%).

When k£ = n+ 1, the above corollary recovers the Dubins—Schwarz inequality in [38], which states
d(f) > 2sin (%”) for maps f: SEH — S%. In [64, Proposition 9.16], the Dubins-Schwarz inequality
is combined with a Euclidean “helmet trick” (Lemma 7.13 below) to provide a lower bound on the
Gromov—Hausdorff distance between the Euclidean spheres S g and S% for any integers k > n > 1.
This lower bound depends on n but not on k, and so we instead use Corollary 7.11 to obtain a lower
bound depending on both n and k. Indeed, the following result recovers |64, Proposition 9.16] when
k =n+ 1 and obtains a refinement when k£ > n + 1.

Proposition 7.12. For all integers k > n, we have 2 - dgu(Sp, S%) > 2 — 2 cos (0”2'“)

Recall that Theorem 5.3 implies limy_,o0 ¢, = m. Meanwhile, it is shown in [64, Remark 9.1]
that dgu(S%, S’E) < 1 for any integers 0 < n < k. Therefore, the bound in the above proposition is
asymptotically tight in the sense that limy_, dGH(Sg, ST) = 1. Our proof of Proposition 7.12 will
use the following “helmet trick” for Euclidean spheres.

Lemma 7.13 (Lemma 9.14 in [64]). For any k,n > 0, let the set @ # C C Sk satisfy CN(—-C) = &,
and let ¢p: C — S% be any function. Then, the extension ¢*: C' U (—C) — Sp defined by

o(x) ifxeC

—¢(—x) otherwise

is odd and satisfies the distortion bound dis (¢*) < \/dis(¢) (4 — dis(¢)).
We are now ready to prove Proposition 7.12.

Proof. For any function ¢: Sg — Sp, Lemma 7.13 guarantees that the existence of an odd function
¢*: SE — S such that dis (¢*) < /dis(®) (4 — dis(¢)). We rearrange this bound by completing
the square, using the fact that both dis(¢) and dis(¢*) are bounded above by 2 (the Euclidean
diameter of unit spheres), obtaining dis(¢) > 2 — /4 — (dis(¢*))2. As 0 < §(¢*) < dis(¢*), we have
dis(¢) > 2 — \/4 — (6(¢*))2. Thus, we use Corollary 7.11 to obtain

dis(¢) > 2 — \/4—4sin2 (22) =2—24/1—sin® (%%) = 2 — 2cos (%)

where in the last step we use the fact that 0 < ¢, ;, < 7. The result now follows from (1). ]

8. CONCLUSION AND (QUESTIONS

As described in this article, the topology of Vietoris—Rips complexes of spheres are closely related
to Gromov—Hausdorff distances between spheres, to approximate versions of the Borsuk—Ulam the-
orems for maps into lower- and higher-dimensional codomains, and to packings and coverings in
projective space. We expect similar relationships to be true for Vietoris—Rips complexes of other
spaces. We conclude this article with a list of open questions that we hope will attract interest from

readers.
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Question 8.1. There are no known values of n and k where the lower bound 2 - dgi(S™, Sk) > Cnk
is not an equality, and therefore it is reasonable to ask if this lower bound could be an equality in
general. In particular, can we find better functions g: S™ — S*¥ and h: S¥ — S™ of low distortion
and codistortion, providing upper bounds on the Gromov-Hausdorff distance between spheres?
By [64, Remark 1.1], it suffices to find a surjective function S¥ — S™ of bounded distortion.

For example, can we find surjective functions S?* — S1 and $2¢*1 — S of distortion at most
22,51“1, in order to show that our lower bounds 2-dgg(S', S?%) > % and 2-dgg(S*t, S2F+1) > %
are tight? Can we find surjective functions S"*! — S and S"*2 — S of distortion at most r,,, in
order to show that the lower bounds 2 - dgu(S™, S"*1) > r,, and 2 - dgu(S™, S"*2) > r, from [64]

are tight? In other words, we ask:

Is 2-dau(S', S%) =52 =2 dau(S*, $°1)?

Is 2-dgu(S™ S") = r, =2 dgu(S", S"2)?

Question 8.2. In this paper, we have primarily thought of our Main Theorem and Theorem 1.3 as
providing lower bounds on the distortion of a function f: S¥ — S™ or on the modulus of discon-
tinuity of such a function, or on the Gromov-Hausdorff distance between S™ and S*, respectively.
However, one could also apply these results in the opposite direction in order to obtain new knowl-
edge about Vietoris Rips complexes of spheres. Is it possible to find a function f: S* — 8™ of low
distortion r or low modulus of discontinuity 7, in order to prove a new upper bound of the form
coind(VR(S™;7)) > k for a smaller value of r than was previously known? Similarly, is it possible
to find functions showing 2 - dgu(S™, S*) is at most r with 7 small, in order to prove a new upper
bound of the form coind(VR(S™;7)) > k7 If so, then [6, Theorem 3| would furthermore imply that
there is no covering of RP" by k balls of radius r.

Question 8.3. Theorem 7.6 finds an odd function f: S¥ — S™ with modulus of discontinuity
arbitrarily close to ¢, 1, showing that Theorem 1.3 is tight. Do there exist odd functions f: Sk — sn
with distortion arbitrarily close to ¢, j, which would show that the second inequality in our Main
Theorem is tight?

Question 8.4. Theorem 1.3 lower bounds the modulus of discontinuity of odd functions S¥ — S™
with £ > n, and can be viewed as a discontinuous generalization of the Borsuk-Ulam theorem as
stated in Theorem 3.3. Can we obtain similar discontinuous generalizations of other equivalent
formulations of the Borsuk-Ulam theorem, e.g., Theorem 3.1 and Theorem 3.27 Results in this

direction will appear in an upcoming paper |7].

Question 8.5. Can we provide lower bounds on the Gromov—Hausdorff distances between more
general families of Z/2 metric spaces by obstructing the existence of equivariant maps to their
Vietoris-Rips complexes? In particular, can we generalize the sphere S* in our Main Theorem to a
more general class of (k — 1)-connected Z/2 spaces?

Theorem 7.9 provides an answer to the analogous question for Theorem 1.3, our primary theorem
bounding the modulus of discontinuity, replacing the k-sphere with a space of Z/2 coindex at least
k. Does an analogous generalization exist for the distortion bound in our Main Theorem?
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Question 8.6. Can one generalize our results to groups G other than G = Z/27 As a start, one
could attempt to extend our results from Z/2 spaces, Z/2 functions, and Z/2 maps, to Z/p spaces,
Z/p functions, and Z/p maps for other primes p. Results in this direction will appear in upcoming
papers [7, 62].

Question 8.7. Can our methods be used to obtain bounds on the Gromov—Hausdorff distances
between spaces from families other than spheres, such as real projective space RP”, complex pro-
jective space CP", ellipses with different eccentricity values, or ellipsoids of different dimensions
or with different axis lengths? What about Gromov—Hausdorff distances between spaces that each
come from a different family, e.g. dg(RP™, S™)? The first new homotopy type of the Vietoris—Rips
metric thickening of RP™ is given in [9]. Katz has studied the filling radius of complex projective
spaces CP™ [56, 58, 59, 60|, which is closely related to Vietoris—Rips complexes by [63]. The first
new homotopy type of Vietoris—Rips complexes of small-eccentricity ellipses is given in [4].

Question 8.8. What lower bound can we obtain for the Gromov-Hausdorff distances dgm (X, S*)
and dgp(X,Y), where X and Y are finite sets? For example, what lower bounds can we get for
the Gromov-Hausdorff distance dgu(Qn, S*) and dau(Qn, Qr), where @, is the vertex set of the
hypercube graph, equipped with one of several natural choices of metric? See |27, 2, 84| for recent
papers on the Vietoris—Rips complexes of the hypercubes @Q,.

Question 8.9. The Borsuk—Ulam theorem has many different corollaries. Can our generalization
of the Dubins—Schwarz inequality provide new generalizations of some of these corollaries? Some

results in this direction will appear in an upcoming paper [7].

Question 8.10. Let X be a metric space that is “approximately” a Z/2 space, by which we mean
that acting by the generator twice returns a function that is not the identity map on the nose,
but only close to being the identity map. Is there a version of the Dubins—Schwarz inequality for
“approximate Z/2 spheres”” Can our machinery be adapted to provide bounds on the Gromov—

Hausdorff distances between “approximate” Z/2 metric spaces?

Question 8.11. Below we outline several fundamental open questions regarding the dependence of
Gromov—Hausdorff distances between spheres on the dimensions of the spheres in question. Several
questions ask about upper bounds, which may be useful for working in the opposite direction of our
results, i.e. upper bounds on Gromov—Hausdorff distances may be useful for drawing new conclusions
about the homotopy connectivity of Vietoris—Rips complexes or packings and coverings in projective
space. We set k > n in each question below.

e We might already conjecture that dgu(S™, S™*1) = r, = dau(S™, S"*2) based on existing
bounds. However, Crabb [35, Theorem 3.1| recently used characteristic classes and the
cohomology of quotients of classical groups [18] to prove that when n + 1 is divisible by
a large power of 2, then the diameter bound 7, in [5, Theorem 3| also works for maps
f: 8™ — R* into a selected number of higher dimensions k with k& > n + 2. This motivates
us to ask: Does there exist n and k > n + 2 so that dgu(S™, S*) = r,?

e Is it always true that dgu(S™, S¥) < dgu(S™, S¥*1)? That is, does dgy increase monoton-
ically as we move to the right in any row in Table 1?7 Note, the first row shows we cannot

guarantee a strict increase. This is Question I of Lim, Memoli, and Smith [64].
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e Is it always true that dgm(S™, S*) > dgu(S™H!, S¥)? That is, does dgy decrease monoton-
ically as we move downward in any column of Table 17

e Is it always true that dgu(S™, S*) < dgu(S™*!, S¥+1)? That is, does dgn decrease mono-
tonically as we follow any off-diagonal in Table 17

e For fixed m > 1, is 2 - dgu(S™, S™*™) bounded away from 7 as n — oo? Theorem 1.2 gives
an affirmative answer for m = 1, and current bounds on ¢, n+m (see [6, Corollary 3.2]) do
not preclude an affirmative answer in general.

e For any § > 3 and integer m > 1, does there exist a sufficiently large integer N such that
2-dGH(S",Sk) <dforalln>Nandn<k<n4+m?
Again, our lower bounds ¢, ;, satisfy this property by [6, Corollary 3.2].

Question 8.12. Definition 5.2.7 of [25] defines s, j, to be the infimal value of r such that, for any
odd map f: S™ — RF with k > n, there exists a subset X C S™ of diameter at most 7 such that
the origin is in the convex hull of the image f(X) C R¥. See [25, Table on Page 80| for the known
values of s,, ;, and note the similarities with Table 1. It is known that for k > n, we have s, 1 < ¢, 1.
Indeed, let f: S™ — R* be any odd map, and suppose r > Cn,k, 1.€., suppose there is an odd map
Sk — VR(S™;r). The map f induces an odd map VR(S™;r) — R¥. By composition, we obtain an
odd map S* — VR(S™;7) — R*¥. We apply the standard Borsuk-Ulam theorem to this odd map
Sk — RF to see that there is a point in VR(S™; r) that maps to the origin in Rk, i.e. that there is
a subset X C S™ of diameter at most r such that the origin is in the convex hull of f(X). Hence,
r > spk and it follows that s, < ¢, . Could it be the case that s,, ; = ¢, 1 for all k > n, or if not,
what are the smallest values of n and k for which these quantities differ?
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