
Towards Practical, Generalizable Machine-Learning Training
Pipelines to build Regression Models for Predicting Application

Resource Needs on HPC Systems
Swathi Vallabhajoyula∗

Rajiv Ramnath∗
vallabhajosyula.2@buckeyelink.osu.edu

ramnath.6@osu.edu
The Ohio State University
Columbus, Ohio, USA

ABSTRACT
This paper explores the potential for cost-effectively developing
generalizable and scalable machine-learning-based regression mod-
els for predicting the approximate execution time of an HPC appli-
cation given its input data and parameters. This work examines:
(a) to what extent models can be trained on scaled-down datasets
on commodity environments and adapted to production environ-
ments, (b) to what extent models built for specific applications can
generalize to other applications within a family, and (c) how the
most appropriate model may change based on the type of data and
its mix. As part of this work, we also describe and show the use of
an automatable pipeline for generating the necessary training data
and building the model.

CCS CONCEPTS
• Software and its engineering → Designing software; • Com-
puting methodologies → Cost-sensitive learning.

KEYWORDS
automated data generation, ML, execution time, model scalability,
model transferability
ACM Reference Format:
Swathi Vallabhajoyula and Rajiv Ramnath. 2022. Towards Practical, Gen-
eralizable Machine-Learning Training Pipelines to build Regression Mod-
els for Predicting Application Resource Needs on HPC Systems. In Prac-
tice and Experience in Advanced Research Computing (PEARC ’22), July
10–14, 2022, Boston, MA, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3491418.3535172

1 INTRODUCTION
Problem Statement: The availability of shared high-performance
computing (HPC) cyber-infrastructures (CI) such as those available

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEARC ’22, July 10–14, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9161-0/22/07. . . $15.00
https://doi.org/10.1145/3491418.3535172

at the Ohio Supercomputer Center 1 enables scientists to perform
computationally intensive experiments such as simulations for
weather prediction 2, or those using deep neural networks (DNN)
at scale3. Multiple users share resources on these CI for simple to
complex jobs with varying execution times and resource needs.
Consumers are billed incrementally for nodes, processing time, and
memory. Users run their applications on multiple environments
as their research progresses, starting with explorations on their
personal computers or a lab cluster, then moving to a HPC center
or to new systems as they become available. Users have a limited
understanding of their applications’ resource needs; our investiga-
tions show that users habitually over-provision jobs to ensure that
they execute till completion.

Over-provisioning resources increases cost and, counter-
intuitively, increases turnaround time, as HPC schedulers wait for
appropriately-sized windows in job queues. Better tuning resource
requests would result in better utilization of shared resources, faster
turnaround of jobs, and potentially reduced budgets, i.e. faster time-
to-science at lower cost.

Data Requirements: The execution time of an application de-
pends on application-specific features, such as its hyperparame-
ters (e.g., batch size, #epochs etc. for DNN) and the amount of input
data. It also depends on the execution environment-specific fea-
tures; that is, the characteristics of the cyberinfrastructure, such
as the number and type of nodes, and their configuration (GPU,
memory, processor speed, intra-node bandwidth etc.)[1, 7]. Extant
research has explored models built using either application-specific
features or environment-specific features [3, 6]. Our work does
both together, i.e. builds ML models from application-specific and
environment-specific elements taken together.

Model Evaluation: Regression models are typically evaluated
using mean square error as the metric, with negative and positive
errors treated identically. However, for execution-time prediction,
models with negative errors (i.e., underpredictions) have a greater
(and negative) impact because, for example, an application that
has underestimated its resource needs will be aborted on shared
batch-oriented systems. Thus, our models seek to reduce under-
predictions. At the same time, our models cannot simply over-
estimate every job because doing so would incur longer waits.4

1https://www.osc.edu/about/mission
2https://www.olcf.ornl.gov/2019/05/07/mapping-climate-patterns/
3https://www.nvidia.com/en-us/data-center/resources/intersection-of-hpc-and-
machine-learning/
4https://www.osc.edu/supercomputing/batch-processing-at-osc/job-scripts

https://doi.org/10.1145/3491418.3535172
https://doi.org/10.1145/3491418.3535172
https://doi.org/10.1145/3491418.3535172
https://www.osc.edu/about/mission
https://www.olcf.ornl.gov/2019/05/07/mapping-climate-patterns/
https://www.nvidia.com/en-us/data-center/resources/intersection-of-hpc-and-machine-learning/
https://www.nvidia.com/en-us/data-center/resources/intersection-of-hpc-and-machine-learning/
https://www.osc.edu/supercomputing/batch-processing-at-osc/job-scripts
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3491418.3535172&domain=pdf&date_stamp=2022-07-08

PEARC ’22, July 10–14, 2022, Boston, MA, USA Vallabhajosyula and Ramnath

Tractability:Machine-learning (ML) models are expensive in
terms of computation and execution time. Minimizing data, train-
ing, and infrastructure needs for model building is essential for ML
approaches to be cost-effective and practical, that is, tractable. To
this end, we explored the tractability of model building. Specifically,
we assessed to what extent models built on data from a small set of
application runs on an minimal, compatible environment (such as
a workstation or a single core HPC node) could be extrapolated or
generalized. We examined multiple axes of generalizability: (a) to
different target environments (such as an HPC center with multi-
many cores that include GPUs, high-bandwidth communication
libraries, and greater memory), and (b) to other applications within
the same “family”. This study also examined the effects of incre-
mentally augmenting our models with data from runs on the target
environment (essentially evaluating continuous learning over time).

Model Selection: We examined several regression models be-
fore settling on the two models - a one-layer neural network and a
decision tree - for evaluation. We noted that some parameters in
the data were numeric, while others were categorical, which could
influence model selection. These explorations, combined with ex-
ploring tractability, serendipitously led us to an interesting insight
concerning model selection. As we included more data, the most
effective model type changed.

Contributions:The contributions of this paper centered on
demonstrating the tractability and generalizability of our approach,
that is: (a)Demonstrating an automated pipeline for tractable model
development - i.e., collecting data and training the model - easily
configurable to accommodate different target applications and ML
techniques. The code for this automated pipeline is available in
GitHub5; (b) Demonstrating how predictive models built with data
on one target environment can be extrapolated to other target en-
vironments; (c) Demonstrating to what extent predictive models
built with data on a specific application can be extrapolated to
other applications in the same “family”; and (d) Insights on model
selection, in particular, demonstrating that the best model depends
upon the type and the scale of the data available, but that models
specially designed for scale, such as DNN, may not always be the
best.

2 RESEARCH PIPELINE
This section describes the components of our research pipeline -
automated data collection, the target applications, execution envi-
ronments, and datasets.

AutomatedData Collection Each target application was incor-
porated into the framework and treated as a black box that exposes
tunable parameters through which their behavior was modified
systematically to generate the training data. This training data was
then pipelined into the model training. The following are the tools
and steps used to generate training data: (a) We used the Cheetah
Experiment Harness a Campaign Management System [5] to run a
target application with different training executions configured us-
ing a campaign file into a single submission. (b) The outcomes, such
as its run time, memory requirements, and application-specific out-
put, were analyzed using the Tuning and Analysis Utilities (TAU)
profiler [8]. (c) A post-execution script gathers the features and

5https://github.com/manikyaswathi/PreditingExecutionTime

generates application-specific training datasets. (d) We build the
selected regression models after running correlation analysis and
principal component analysis (PCA) on the generated data.

Target Applications:We chose three target applications that
spanned a range of behavior and had a different portfolio of resource
needs: (a) Gray Scott Simulator [4] is a chemical diffusion simulator
that is computationally intensive. (b) Trimmomatic [2] is used to
pre-clean raw genome sequence raw archives (SRA) to get a higher
assembly quality and is both compute and I/O intensive. (c) DNNs
for Image Classification is a family of deep neural network mod-
els - TensorFlow’s image classification models: VGG16, ResNet50,
and InceptionV3 - with a few thousand learnable parameters. The
memory and execution requirements change based on the number
of images and batch size, making them both computationally and
memory intensive.

Model Features and Execution environments: Features that
impact the execution time of an application are shown in Figure 2.
Our experiments were run on the following systems: (a) Linux CPU
with 8-cores and 16 GB Memory and (b) CPUs and GPUs hosted
on Owens and Pitzer cluster at OSC 6 to generate training data.

Dataset Generation: Our goal concerning data generation was
to explore the tractability of the model building process. Generating
training data at large using full input or training data is expensive.
Thus, we sought to assess to what extent a model built from data
collected from a small set of runs of a single application on a chosen
environment could then be extrapolated or generalized. We start
by generating "scaled-down" (SD) data on minimally expensive
compatible execution environments (workstations or single-core
HPC node) where the target application could run till completion.
We slowly add more full-scale data as it becomes available when
we run the application in a production environment (say by using
an entire node on an HPC). We expanded the SD data by adding
these "full-scale" (FS) instances. Essentially, the goal is to see how
a regression model can learn to scale before and as "real" data
becomes available. The configurations required to generate SD and
FS data depend on the target application and execution environment.
We generated 8088:398, 3234:128, and 1313:210 SD:FS samples for
Gray-Scott, Trimmomatic, and Family of DNNs, respectively.

3 REGRESSION MODELS AND MODEL
SELECTION CRITERIA

Regression models and Metrics: We tried several regression
models - Linear Regression, Support Vector Machines, Decision
Tree Regression, Random Forest, and Neural Networks. The accu-
racy of these models varies based on the distribution of data and the
types of features. For example, Linear regression predicted negative
execution time, Decision trees and random forests seem to perform
equally well on our data sets, but decision trees were faster to train.
We also experimented with neural network models using different
hyperparameters as they could generalize to different applications
and work well with non-linear data. We used two different regres-
sion models throughout our experiments: (a) One Layer Hidden
Neural Network (1LHNN) with Adam optimizer, trained with 0.01

6https://www.osc.edu/services/cluster_computing

https://github.com/manikyaswathi/PreditingExecutionTime
https://www.osc.edu/services/cluster_computing

Towards Practical, Generalizable Machine-Learning Training Pipelines to build Regression Models for
Predicting Application Resource Needs on HPC Systems PEARC ’22, July 10–14, 2022, Boston, MA, USA

Figure 1: Visualizing the Automated Data Collection Pipeline and Model Generation

Figure 2: The system-specific and application specific features used in our experiments

learning rate on a 20 batch size for 300 epochs (best-identified con-
figuration); (b) Scikit-learn’s 7 Decision Tree Regressor (DTR) with
default configurations. For there models, we measure: (a) Mean
Absolute Error (MAE) and Mean Percentage Error (MPE) between
the predicted and actual values (rounded to nearest integer); and
(b) Under Prediction Percentage (UPP): The percentage of test set
jobs with predicted < actual execution times.

Model Selection: The goal of model selection is to choose a
model that tries to reduces the number of under-predictions while
retaining a lower MAE. When comparing two regression models, A
and B, we select a better-performing model based on the following
heuristic criteria: (a) select a model with lower MAE and lower
UPP; or (b) When UPP(A) > UPP(B) and MAE(A) < MAE(B),
select A if the relative change between the models for MAE is
greater than or equal to UPP (i.e. |MAE(B) −MAE(A)|/MAE(A) >=
|UPP(B) −UPP(A)|/UPP(A)). If this relation doesn’t hold, select B.
(This rule is applicable in vice-versa case)

4 EXPERIMENTS AND RESULTS
We generated scaled-down (SD) and full-scale(FS) data with a sys-
tematic sweep of application parameters and execution environ-
ments per application using Cheetah. We then split our FS data into
50:25:25 training, validation, and test sets. Given our primary goal
of reducing under-predictions in a controlled manner, we reduced
the number of under-predictions made by the regression models by
multiplying the model predictions with an Underprediction Adjust-
ment Multiplier (UPAM), computed per model and dataset using
the FS validation dataset. We set a UPAM value that corrected at
least 50% of the underpredictions from the validation set. We then
applied this UPAM to the test predictions by adjusting them to
executiontime = UPAM ∗ prediction. Note that experiments 1
and 2 report scores on adjusted predictions.

Baseline: We use FS datasets to train the models and predict
execution time without (checkUPAM) and with UPAM (BaselineFS)
adjustments. The UPAM adjustment reduced the number of under-
predictions on the FS test dataset (checkUPAM to BaselineFS in
Table 1).

7https://scikit-learn.org/stable/index.html

4.1 Experiment 1: Scaling models with respect
to FS data

We start by training the model only on the SD data while testing
it on FS data to see if it could scale the predictions (NoFS model).
We gradually augmented the SD training data with samples from
FS data and trained two additional models (25%FS and 50%FS). The
25%FS and 50%FS respectively added 25% and 50% of the FS samples
to the SD training data.

From Table 1, we can see that 1LHNN performs better for all
applications when we have no additional FS training data (NoFS)
compared to the baseline (built on FS data), where DTR was getting
better accuracies. As we add more training runs from FS data, we
can see a shift in the "selected model" as we change the training
data from NoFS to 25%FS or 50%FS for Trmmomatic.

4.2 Experiment 2: Using existing models
trained on other applications in same
family

We choose VGG16, ResNet50(RN50), and InceptionV3(InsV3) from
the Family of DNNs. To analyze the transferability of a model within
the family of applications, we predict execution time for a target
application by training the following modules: (a)OneVsOne - train
models on all applications in the family one at a time including
target application (BaslineFS); (b) OtherAll - train the model on
samples of all applications except the target; (c) Others+25%FS &
Others+50%FS- train these models on all samples from all applica-
tions except the target, augmented with 25% or 50% of FS samples
from the target application.

From Table 2, we notice that models built on training data of
one application in the family give better predictions for the target
applications than its baselines (OthersAll for VGG16 and RN50),
signifying the transferability. The UPAM factor could indicate
which training dataset could fit a target application. A higher scal-
ability factor could result in high over predictions (as in the case
of InsV3 to VGG16). We could gradually add FS training samples
from the target application to improve the predictions. An increase
in the UPAM factor after adding a few additional FS training sam-
ples could cause higher over predictions, thus reducing the model
accuracies. The newly generated FS runs tend to have a narrow
distribution of features compared to SD data, thus causing a higher

https://scikit-learn.org/stable/index.html

PEARC ’22, July 10–14, 2022, Boston, MA, USA Vallabhajosyula and Ramnath

checkUPAM BaselineFS NoFS 25%PS 50%FS
MAE UPP MAE UPP MAE UPP MAE UPP MAE UPP
MPE UPAM MPE UPAM MPE UPAM MPE UPAM MPE UPAM

255.30 47.52 317.2 9.90 94.16 11.88 82.78 17.82 167.61 3.961LHNN 215 1x 269 1.2x 88 1.2x 78 1.4x 162 1.7x
35.33 19.80 ˘47.23 ˘7.92 58.89 39.60 413.05 30.69 267.78 16.83

Gray-
Scott DTR 37 1x ˘48 ˘1.1x 52 2.1x 294 1.2x 522 1.1x

15.49 66.66 44.57 7.69 225.64 64.10 305.07 64.10 435.88 61.531LHNN 4 1x 10 1.1x 50 38.2x 68 30.1x 119 74.9x
12.30 43.58 ˘48.32 ˘2.56 1125.13 43.58 61.77 7.69 46.86 5.12

Trimm-
omatic DTR 3 1x ˘11 ˘1.1x 1344 328.6x 12 1.1x 10 1.1x

223.02 55.55 337.37 27.77 708.43 1.85 292.42 11.11 511.30 5.551LHNN 58 1x 81 1.3x 517 1.4x 136 1.5x 445 1.2x
178.17 35.18 ˘226.90 ˘14.81 922.70 12.96 1811.05 9.25 599.84 14.81

Family
of DNNs DTR 40 1x ˘49 ˘1.1x 856 1.9x 518 2.3x 333 1.3x

Table 1: Experiments to show the scalability of modules when the prediction is adjusted with respect to the FS validation data

Target Application
VGG16 RN50 InsV3

1LHNN DTR 1LHNN DTR 1LHNN DTR
MAE UPP MAE UPP MAE UPP MAE UPP MAE UPP MAE UPP

Source
of

Training
data MPE UPAM MPE UPAM MPE UPAM MPE UPAM MPE UPAM MPE UPAM

1043 10.5 1272 26.31 1̆141 0̆.00 597 21.05 3̆283 0̆.00 305 52.63VGG16 741 1.4x 369 1.3x 3̆22 1̆x 569 4.3x 1249 1x 252 2.1x
3224 5.26 2̆53 2̆1.05 1097 0.00 1546 10.52 1295 15.78 1̆197 5̆.26RN50 1191 2.1x 7̆8 2̆.4x 962 1.1x 297 3.6x 216 3.8x 4̆65 4̆.6x
51229 0.00 4̆26 3̆6.84 3075 21.05 2̆45 3̆6.84 1041 0.00 1058 0.00InsV3 20378 5.0x 1̆79 3̆.7x 2264 1.1x 8̆0 1̆.6x 603.08 1.1x 545.24 2.4x
9̆51 0̆.00 242 31.57 2̆66 3̆1.57 747 26.31 1988 0.00 7̆52 0̆.00Others

All 2̆62 2̆.0x 59 2.0x 9̆5 1̆.2x 903 1.7x 184 3.8x 2̆17 1̆.5x
˘139 ˘10.52 1733 10.52 ˘439 ˘0.00 769 10.52 5̆24 0̆.00 1246 5.2Others

+25%FS ˘81 ˘1.5x 509 1.8x ˘184 1.4x 217 1.8x 1̆23 2̆.0x 808 1.6x
371 15.78 727 15.78 5̆06 0̆.0 606 10.52 ˘222 ˘31.57 485 10.52Others

+50%FS 265 1.4x 237 1.3x 206 1.6x 129 1.8x ˘53 ˘1.9x 365 1.1x
Table 2: Experiments to show the transferability of models within a family of applications of regression modules

UPAM factor. When we look at the MPE, we could see that the model
selection criterion is picking a model with a lower value (while still
keeping the under-predictions lower as a priority).

5 CONCLUSION AND FUTURE WORK
We have explored the feasibility of building a framework that can
generate training data for a given application through this work.
Using an existing experimental harness called Cheetah, we auto-
matically generated training data and captured both application
and system-specific features with minimal human intervention.
The proposed models were able to scale the predictions if either the
execution environment or application-specific configurations were
changed. These models were able to transfer within a family. When
we try to apply a model generated on the family of experiments for
a new application in the family, we need to include the adjustment
percentage that can aid in scaling a model to the new application.

We propose future work in three areas: (a) Model selection:
From the results (Experiments 1 & 2), it is evident that choosing

a regression model specific to the application does not depend on
one metric (like MAE or UPP). We plan to evaluate other heuristics
for model selection. (b) Dealing with missing values: The current
models predict execution time for the test data and not inference
data. Since the inference data do not have runtime features like I/O
bandwidth, we need to fill in the missing values for these features
before predicting execution time. (c) Cost models: To choose a
regression model, we need to compute a cost metric that measures
the trade-off between successful execution of an application due to
over-estimation (expecting higher wait times) and failure to execute
an application due to under-prediction.

ACKNOWLEDGMENTS
This work was partially supported by the National Science Foun-
dation and the NSF AI institute for Intelligent Cyberinfrastructure
with Computational Learning in the Environment (ICICLE), under
grant agreements OAC-1945347 and OAC-2112606.

Towards Practical, Generalizable Machine-Learning Training Pipelines to build Regression Models for
Predicting Application Resource Needs on HPC Systems PEARC ’22, July 10–14, 2022, Boston, MA, USA

REFERENCES
[1] Marcos Amarís, Raphael Y. de Camargo, Mohamed Dyab, Alfredo Goldman, and

Denis Trystram. 2016. A comparison of GPU execution time prediction us-
ing machine learning and analytical modeling. In 2016 IEEE 15th International
Symposium on Network Computing and Applications (NCA). 326–333. https:
//doi.org/10.1109/NCA.2016.7778637

[2] Anthony M Bolger, Marc Lohse, and Bjoern Usadel. 2014. Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30, 15 (2014), 2114–2120.

[3] Ling Huang, Jinzhu Jia, B. Yu, Byung-Gon Chun, Petros Maniatis, and Mayur Naik.
2010. Predicting Execution Time of Computer Programs Using Sparse Polynomial
Regression. 883–891.

[4] Jeff S. McGough and Kyle Riley. 2004. Pattern formation in the Gray–Scott model.
Nonlinear Analysis: Real World Applications 5, 1 (2004), 105–121. https://doi.org/
10.1016/S1468-1218(03)00020-8

[5] Kshitij Mehta, Bryce Allen, Matthew Wolf, Jeremy Logan, Eric Suchyta, Jong
Choi, Keichi Takahashi, Igor Yakushin, Todd Munson, Ian Foster, and Scott Klasky.
2019. A Codesign Framework for Online Data Analysis and Reduction. In 2019
IEEE/ACM Workflows in Support of Large-Scale Science (WORKS). 11–20. https:
//doi.org/10.1109/WORKS49585.2019.00007

[6] Tudor Miu and Paolo Missier. 2012. Predicting the Execution Time of Workflow
Activities Based on Their Input Features. In 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis. 64–72. https://doi.org/10.1109/SC.
Companion.2012.21

[7] Farrukh Nadeem and Thomas Fahringer. 2013. Optimizing Execution Time
Predictions of Scientific Workflow Applications in the Grid through Evolu-
tionary Programming. Future Gener. Comput. Syst. 29, 4 (jun 2013), 926–935.
https://doi.org/10.1016/j.future.2012.10.005

[8] Sameer S Shende and Allen DMalony. 2006. The TAU parallel performance system.
The International Journal of High Performance Computing Applications 20, 2 (2006),
287–311.

https://doi.org/10.1109/NCA.2016.7778637
https://doi.org/10.1109/NCA.2016.7778637
https://doi.org/10.1016/S1468-1218(03)00020-8
https://doi.org/10.1016/S1468-1218(03)00020-8
https://doi.org/10.1109/WORKS49585.2019.00007
https://doi.org/10.1109/WORKS49585.2019.00007
https://doi.org/10.1109/SC.Companion.2012.21
https://doi.org/10.1109/SC.Companion.2012.21
https://doi.org/10.1016/j.future.2012.10.005

	Abstract
	1 Introduction
	2 Research Pipeline
	3 Regression Models and Model Selection Criteria
	4 Experiments and Results
	4.1 Experiment 1: Scaling models with respect to FS data
	4.2 Experiment 2: Using existing models trained on other applications in same family

	5 Conclusion and Future work
	Acknowledgments
	References

