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Abstract

Any n-tuple of points in the plane can be moved to any other n-tuple by a continuous motion

with at most
(
n

3

)
intermediate changes of the order type. Even for tuples with the same order

type, the cubic bound is sharp: there exist pairs of n-tuples of the same order type requiring c
(
n

3

)

intermediate changes.

Order types. A collection of d+1 points p0, . . . , pd in R
d can be oriented in one of the three ways

according to the sign of det
[

1 ··· 1
p0 ··· pd

]
. We call this sign orientation of (p1, . . . , pd+1) and denote it

by orient(p0, . . . , pd). In the plane, the three possible orientations correspond to the points lying in

clockwise, counterclockwise and collinear positions.

The totality of all
(

n
d+1

)
orientations of points in a tuple P = (p1, . . . , pn) of points in R

d determine

the order type, which we denote by OTP . For example, the two tuples of

1

2

3
4

Two tuples of
the same order type

1

2

3

4

four points in the figure on the right have the same order type. It is tempting

to regard tuples with the same order type as similar. In particular, it was

conjectured by Ringel [4] that every two tuples of the same order type can be

transformed into one another via a continuous motion, without breaking the

order type. Surprisingly, White [7] disproved the conjecture by constructing

an order type with disconnected realization space. An even more surprising result was proved by

Mnëv [2], which became known as the Mnëv’s universality theorem. It implies existence of order

types whose realization spaces are homotopy equivalent to any prescribed simplicial complex, for

instance. The proof of Mnëv’s theorem has since been simplified, see [3] for example.

Distance. An n-tuple P is a realization of the order type T * {21, 0,+1}(
[n]
d+1) if OTP = T . A

tuple of points is in general position if no d+ 1 its points lie on a common hyperplane. Similarly, we

say that an order type T is in general position if T * {21,+1}(
[n]
d+1).

In this paper, we seek ways to continuously transform one tuple in general position into another

with as few changes of the order type as possible. Formally, a continuous function m : [0, 1] ³ (Rd)n

is a motion between tuples P and P 2 if m(0) = P , m(1) = P 2, there are at most finite number of
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times t for which m(t) is not in general position, and at each of those times just there a unique set of

d + 1 points lying on a common hyperplane. The number of such times is called the cost of m. Let

dist(P,P 2) be the cost of the least expensive motion from P to P 2. We call tuples P and P 2 isotopic

if dist(P,P 2) = 0.

Our results. It is clear that dist(P,P 2) is bounded from below by the Hamming distance be-

tween OTP and OTP 2 . In particular, if P 2 is a mirror image of P , then OTP = 2OTP 2 and so

dist(P,P 2) g
(

n
d+1

)
in this case. Our first result shows that, at least in the dimension 2, this is the

largest distance between any two tuples.

Theorem 1. Suppose d g 2. Then for any two n-tuples in general position P,P 2 * (Rd)n we have

dist(P,P 2) f d

2

(
n

d+ 1

)
.

We do not know if the fraction d
2 can be improved. In particular, we do not know if it can be

replaced by an absolute constant that is independent of d.

Though Ringel’s conjecture is false, the following pair of results shows that its spirit is true — it

is easier to transform one tuple into another if they have the same order type.

Theorem 2. If tuples P,P 2 * (Rd)n are in general position with the same order type and d is even,

then

dist(P,P 2) f d

2

(
n

d+ 1

)
2 d

2
.

We say that a tuple P is α-non-elongated if the ratio between the largest and smallest distances

in P is at most α d
:
n.

Theorem 3. Suppose d c 2 (mod 4). If tuples P,P 2 * (Rd)n are both α-non-elongated and in general

position with the same order type, then

dist(P,P 2) f
(
d

2
2 β

)(
n

d+ 1

)
,

for some positive constant β = β(α) > 0.

On the other hand, there are tuples of the same order type that are hard to turn into one another.

Theorem 4. There are arbitrarily large n-tuples P,P 2 in R
2 of a same order type such that

dist(P,P 2) g 1024

(
n

3

)
.

Proof of Theorem 4

The requisite example is obtained from a counterexample to Ringel’s conjecture and the following

proposition.

2



Proposition 5. Let Q and Q2 be r-tuples of the same order type with dist(Q,Q2) > 0. Then, for all

sufficiently large n, there are n-tuples P and P 2 that that satisfy

dist(P,P 2) g
(
2r23 + o(1)

)(n
3

)
.

The constant appearing in the statement of Theorem 4 can be obtained both from the 13-point

example of Tsukamoto [6] and from the earlier 14-point example of Suvorov [5]. The rest of this

section is devoted to the proof of Proposition 5.

We shall replace each point of Q and of Q2 by a cloud of m
def
= n/r points. The clouds will be

sufficiently small so that whenever we select a point from each cloud, the obtained tuples Q̃ and Q̃2

are isotopic to Q and Q2 respectively. It implies that at least one (d+1)-tuple changes orientation in

any motion from Q̃ to Q̃2. Double-counting such (d + 1)-tuples according to the pair (Q̃, Q̃2) that it

belongs would then yield

dist(P,P 2) g 2md+1 = 2r23

(
n

3

)
+O(n2).

The factor of 2 accounts for the fact that every (d+1)-tuple must change orientation an even number

of times.

The main difficulty is in selecting the clouds so that the resulting tuples P and P 2 still have the

same order type.

Making clouds. A tuple Q̃ = (q̃1, . . . , q̃r) is an ε-perturbation of Q = (q1, . . . , qr) if |q̃i 2 qi| f ε.

Pick ε > 0 sufficiently small so that every ε-perturbation ofQ is isotopic toQ, and every ε-perturbation

of Q2 is isotopic to Q2.

Let i * [r] be arbitrary. Pick a unit vector ai that is not parallel to any vector of the form qj 2 qi
with j 6= i. Let Li denote the directed line through qi in the direction ai. The Li partitions the rest

of Q into two sets {qj}j*A and {qj}j*B, the left and right sides of the line.

Because Q and Q2 have the same order type, the circular order of points around qi and q2i is the

same, and so we can find a unit vector a2i that such that the line L2

i through q2i in the direction a2i
induces the same partition on Q2, namely {q2j}j*A and {q2j}j*B.

Replace qi by the cloud Qi consisting of points qi,1, . . . , qi,m where qi,k
def
= qi + kδai + k2δ2bi.

Similarly replace q2i by the points qi,k
def
= q2i + kδa2i + k2δ2b2i for k * [m]. The number δ > 0 is chosen

sufficiently small to satisfy four conditions.

(C1) |qi,k 2 qi| f ε holds for every k,

(C12) |q2i,k 2 q2i| f ε holds for every k,

(C2) if qi,k and qi,k2 are two points of the same cloud with k < k2 and qj,3 is a point in another cloud,

then qj,3 is on the same side of the line qi,kqi,k2 as the side of qj relative to the line Li,

(C22) Same as (C2) but with the points of Qi and the line Li replaced by Q2

i and the line L2

i.
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The requisite n-tuples are then P
def
= (qi,k)i*[r],k*[m] and P 2 def

= (q2i,k)i*[r],k*[m]. Indeed, the lower

bound on dist(P,P 2) follows from the fact that the cloud points are ε-perturbations of Q and Q2

respectively, and the orientations of triples being the same is the consequence of the conditions (C2)

and (C22).

Proof of Theorem 1

We employ the usual arithmetic on tuples. For example, if P = (p1, . . . , pn) is a tuple of points and

λ * R, then λP
def
= (λp1, . . . , λpn). Similarly, if M is a linear transformation, then MP denotes the

tuples obtained by applying M to each point in P .

Given two tuples P,P 2, a natural way to transform P into P 2 is via a linear motion, whose

parametrization is tP 2 + (1 2 t)P 2 as time t ranges from 0 to 1. As we will see, doing so gives an

upper bound of dist(P,P 2) f d
(

n
d+1

)
. The factor-of-two improvement in Theorem 1 comes from first

moving P 2 into a suitable position.

The preparatory motion of P 2 consists of two steps. First, using the fact that P 2 is in general

position, we perturb points of P 2 slightly. The precise conditions on the perturbation will be specified

below (the determinants appearing in Lemma 7 must not vanish). The second step, which consists

of scaling the points of P 2, we describe now.

Let diag(λ1, . . . , λd) denote the diagonal d-by-d matrix with entries λ1, . . . , λd.

Lemma 6. Suppose that the numbers λ1, . . . , λd are nonzero, and the count of negative numbers

among these is even. Let D = diag(λ1, . . . , λd). Then dist(P,DP ) = 0 for every tuple P * (Rd)n.

Proof. First suppose that all λ’s are positive. In this case, by continuously changing entries of the

diagonal matrix we can turn the identity matrix into D. The resulting motion t 7³ DtP evidently

preserves the order type.

Consider next the case (λ1, . . . , λd) = (21,21,+1, . . . ,+1) (all but the first two entries are +1).

In this case, let Dt be the rotation around the origin in the xy-plane by the angle πt. Then t 7³ DtP

is the motion from P to P 2. We can similarly treat the case where two of the λ’s are equal to 21,

and the rest are +1.

The general case follows by combining these two cases. We first make all the signs positive, two

at a time. Then we scale the magnitudes of the λ’s.

Let λ1, . . . , λd be a sequence of non-zero real numbers satisfying the assumption of Lemma 6, i.e.,

the number of negative elements is even. We postpone the actual choice. Set D
def
= diag(λ1, . . . , λd),

and let P 22 = DP 2. In view of Lemma 6, dist(P,P 2) = dist(P,P 22).

Consider what happens during the linear motion from P to P 22. Since multiplication by a positive

constant does not change orientation, for 0 f t < 1, the orientations of (d+1)-tuples in (12 t)P + tP 22

is the same as in P + t
12t

P 22. In particular, if we consider particular d + 1 points, say, p1, . . . , pd+1

as P evolves to P 2, then the number of orientation changes of these points is equal to the number of
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zeros of the polynomial

f(x)
def
= det

þ
ÿÿÿÿÿÿø

1 1 · · · 1

p1,1 + xp221,1 p2,1 + xp222,1 · · · pd+1,1 + xp22d+1,1

p1,2 + xp221,2 p2,2 + xp222,2 · · · pd+1,2 + xp22d+1,2
...

...
. . .

...

p1,d + xp221,d p2,d + xp222,d · · · pd+1,d + xp22d+1,d

ù
úúúúúúû

on the interval (0,+>). Note that the coefficients of the polynomial depend on λ = (λ1, . . . , λd).

Substituting P 22 = DP 2, we can write the polynomial as

f(x) = det

þ
ÿÿÿÿÿÿø

1 1 · · · 1

p1,1 + xλ1p
2

1,1 p2,1 + xλ1p
2

2,1 · · · pd+1,1 + xλ1p
2

d+1,1

p1,2 + xλ2p
2

1,2 p2,2 + xλ2p
2

2,2 · · · pd+1,2 + xλ2p
2

d+1,2
...

...
. . .

...

p1,d + xλdp
2

1,d p2,d + xλdp
2

2,d · · · pd+1,d + xλdp
2

d+1,d

ù
úúúúúúû
. (1)

Since the polynomial f is of degree d, it has at most d roots. This means that the number

of orientation changes is at most d. Since this holds for any d + 1 points of P , it follows that

dist(P,P 2) f d
(

n
d+1

)
.

Case d is even: This case is particularly easy. Indeed, in this case both λ = (1, 1, . . . , 1) and

λ = (21,21, . . . ,21) are the valid choices for the scaling factors. The two resulting polynomials,

which we call f (1) and f (2), are related by f (1)(x) = f (2)(2x). Hence, the total number of roots of

f (1) and f (2) on the interval (0,+>) is equal to the number of roots of either of them on R \ {0},
which is at most d. Since this holds for all choices of d + 1 points, it follows that 2 dist(P,P 2) =

dist(P,P 2) + dist(P,2P 2) f d
(

n
d+1

)
, proving Theorem 1 in this case.

Case d is odd: Pick a sequence of real numbers λ1, . . . , λd whose absolute values rapidly decay, i.e.

1 k |λ1| k · · · k |λd|. We shall choose the signs of these real numbers later.

Because the scaling factors λi rapidly decay, it is easy to estimate the coefficients of f .

Lemma 7. Let the coefficients of f be f(x) =
∑d

j=0 cjx
j. Then

cj = λ1 · · ·λjrj(1 +O(λj+1/λj)),

where

rj
def
= det

þ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿø

1 1 · · · 1

p21,1 p22,1 · · · p2d+1,1

p21,2 p22,2 · · · p2d+1,2
...

...
. . .

...

p21,j p22,j · · · p2d+1,j

p1,j+1 p2,j+1 · · · pd+1,j+1
...

...
. . .

...

p1,d p2,d · · · pd+1,d

ù
úúúúúúúúúúúúúúû

.
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Proof. This formula for rj follows by expanding the determinant in (1) and keeping the largest

terms.

By perturbing P 2 slightly we can ensure that none of the determinants defining the constants

rj = rj(p1, . . . , pd+1, p
2

1, . . . , p
2

d+1) vanish. Fix such a perturbation.

Let Ij be the real interval between 2 rj21

rj
· 1
2»j

and 2 rj21

rj
· 2
»j
. If the λ’s grow sufficiently quickly,

then the polynomial f has a root in Ij for each j * [d]. Indeed, the value of f on Ij is dominated by

the terms λ1 · · ·λj21λjrjx
j and λ1 · · ·λj21rj21x

j21, and sum of these two terms changes sign in this

interval. Since f has at most d roots and the d intervals are disjoint, these are all the roots of f .

Importantly, this implies that the number of orientation changes in the linear motion of points

p1, . . . , pd+1 is equal to the number of negative elements among {λjrj21rj : j * [d]}.
Pick the sign vector of λ1, . . . , λd uniformly at random among {21,+1} vectors of length d with

even number of 21’s. Since d > 1, the sign of any individual λi is uniform, and so the expected number

of orientation changes is d/2. Since this holds for any d + 1 points, the bound dist(P,P 2) f d
2

(
n

d+1

)

follows.

Proof of Theorem 2

To prove Theorem 2 we use a linear motion as in the proof of Theorem 1, combined with a suitable

pre-processing that guarantees certain tuples do not change order type during the linear motion. We

first require a lemma.

Lemma 8. Let Q = (q1, . . . , qd+1) * (Rd)d+1 be a tuple consisting of the vertices of a regular simplex

inscribed in the unit sphere, and let ρ * SO(d) be a rotation. If the orientation of the simplex does

not remain constant during the linear motion from Q to ρ(Q), then 2ρ has a fixed point other than

the origin.

Proof. Let t * (0, 1). Then tQ+(12t)ρ(Q) is affinely dependent if and only if there exist α1, . . . , αd+1

not all zero so that
∑d+1

i=1 αi = 0, and

0 =
d+1∑

i=1

αi

(
tqi + (12 t)ρ(qi)

)
.

Let v =
∑d+1

i=1 αiqi, and note that the latter equality can be expressed as tv = (t 2 1)ρ(v). The

condition
∑d+1

i=1 αi = 0 implies that not all α’s are equal, and so v 6= 0. Since ρ preserves norms and

tv = (t2 1)ρ(v), we see that t = 1
2 , and hence v = 2ρ(v).

We note that the above lemma is interesting only in even dimensions. Indeed, any rotation in

odd-dimensional space fixes a line through the origin by the hairy ball theorem, and so the conclusion

of the lemma is trivial when d is odd. On the other hand, when d is even we can find ρ * SO(d)

with neither ρ nor 2ρ having a nonzero fixed point. One choice is the rotation induced by a cyclic

permutation of the vertices of a simplex, but in fact a generic choice suffices: the set of rotations with

ρ or 2ρ having a nonzero fixed point is a closed subset of SO(d) with positive codimension.
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Main proof. Using the above observations, we now prove Theorem 2. First, perform a motion so

that the first d + 1 points of P are vertices of a regular simplex inscribed in the unit sphere, noting

that this can be accomplished at no cost by rotations and linear scalings that move one point at a

time to an appropriate vertex on the sphere. Let Q denote these vertices, and choose a rotation ρ

so that both ρ and 2ρ have no nonzero fixed point. As P 2 has the same order type as P , we may

arrange that ρ(Q) comprises the first d+ 1 points of P 2.

Lemma 8 now guarantees that during the linear motions from P to P 2 and from P to 2P 2 the first

d+1 points never change orientation, and the same will be true of any sufficiently small perturbation

of P and P 2. Hence we may proceed similarly to the proof of Theorem 1, counting the zeroes of

polynomials associated to all tuples except for the one consisting of the first d+1 points. In this way,

we find that 2 dist(P,P 2) = dist(P,P 2) + dist(P,2P 2) f d
((

n
d+1

)
2 1

)
, which proves the theorem.

Proof of Theorem 3

Suppose P = (p1, . . . , pd+1) and P 2 = (p21, . . . , p
2

d) are two (d+ 1)-tuples of points in general position

with the same orientation. Call a rotation ρ * SO(d) good if for the linear motion from P to ρP 2 the

polynomial f from (1) has at most d/2 zeros on (0,>). Since d c 2 (mod 4), the number d/2 is odd,

which implies that, for good ρ, the number of zeros of f on (0,>) is at most (d2 1)/2 since it must

be even.

Let G(P,P 2)
def
= {ρ * SO(d) : ρ is good}. Endow SO(d) with the natural probability measure,

and denote by m(P,P 2) the measure of G(P,P 2). Recall that a function f : X ³ (2>,>] is lower

semicontinuous if the preimage of every interval of the form (α,>] is open.

Lemma 9. Let m(P,P 2) be as above. Then m(P,P 2) > 1/2, and the function (P,P 2) 7³ m(P,P 2) is

lower semicontinuous.

Proof. Since the roots of a polynomial depend continuously on its coefficients and the interval (0,>)

is open, the set

G def
= {(P,P 2, ρ) : ρ * G(P,P 2)}

is an open subset of (Rd)d+1 × (Rd)d+1 × SO(d). Consequently, the set G(P,P 2)
def
= SO(d) \G(P,P 2)

is closed.

From the proof of Theorem 1 we know that ρ * G(P,P 2) or 2ρ * G(P,P 2), for all ρ; hence

G(P,P 2) is disjoint from 2G(P,P 2). Since SO(d) is connected, G(P,P 2) * (2G(P,P 2)) is a closed

proper subset of SO(d) and must have measure strictly less than 1, implying that m(P,P 2) > 1/2.

The lower semicontinuity of (P,P 2) 7³ m(P,P 2) follows from the fact that G is open and the spaces

SO(d) and (Rd)d+1 × (Rd)d+1 are locally compact Hausdorff spaces, see [1, Proposition 7.6.5].

Let ∆ be the simplex spanned by the tuple P = (p1, . . . , pd+1) * (Rd)d+1. We define the aspect

ratio of the simplex to be a(P )
def
= diam(∆)d/ vol(∆). The aspect ratio is invariant under rigid motions

and scaling.

Lemma 10. For every B, there is a δ > 0 such that m(P,P 2) > 1/2 + δ whenever both a(P ) and

a(P 2) are bounded above by B.
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Proof. From the formula (1) for f(x) it is clear that G(P,P 2) (and hence m(P,P 2)) is invariant under

scaling of P 2. By symmetry, it follows that it is also invariant under scaling of P . So, it suffices

to consider simplices contained in, say, the closed unit ball B(0, 1). The set of simplices inside the

ball that have aspect ratio at most B is compact. Since a lower semicontinuous function attains its

infimum on a compact set, and the function m strictly exceeds 1/2, the result follows.

Lemma 11. If a tuple P * (Rd)n is α-non-elongated, and we pick d+1 points q1, . . . , qd+1 uniformly

and independently at random from P , then Pr[a(q1, . . . , qd+1) > B] ³ 0 as B ³ >.

Proof. Without loss of generality the minimum distance between points of P is 1. By the usual

packing argument, this implies that a ball of radius d
√
n/B contains O(n/B) points of P . Therefore,

Pr[diam(P ) f d
√

n/B] f Pr[|q1 2 q2| f d
√

n/B] ³ 0 as B ³ >.

Sample the points q1, . . . , qd first, and look at the hyperplane H that they span. Since all pairwise

distance are at most α d
:
n, the volume of the simplex conv(q1, . . . , qd+1) is less than n/B only if the

point qd+1 lies in a slab of width O(αd21n/B) around H. The probability of this event is at most

O(αdn/8dB), and in particular tends to zero as well. So, with high probability both diam(P ) f d
√
n/B

and vol(conv(q1, . . . , qd+1)) g n/B; in particular, a(P ) f B2.

Theorem 3 now easily follows. Select B sufficiently large so that the probability in Lemma 11 is

at most 1/4. Let X be the set of all (d + 1)-tuples whose aspect ratio both in P and P 2 is at most

B. We have |X| g 1
2

(
n

d+1

)
. Let δ be the constant from Lemma 10 for this value of B. Pick ρ be a

uniform random element of SO(d), and consider the linear motion from P to ρP 2. By Lemma 10, the

expected cost of this motion on a tuple in X is at most d
2 2 δ. Therefore the expected total cost of

this motion is at most

d

2

((
n

d+ 1

)
2 |X|

)
+

(
d

2
2 δ

)
|X| =

d

2

(
n

d+ 1

)
2 δ|X| =

(
d

2
2 1

2
δ

)(
n

d+ 1

)
.

Acknowledgment. The proof of Lemma 9 would not be as short without the aid of Gautam Iyer

who directed us to [1].
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