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Abstract. We explore emerging relationships between the Gromov–Hausdorff distance, Borsuk–

Ulam theorems, and Vietoris–Rips simplicial complexes. The Gromov–Hausdorff distance between

two metric spaces X and Y can be lower bounded by the distortion of (possibly discontinuous)

functions between them. The more these functions must distort the metrics, the larger the Gromov–

Hausdorff distance must be. Topology has few tools to obstruct the existence of discontinuous

functions. However, an arbitrary function f : X → Y induces a continuous map between their

Vietoris–Rips simplicial complexes, where the allowable choices of scale parameters depend on how

much the function f distorts distances. We can then use equivariant topology to obstruct the

existence of certain continuous maps between Vietoris–Rips complexes. With these ideas we bound

how discontinuous an odd map between spheres Sk
→ Sn with k > n must be, generalizing a

result by Dubins and Schwarz (1981), which is the case k = n + 1. As an application, we recover

or improve upon all of the lower bounds from Lim, Mémoli, and Smith (2022) on the Gromov–

Hausdorff distances between spheres of different dimensions. We also provide new upper bounds

on the Gromov–Hausdorff distance between spheres of adjacent dimensions.

1. Introduction

The Gromov–Hausdorff distance between metric spaces X and Y , denoted by dGH(X,Y ), quan-

tifies the extent to which X and Y fail to be isometric. The Gromov–Hausdorff distance is used in

many areas of geometry [24, 32, 34, 75]. In applications to shape and data comparison/classification,

one desires to estimate either the Gromov–Hausdorff distance between spaces [70, 71, 67] or the

Gromov–Wasserstein distance [68, 87, 76, 13], which is one of its optimal transport induced variants.

However, both distances are hard to compute, both analytically and algorithmically [69, 82, 83, 12].

Despite the interest in this type of distances, exact values of the Gromov–Hausdorff distance are

known in only a small number of cases; see Section 2.

Our paper is the result of a polymath-style collaboration, which began as an attempt to explain

the following motivating question. In [64], Lim, Mémoli, and Smith prove the first strong bounds
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for the Gromov–Hausdorff distance between spheres of different dimensions. We were surprised to

observe that the values in [64] (see Table 1) had recently appeared in the literature in a different

context, namely as the scale parameters when Vietoris–Rips complexes of spheres change homotopy

type. The Vietoris–Rips complex VR(X; r), which coarsens a metric space X with respect to

some scale parameter r ≥ 0, is commonly used in applied topology to approximate the shape

of a dataset [26], and has its historical origins in algebraic topology [90] and geometric group

theory [48]. The lower bound 2 · dGH(S
n, Sn+1) ≥ rn from [64] reminded us of the fact that the

first change in homotopy type of VR(Sn; r) occurs when r = rn [3, 63, 57], where rn is the geodesic

distance between two vertices of the regular (n+1)-simplex inscribed in Sn. Similarly, the equality

2 · dGH(S
1, S2) = 2 · dGH(S

1, S3) = r1 = 2π
3 from [64] reminded us of the homotopy equivalence

VR(S1; 2π3 + ε) ' S3 from [1, 5, 74].

Motivating Question. What is the connection between the Gromov–Hausdorff distance between

spheres and Vietoris–Rips complexes of spheres?

To provide an answer to this question1, we combine and extend two generalizations of the Borsuk–

Ulam theorem: one by Dubins and Schwarz [38] used in Lim, Mémoli and Smith [64] to study the

Gromov–Hausdorff distance, and the second by Adams, Bush, and Frick [5, 6] on the equivariant

topology of Vietoris–Rips complexes. The Borsuk–Ulam theorem, a classic result in equivariant

topology, states that there is no continuous Z/2 equivariant map f : Sk → Sn for k > n [66]. Here

the Z/2 action on each sphere is the antipodal map, and f is called Z/2 equivariant or odd if it

commutes with the Z/2 actions; that is, if f(−x) = −f(x) for all x ∈ Sk.

We relate Gromov–Hausdorff distances, Borsuk–Ulam theorems, and Vietoris–Rips complexes as

follows. Estimating the Gromov–Hausdorff distance dGH(X,Y ) involves bounding the distortion

dis(f) of a (possibly discontinuous) function f : X → Y , which measures the extent to which f

fails to preserve distances: the more that functions between X and Y must distort the metrics, the

larger dGH(X,Y ) must be. When X and Y are spheres, Lim, Mémoli and Smith [64] show that it

suffices to consider odd functions; this is the so-called “helmet trick”. We transform an odd function

f : Sk → Sn into a continuous odd map |VR(Sk; r)| → |VR(Sn; r + dis(f))| for any r ≥ 0, letting

the Vietoris–Rips complexes absorb discontinuities. We then obstruct the existence of such maps

with the equivariant topology of Vietoris–Rips complexes, measured via the following quantity.

Definition 1.1. For k ≥ n, we define cn,k := inf{r ≥ 0 | there exists an odd map Sk → VR(Sn; r)}.

Due to a theorem of Hausmann [50], we have a homotopy equivalence VR(Sn; r) ' Sn for

sufficiently small r, and moreover there is an odd map VR(Sn; r) → Sn. The Borsuk–Ulam theorem

then implies that no odd map Sk → VR(Sn; r) exists for such r unless k ≤ n. In particular, cn,n = 0,

but cn,k > 0 for k > n. Therefore, intuitively, the quantity cn,k represents the amount by which Sn

needs to be “thickened” until it admits an odd map from Sk.

Our main result is the following lower bound on dGH(S
n, Sk).

Main Theorem. For all k ≥ n, the following inequalities hold:

2 · dGH(S
n, Sk) ≥ inf

{

dis(f) | f : Sk → Sn is odd
}

≥ inf
{

r ≥ 0 | ∃ odd Sk → VR(Sn; r)
}

=: cn,k.

1See Section 2 for other connections, including the stability of persistent homology.
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n\
k 1 2 3 4 5 6 7

1 0 2π
3

2π
3

[

4π
5 , π

) [

4π
5 , π

) [

6π
7 , π

) [

6π
7 , π

)

2 0 r2
[

r2, π
) [

c2,5, π
) [

c2,6, π
) [

c2,7, π
)

3 0
[

r3,
2π
3

] [

r3, π
) [

c3,6, π
) [

c3,7, π
)

4 0
[

r4,
2π
3

] [

r4, π
) [

c4,7, π
)

5 0
[

r5,
2π
3

] [

r5, π
)

6 0
[

r6,
2π
3

]

7 0

r1

r1 =
2π
3

r2

...

Table 1. Bounds for the quantity 2 · dGH(S
n, Sk) for small values of n and k. Here

rn = arccos
(

−1
n+1

)

and cn,k = inf{r ≥ 0 | ∃ an odd map Sk → VR(Sn; r)}. The

entries in black appear in [64, Figure 2], and the entries in blue are new. Our Main

Theorem recovers or improves upon all known lower bounds, and the upper bound

by 2π
3 along the superdiagonal is established in Theorem 1.2.

Let us explain the two inequalities in our Main Theorem, and compare them to existing results.

The first inequality in our Main Theorem is the aforementioned “helmet trick” by Lim, Mémoli,

and Smith [64, Lemma 5.5], which states that to bound dGH(S
n, Sk), it is enough to consider the

distortion of odd functions. Lim, Mémoli, and Smith then prove that the distortion of any such

function is bounded below by rn, using Dubins and Schwarz’s generalization of the Borsuk–Ulam

theorem mentioned above [38] (more details will be described below). This implies 2 ·dGH(S
n, Sk) ≥

rn for all k > n. Combining this with explicit constructions of upper bounds, they proved that

2 · dGH(S
n, Sk) = rn holds exactly for n < k ≤ 3 and gave nontrivial bounds in all dimensions.

Despite these tight results, one unsatisfactory feature of the general lower bound 2·dGH(S
n, Sk) ≥ rn

for k > n is that the right-hand side does not depend on k, whereas it is known that for n fixed

and k → ∞, 2 · dGH(S
n, Sk) → π > rn [64, Proposition 1.8]. The present paper establishes lower

bounds which improve upon these.

The second inequality in our Main Theorem, which we prove in Section 4, lower bounds the

distortion of an odd map Sk → Sn with k ≥ n in terms of the equivariant topology of Vietoris–

Rips complexes of spheres. The motivation for studying odd maps Sk → VR(Sn; r) comes from

Adams, Bush, and Frick [6], who observe the following. Even though we do not have a complete

understanding how the homotopy types of VR(Sn; r) change as the scale parameter r increases, we

can control the equivariant topology of VR(Sn; r) in terms of packings and coverings in projective

space. In particular, if there exists a sufficiently efficient covering of RPn by k points, then there does

not exist an odd map Sk → VR(Sn; r) [6], which allows us in Section 5 to estimate the quantity

cn,k in terms of the covering number of k points in RPn. In this same section we furthermore

determine some values of cn,k exactly using the current limited understanding of the homotopy types

of VR(Sn; r). When combined together, these estimates show that the lower bound 2·dGH(S
n, Sk) ≥

cn,k from our Main Theorem is never worse (and frequently improves upon) those from [64]; see
3



Remark 5.5 and Table 1. In Section 6, we supplement these new lower bounds with the following

upper bounds when k = n+ 1 (which improve upon those from [64]).

Theorem 1.2. For every n ≥ 1, we have 2 · dGH(S
n, Sn+1) ≤ 2π

3 .

The second inequality of the Main Theorem is of independent interest due to its relationship with

the following natural question: the Borsuk–Ulam theorem asserts that there exists no continuous

odd map from Sk → Sn for k > n, so given an odd function from Sk → Sn, how discontinuous

must it be? In [38], Dubins and Schwarz quantify the discontinuity of odd functions Sn+1 → Sn by

showing that the modulus of discontinuity of any odd function Sn+1 → Sn is at least rn. Moreover,

they exhibit a function which realizes this bound. In Section 7 we generalize the Dubins–Schwarz

inequality, by adapting the proof of the second inequality in the Main Theorem to use the modulus

of discontinuity instead of the distortion.

Theorem 1.3 (Generalized Dubins–Schwarz inequality). Any odd function f : Sk → Sn with k ≥ n

has modulus of discontinuity at least cn,k, and this bound is tight. In particular, for every ε > 0,

there exists an odd function Sk → Sn with modulus of discontinuity cn,k + ε.

In summary, this paper explores and combines emerging relationships between the Gromov–

Hausdorff distance, Borsuk–Ulam theorems, and Vietoris–Rips simplicial complexes. While it was

previously known that these topics were pairwise related (see Figure 1 and Section 2), our Main

Theorem exhibits an explicit mutual connection between these concepts.

Researchers from different research communities, such as applied topology, topological combi-

natorics, geometric group theory, metric geometry, and quantitative topology, have different per-

spectives and levels of expertise on the Gromov–Hausdorff distance, Borsuk–Ulam theorems, and

Vietoris–Rips simplicial complexes. There may be few experts on all three topics. As such, we

include a thorough survey of these topics and the existing relationships among them in Sections 2

and 3, in hopes that this paper will serve as an efficient way to teach these topics to a variety of

research communities. Additionally, we have collected a large number of remaining open questions

in Section 8, many of which we hope will yield to multi-pronged attacks, after bridges have been

formed between these different communities.

2. Related work

We organize our description of related work using Figure 1.

The Gromov–Hausdorff (GH) distance. The Gromov–Hausdorff distance provides a metric on

isometry classes of compact metric spaces [41, 44, 45, 89]. Despite its importance in geometry [24,

32, 34, 75] and shape comparison [70, 71, 67], exact Gromov–Hausdorff distances are only known

in a small number of cases. These include the Gromov–Hausdorff distance between a line segment

and a Euclidean circle [54], between spheres of dimension at most three [64], and between some

pairs of discrete metric spaces such as simplices [69, 53] and between the vertex sets of regular

polygons [64, 88].
4
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Figure 1. Our project fills a hole in the mathematical landscape. See the open

questions in Section 8 for areas where more work is needed.

Vietoris–Rips (VR) complexes. Vietoris–Rips simplicial complexes were first considered by

Vietoris in the context of developing a cohomology theory for metric spaces [61, 90], and intro-

duced independently by Rips in geometric group theory as a natural way to thicken (i.e. coarsen) a

space [22, 48]. More recently, they have become commonly used tools in applied and computational

topology [40, 39], used in applications to data analysis [26, 28, 42] and sensor networks [36, 37], for

example.

Borsuk–Ulam (BU) theorems. The Borsuk–Ulam theorem is a classic result from topology,

stating that any continuous map from the n-sphere to n-dimensional Euclidean space identifies

antipodal points, or equivalently that there is no continuous odd map from the k-sphere to the n-

sphere for k > n. It has numerous applications to discrete geometry and combinatorics [66], many of

which are still being discovered and explored, such as applications to low-distortion embeddings of

finite metric spaces into Euclidean space [85] (here the Borsuk–Ulam theorem is used in a different

fashion to our approach of bounding distortion), inscribing parallelograms into spatial curves [14],

and hardness results for graph colorings [15]. Various recent applications of equivariant topology

go beyond the antipodal symmetry of the Borsuk–Ulam theorem; see [20].

VR–GH. A well-known connection between Vietoris–Rips complexes and Gromov–Hausdorff dis-

tances is the stability of persistent homology: If X and Y are totally bounded metric spaces, then

twice the Gromov–Hausdorff distance between X and Y is bounded from below by the bottleneck

distance between the Vietoris–Rips persistent homology barcodes of X and Y [31, 30, 33]. However,

stability alone does not provide sharp lower bounds on the Gromov–Hausdorff distances between

spheres of different dimensions. In fact, those lower bounds have been computed exactly in [63,

Corollary 9.3] where it is proved that they equal 1
2 of the filling radius [46, 56] of the sphere with

smaller dimension. In the cases (n, k) ∈ {(1, 2), (1, 3), (2, 3)}, these bounds yield exactly one-half

of the actual corresponding values of the Gromov-Hausdorff distances [64]. We show how to inject

ideas from equivariant topology into the VR–GH story so as to obtain sharper bounds.
5



GH–BU. The paper [64] computes dGH(S
n, Sk) exactly for n < k ≤ 3 and gives nontrivial upper

and lower bounds for all n < k. Some of their lower bounds are related to generalizations of the

Borsuk–Ulam theorem, such as [38], and these lower bounds strictly improve upon the lower bounds

provided by the stability of persistent homology.

BU–VR. The papers [5, 6] use information about the homotopy connectivity of Vietoris–Rips

complexes defined on spheres at various scales to prove generalizations of the Borsuk–Ulam theorem

for maps from spheres into higher-dimensional Euclidean spaces. Cohomological techniques, without

knowledge of the connectivity of Vietoris–Rips complexes, are used in [35] to obtain similar, and

sometimes stronger, results.

GH–BU–VR. The Gromov–Hausdorff distance, Borsuk–Ulam theorems, and Vietoris–Rips com-

plexes are not only related pairwise. Indeed, we think of our paper as a witness point showing that

there is a nontrivial triple intersection between these topics. For example, our Main Theorem lower

bounds the Gromov–Hausdorff distance dGH(S
n, Sk) for k ≥ n in terms of odd maps from from Sk

into the Vietoris–Rips complex VR(Sn; r), and we obstruct the existence of such odd maps using

the Borsuk–Ulam theorem.

3. Background and notation

For topological spaces X and Y :

• A map f : X → Y is a continuous function.

• A function f : X → Y is any function, possibly discontinuous.

For a metric space X:

• We denote by dX : X ×X → R the metric on X.

• We let B(x; r) := {x′ ∈ X | dX(x′, x) < r} denote the open ball of radius r about x. For

X ′ ⊆ X, we let B(X ′; r) = ∪x∈X′B(x; r) be the union of the balls.

• The diameter of a subset A ⊆ X is diam(A) := supa,a′∈A dX(a, a′).

We define the n-sphere as Sn := {x ∈ R
n+1 | ‖x‖ = 1}. We always equip Sn with the geodesic

metric in which great circles have length 2π (with the exception on Section 7.4, when we also

consider the Euclidean metric). For x, x′ ∈ Sn ⊂ R
n+1, the geodesic metric satisfies the equality

dSn(x, x′) = arccos
(

〈x, x′〉
)

= 2arcsin
(

‖x−x′‖
2

)

.

3.1. Background on the Gromov–Hausdorff distance.

Distortion. Given any two bounded metric spaces (X, dX) and (Y, dY ) and any non-empty relation

R ⊆ X × Y , the distortion of R is defined as

dis(R) := sup
(x,y),(x′,y′)∈R

∣

∣dX(x, x′)− dY (y, y
′)
∣

∣ .

In particular, the graph of any function g : X → Y is a relation Rg ⊆ X × Y , and we denote the

distortion of this relation by dis(g) := dis(Rg). In this case,

dis(g) = sup
x,x′∈X

|dX(x, x′)− dY (g(x), g(x
′))|.

6



A relation is a correspondence if its projections onto X and onto Y are surjective. Note that the

relation Rg is a correspondence if and only if g is surjective.

Given functions g : X → Y and h : Y → X between metric spaces, the codistortion (see Figure 2)

of g and h is defined as

codis(g, h) := sup
x∈X,y∈Y

|dX(x, h(y))− dY (g(x), y)|.

The codistortion codis(g, h) allows one to bound the extent to which the functions g and h fail

to be inverses of each other. Indeed, if codis(g, h) < ε, then one has dX(x, h(g(x))) < ε and

dY (g(h(y)), y) < ε for every x ∈ X and y ∈ Y .

x

h(y)

X Y

g(x)

y

g

h

Figure 2. Illustration of the codistortion.

Hausdorff distance. Let Z be a metric space. If X and Y are two closed submetric spaces of Z

then the Hausdorff distance between X and Y is

dH(X,Y ) = inf{r ≥ 0 | X ⊆ B(Y ; r) and Y ⊆ B(X; r)}.

Figure 3. Let the metric spaces X (blue) and Y (red) inherit the Euclidean metric

from the plane. If we thicken X by r1, then Y ⊆ B(X; r1), but X 6⊆ B(Y ; r1),

so dH(X,Y ) ≥ r1. When thickening each space by r2, we see Y ⊆ B(X; r2) and

X ⊆ B(Y ; r2), so dH(X,Y ) ≤ r2.

7



In other words, the Hausdorff distance calculates the smallest real number r such that if we thicken

Y by r it contains X and if we thicken X by r it contains Y .

Gromov–Hausdorff distance. The Gromov–Hausdorff distance dGH(X,Y ) between two bounded

metric spaces X and Y is defined as the infimum, over all metric spaces Z and isometric embeddings

γ : X → Z and ϕ : Y → Z, of the Hausdorff distance between γ(X) and ϕ(Y ) [41, 49]. Unlike the

Hausdorff distance, the Gromov-Hausdorff distance considers sets X and Y that are not part of

the same metric space. However, to compute it we need to embed X and Y in different common

metric spaces Z, and then take the infimum of the Hausdorff distance over those Z. It follows

from [55] that the Gromov–Hausdorff distance between any two bounded metric spaces X and Y

can alternatively be defined as

2 · dGH(X,Y ) = inf
R

dis(R),

where R ranges over all correspondences between X and Y . It was also observed in [55] that

2 · dGH(X,Y ) = inf
g,h

max{dis(g), dis(h), codis(g, h)}, (1)

where g : X → Y and h : Y → X are any functions. It follows that 2 · dGH(X,Y ) is at least as large

as the infimum, over all functions g : X → Y , of the distortion of g. Interestingly, our best known

lower bounds on the Gromov–Hausdorff distance between spheres only rely on lower bounding the

distortion (not the codistortion).

3.2. Background on Borsuk–Ulam theorems. The Borsuk–Ulam theorem is a result from al-

gebraic topology with wide-ranging applications:

Theorem 3.1 (Borsuk [21]). For any map f : Sn → R
n, there exists x ∈ Sn with f(x) = f(−x).

We give two equivalent formulations; we leave the equivalence as a simple exercise:

Theorem 3.2. Any odd map g : Sn → R
n has a zero.

Theorem 3.3. There does not exist an odd map h : Sn → Sn−1.

For n = 0, 1, these statements either are trivial or are simple consequences of the intermediate

value theorem. For larger n, proofs typically use machinery from algebraic topology (for example,

the degree or the Lefschetz number of a map), though more elementary proofs are also available.

For outlines of several styles of proofs of the Borsuk–Ulam theorem, see [86, 66].

The Borsuk–Ulam theorem is foundational to the field of topological combinatorics, as exemplified

by Lovász’s 1978 proof [65] of Kneser’s conjecture about the chromatic number of Kneser graphs.

The Borsuk–Ulam theorem finds applications across various mathematical disciplines, for example

in functional analysis (e.g., to prove the Hobby–Rice theorem [51]), in differential equations (e.g.,

to prove that there are infinitely many solutions for a system of nonlinear elliptic partial differential

equations [72]), and in mathematical economics (e.g., to prove the existence of equilibrium with

incomplete markets [52]).

We now introduce some basic notions from equivariant topology. All of the below is specialized

to Z/2, the cyclic group of order two, but also evidently generalizes to other groups.
8



• A Z/2 space is a topological space X equipped with an involution map, denoted by x 7→ −x,

such that −(−x) = x for all x ∈ X. We say a Z/2 space X is free if −x 6= x for all x ∈ X.

• Given a subset X ′ ⊆ X of a Z/2 space, we define −X ′ := {−x | x ∈ X ′}. Furthermore, we

say X ′ is centrally-symmetric (or Z/2 invariant) if X ′ = −X ′.

• If X and Y are Z/2 spaces, then a function f : X → Y is Z/2 equivariant (or odd) if

f(−x) = −f(x) for all x ∈ X. (Similarly, we may describe a map as being odd.)

• If X is a Z/2 space, then the identity map on X is an odd map.

• If X,Y, Z are Z/2 spaces, and f : Y → Z, g : X → Y are odd, then f ◦ g is odd.

• The sphere Sn is a Z/2 space, since it inherits the involution map of Rn+1.

We now give one representative application of the Borsuk–Ulam theorem, a topological general-

ization of Radon’s theorem on convex sets [78]:

Theorem 3.4 (Bajmóczy, Bárány [16]). Let ∆n+1 be the (n + 1)-dimensional simplex in R
n+2.

Then for any map f : ∆n+1 → R
n, there exist x, y ∈ ∆n+1 on disjoint faces with f(x) = f(y).

Proof sketch. Assume for contradiction that there are no such x and y. We define two topological

spaces from ∆n+1 and R
n, by taking a deleted product of each in slightly different ways:

• Let (∆n+1)2∆ be the space of pairs (x1, x2) ∈ (∆n+1)2, such that x1, x2 are on disjoint faces.

• Let (Rn)2∆ be the space of pairs (y1, y2) ∈ (Rn)2, such that y1 6= y2.

Note that both (∆n+1)2∆ and (Rn)2∆ are Z/2 spaces; the involution map in each case swaps the two

coordinates. Then under our assumption, f induces an odd map f2
∆ : (∆n+1)2∆ → (Rn)2∆ given by

(x1, x2) 7→ (f(x1), f(x2)). The verification that f2
∆ is odd goes as follows:

f2
∆(−(x1, x2)) = f2

∆(x2, x1) = (f(x2), f(x1)) = −(f(x1), f(x2)) = −f2
∆(x1, x2).

It can be shown that there exist odd maps Sn → (∆n+1)2∆ and (Rn)2∆ → Sn−1. Then the composite

map

Sn → (∆n+1)2∆ → (Rn)2∆ → Sn−1

is odd, contradicting Borsuk–Ulam (specifically, Theorem 3.3). Therefore, there exist x, y ∈ ∆n+1

on disjoint faces, such that f(x) = f(y), as desired. �

The proof above suggests defining the concepts of index and coindex below, which allow us to use

spheres of various dimensions as a measuring stick for the topological complexity of a Z/2 space.

Here we give definitions and a few basic facts; see [66, Chapter 5] for more background.

• The Z/2 index (or just index ) of a Z/2 space X is defined to be

ind(X) := min{k ≥ 0 | there exists an odd map X → Sk}.

• The Z/2 coindex (or just coindex ) of a Z/2 space X is defined to be

coind(X) := max{k ≥ 0 | there exists an odd map Sk → X}.

• For all n ≥ 0, we have ind(Sn) = coind(Sn) = n, by the Borsuk–Ulam theorem.

• For all Z/2 spaces X, we have coind(X) ≤ ind(X), by the Borsuk–Ulam theorem.

• If there exists an odd map X → Y , then ind(X) ≤ ind(Y ) and coind(X) ≤ coind(Y ).
9



• If the Z/2 space X is not free, then ind(X) = coind(X) = ∞ because we may construct an

odd map Sk → X for any k ≥ 0 by taking the constant map to a fixed point of the Z/2

action on X.

In the proof of Theorem 3.4, the existence of an odd map Sn → (∆n+1)2∆ shows that coind((∆n+1)2∆) ≥

n, and the existence of an odd map (Rn)2∆ → Sn−1 shows that ind((Rn)2∆) ≤ n−1. But then, using

the existence of the odd map f2
∆ : (∆n+1)2∆ → (Rn)2∆, we have

n ≤ coind((∆n+1)2∆) ≤ coind((Rn)2∆) ≤ ind((Rn)2∆) ≤ n− 1,

a contradiction. We will use the concepts of index and coindex later in the paper.

We will also make use of the concept of a k-connected space: A space X is k-connected if the

homotopy groups πi(X) are trivial for all i ≤ k. For example, X is 0-connected if and only if X is

path-connected, and X is 1-connected if and only if X is simply connected. If a CW complex X is

k-connected, and if a CW complex Y is `-connected, then their join X ∗ Y is (k+ `+2)-connected.

An important property for us is the following:

If a Z/2 space X is (k − 1)-connected, then ind(X) ≥ coind(X) ≥ k. (2)

See Proposition 5.3.2 (iv) of [66], and its proof, for an explanation of this fact. The proof proceeds

as follows. Pick any point in X, and then reflect under the Z/2 action, to get an odd map S0 → X.

Since π0(X) is trivial, we can connect these two points by a path, and then reflect that path via the

Z/2 action to get an odd map S1 → X. Since π1(X) is trivial, we can fill in this map of the circle

with a disk, and then reflect via the Z/2 to get an odd map S2 → X. We continue inductively in

this manner, where at the second-to-last step we have obtained an odd map Sk−1 → X. Since πk−1

is trivial, we can fill in with a k-dimensional disk, and reflect to get an odd map Sk+1 → X, as

desired.

Finally, we define Z/2 versions of some standard concepts from topology:

• A Z/2 metric space is a Z/2 space X which is also a metric space, and that satisfies

dX(x, x′) = dX(−x,−x′) for all x, x′ ∈ X.

• Let X,Y be Z/2 spaces, and let f0, f1 : X → Y be odd maps. Then a Z/2 homotopy from

f0 to f1 is a map H : X × [0, 1] → Y , such that H(−, 0) = f0, H(−, 1) = f1, and H(−, t) is

odd for all t ∈ [0, 1]. In this case, we say f0 and f1 are Z/2 homotopic.

• Let X,Y be Z/2 spaces. We say that X,Y are Z/2 homotopy equivalent, denoted X 'Z/2 Y ,

if there exist odd maps f : X → Y and g : Y → X, such that f ◦ g is Z/2 homotopic to the

identity map on Y , and g ◦ f is Z/2 homotopic to the identity map on X.

Note that if X 'Z/2 Y , then ind(X) = ind(Y ) and coind(X) = coind(Y ).

3.3. Background on Vietoris–Rips complexes.

Simplicial complexes. We identify a simplicial complex with its geometric realization. For ex-

ample, if {x0, . . . , xm} is a simplex in a simplicial complex, then we may write
∑m

i=0 λixi to refer

to a point in the geometric realization of this simplicial complex, where the barycentric coordinates

λi ≥ 0 satisfy
∑

i λi = 1. A simplicial map between two simplicial complexes indeed deserves the

name “map,” since it induces a continuous function between geometric realizations.
10



Vietoris–Rips complexes. For X a metric space and r ≥ 0, the Vietoris–Rips simplicial complex

VR(X; r) has vertex set X, and a nonempty finite subset σ ⊆ X is a simplex when diam(σ) ≤ r.

See Figure 4.

The Vietoris–Rips complex is a clique complex (also called flag complex), which means that for

every non-empty finite σ ⊆ X, the simplex σ is in VR(X; r) if and only if the edge {u, v} is in

VR(X; r) for every pair u, v ∈ σ. This property makes the Vietoris–Rips complex of a finite space

suitable to be encoded in a computer, as the information of the 1-skeleton determines the whole

complex.

The Vietoris–Rips complex was defined independently by Leopold Vietoris [90] and Eliyahu Rips

and has been studied for different reasons along the years; see [79, 50] for some history. If r is

large enough, Rips used it to show that every hyperbolic group G acts geometrically (by proper and

cocompact isometries) on a contractible space, which is none other than VR(G; r). Here, the group

G is equipped with the metric induced by the shortest path distance in the Cayley graph Γ(G,S)

with respect to some generating set S for G. A key consequence of this result is that hyperbolic

groups are finitely presented [43, Proposition 17, Chapter 4]. Although it seems that Rips did not

publish the result himself, Gromov attributes it to him in Lemma 1.7.A and Section 2.2 of [47].
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Figure 4. A metric space X with 17 points, and its Vietoris–Rips complex VR(X; r) at four

different increasing values of r > 0.

When r > 0 is small, on the other hand, a theorem due to Hausmann [50] implies that for a given

compact Riemannian manifold M , there exists some 0 < ε such that M ' VR(M ; r) whenever

0 < r < ε. Researchers in applied topology are interested in the topology of VR(X; r) over all

values r > 0 as a tool to coarsely study the shape of a finite point cloud X. See, for instance,

Section 2.3 of [26]. These experimental studies of the “shape of data” are aided by the fact that the

Vietoris–Rips complex is a clique or flag simplicial complex whose persistent homology is relatively

efficient to compute [17]. In this paper, we allow the scale parameter r to become large enough so

as to change the topology (e.g., the (co)index) of the simplicial complex.

For X a Z/2 metric space and r ≥ 0, we extend the involution on X to an involution on VR(X; r)

by defining

− (
∑

i λixi) :=
∑

i λi(−xi).

If X is a free Z/2 metric space, then note that VR(X; r) is a free Z/2 space whenever r <

infx∈X dX(x,−x). In particular, VR(Sn; r) is a free Z/2 space for r < π.

A simplicial map between two simplicial complexes induces a continuous map on the geometric

realizations of those smplicial complexes. Therefore, the following lemma shows that Vietoris–Rips
11



complexes are a tool for transforming arbitrary functions between metric spaces into continuous

maps between topological spaces; see also [31, Lemma 4.3]. Despite the popularity of Vietoris–

Rips complexes, this perspective of using Vietoris–Rips complexes to study discontinuous functions

appears to be new.

Lemma 3.5. A function f : X → Y between metric spaces induces a simplicial map f : VR(X; r) →
VR(Y ; r + dis(f)) for any r ≥ 0. If f is an odd function, then f is also odd.

Proof. Define f : VR(X; r) → VR(Y ; dis(f) + r) by sending a vertex x ∈ X to f(x) ∈ Y , and then

extending linearly to simplices. In other words, f([x0, . . . , xm]) = [f(x0), . . . , f(xm)]. Observe that

if diam(σ) ≤ r then, by the definition of distortion, diam(f(σ)) ≤ r+dis(f). Thus, f is well-defined,

simplicial, and continuous (on the underlying geometric realizations), i.e. it is a map.

If both X and Y are Z/2 metric spaces and f is an odd function, then we see that f is an odd

map:

f (−
∑

i λixi) = f (
∑

i λi(−xi)) =
∑

i λif(−xi) =
∑

i λi(−f(xi)) = −
∑

i λif(xi). (3)

�

Lemma 3.5 shows how to turn a possibly discontinuous function into a continuous one; a precursor

of this idea is present in [38]. In a similar spirit, [19, 23, 77, 80] study the induced maps on

the fundamental group of the Vietoris–Rips complexes of metric spaces via the discrete homotopy

approach: one allows paths and homotopies to have discontinuities of size ε. By considering maps

between metric spaces that induce maps between Vietoris–Rips complexes up to a finite amount of

shift, Cencelj et al. [29] studied the coarse geometry or large-scale properties of metric spaces.

Vietoris–Rips metric thickenings. Let X be a metric space and let r ≥ 0. The Vietoris–Rips

metric thickening VRm(X; r) of X at scale r is the set of probability measures µ in X whose support

supp(µ) is finite and has diameter at most r, equipped with the 1-Wasserstein metric of optimal

transport [3]. The superscript m denotes “metric”, since the metric thickening VRm(X; r) is a metric

space, whereas the simplicial complex VR(X; r) may not be metrizable if X is not discrete. By

identifying each point xi ∈ X with the Dirac measure δxi
, we can write elements µ ∈ VRm(X; r)

as convex combinations µ =
∑m

i=0 λiδxi
, where λi ≥ 0,

∑

i λi = 1, and x0, . . . , xm ∈ X with

dX(xi, xj) ≤ r for all 0 ≤ i, j ≤ m. In this way there is a natural isometric embedding from X

into VRm(X; r), via the injective map x 7→ δx. Furthermore, note that the underlying set of the

metric thickening VRm(X; r) is equal to the underlying set of (the geometric realization of) the

simplicial complex VR(X; r), although the topology of these two spaces may differ [3]. In analogy

with Hausmann’s theorem for simplicial complexes [50], metric thickenings are known to recover

the homotopy type of the underlying metric space in certain situations [3, 11].

Occasionally, it will be convenient to work with the metric thickenings instead of simplicial

complexes. However, we will not emphasize metric thickenings and instead refer the reader to [5, 8,

9, 10] for further work on these spaces.
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4. Proof of the Main Theorem

We are prepared to prove our Main Theorem, which lower bounds the distortion of odd maps

between spheres, and hence also the Gromov–Hausdorff distance between spheres of different di-

mensions. We will make use of Vietoris–Rips complexes in order to transform an odd function f

between spheres into a continuous odd map between Vietoris–Rips complexes of spheres, where

the allowable choices of scale parameters depend on how much the function f distorts distances.

Towards these ends, we consider the coindex of Vietoris–Rips complexes of spheres. We recall the

definition of cn,k from Section 1.

Definition 1.1. For k ≥ n, we define cn,k := inf{r ≥ 0 | there exists an odd map Sk → VR(Sn; r)}.

That is, cn,k is the infimum over all r ≥ 0 for which k ≤ coind(VR(Sn; r)). We think of cn,k as

the amount we need to “thicken” Sn until it admits an odd map from Sk.

Let k ≥ n, and let f : Sk → Sn be an odd function. In our Main Theorem, we prove dis(f) ≥ cn,k.

We remark that Proposition 5.2 of [64] proves that the distortion of a function is lower bounded by

its modulus of discontinuity, which in turn can be controlled as in [38]. In Section 7 we show that

our lower bound on distortion can be strengthened into an analogous lower bound on the modulus

of discontinuity of odd functions Sk → Sn.

Our proof of the Main Theorem relies on the following lemma. We say a subset A of a metric

space X is an ε-covering if for every point x ∈ X, there exists a point a ∈ A with dX(a, x) < ε, i.e.

with x ∈ B(a, ε).

Lemma 4.1. For X ⊂ Sk a finite ε
2 -covering with X = −X (that is, X is centrally-symmetric),

there exists an odd map φ : Sk → VR(X; ε).

Proof. We use the following “partition of unity” idea from the proof of stability in [10, 73]. It suffices

to consider ε < π, since otherwise VR(X; ε) is not a free Z/2 space and coind(VR(X; ε)) = ∞. Let

{ρx}x∈X be a Z/2 invariant partition of unity subordinate to the cover {B
(

x, ε2
)

}x∈X of Sk. That

is,

• ρx is a nonnegative continuous real-valued function supported in B
(

x, ε2
)

for each x ∈ X,

•
∑

x∈X ρx(y) = 1 for all y ∈ Sk, and

• ρ−x(−y) = ρx(y) for all x ∈ X and y ∈ Sk.

To see that such a Z/2 invariant partition of unity exists, note that it can be obtained from a

(standard) partition of unity on the quotient space RPn.

Define the map φ : Sk → VR(X; ε) by φ(y) :=
∑

x∈X ρx(y) x. Note that any point x whose

coefficient in φ(y) is positive must have dSk(x, y) < ε
2 because ρx is supported on B

(

x, ε2
)

. Therefore,

diam({x ∈ X | ρx(y) > 0}) < ε, so φ(y) is a well-defined point in VR(X; ε). Note that φ is

continuous since each ρx is. Lastly,

φ(−y) =
∑

x∈X
ρx(−y) x =

∑

x∈X
ρ−x(y) x =

∑

x∈−X

ρx(y) (−x),

which, after applying X = −X, is equal to
∑

x∈X
ρx(y) (−x) =

∑

x∈X
ρx(−y) x = −φ(y).

13



Thus, φ is an odd map. �

We remark that choosing a different partition of unity will produce a map that is homotopic

to φ. Indeed, given two partitions of unity {ρ1x}x∈X and {ρ2x}x∈X , the homotopy between the

corresponding maps φ1(y) :=
∑

x∈X ρ1x(y) x and φ2(y) :=
∑

x∈X ρ2x(y) x can be given by a straight

line homotopy H(−, t) := tφ1 + (1− t)φ2.

Sk VR(X; ε) VR(Sn; dis(f) + ε)

[x0, . . . , xm] [f(x0), . . . , f(xm)]

Sk Sk Sn

partition
of unity

Figure 5. Proof, in our Main Theorem, that odd functions f : Sk → Sn for k ≥ n

have distortion at least cn,k.

We are now ready to prove our Main Theorem.

Main Theorem. For all k ≥ n, the following inequalities hold:

2 · dGH(S
n, Sk) ≥ inf

{

dis(f) | f : Sk → Sn is odd
}

≥ inf
{

r ≥ 0 | ∃ odd Sk → VR(Sn; r)
}

=: cn,k.

Proof. Let k ≥ n, and let f : Sk → Sn be an odd function. We must show that dis(f) ≥ cn,k.

Let ε > 0. Choose a finite Z/2 invariant ε
2 -covering X ⊂ Sk. By Lemma 4.1 we get an odd map

Sk → VR(X; ε), and by Lemma 3.5 the restriction map f |X : X → Sn induces a continuous odd

map VR(X; ε) → VR(Sn; dis(f) + ε). Their composition

Sk → VR(X; ε) → VR(Sn; dis(f) + ε)

is continuous and odd, showing that dis(f) + ε ≥ cn,k for all ε > 0. Hence dis(f) ≥ cn,k.

The first inequality in the Main Theorem is the helmet trick from [64], which for the sake of

completeness we briefly explain here. Lemma 5.5 from [64] states that any function h : Sk → Sn

can be modified to obtain an odd function f : Sk → Sn with dis(h) ≥ dis(f). Therefore

2 · dGH(S
n, Sk) = inf

g : Sn→Sk

h : Sk→Sn

max{dis(g), dis(h), codis(g, h)} by (1)

≥ inf
{

dis(h) | h : Sk → Sn
}

≥ inf
{

dis(f) | f : Sk → Sn is odd
}

.

�

The quantitative power of our Main Theorem will come from Section 5, where we explain how

to recover the known values of cn,k. For example, we will see that cn,n+1 = rn (Theorem 5.2), and

thus our Main Theorem indeed recovers [64, Theorem B] when k = n + 1. We will see c1,2` =

c1,2`+1 =
2π`
2`+1 (Theorem 5.1), and therefore 2 · dGH(S

1, Sk) ≥ 2π`
2`+1 for k = 2`, 2`+1. Furthermore,
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we will see that for all k ≥ n, cn,k can be bounded from below in terms of the covering number of k

points in the projective space RPn (Theorem 5.3). The combination of these theorems implies that

the bound 2 · dGH(S
n, Sk) ≥ cn,k in our Main Theorem either recovers or improves upon the best

known lower bounds on dGH(S
n, Sk) from [64]. In other words, the bound 2 · dGH(S

n, Sk) ≥ cn,k is

potentially tight; see Remark 5.5. Therefore, our Main Theorem shows that a powerful technique for

studying the Gromov–Hausdorff distance between spheres is to obstruct the existence of equivariant

maps to Vietoris–Rips complexes of spheres. And, in the opposite direction, further knowledge

about Gromov–Hausdorff distances between spheres will place new constraints on the topology of

Vietoris–Rips complexes of spheres.

Remark 4.2. The same proof technique of our Main Theorem shows that for any Z/2 space Y ,

any odd map Sk → Y has distortion at least inf{r ≥ 0 | ∃ an odd map Sk → VR(Y ; r)}.

In analogy with [64, Theorem D], the proof technique of our Main Theorem can provide a more

general statement. Let H≥(S
k) denote the closed upper hemisphere of the sphere, namely H≥(S

k) :=

{(x1, . . . , xk+1) ∈ Sk | xk+1 ≥ 0}.

Theorem 4.3. Let X and Y be bounded metric spaces such that X isometrically embeds into Sn

and Y admits an isometric embedding of H≥(S
k), for k ≥ n. Then

2 · dGH(X,Y ) ≥ inf{r ≥ 0 | ∃ an odd map Sk → VR(X; r)} ≥ cn,k.

5. Known values of cn,k

In this section, we add quantitative power to our Main Theorem by describing the known values

of the constants cn,k := inf
{

r ≥ 0 | ∃ odd Sk → VR(Sn; r)
}

. These results depend on the topology

of Vietoris–Rips complexes and thickenings of spheres. Indeed, the topology of VR(Sn; r) constrains

how large the scale r must be in order for the complex to admit an odd map from the k-sphere.

We begin with some basic properties that follow from the definition of cn,k. The inclusion Sk ↪→
Sk′ shows that cn,k ≤ cn,k′ for k ≤ k′. Furthermore, the inclusion VR(Sn′

; r) ↪→ VR(Sn; r) shows

that cn,k ≤ cn′,k′ for n ≥ n′ and k ≤ k′. Since π is the diameter of Sn, it follows that VR(Sn;π) is

contractible, and therefore cn,k ≤ π for all k ≥ n.

Next, we observe that cn,k has several different equivalent definitions. The value of cn,k is un-

changed if one uses the convention “diam(σ) < r” (instead of our convention “diam(σ) ≤ r”) to define

which simplices σ are in the Vietoris–Rips complex. Similarly, the value of cn,k is unchanged if one

instead uses Vietoris–Rips metric thickenings — this follows from the ε-interleavings constructed

in [10, 73], which in this setting can be made Z/2 equivariant.

We have cn,n = 0 since VRm(Sn; 0) = Sn, or alternatively, since VR(Sn; ε) 'Z/2 S
n for all ε > 0

sufficiently small. It is not hard to see that c0,k = π for all k > 0.

Theorem 5.1. For all ` ≥ 1, we have c1,2`+1 = c1,2` =
2π`
2`+1 .

Proof. These values are related to the homotopy types of the simplicial complexes VR(S1; r) and of

the metric thickenings VRm(S1; r). The homotopy types of these simplicial complexes are provided

in [1] as VR(S1; r) ' S2`+1 for 2π`
2`+1 < r < 2π(`+1)

2`+3 ; see Figure 6. The homotopy types of these

metric thickenings are proven in [74] as VRm(S1; r) ' S2`+1 for 2π`
2`+1 ≤ r < 2π(`+1)

2`+3 .
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For r > 2π`
2`+1 , VR(S

1; r) is 2`-connected. We apply (2) to obtain an odd map S2`+1 → VR(S1; r).

This shows that c1,2` ≤ c1,2`+1 ≤ 2π`
2`+1 . On the other hand, Section 5.1 of [5] produces an odd map

VRm(S1; r) → R
2` \ {~0} 'Z/2 S

2`−1 for r < 2π`
2`+1 ; the same construction also produces an odd map

VR(S1; r) → R
2` \ {~0}. Therefore, the Borsuk–Ulam theorem implies there cannot exist odd maps

S2` → VRm(S1; r) or S2` → VR(S1; r) for r < 2π`
2`+1 . This shows c1,2`+1 ≥ c1,2` ≥ 2π`

2`+1 . Hence

c1,2`+1 = c1,2` =
2π`
2`+1 , as desired. �

VR(S1; r)

S1 S3
S5

S7

0 2π
3

4π
5

6π
7

8π
9

· · · ∗

· · · π

VR(Sn; r)

Sn
Sn ∗ SO(n+1)

An+2

0 rn ?

· · ·

· · ·

∗

Figure 6. The homotopy types of VR(S1; r) and VR(Sn; r).

Theorem 5.2. For all n ≥ 1, we have cn,n+2 = cn,n+1 = rn.

Proof. These values follow from knowledge about the homotopy types of VRm(Sn; r) and VR(Sn; r).

The related results [3, Proposition 5.3] and [63, Corollary 7.1] show that VRm(Sn; r) ' Sn and

VR(Sn; r) ' Sn for all r < rn, respectively. Furthermore, [3, Theorem 5.4]2 provides a homotopy

equivalence VRm(Sn; rn) ' Sn∗ SO(n+1)
An+2

; see Figure 6. Since Sn is (n−1)-connected and SO(n+1)
An+2

is 0-

connected, their join Sn∗ SO(n+1)
An+2

is (n+1)-connected. This shows that cn,n+1 ≤ cn,n+2 ≤ rn. On the

other hand, [3, Proposition 5.3] produces an odd map VRm(Sn; r) → R
n+1 \{~0} 'Z/2 S

n for r < rn;

the same construction also produces an odd map VR(Sn; r) → R
n+1 \ {~0}. Therefore, the Borsuk–

Ulam theorem implies there cannot exist odd maps Sn+1 → VRm(Sn; r) or Sn+1 → VR(Sn; r) for

r < rn. This shows cn,n+2 ≥ cn,n+1 ≥ rn. Hence cn,n+2 = cn,n+1 = rn, as desired. �

The exact values of cn,k are not known for n ≥ 2 and k ≥ n+3, but we will provide some bounds

in the remaining theorem and remarks of this section.

We first provide a bound on cn,k in terms of coverings of projective space. For X a metric space,

let covX(k) be the infimum over all ε > 0 such that there exists a finite set A ⊆ X of cardinality

|A| ≤ k such that the balls of radius ε about A cover X, i.e. such that A is an ε-covering of X. Let

RPn be the projective space obtained as the quotient Sn/(x ∼ −x), and equipped with the quotient

metric. Explicitly, dRPn({x,−x}, {x′,−x′}) = min(dSn(x, x′), dSn(x,−x′)), so RPn has diameter π
2 .

Adams, Bush, and Frick show in Theorem 3 of [6] that if δ ≥ covRPn(k), then there is an odd

map VRm(Sn;π − 2δ) → Sk−1, and so coind(VRm(Sn;π − 2δ)) ≤ ind(VRm(Sn;π − 2δ)) ≤ k − 1.

In other words, there is no odd map Sk → VRm(Sn;π − 2δ) unless δ ≤ covRPn(k). Upon replacing

π− 2δ with r, we see that there is no odd map Sk → VRm(Sn; r) unless r ≥ π− 2 covRPn(k). This

is the proof of the following theorem, which follows from [6, Theorem 3], and which is tight when

both n = 1 and k is odd.

2We refer the reader to [9, Section 5.1] for a gentler introduction to this result.
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Theorem 5.3. For all k ≥ n ≥ 1, we have cn,k ≥ π − 2 covRPn(k).

For any n ≥ 1, we have limk→∞ 2 covRPn(k) = 0. Therefore, Theorem 5.3 implies that for any

n ≥ 1, we have limk→∞ cn,k = π.

Corollary 5.4. Fix n ≥ 1. The distortion of an odd function f : Sk → Sn tends towards its

maximum possible value π as k goes to infinity.

Sn RPn

Figure 7. (Incomplete) covers of Sn and RPn.

Remark 5.5. Our Main Theorem either recovers or improves upon the best previously known lower

bounds on Gromov–Hausdorff distances between spheres, namely [64], which proves 2·dGH(S
n, Sk) ≥

max{rn, π− 2 covSn(k+1)} for k > n. Recall that our Main Theorem states that 2 · dGH(S
n, Sk) ≥

cn,k. To recover the first term rn from this maximum, use Theorem 5.2 and note that cn,k ≥ cn,n+1 =

rn for k > n. To improve upon the second term π − 2 covSn(k + 1) from this maximum, note that

cn,k ≥ π − 2 covRPn(k) by Theorem 5.3, and that it is easier to cover the quotient space RPn than

it is to cover the sphere Sn, since distances can only decrease upon taking quotients; see Figure 7.

Furthermore, the rn and π − 2 covSn(k + 1) lower bounds in [64] are proven using two separate

arguments, which are now unified, generalized, and improved upon by our single lower bound cn,k.

One specific instance of improvement is n = 1, when we obtain 2 · dGH(S
1, S2`) ≥ c1,2` =

2π`
2`+1 and

2 · dGH(S
1, S2`+1) ≥ c1,2`+1 =

2π`
2`+1 ; note c1,k > r1 for k ≥ 4.

Remark 5.6. Theorem 2 of [6] gives an upper bound on the values of cn,k in terms of packings of

points in RPn, and in particular implies that cn,k < π for all k ≥ n.

Remark 5.7. The following calculation further illustrates that the elucidation of the subsequent

homotopy types of Vietoris-Rips complexes of spheres can help estimate the numbers cn,k. Partial

results for the case of S2 can be obtained thanks to early work by Katz. Indeed, by [63, Corollary

7] and [57, 59], we know that VR(S2; r) ' S2 ∗ S3

E6
= S2 ∗ SO(3)

A4
for all r2 < r < arccos

(

−1√
5

)

.

Since S2 ∗ SO(3)
A4

is 6-dimensional with a free Z/2 action, there is no odd map S7 → S2 ∗ SO(3)
A4

, and

therefore we can conclude that c2,7 ≥ arccos
(

−1√
5

)

. It is currently open whether the same lower

bound holds for c2,6 or c2,5.

Remark 5.8. The 12 vertices of a regular icosahedron inscribed in S2 can be chosen to be
1√
1+φ2

(0,±1,±φ), 1√
1+φ2

(±1,±φ, 0), and 1√
1+φ2

(±φ, 0,±1), where φ :=
√
5+1
2 is the golden ra-

tio. The three vertices 1√
1+φ2

(1, φ, 0), 1√
1+φ2

(φ, 0, 1), and 1√
1+φ2

(φ, 0,−1) form a face, and since
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the geodesic distance between the center of this triangle and one of the vertices is arccos

(

√

5+2
√
5

15

)

,

we can conclude that covS2(12) ≤ arccos

(

√

5+2
√
5

15

)

. Since this set of 12 points in S2 is centrally-

symmetric, it produces a set of 6 points in RP2 showing that covRP2(6) ≤ arccos

(

√

5+2
√
5

15

)

. By

our Main Theorem and Theorem 5.3, we achieve

2 · dGH(S
2, Sk) ≥ c2,k ≥ c2,6 ≥ π − 2 covRP2(6) ≥ π − 2 arccos

(
√

5+2
√
5

15

)

for k ≥ 6.

This holds for more values of k than [64, Proposition 1.11], which only gives

2 · dGH(S
2, Sk) ≥ π − 2 covS2(k + 1) ≥ π − 2 covS2(12) ≥ π − 2 arccos

(
√

5+2
√
5

15

)

for k ≥ 11.

See also [6, Example 4.5].

Remark 5.9. The 600-cell is a convex regular 4-polytope with 600 tetrahedral cells and 120

antipode-preserving vertices in S3. One can choose those 120 vertices in the following way: 8 vertices

obtained from (0, 0, 0,±1) by permuting coordinates, 16 vertices of the form
(

±1
2 ,±1

2 ,±1
2 ,±1

2

)

, and

the remaining 96 vertices are obtained by taking even permutations of
(

±φ
2 ,±1

2 ,±
φ−1

2 , 0
)

, where

φ :=
√
5+1
2 is the golden ratio. The Euclidean distance between the two closest vertices is φ−1, and

hence the geodesic distance between them is π
5 . By direct computation, the four vertices (1, 0, 0, 0),

(

φ
2 ,

1
2 ,

φ−1

2 , 0
)

,
(

φ
2 ,

1
2 ,−

φ−1

2 , 0
)

,
(

φ
2 ,

φ−1

2 , 0, 12

)

form a tetrahedral cell. Since the geodesic distance

between the center of this cell and one of the vertices is arccos
(

1+
√
5

2
√
3

)

, we can conclude that

covS3(120) ≤ arccos
(

1+
√
5

2
√
3

)

. This implies that covRP3(60) ≤ arccos
(

1+
√
5

2
√
3

)

. Finally, from our

Main Theorem and Theorem 5.3, we obtain

2 · dGH(S
3, S60) ≥ c3,60 ≥ π − 2 covRP3(60) ≥ π − 2 arccos

(

1+
√
5

2
√
3

)

.

See [6, Remark 4.2].

6. A novel upper bound on the Gromov–Hausdorff distance dGH(S
n, Sn+1)

We will give a new upper bound on 2·dGH(S
n, Sn+1), improving the existing bounds for all n > 3.

In particular, we will prove the following theorem.

Theorem 1.2. For every n ≥ 1, we have 2 · dGH(S
n, Sn+1) ≤ 2π

3 .

We first introduce several geometric objects, and recall the current best upper bounds. For all

n ≥ 1, we may inscribe a regular (n+1)-simplex in Sn. Any pair of vertices of the inscribed simplex

lie the same geodesic distance apart, and this distance is exactly the quantity rn = arccos
(

− 1
n+1

)

.

The facets of the inscribed simplex may be projected radially outward, obtaining (n+ 2) sets that

cover Sn, and which are additionally closed, geodesically convex, and pairwise isometric. We call

these radially projected facets regular geodesic simplices in Sn. Santaló [81] computed the diameter
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of these simplices, which is

tn :=







arccos
(

−n+1
n+3

)

for n odd,

arccos
(

−
√

n
n+4

)

for n even.

This diameter is achieved between points at the centers of opposite faces which each contain half the

vertices of the simplex (rounded appropriately when there are an odd number of vertices). Notice

that rn ≤ tn for every n. In fact, equality holds only for n = 1, when r1 = 2π
3 = t1. As n → ∞ we

have rn → π
2 and tn → π. In particular, tn > 2π

3 for all n ≥ 2.

The quantities rn and tn played an important role in the work of Lim, Memoli, and Smith [64],

who showed that rn ≤ 2 ·dGH(S
n, Sn+1) ≤ tn. They also obtained exact results for small n, showing

that 2·dGH(S
1, S2) = 2π

3 = 2·dGH(S
1, S3) and 2·dGH(S

2, S3) = r2. Theorem 1.2 improves the upper

bound on 2 · dGH(S
n, Sn+1) for all n > 3, and also improves the upper bound asymptotically—the

previous bound converged to π, while Theorem 1.2 bounds it strictly away from π.

To build towards a proof of Theorem 1.2, we first make a simple observation regarding the

distortion of relations which only pair together points that lie a bounded distance from one another.

Lemma 6.1. Let (X, dX) be a metric space, and let Y ⊆ X be a subspace with induced metric dY .

Let R ⊆ X × Y be any relation, and define

ε := sup{dX(x, y) | (x, y) ∈ R}.

Then the distortion of R is at most 2ε.

Proof. Let (x, y) and (x′, y′) be in R. We wish to bound |dX(x, x′) − dY (y, y
′)|. Applying the

triangle inequality twice, we see that

dX(x, x′) ≤ dX(x, y) + dX(y, y′) + dX(y′, x′) ≤ 2ε+ dX(y, y′) = 2ε+ dY (y, y
′).

Hence dX(x, x′) − dY (y, y
′) ≤ 2ε. A symmetric application of the triangle inequality shows that

dY (y, y
′)− dX(x, x′) ≤ 2ε. Together these inequalities imply the desired bound. �

Recall that H≥(S
n+1) denotes the closed upper hemisphere of Sn+1, and let N ∈ H≥(S

n+1)

denote the north pole. We will make use of the map τ : H≥(S
n+1) \ {N} → Sn which sends a

point in the upper hemisphere to the unique nearest point on the equator. In other words, for

x ∈ H≥(S
n+1) \ {N}, we define τ(x) to be the result of setting the final coordinate in x to zero,

and then normalizing.

In the proof of Theorem 1.2 below, we require two important facts. The most crucial is that

to bound dGH(S
n, Sn+1) it suffices to bound the distortion of correspondences between the upper

hemisphere H≥(S
n+1) and the equator Sn (see Lemma 5.5 of [64]). Second, note that if x 6= N

and x′ are points in H≥(S
n+1) and dSn+1(x, x′) ≥ π

2 , then dSn+1(τ(x), x′) ≥ dSn+1(x, x′). Indeed,

dSn+1(x, x′) ≥ π
2 if and only if 〈x, x′〉 ≤ 0, and since both x and x′ have nonnegative last coordinate

we see that 〈τ(x), x′〉 ≤ 〈x, x′〉, which implies that dSn+1(τ(x), x′) ≥ dSn+1(x, x′).

Proof of Theorem 1.2. We first construct a correspondence between Sn and Sn+1, and then we

bound its distortion.
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Figure 8. The decomposition of H≥(S
n+1) used in the proof of Theorem 1.2.

Constructing the correspondence. Let P = {p1, p2, . . . , pn+2} be the vertices of an inscribed

regular (n+1)-simplex in Sn. For each i ∈ [n+2] := {1, 2, . . . , n+2}, let Fi be the geodesic convex

hull of P \ {pi}. So, for i ∈ [n+2] the set Fi is a regular geodesic simplex in Sn, and its barycenter

is −pi. Define

E := {p ∈ H≥(S
n+1) | dSn+1(p,N) > π

3 }.

Further, for i ∈ [n+ 2] define

Ci := {p ∈ H≥(S
n+1) | p 6= N, τ(p) ∈ Fi, and dSn+1(p,N) ≤ π

3 } ∪ {N}.

So, E is a “thickened equator” consisting of the points with distance less than π
6 to the equator,

and the various Ci are cones with apex N over the various Fi, restricted to a closed ball of radius
π
3 around N ; see Figure 8. Finally, we define a correspondence R between H≥(S

n+1) and Sn as

follows:

R := {(p, τ(p)) | p ∈ E} t {(p,−pi) | p ∈ Ci for some i ∈ [n+ 2]}.

Note that this is a correspondence since E and the various Ci cover H≥(S
n+1), and since (p, p) ∈ R

for every p ∈ Sn.

Bounding the distortion. We will argue that the distortion of R is at most 2π
3 . To this end, let

(x, y) and (x′, y′) be elements of R. To bound |dSn+1(x, x′) − dSn(y, y′)| we consider the following

cases.

Case 1: Both x and x′ lie in E. By Lemma 6.1, the relation between E and Sn consisting of pairs

(x, τ(x)) has distortion at most π
3 . Here we have y = τ(x) and y′ = τ(x′), so |dSn+1(x, x′)−dSn(y, y′)|

is at most π
3 .

Case 2: Neither x nor x′ lie in E. Here we must have dSn+1(x,N) ≤ π
3 and dSn+1(x′, N) ≤ π

3 .

Hence dSn+1(x, x′) ≤ 2π
3 . Moreover, y and y′ both lie in P , so dSn(y, y′) ≤ rn ≤ 2π

3 . Thus we have

|dSn+1(x, x′)− dSn(y, y′)| ≤ max{dSn+1(x, x′), dSn(y, y′)} ≤ 2π
3 .

Case 3: x ∈ E, x′ /∈ E, and dSn+1(x, x′) ≤ π
2 . Since dSn+1(x, x′) ≤ π

2 , it will suffice to show that

dSn(y, y′) − dSn+1(x, x′) ≤ 2π
3 . Observe that y = τ(x), so dSn+1(x, y) ≤ π

6 . Moreover, for some

i ∈ [n + 2] we have x′ ∈ Ci and y′ = −pi. Every point in Ci has nonnegative inner product with
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−pi, so dSn+1(x′, y′) ≤ π
2 . Applying the triangle inequality twice, we obtain

dSn(y, y′) ≤ dSn+1(y, x) + dSn+1(x, x′) + dSn+1(x′, y′)

≤ π
6 + dSn+1(x, x′) + π

2 .

Hence dSn(y, y′)− dSn+1(x, x′) ≤ 2π
3 as desired.

Case 4: x ∈ E, x′ /∈ E, and dSn+1(x, x′) > π
2 . Since dSn+1(x, x′) > π

2 , it will suffice to show that

dSn+1(x, x′) − dSn(y, y′) ≤ 2π
3 . We have y = τ(x), and since dSn+1(x, x′) > π

2 this implies that

dSn+1(x, x′) ≤ dSn+1(y, x′) ≤ dSn+1(y, y′) + dSn+1(x′, y′). Consequently, dSn+1(x, x′) − dSn(y, y′) ≤
dSn+1(x′, y′). Our analysis in the previous case showed that dSn+1(x′, y′) ≤ π

2 , so the result follows.

�

7. Generalized Dubins–Schwarz inequality

The Borsuk–Ulam theorem states that an odd function Sn+1 → Sn is discontinuous, but how dis-

continuous must it be? One possible quantitative answer is in terms of the modulus of discontinuity

of a function, which is positive if and only if the function is discontinuous. Initial results in this

direction are given by Dubins and Schwarz in [38, Corollary 3]: The modulus of discontinuity of an

odd function Sn+1 → Sn is bounded from below by rn, where rn := arccos
(

−1
n+1

)

is the (geodesic)

distance between two vertices of the regular (n + 1)-simplex inscribed in Sn. More generally, for

any k > n the modulus of discontinuity and distortion of an odd function Sk → Sn is at least rn;

this follows from the prior facts after pre-composing the odd function Sk → Sn with an inclusion

Sn+1 ↪→ Sk. However, this lower bound rn does not depend on k. In this section, we provide

improved lower bounds on the modulus of discontinuity of an odd function Sk → Sn, which are

weakly increasing and not constant as k increases.

Let X be a topological space, let Y be a metric space, and let f : X → Y be a function. Then as

defined in [38], the modulus of discontinuity of f is

δ(f) := inf{δ ≥ 0 | ∀x ∈ X, ∃ an open neighborhood Ux of x s.t. diam(f(Ux)) ≤ δ}.

Note that f is discontinuous if and only if δ(f) > 0. Restating a result from Dubins and Schwarz [38]

with the geodesic metric instead of the Euclidean metric, we obtain the following:

Theorem 7.1 (Dubins–Schwarz inequality; Corollary 3 and Scholium 1 of [38]). Any odd function

f : Sn+1 → Sn has modulus of discontinuity δ(f) ≥ rn, and this bound is attained.

Thus, we recover not only the Borsuk–Ulam theorem stating that f is discontinuous, but furthermore

we obtain a quantitative bound on how discontinuous f must be.

In this section, we generalize the Dubins–Schwarz inequality for odd functions Sk → Sn for k ≥ n.

Our primary theorem in this section is the following.

Theorem 1.3 (Generalized Dubins–Schwarz inequality). Any odd function f : Sk → Sn with k ≥ n

has modulus of discontinuity δ(f) ≥ cn,k.

This theorem generalizes [38, Corollary 3] since cn,n+1 = rn. Since Theorem 5.3 implies limk→∞ cn,k =

π, we obtain the following corollary.
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Corollary 7.2. Fix n ≥ 1. The modulus of discontinuity of an odd function f : Sk → Sn tends

towards its maximum possible value π as k goes to infinity.

Remark 7.3. The modulus of discontinuity always lower bounds the distortion by [64, Proposi-

tion 5.2]. Therefore Theorem 1.3 implies the bound dis(f) ≥ cn,k for odd functions f : Sk → Sn from

our Main Theorem. Nevertheless, for ease of exposition, we have presented our results on distortion

first, before moving now to the slightly more complicated case of modulus of discontinuity.

In Section 7.1 we prove Theorem 1.3 giving a lower bound on the modulus of discontinuity, and

in Section 7.2 we show that this lower bound is tight. In Section 7.3 we generalize the domain Sk

in Theorem 1.3 to instead be any Z/2 space X with coindex at least k. Lastly, in Section 7.4 we

consider spheres equipped with the Euclidean metric.

7.1. Lower bound on the modulus of discontinuity. To prove Theorem 1.3, we need the

following lemma, which is similar to Lemma 3.5 except with distortion replaced by the modulus of

discontinuity.

Lemma 7.4. Let f : X → Y be a function between metric spaces, with X compact. Then for any ε >

0, there is a sufficiently small αε > 0 such that f induces a map f : VR(X;αε) → VR(Y ; δ(f) + ε).

If f is an odd function, then f is also odd.

Proof. We first show that for any ε > 0, there exists αε > 0 such that for any x, x′ ∈ X with

dX(x, x′) ≤ αε, we have dY (f(x), f(x
′)) < δ(f)+ε. From the definition of modulus of discontinuity,

for any x ∈ X, there exists rx > 0 such that diam(f(B(x; rx))) < δ(f)+ ε. Consider the open cover

{B
(

x; rx2
)

}x∈X of X. As X is compact, there is a finite sub-cover {B
(

xi;
rxi
2

)

}1≤i≤N . Choose αε to

satisfy 0 < αε < min
{ rx1

2 , . . . ,
rxN
2

}

. Let x, x′ be any pair of points in X such that dX(x, x′) ≤ αε.

Since {B
(

xi;
rxi
2

)

}1≤i≤N is a cover of X, there is some B
(

xi;
rxi
2

)

that contains x. Then,

dX(x′, xi) ≤ dX(x′, x) + dX(x, xi) < αε +
rxi
2 < rxi

.

That is, both x and x′ are inside B(xi; rxi
), and therefore dY (f(x), f(x

′)) ≤ diam(f(B(x; rx))) <

δ(f) + ε.

Define f : VR(X;αε) → VR(Y ; δ(f) + ε) by sending a vertex x ∈ X to f(x) ∈ Y , and then

extending linearly. Equivalently, f([x0, . . . , xm]) = [f(x0), . . . , f(xm)]. By the above paragraph,

dY (f(x), f(x
′)) < δ(f) + ε whenever dX(x, x′) ≤ αε, and therefore f is a well-defined map. If f is

odd, the verification that f is also odd is the same as in (3). �

We remark that the above lemma is in some sense sharp: if r < δ(f), then for any α > 0 the

proposed map f : VR(X;α) → VR(Y ; r) defined by sending a vertex x ∈ X to f(x) ∈ Y and

extending linearly would not be well-defined.

We can now prove Theorem 1.3, using a similar structure to the proof of our Main Theorem.

Proof of Theorem 1.3. Let k ≥ n, and let f : Sk → Sn be an odd function. We must show that

δ(f) ≥ cn,k. Let ε > 0. By Lemma 7.4, there is some αε > 0 such that f induces a map

f : VR(Sk;αε) → VR(Sn; δ(f) + ε). Choose a finite Z/2 invariant (αε/2)-covering X ⊂ Sk. By
22



Lemma 4.1, we get an odd map Sk → VR(X;αε). Restrict the domain of f to obtain an odd map

VR(X;αε) → VR(Sn; δ(f) + ε). The composition

Sk → VR(X;αε) → VR(Sn; δ(f) + ε)

is continuous and odd, showing that δ(f) + ε ≥ cn,k for all ε > 0. Hence δ(f) ≥ cn,k. �

Remark 7.5. The same proof technique shows that any odd map Sk → Y has modulus of discon-

tinuity at least inf{r ≥ 0 | coind(VR(Y ; r)) ≥ k}.

7.2. Tightness of the lower bound on modulus of discontinuity. We now show that Theo-

rem 1.3 is tight, generalizing the tightness of Theorem 7.1.

Theorem 7.6. For any k > n and ε > 0, there exists an odd function f : Sk → Sn with modulus of

discontinuity δ(f) ≤ cn,k + ε.

To prove Theorem 7.6, we will need the following lemma. In this subsection, for the purpose of

clarity, we use different notation to differentiate between a simplicial complex K and its geometric

realization |K|, even though in other sections of this paper we identify simplicial complexes with

their geometric realizations.

Lemma 7.7. Let X be a topological space, let Y be a metric space, and let r ≥ 0. If there exists

a map X → |VR(Y ; r)|, then there exists a function f : X → Y with modulus of discontinuity

δ(f) ≤ r.

Proof. Let sd(VR(Y ; r)) be the barycentric subdivision of VR(Y ; r), which means that a k-simplex

of sd(VR(Y ; r)) is a chain of proper inclusions σ0 ⊂ . . . ⊂ σk, where each σi is a simplex in

VR(Y ; r). A refinement of σ0 ⊂ . . . ⊂ σk is a chain of proper inclusions that contains each of

σ0, . . . , σk and potentially additional simplices of VR(Y ; r); such a refinement corresponds to a

coface of σ0 ⊂ . . . ⊂ σk in sd(VR(Y ; r)). Two basic properties of barycentric subdivisions are

that we have a natural bijection |VR(Y ; r)| = |sd(VR(Y ; r))| as sets, and that the interiors of the

simplices of sd(VR(Y ; r)) form a partition of |sd(VR(Y ; r))| (so long as we consider the interior of

a vertex to be that vertex).

Let h : X → |VR(Y ; r)| be a map. Define the function f : X → Y as follows. Pick an arbitrary

function v : VR(Y ; r) → Y which assigns each simplex σ ∈ VR(Y ; r) to a vertex of that simplex.

For x ∈ X, if h(x) ∈ |VR(Y ; r)| = |sd(VR(Y ; r))| is in the interior of the simplex σ0 ⊂ . . . ⊂ σk in

sd(VR(Y ; r)), then we define f(x) = v(σ0). When one writes h(x) using barycentric coordinates in

|VR(Y ; r)|, we note that σ0 is the set of vertices in Y achieving the largest barycentric coordinate

of h(x). If there is a unique such vertex, then f(x) is equal to this vertex, and otherwise ties are

broken using the function v; see Figure 9.

We now show that the modulus of discontinuity of f satisfies δ(f) ≤ r. Let x ∈ X. Let h(x)

be in the interior of the simplex σ0 ⊂ . . . ⊂ σk in sd(VR(Y ; r)). Let S ⊆ |sd(VR(Y ; r))| be

the union of the interiors of all cofaces of σ0 ⊂ . . . ⊂ σk in sd(VR(Y ; r)). Then S is an open

set in |sd(VR(Y ; r))| = |VR(Y ; r)|, and since h is continuous, the preimage h−1(S) is an open

neighborhood about x in X. We claim that diam(f(h−1(S))) ≤ r. Indeed, let x′, x′′ ∈ h−1(S) ⊆ X.

By the definition of S, this means that h(x′) is in the interior of some simplex of sd(VR(Y ; r))
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x

X |VR(Y ; r)| = |sd(VR(Y ; r))|

h(x)

f(x) = y

h

Figure 9. Figure accompanying the proof of Lemma 7.7, in the case when X = S2

and Y = S1. Only four 2-simplices of |VR(Y ; r)| is drawn. If h(x) is any point in

the gray shaded region, then necessarily f(x) = y.

that is a coface of σ0 ⊂ . . . ⊂ σk, i.e. a refinement of σ0 ⊂ . . . ⊂ σk. Hence f(x′) is a vertex of

σ0. By the same argument, f(x′′) is a vertex of σ0. Since σ0 is a simplex in VR(Y ; r), it follows

that dY (f(x
′), f(x′′)) ≤ r. Because x′ and x′′ are arbitrary points in h−1(S), we have shown that

diam(f(h−1(S))) ≤ r. Finally, since h−1(S) is an open neighborhood about x in X, it follows that

δ(f) ≤ r. �

Proof of Theorem 7.6. Let k > n and ε > 0. We must build an odd function f : Sk → Sn with

modulus of discontinuity δ(f) ≤ cn,k + ε.

We remark that Theorem 2 of [6] implies that cn,k < π for all k ≥ n. If cn,k+ε ≥ π, then one can

simply let f be an arbitrary odd function, since δ(f) ≤ diam(Sn) = π. Hence it suffices to consider

the case when r := cn,k + ε < π.

By the definition of cn,k in Definition 1.1, there exists an odd map h : Sk → |VR(Sn; r)|. Since

r < π, no simplex of VR(Sn; r) is equal to its antipode, by which we mean that if σ = {y0, . . . , ym} ∈
VR(Sn; r), then σ 6= −σ := {−y0, . . . ,−ym}. Hence we can choose an odd function v : VR(Sn; r) →
Sn that assigns each simplex σ ∈ VR(Sn; r) to a vertex of that simplex, where odd means that

v(−σ) = −v(σ) for all σ ∈ VR(Sn; r). Build the map f : Sk → Sn as in the proof of Lemma 7.7,

i.e., for x ∈ Sk, if h(x) ∈ |VR(Sn; r)| = |sd(VR(Sn; r))| is in the interior of the simplex σ0 ⊂ . . . ⊂ σk

in sd(VR(Y ; r)), then we define f(x) = v(σ0). Since h is odd and since v is odd, it follows that f

is odd. Furthermore, by the proof of Lemma 7.7, we know that δ(f) ≤ r = cn,k + ε. �

Example 7.8. We construct an explicit example in the case n = 1. In [5, Section 5], Adams,

Bush, and Frick construct an injective odd map ∂B2`+2 ↪→ VRm(S1; 2π`
2`+1) from the boundary of the

Barvinok–Novik orbitope to the Vietoris–Rips metric thickening of the circle. The radial projection

map S2`+1 → ∂B2`+2 in R
2`+2 is a homeomorphism. Furthermore, for any ε > 0 we can use the

techniques of [10, 73] to build an odd map VRm(S1; 2π`
2`+1) → |VR(S1; 2π`

2`+1 + ε)|; this follows from

the ε-interleavings constructed in [10, 73], which in this setting can be made Z/2 equivariant. So

by composition we obtain an odd map

S2`+1 → ∂B2`+2 ↪→ VRm(S1; 2π`
2`+1) →

∣

∣

∣
VR(S1; 2π`

2`+1 + ε)
∣

∣

∣
.
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By Lemma 7.7, we obtain an odd function f : S2`+1 → S1 with modulus of discontinuity δ(f) ≤
2π`
2`+1 + ε = c1,2`+1 + ε. By restricting to the equator, we also obtain an odd function f : S2` → S1

with δ(f) ≤ 2π`
2`+1 + ε = c1,2` + ε.

7.3. Generalization of the lower bound on modulus of discontinuity. We may generalize

the domain Sk in Theorem 1.3 to any Z/2 space X with coindex at least k:

Theorem 7.9. Let X be a Z/2 space with coind(X) ≥ k. Then any odd function f : X → Sn with

k ≥ n has modulus of discontinuity δ(f) ≥ cn,k. (In particular, this holds if X is (k−1)-connected.)

This follows from the fact that precomposing a function f : X → Sn with a map g : Sk → X

cannot increase the modulus of discontinuity of f ; more precisely, δ(f) ≥ δ(f ◦ g). In order to prove

this fact (Lemma 7.10), we define a pointwise version of the modulus of discontinuity.

Let X be a topological space, let Y be a metric space, and let f : X → Y . Then for x ∈ X, the

modulus of discontinuity of f at x is

δ(f, x) := inf{diam(f(U)) | U is an open neighborhood of x}.

Note that δ(f) = supx∈X δ(f, x). Then we have the following lemma:

Lemma 7.10. Let X,Y be topological spaces, let Z be a metric space, let f : Y → Z be a function,

and let g : X → Y be a map. Then

(1) For all x ∈ X, δ(f, g(x)) ≥ δ(f ◦ g, x).
(2) δ(f) ≥ δ(f ◦ g).

Proof. For (1), let U be an open neighborhood of g(x) in Y . Then g−1(U) is an open neighborhood

of x in X, and (f ◦ g)(g−1(U)) ⊆ f(U). Therefore,

diam(f(U)) ≥ diam((f ◦ g)(g−1(U))) ≥ δ(f ◦ g, x).

Taking the infimum over all such U , we obtain δ(f, g(x)) ≥ δ(f ◦ g, x). For (2), we have

δ(f) = sup
y∈Y

δ(f, y) ≥ sup
x∈X

δ(f, g(x)) ≥ sup
x∈X

δ(f ◦ g, x) = δ(f ◦ g).

This completes the proof. �

Proof of Theorem 7.9. Since coind(X) ≥ k, there exists an odd map g : Sk → X. Consider the

composite function f ◦ g : Sk → Sn. Since g is a map, we have δ(f) ≥ δ(f ◦ g), by Lemma 7.10. We

also have δ(f ◦ g) ≥ cn,k, by Theorem 1.3. Therefore, δ(f) ≥ cn,k. �

7.4. Lower bound on the Gromov–Hausdorff distance between Euclidean spheres. In

this subsection we use the Euclidean metric on spheres, instead of the geodesic metric. For any

integer n ≥ 0, let Sn
E denote the n-dimensional unit sphere equipped with the Euclidean metric; the

Euclidean distance between x, x′ ∈ Sn
E is ‖x− x′‖. We will lower bound the distortion of odd maps

Sk
E → Sn

E with k > n, and then use this to lower bound the Gromov–Hausdorff distance between

Sk
E and Sn

E .

We first note that the generalized Dubins–Schwarz inequality (Theorem 1.3) can be formulated in

terms of the Euclidean metric on spheres. The following result comes from combining Theorem 1.3

with the fact that for any two points x, x′ on the unit sphere, we have ‖x− x′‖ = 2 sin
(

dSn (x,x′)
2

)

.
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Corollary 7.11. Any odd function f : Sk
E → Sn

E with k ≥ n has modulus of discontinuity δ(f) ≥
2 sin

( cn,k

2

)

.

When k = n+1, the above corollary recovers the Dubins–Schwarz inequality in [38], which states

δ(f) ≥ 2 sin
(

rn
2

)

for maps f : Sn+1
E → Sn

E . In [64, Proposition 9.16], the Dubins–Schwarz inequality

is combined with a Euclidean “helmet trick” (Lemma 7.13 below) to provide a lower bound on the

Gromov–Hausdorff distance between the Euclidean spheres Sk
E and Sn

E for any integers k > n ≥ 1.

This lower bound depends on n but not on k, and so we instead use Corollary 7.11 to obtain a lower

bound depending on both n and k. Indeed, the following result recovers [64, Proposition 9.16] when

k = n+ 1 and obtains a refinement when k > n+ 1.

Proposition 7.12. For all integers k ≥ n, we have 2 · dGH(S
n
E , S

k
E) ≥ 2− 2 cos

( cn,k

2

)

.

Recall that Theorem 5.3 implies limk→∞ cn,k = π. Meanwhile, it is shown in [64, Remark 9.1]

that dGH(S
n
E , S

k
E) ≤ 1 for any integers 0 ≤ n < k. Therefore, the bound in the above proposition is

asymptotically tight in the sense that limk→∞ dGH(S
k
E , S

n
E) = 1. Our proof of Proposition 7.12 will

use the following “helmet trick” for Euclidean spheres.

Lemma 7.13 (Lemma 9.14 in [64]). For any k, n ≥ 0, let the set ∅ 6= C ⊆ Sk
E satisfy C∩(−C) = ∅,

and let φ : C → Sn
E be any function. Then, the extension φ∗ : C ∪ (−C) → Sn

E defined by

φ∗(x) =







φ(x) if x ∈ C

−φ(−x) otherwise

is odd and satisfies the distortion bound dis (φ∗) 6
√

dis(φ) (4− dis(φ)).

We are now ready to prove Proposition 7.12.

Proof. For any function φ : Sk
E → Sn

E , Lemma 7.13 guarantees that the existence of an odd function

φ∗ : Sk
E → Sn

E such that dis (φ∗) 6
√

dis(φ) (4− dis(φ)). We rearrange this bound by completing

the square, using the fact that both dis(φ) and dis(φ∗) are bounded above by 2 (the Euclidean

diameter of unit spheres), obtaining dis(φ) ≥ 2−
√

4− (dis(φ∗))2. As 0 ≤ δ(φ∗) ≤ dis(φ∗), we have

dis(φ) ≥ 2−
√

4− (δ(φ∗))2. Thus, we use Corollary 7.11 to obtain

dis(φ) ≥ 2−
√

4− 4 sin2
( cn,k

2

)

= 2− 2
√

1− sin2
( cn,k

2

)

= 2− 2 cos
( cn,k

2

)

where in the last step we use the fact that 0 ≤ cn,k ≤ π. The result now follows from (1). �

8. Conclusion and Questions

As described in this article, the topology of Vietoris–Rips complexes of spheres are closely related

to Gromov–Hausdorff distances between spheres, to approximate versions of the Borsuk–Ulam the-

orems for maps into lower- and higher-dimensional codomains, and to packings and coverings in

projective space. We expect similar relationships to be true for Vietoris–Rips complexes of other

spaces. We conclude this article with a list of open questions that we hope will attract interest from

readers.
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Question 8.1. There are no known values of n and k where the lower bound 2 ·dGH(S
n, Sk) ≥ cn,k

is not an equality, and therefore it is reasonable to ask if this lower bound could be an equality in

general. In particular, can we find better functions g : Sn → Sk and h : Sk → Sn of low distortion

and codistortion, providing upper bounds on the Gromov–Hausdorff distance between spheres?

By [64, Remark 1.1], it suffices to find a surjective function Sk → Sn of bounded distortion.

For example, can we find surjective functions S2k → S1 and S2k+1 → S1 of distortion at most
2πk
2k+1 , in order to show that our lower bounds 2 ·dGH(S

1, S2k) ≥ 2πk
2k+1 and 2 ·dGH(S

1, S2k+1) ≥ 2πk
2k+1

are tight? Can we find surjective functions Sn+1 → S1 and Sn+2 → S1 of distortion at most rn, in

order to show that the lower bounds 2 · dGH(S
n, Sn+1) ≥ rn and 2 · dGH(S

n, Sn+2) ≥ rn from [64]

are tight? In other words, we ask:

Is 2 · dGH(S
1, S2k) = 2πk

2k+1 = 2 · dGH(S
1, S2k+1)?

Is 2 · dGH(S
n, Sn+1) = rn = 2 · dGH(S

n, Sn+2)?

Question 8.2. In this paper, we have primarily thought of our Main Theorem and Theorem 1.3 as

providing lower bounds on the distortion of a function f : Sk → Sn, or on the modulus of discon-

tinuity of such a function, or on the Gromov–Hausdorff distance between Sn and Sk, respectively.

However, one could also apply these results in the opposite direction in order to obtain new knowl-

edge about Vietoris–Rips complexes of spheres. Is it possible to find a function f : Sk → Sn of low

distortion r or low modulus of discontinuity r, in order to prove a new upper bound of the form

coind(VR(Sn; r)) ≥ k for a smaller value of r than was previously known? Similarly, is it possible

to find functions showing 2 · dGH(S
n, Sk) is at most r with r small, in order to prove a new upper

bound of the form coind(VR(Sn; r)) ≥ k? If so, then [6, Theorem 3] would furthermore imply that

there is no covering of RPn by k balls of radius r.

Question 8.3. Theorem 7.6 finds an odd function f : Sk → Sn with modulus of discontinuity

arbitrarily close to cn,k, showing that Theorem 1.3 is tight. Do there exist odd functions f : Sk → Sn

with distortion arbitrarily close to cn,k, which would show that the second inequality in our Main

Theorem is tight?

Question 8.4. Theorem 1.3 lower bounds the modulus of discontinuity of odd functions Sk → Sn

with k > n, and can be viewed as a discontinuous generalization of the Borsuk-Ulam theorem as

stated in Theorem 3.3. Can we obtain similar discontinuous generalizations of other equivalent

formulations of the Borsuk-Ulam theorem, e.g., Theorem 3.1 and Theorem 3.2? Results in this

direction will appear in an upcoming paper [7].

Question 8.5. Can we provide lower bounds on the Gromov–Hausdorff distances between more

general families of Z/2 metric spaces by obstructing the existence of equivariant maps to their

Vietoris–Rips complexes? In particular, can we generalize the sphere Sk in our Main Theorem to a

more general class of (k − 1)-connected Z/2 spaces?

Theorem 7.9 provides an answer to the analogous question for Theorem 1.3, our primary theorem

bounding the modulus of discontinuity, replacing the k-sphere with a space of Z/2 coindex at least

k. Does an analogous generalization exist for the distortion bound in our Main Theorem?
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Question 8.6. Can one generalize our results to groups G other than G = Z/2? As a start, one

could attempt to extend our results from Z/2 spaces, Z/2 functions, and Z/2 maps, to Z/p spaces,

Z/p functions, and Z/p maps for other primes p. Results in this direction will appear in upcoming

papers [7, 62].

Question 8.7. Can our methods be used to obtain bounds on the Gromov–Hausdorff distances

between spaces from families other than spheres, such as real projective space RPn, complex pro-

jective space CPn, ellipses with different eccentricity values, or ellipsoids of different dimensions

or with different axis lengths? What about Gromov–Hausdorff distances between spaces that each

come from a different family, e.g. dGH(RP
n, Sn)? The first new homotopy type of the Vietoris–Rips

metric thickening of RPn is given in [9]. Katz has studied the filling radius of complex projective

spaces CPn [56, 58, 59, 60], which is closely related to Vietoris–Rips complexes by [63]. The first

new homotopy type of Vietoris–Rips complexes of small-eccentricity ellipses is given in [4].

Question 8.8. What lower bound can we obtain for the Gromov-Hausdorff distances dGH(X,Sk)

and dGH(X,Y ), where X and Y are finite sets? For example, what lower bounds can we get for

the Gromov-Hausdorff distance dGH(Qn, S
k) and dGH(Qn, Qk), where Qn is the vertex set of the

hypercube graph, equipped with one of several natural choices of metric? See [27, 2, 84] for recent

papers on the Vietoris–Rips complexes of the hypercubes Qn.

Question 8.9. The Borsuk–Ulam theorem has many different corollaries. Can our generalization

of the Dubins–Schwarz inequality provide new generalizations of some of these corollaries? Some

results in this direction will appear in an upcoming paper [7].

Question 8.10. Let X be a metric space that is “approximately” a Z/2 space, by which we mean

that acting by the generator twice returns a function that is not the identity map on the nose,

but only close to being the identity map. Is there a version of the Dubins–Schwarz inequality for

“approximate Z/2 spheres”? Can our machinery be adapted to provide bounds on the Gromov–

Hausdorff distances between “approximate” Z/2 metric spaces?

Question 8.11. Below we outline several fundamental open questions regarding the dependence of

Gromov–Hausdorff distances between spheres on the dimensions of the spheres in question. Several

questions ask about upper bounds, which may be useful for working in the opposite direction of our

results, i.e. upper bounds on Gromov–Hausdorff distances may be useful for drawing new conclusions

about the homotopy connectivity of Vietoris–Rips complexes or packings and coverings in projective

space. We set k > n in each question below.

• We might already conjecture that dGH(S
n, Sn+1) = rn = dGH(S

n, Sn+2) based on existing

bounds. However, Crabb [35, Theorem 3.1] recently used characteristic classes and the

cohomology of quotients of classical groups [18] to prove that when n + 1 is divisible by

a large power of 2, then the diameter bound rn in [5, Theorem 3] also works for maps

f : Sn → R
k into a selected number of higher dimensions k with k > n+ 2. This motivates

us to ask: Does there exist n and k > n+ 2 so that dGH(S
n, Sk) = rn?

• Is it always true that dGH(S
n, Sk) ≤ dGH(S

n, Sk+1)? That is, does dGH increase monoton-

ically as we move to the right in any row in Table 1? Note, the first row shows we cannot

guarantee a strict increase. This is Question I of Lim, Memoli, and Smith [64].
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• Is it always true that dGH(S
n, Sk) ≥ dGH(S

n+1, Sk)? That is, does dGH decrease monoton-

ically as we move downward in any column of Table 1?

• Is it always true that dGH(S
n, Sk) ≤ dGH(S

n+1, Sk+1)? That is, does dGH decrease mono-

tonically as we follow any off-diagonal in Table 1?

• For fixed m ≥ 1, is 2 · dGH(S
n, Sn+m) bounded away from π as n → ∞? Theorem 1.2 gives

an affirmative answer for m = 1, and current bounds on cn,n+m (see [6, Corollary 3.2]) do

not preclude an affirmative answer in general.

• For any δ > π
2 and integer m ≥ 1, does there exist a sufficiently large integer N such that

2 · dGH(S
n, Sk) ≤ δ for all n ≥ N and n < k ≤ n+m?

Again, our lower bounds cn,k satisfy this property by [6, Corollary 3.2].

Question 8.12. Definition 5.2.7 of [25] defines sn,k to be the infimal value of r such that, for any

odd map f : Sn → R
k with k ≥ n, there exists a subset X ⊆ Sn of diameter at most r such that

the origin is in the convex hull of the image f(X) ⊆ R
k. See [25, Table on Page 80] for the known

values of sn,k and note the similarities with Table 1. It is known that for k ≥ n, we have sn,k ≤ cn,k.

Indeed, let f : Sn → R
k be any odd map, and suppose r > cn,k, i.e., suppose there is an odd map

Sk → VR(Sn; r). The map f induces an odd map VR(Sn; r) → R
k. By composition, we obtain an

odd map Sk → VR(Sn; r) → R
k. We apply the standard Borsuk–Ulam theorem to this odd map

Sk → R
k to see that there is a point in VR(Sn; r) that maps to the origin in R

k, i.e. that there is

a subset X ⊆ Sn of diameter at most r such that the origin is in the convex hull of f(X). Hence,

r ≥ sn,k and it follows that sn,k ≤ cn,k. Could it be the case that sn,k = cn,k for all k ≥ n, or if not,

what are the smallest values of n and k for which these quantities differ?
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