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Abstract

Any n-tuple of points in the plane can be moved to any other n-tuple by a continuous motion
with at most (g) intermediate changes of the order type. Even for tuples with the same order
type, the cubic bound is sharp: there exist pairs of n-tuples of the same order type requiring c(g)
intermediate changes.

Order types. A collection of d+ 1 points po, ..., pq in R? can be oriented in one of the three ways
according to the sign of det [1}0 I pld]. We call this sign orientation of (p1,...,pq+1) and denote it
by orient(po, ...,pq). In the plane, the three possible orientations correspond to the points lying in

clockwise, counterclockwise and collinear positions.

The totality of all ( d—?—l) orientations of points in a tuple P = (py, ..., p,) of points in R? determine

the order type, which we denote by OTp. For example, the two tuples of .
four points in the figure on the right have the same order type. It is tempting 2 3

.
. N 1

to regard tuples with the same order type as similar. In particular, it was 1. s

=K ]

conjectured by Ringel [4] that every two tuples of the same order type can be i
transformed into one another via a continuous motion, without breaking the thez:,‘;:‘;‘;f;fype
order type. Surprisingly, White [7] disproved the conjecture by constructing

an order type with disconnected realization space. An even more surprising result was proved by
Mnév [2], which became known as the Mnév’s universality theorem. It implies existence of order
types whose realization spaces are homotopy equivalent to any prescribed simplicial complex, for

instance. The proof of Mnév’s theorem has since been simplified, see [3] for example.

Distance. An n-tuple P is a realization of the order type T € {—1,0, +1}(d[i]1) ifOTp=7. A
tuple of points is in general position if no d + 1 its points lie on a common hyperplane. Similarly, we
say that an order type T is in general position if 7 € {—1, +1}(d[i]1).

In this paper, we seek ways to continuously transform one tuple in general position into another
with as few changes of the order type as possible. Formally, a continuous function m: [0,1] — (R%)"
is a motion between tuples P and P’ if m(0) = P, m(1) = P’, there are at most finite number of
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times ¢ for which m(t) is not in general position, and at each of those times just there a unique set of
d + 1 points lying on a common hyperplane. The number of such times is called the cost of m. Let
dist(P, P’) be the cost of the least expensive motion from P to P’. We call tuples P and P’ isotopic
if dist(P, P’) = 0.

Our results. It is clear that dist(P, P’) is bounded from below by the Hamming distance be-
tween OTp and OTp/. In particular, if P’ is a mirror image of P, then OTp = —OTp: and so
dist(P, P') > ( df_l) in this case. Our first result shows that, at least in the dimension 2, this is the
largest distance between any two tuples.

Theorem 1. Suppose d > 2. Then for any two n-tuples in general position P, P’ € (]Rd)” we have

d{ n
. / < 2 )
dist(P, P') < 2<d+1>

We do not know if the fraction %l can be improved. In particular, we do not know if it can be

replaced by an absolute constant that is independent of d.

Though Ringel’s conjecture is false, the following pair of results shows that its spirit is true — it
is easier to transform one tuple into another if they have the same order type.

Theorem 2. If tuples P, P’ € (RY)" are in general position with the same order type and d is even,
then

d{ n d
ist(P,P') < 2 e
dist(P, )_2<d+1> 2

We say that a tuple P is a-non-elongated if the ratio between the largest and smallest distances
in P is at most a{/n.

Theorem 3. Suppose d =2 (mod 4). If tuples P, P’ € (R)" are both a-non-elongated and in general
position with the same order type, then

dist(P, P') < <g - ﬁ) <di 1>,

for some positive constant = (a) > 0.
On the other hand, there are tuples of the same order type that are hard to turn into one another.

Theorem 4. There are arbitrarily large n-tuples P, P’ in R? of a same order type such that

dist(P, P') > 1074 (g)

Proof of Theorem 4

The requisite example is obtained from a counterexample to Ringel’s conjecture and the following
proposition.



Proposition 5. Let Q and Q' be r-tuples of the same order type with dist(Q, Q") > 0. Then, for all
sufficiently large n, there are n-tuples P and P’ that that satisfy

dist(P, P') > (273 + o(1)) (g)

The constant appearing in the statement of Theorem 4 can be obtained both from the 13-point
example of Tsukamoto [6] and from the earlier 14-point example of Suvorov [5]. The rest of this
section is devoted to the proof of Proposition 5.

We shall replace each point of @ and of @’ by a cloud of m ] n/r points. The clouds will be
sufficiently small so that whenever we select a point from each cloud, the obtained tuples @ and @’
are isotopic to @ and @’ respectively. It implies that at least one (d + 1)-tuple changes orientation in
any motion from Q to . Double-counting such (d + 1)-tuples according to the pair (@, Q' ) that it
belongs would then yield

n

dist(P, P") > 2mtt = 293 (3

> +0(n?).
The factor of 2 accounts for the fact that every (d+ 1)-tuple must change orientation an even number
of times.

The main difficulty is in selecting the clouds so that the resulting tuples P and P’ still have the
same order type.

Making clouds. A tuple Q= (G1,...,qr) is an e-perturbation of @ = (q1,...,q¢-) if |¢i — ¢;| < e.
Pick ¢ > 0 sufficiently small so that every e-perturbation of () is isotopic to (), and every e-perturbation
of @)’ is isotopic to @Q'.

Let i € [r] be arbitrary. Pick a unit vector a; that is not parallel to any vector of the form ¢; — ¢;
with j #£ 4. Let L; denote the directed line through ¢; in the direction a;. The L; partitions the rest
of @ into two sets {g;};jca and {g;};eB, the left and right sides of the line.

Because @ and @' have the same order type, the circular order of points around ¢; and ¢/ is the
same, and so we can find a unit vector a} that such that the line L} through ¢, in the direction a;
induces the same partition on @', namely {q;};ca and {¢;};en.

Replace ¢; by the cloud @Q; consisting of points g;1,...,¢ m where g; 4+ kda; + k262b;.
Similarly replace ¢} by the points ¢; ) q; + kéal + k262, for k € [m]. The number & > 0 is chosen
sufficiently small to satisfy four conditions.

(C1) |gik — qi| < € holds for every k,
(C1') lq;;, — gl < e holds for every k,

(C2) if ¢; , and g; 1v are two points of the same cloud with £ < &’ and g; ¢ is a point in another cloud,
then g; is on the same side of the line g; 1g; 3+ as the side of ¢; relative to the line L;,

(C2') Same as (C2) but with the points of @; and the line L; replaced by @} and the line L.



The requisite n-tuples are then P o (i k)ier) kefm) and P’ o (qg,k)ie[r},ke[m}- Indeed, the lower
bound on dist(P, P’) follows from the fact that the cloud points are e-perturbations of @ and @’
respectively, and the orientations of triples being the same is the consequence of the conditions (C2)
and (C2').

Proof of Theorem 1

We employ the usual arithmetic on tuples. For example, if P = (p1,...,p,) is a tuple of points and
A € R, then AP & (Ap1,. .., App). Similarly, if M is a linear transformation, then M P denotes the
tuples obtained by applying M to each point in P.

Given two tuples P, P’, a natural way to transform P into P’ is via a linear motion, whose
parametrization is tP’ 4+ (1 — t)P’ as time t ranges from 0 to 1. As we will see, doing so gives an
upper bound of dist(P, P') < d( dil). The factor-of-two improvement in Theorem 1 comes from first
moving P’ into a suitable position.

The preparatory motion of P’ consists of two steps. First, using the fact that P’ is in general
position, we perturb points of P’ slightly. The precise conditions on the perturbation will be specified
below (the determinants appearing in Lemma 7 must not vanish). The second step, which consists
of scaling the points of P’, we describe now.

Let diag(\1, ..., \q) denote the diagonal d-by-d matrix with entries Ay, ..., Ag.

Lemma 6. Suppose that the numbers Aq,...,A\q are nonzero, and the count of negative numbers
among these is even. Let D = diag(\1,...,\q). Then dist(P, DP) = 0 for every tuple P € (R%)".

Proof. First suppose that all A’s are positive. In this case, by continuously changing entries of the
diagonal matrix we can turn the identity matrix into D. The resulting motion ¢t — D;P evidently
preserves the order type.

Consider next the case (A1,...,Ag) = (=1,—1,+1,...,41) (all but the first two entries are +1).
In this case, let Dy be the rotation around the origin in the xy-plane by the angle nt. Then ¢t — D, P
is the motion from P to P’. We can similarly treat the case where two of the \’s are equal to —1,
and the rest are +1.

The general case follows by combining these two cases. We first make all the signs positive, two

at a time. Then we scale the magnitudes of the \’s. O
Let A1,...,Aq be a sequence of non-zero real numbers satisfying the assumption of Lemma 6, i.e.,
the number of negative elements is even. We postpone the actual choice. Set D ) diag(A1, ..., ),

and let P” = DP’. In view of Lemma 6, dist(P, P’) = dist(P, P").

Consider what happens during the linear motion from P to P”. Since multiplication by a positive
constant does not change orientation, for 0 < ¢ < 1, the orientations of (d+ 1)-tuples in (1—¢)P+tP"
is the same as in P + ﬁP” . In particular, if we consider particular d 4+ 1 points, say, p1,...,Pd+1
as P evolves to P, then the number of orientation changes of these points is equal to the number of



zeros of the polynomial

1 1 - 1
pi1i+apiy p2itaphy  Paria tTPG
f(z) < det |Pr2+aply p22+aphs 0 Pari2t TP
‘ 1 ‘ "o ‘ 1
| P1,d + ITP1qd P2d + TIP3 4 Dd+1,d + TPd11,d]

on the interval (0,4+00). Note that the coefficients of the polynomial depend on A = (A1,...,\g).
Substituting P” = DP’, we can write the polynomial as

1 1 e 1
P11+ x>\1p'171 P21 + $>\1p,2,1 “tt Pd+1,1 T $)\1p25+171

F(z) =det |Pr2+xhophy pa2+TXaphy o Pariz+TAePli,]| . (1)
| P1,d + ZE)\dp/Ld D2,d + :E)\dplg,d “ Pd+ld T x)\dpfiﬂ,d_

Since the polynomial f is of degree d, it has at most d roots. This means that the number
of orientation changes is at most d. Since this holds for any d + 1 points of P, it follows that
dist(P, P') < d( ;).

Case d is even: This case is particularly easy. Indeed, in this case both A = (1,1,...,1) and
A= (=1,—1,...,—1) are the valid choices for the scaling factors. The two resulting polynomials,
which we call f1) and f® are related by f()(z) = f)(—z). Hence, the total number of roots of
fM and £® on the interval (0,+00) is equal to the number of roots of either of them on R\ {0},
which is at most d. Since this holds for all choices of d + 1 points, it follows that 2dist(P, P’) =
dist(P, P") + dist(P, —P') < d(,,), proving Theorem 1 in this case.

Case d is odd: Pick a sequence of real numbers Aq, ..., Ay whose absolute values rapidly decay, i.e.
1> |A| > -+ > |A\g]. We shall choose the signs of these real numbers later.

Because the scaling factors A; rapidly decay, it is easy to estimate the coefficients of f.

Lemma 7. Let the coefficients of f be f(x) = Z;l:o cjz?. Then
¢j = A1 Ajri(1 4+ O(Xja/Ag)),

where _ _
1 1 1
/ / /
P11 P2a1 o Pat1n
/ / /
Pi2 P22 " Pdyi2
def
rj = det ’ ’ ’
Prj  P2j Payiy
Pij+1 DP2j5+1 " Pd41,j+1
| P1d pb2.a - Pd+1,d |



Proof. This formula for r; follows by expanding the determinant in (1) and keeping the largest
terms. H

By perturbing P’ slightly we can ensure that none of the determinants defining the constants

rj =11, Pay1, Py - - -5 Plyq) vanish. Fix such a perturbation

Let I; be the real interval between — T”?; =1, W an

. If the X’s grow sufficiently quickly,
then the polynomial f has a root in I; for each j € [d]. Indeed the value of f on I; is dominated by
the terms Ay - - )\j_l)\jrja:j and Aq--- )\j_lrj_lxj_l, and sum of these two terms changes sign in this
interval. Since f has at most d roots and the d intervals are disjoint, these are all the roots of f.

Importantly, this implies that the number of orientation changes in the linear motion of points
P1s---,Pd+1 is equal to the number of negative elements among {\;r;j_17; : j € [d]}.

Pick the sign vector of Aj,..., g uniformly at random among {—1,+1} vectors of length d with
even number of —1’s. Since d > 1, the sign of any individual \; is uniform, and so the expected number
of orientation changes is d/2. Since this holds for any d + 1 points, the bound dist(P, P’) < ( d +1)
follows.

Proof of Theorem 2

To prove Theorem 2 we use a linear motion as in the proof of Theorem 1, combined with a suitable
pre-processing that guarantees certain tuples do not change order type during the linear motion. We
first require a lemma.

Lemma 8. Let Q = (q1,...,qa+1) € R be a tuple consisting of the vertices of a reqular simplex
inscribed in the unit sphere, and let p € SO(d) be a rotation. If the orientation of the simplex does
not remain constant during the linear motion from @ to p(Q), then —p has a fized point other than
the origin.

Proof. Lett € (0,1). Then tQ+ (1—1t)p(Q) is affinely dependent if and only if there exist aq, ..., agi1

not all zero so that Zd+11 a; =0, and

d+1

0= Z @ (tQi +(1- t)P(Qz’))-

i=1

Let v = zd+1 a;q;, and note that the latter equality can be expressed as tv = (¢t — 1)p(v). The
condition Z;Hll a; = 0 implies that not all a’s are equal, and so v # 0. Since p preserves norms and

tv = (t — 1)p(v), we see that t = 5, and hence v = —p(v). O

27

We note that the above lemma is interesting only in even dimensions. Indeed, any rotation in
odd-dimensional space fixes a line through the origin by the hairy ball theorem, and so the conclusion
of the lemma is trivial when d is odd. On the other hand, when d is even we can find p € SO(d)
with neither p nor —p having a nonzero fixed point. One choice is the rotation induced by a cyclic
permutation of the vertices of a simplex, but in fact a generic choice suffices: the set of rotations with
p or —p having a nonzero fixed point is a closed subset of SO(d) with positive codimension.



Main proof. Using the above observations, we now prove Theorem 2. First, perform a motion so
that the first d 4+ 1 points of P are vertices of a regular simplex inscribed in the unit sphere, noting
that this can be accomplished at no cost by rotations and linear scalings that move one point at a
time to an appropriate vertex on the sphere. Let ) denote these vertices, and choose a rotation p
so that both p and —p have no nonzero fixed point. As P’ has the same order type as P, we may
arrange that p(Q) comprises the first d + 1 points of P’.

Lemma 8 now guarantees that during the linear motions from P to P’ and from P to — P’ the first
d+ 1 points never change orientation, and the same will be true of any sufficiently small perturbation
of P and P’. Hence we may proceed similarly to the proof of Theorem 1, counting the zeroes of
polynomials associated to all tuples except for the one consisting of the first d+ 1 points. In this way,
we find that 2dist(P, P") = dist(P, P') 4 dist(P,—P’) < d ((dil) - 1), which proves the theorem.

Proof of Theorem 3

Suppose P = (p1,...,pd+1) and P' = (p},...,p);) are two (d + 1)-tuples of points in general position
with the same orientation. Call a rotation p € SO(d) good if for the linear motion from P to pP’ the
polynomial f from (1) has at most d/2 zeros on (0,00). Since d =2 (mod 4), the number d/2 is odd,
which implies that, for good p, the number of zeros of f on (0,00) is at most (d — 1)/2 since it must
be even.

Let G(P,P') £ {p € SO(d) : pis good}. Endow SO(d) with the natural probability measure,
and denote by m(P, P') the measure of G(P, P'). Recall that a function f: X — (—o0, 0] is lower
semicontinuous if the preimage of every interval of the form («, 00| is open.

Lemma 9. Let m(P, P') be as above. Then m(P,P’") > 1/2, and the function (P, P") — m(P, P’) is
lower semicontinuous.

Proof. Since the roots of a polynomial depend continuously on its coefficients and the interval (0, co)
is open, the set
G {(P,P,p): pc G(P,P)}

is an open subset of (R4)41 x (R1)4H1 x SO(d). Consequently, the set G(P, P) & SO(d) \ G(P, P")
is closed.
From the proof of Theorem 1 we know that p € G(P,P’) or —p € G(P, P'), for all p; hence

G(P, P’) is disjoint from —G(P, P’). Since SO(d) is connected, G(P, P") U (—G(P, P")) is a closed
proper subset of SO(d) and must have measure strictly less than 1, implying that m(P, P") > 1/2.

The lower semicontinuity of (P, P’) — m(P, P’) follows from the fact that G is open and the spaces
SO(d) and (R x (R?)4*! are locally compact Hausdorff spaces, see [1, Proposition 7.6.5]. O

Let A be the simplex spanned by the tuple P = (p1,...,p411) € (R4, We define the aspect
ratio of the simplex to be a(P) & diam(A)?/vol(A). The aspect ratio is invariant under rigid motions
and scaling.

Lemma 10. For every B, there is a § > 0 such that m(P,P") > 1/2 + § whenever both a(P) and
a(P’) are bounded above by B.



Proof. From the formula (1) for f(x) it is clear that G(P, P") (and hence m(P, P')) is invariant under
scaling of P’. By symmetry, it follows that it is also invariant under scaling of P. So, it suffices
to consider simplices contained in, say, the closed unit ball B(0,1). The set of simplices inside the
ball that have aspect ratio at most B is compact. Since a lower semicontinuous function attains its
infimum on a compact set, and the function m strictly exceeds 1/2, the result follows. O

Lemma 11. If a tuple P € (RY)" is a-non-elongated, and we pick d+ 1 points qi,. .., qqe1 uniformly
and independently at random from P, then Prla(qi,...,q4+1) > B] — 0 as B — oo.

Proof. Without loss of generality the minimum distance between points of P is 1. By the usual
packing argument, this implies that a ball of radius {/n/B contains O(n/B) points of P. Therefore,
Pridiam(P) < {/n/B] < Pr[|g1 — q2| < {/n/B] — 0 as B — 0.

Sample the points ¢1, ..., gq first, and look at the hyperplane H that they span. Since all pairwise
distance are at most «/n, the volume of the simplex conv(q,...,qqs1) is less than n/B only if the
point gg41 lies in a slab of width O(a? 'n/B) around H. The probability of this event is at most
O(an/8%B), and in particular tends to zero as well. So, with high probability both diam(P) < {/n/B
and vol(conv(qy, ..., qas1)) > n/B; in particular, a(P) < B2. O

Theorem 3 now easily follows. Select B sufficiently large so that the probability in Lemma 11 is
at most 1/4. Let X be the set of all (d 4+ 1)-tuples whose aspect ratio both in P and P’ is at most
B. We have |X| > %(dil)‘ Let ¢ be the constant from Lemma 10 for this value of B. Pick p be a
uniform random element of SO(d), and consider the linear motion from P to pP’. By Lemma 10, the
expected cost of this motion on a tuple in X is at most % — 0. Therefore the expected total cost of
this motion is at most

g((dil)—|X|>+<§—5> Xl = g(d_fl)—ﬂX' - (g_%;) <dil>'

Acknowledgment. The proof of Lemma 9 would not be as short without the aid of Gautam Iyer
who directed us to [1].
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