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ABSTRACT
What-if (provisioning for an update to a database) and how-to (how
to modify the database to achieve a goal) analyses provide insights
to users who wish to examine hypothetical scenarios without mak-
ing actual changes to a database and thereby help plan strategies in
their� elds. Typically, such analyses are done by testing the e�ect
of an update in the existing database on a speci�c view created by
a query of interest. In real-world scenarios, however, an update to a
particular part of the database may a�ect tuples and attributes in a
completely di�erent part due to implicit semantic dependencies. To
allow for hypothetical reasoning while accommodating such depen-
dencies, we develop H���R, a framework that supports what-if and
how-to queries accounting for probabilistic dependencies among
attributes captured by a probabilistic causal model. We extend the
SQL syntax to include the necessary operators for expressing these
hypothetical queries, de�ne their semantics, devise e�cient algo-
rithms and optimizations to compute their results using concepts
from causality and probabilistic databases, and evaluate the e�ec-
tiveness of our approach experimentally.

CCS CONCEPTS
• Theory of computation ! Incomplete, inconsistent, and
uncertain databases; • Computing methodologies! Causal
reasoning and diagnostics.
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1 INTRODUCTION
Hypothetical reasoning is a crucial element in decision-making and
risk assessment in business [24, 47, 53], healthcare [39, 40], real
estate [19], etc. Such analysis is split by previous work into two
categories: what-if analysis and how-to analysis. What-if analysis
[9, 29, 31] is usually meant for testing assumptions and projections
on a particular outcome by allowing users to pose queries about
hypothetical updates in the database and examining their e�ect
on a query result. Users detail a speci�c hypothetical scenario
whose e�ect they wish to examine on their view of choice and the
system computes the view as if the update has been performed in
the database. On the other hand, how-to analysis [33, 35] has the
reverse goal; users specify a target e�ect that they want to achieve
and the system computes the appropriate hypothetical updates that
have to be performed in the database to ful�ll the goal.

E������1. Consider a simpli�ed version of the Amazon prod-
uct database [28] shown in Figure 1 describing product details and
product reviews. Each tuple has a unique tuple identi�er next to it
for clarity. Now, consider an analyst who wants to examine the e�ect
of laptop prices on their Amazon ratings. She may ask “what would
be the e�ect of increasing the price of Asus laptops by 10% on their
average ratings?”. This what-if query asks about the e�ect of the hy-
pothetical update on the database (increasing the Price) on a speci�c
view (average Rating). She may also be interested in “what fraction
of Asus laptops would have rating more than 4.0 if their price drops
by $100?” or “What would be the average sentiment in the reviews for
cameras if their color was changed to red?". A di�erent analyst may
also be interested in maximizing the average rating of laptops reviews
by changing their price. She may ask “how to maximize the average
rating of laptops and cameras by updating the price of laptops so
that it will not drop below 500 and increase above 800, and will be at
most 100 away from it original value?” or “How to increase average
sentiment in the reviews for cameras by changing their color?" Both
queries are forms of hypothetical reasoning that can assist analysts
and decision-makers in gaining insights about their products and
their marketing strategies.

Multiple works in the database community have studied hypo-
thetical reasoning. A substantial part of these [7, 16–18, 33, 35] has
focused on provenance updates and view manipulation as a main
component for answering such queries. Therein, hypothetical up-
dates are captured by changing values in the provenance and, thus,
updating the view generated by the query of interest. However,
in many real-world situations, due to complex probabilistic causal
dependencies between attributes of tuples that are relationally con-
nected, updating an attribute of a tuple has collateral e�ects on
other attributes of the same tuple, as well as attributes of other
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PID Category Price Brand Color Quality
?1 1 Laptop 999 Vaio Silver 0.7
?2 2 Laptop 529 Asus Black 0.65
?3 3 Laptop 599 HP Silver 0.5
?4 4 DSLR Camera 549 Canon Black 0.75
?5 5 Sci Fi eBooks 15.99 Fantasy Press Blue 0.4

(a) Product
PID ReviewID Sentiment Rating

A1 1 1 -0.95 2
A2 2 2 0.7 4
A3 2 3 -0.2 1
A4 3 3 0.23 3
A5 3 5 0.95 5
A6 4 5 0.7 4

(b) Review
Figure 1: Amazon product database

Quality

Category

Brand

Color Price

RatingSentiment Price

Quality

Figure 2: A graph showing the dependencies between the at-
tributes in the database in Figure 1. Blue nodes are attributes
of the same tuple and the red node is an attribute of a dif-
ferent tuple. A dashed edge denotes a dependency between
attributes of di�erent tuples

tuples. Such dependencies cannot be expressed and captured by
provenance. We illustrate with an example.

E������2. Reconsider Example 1. The provenance of the average
rating of Asus laptops will not change if the price of the laptops is
augmented. Similarly, for the how-to query, the provenance of the
average rating of laptops and cameras will not be a�ected by the
change in price. Thus, previous work in databases fails to account
for the collateral e�ect that increasing the price of a laptop may
have on the user’s ratings. Note that due to our lack of knowledge
about the underlying process that leads to the user’s ratings, we may
only reason about the probabilistic e�ect of increasing the price on
user’s ratings. Figure 2 gives an intuitive description of potential
dependencies between the attributes of the database in Figure 1. For
example, changing the Price of a laptop may a�ect its Rating (denoted
as the edge from the blue Price node to the blue Rating node in Figure
2). Furthermore, increasing the Price of Asus laptops may a�ect the
Rating of Vaio laptops and vice versa (denoted as the edge from the red
Price node to the blue Rating node in Figure 2). In general, a directed
edge stands for an e�ect of the outbound node on the inbound node,
e.g., Price a�ects Rating. Accounting for such dependencies is crucial
for sound hypothetical reasoning.

In this paper, we propose a novel probabilistic framework for hypo-
thetical reasoning in relational databases that accounts for collateral
e�ects of hypothetical updates on the entire data. Our system, H���R
(Hypothetical Reasoning), allows users to ask complex relational
what-if and how-to queries using a SQL-like declarative language.
The underlying inference mechanism, then, internally accounts for
the probabilistic causal e�ect of hypothetical updates and computes
probabilistic answers to such hypothetical queries. Our framework
brings together techniques from probabilistic databases [6, 15], and
recent advancements in inference from relational data [46, 52, 54],
to provide a principled approach for computing complex what-if

and how-to queries from relational databases. Speci�cally, H���R
relies on causal reasoning to capture background knowledge on
probabilistic causal dependencies between attributes and interprets
hypothetical updates as real-world actions that potentially a�ect
the other attributes.

Our framework supports a rich class of what-if queries that
involve joins and aggregations to support complex real-world what-
if scenarios in relational domains. H���R captures what-if queries
through a novel model that can accommodate complex probabilistic
dependencies, and computes their results e�ciently by employing
optimizations from probabilistic databases and causal inference. In
addition, H���R supports complex how-to queries and frames them
as an optimization problem on the search space of consistent what-
if queries, and searches for a hypothetical update that optimizes the
desired query result. H���R employs an e�cient routine to solve
this optimization problem, by expressing it as an Integer Program
(IP) that can be e�ciently handled using the existing IP solvers.

Our main contributions can be summarized as follows:
• We propose a formal probabilistic model for hypothetical what-
if and how-to queries in relational domains that combines no-
tions from probabilistic databases and causality. Our model
assigns a probability to each possible world [15] that can be
obtained after a hypothetical update according to the under-
lying probabilistic causal dependencies. We further de�ne a
probabilistic possible world semantics for complex what-if and
how-to queries that support joins and aggregations.

• We develop a declarative language that extends the standard
SQL syntax with new operators that capture hypothetical rea-
soning in relational domains and allow users to succinctly for-
mulate complex probabilistic what-if and how-to queries.

• Evaluating hypothetical queries in a naive manner can be in-
e�cient due to the need to iterate over all possible worlds, or
explore the space of all possible hypothetical updates. To ad-
dress these, we develop a suite of optimizations that allows
H���R to e�ciently evaluate hypothetical queries:
– We use the model of block-independent databases [41], i.e.,
the database can be partitioned into blocks of tuples, where
the tuples in di�erent blocks are independent, meaning there
are no causal dependencies between the tuples across di�er-
ent blocks (without background knowledge, we assume tuple
independence). We then show that what-if queries can be
evaluated independently within each block and the results
can be combined to get the result over the entire database.

– We further show that under some assumptions complexwhat-
if queries in relational domains can be evaluated using the
existing techniques in causal inference and machine leaning.

– We frame how-to queries as an optimization problem and
develop an e�cient mechanism to solve this optimization
problem, by expressing it as an Integer Program (IP) that can
be e�ciently handled using the existing IP solvers.

• We perform an extensive experimental evaluation of H���R
on both real and synthetic data. On real datasets, we show that
the query output by H���R matches the conclusions from prior
studies in fair and explainable AI [23]. On synthetic datasets,
we show that H���R’s query output is accurate as compared to
other baselines. Running time analysis shows that both what-if
and how-to components of H���R are highly e�cient.
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2 PROBABILISTIC UPDATES IN HYPER
In this section we describe our notations and then de�ne the proba-
bilistic hypothetical update model in H���R (Section 2.1) that serve
as the basis for probabilistic what-if and how-to queries in the fol-
lowing sections. Then in Section 2.2, we review necessary concepts
from probabilistic causal models [38] that capture the propagation
of the e�ect of an update through other attributes due to underlying
dependencies between them and succinctly de�nes the probability
distribution after updates.
Notations. Let ⇡ be a standard multi-relational database; we use
⇡ for both schema and instance (as a set of tuples) where it is clear
from the context. For each relation ' in ⇡ , Attr(') denotes the
set of attributes of ' and A = ['2⇡Attr(') denotes the set of
attributes in ⇡ . For attributes � appearing in multiple relations, we
use '.� for disambiguation. For an attribute� 2 A, Dom(�) denotes
the domain of�;�8 [C] 2 Dom(�8 ) denotes the value of the attribute
�8 of the tuple C . We assume that each relation ' has a (primary)
key, that can be a single or a combination of multiple attributes. For
easy reference, we annotate each tuple with a unique identi�er as
demonstrated by the identi�ers ?8 , A 9 in Figure 1. We assume each
relation can be modeled as a set of tuples (set semantics) and, for a
relation ', we use the notation C 2 ' to denote a tuple in '.

For the purpose of hypothetical updates, a subset of attributes
that can change values directly or indirectly in tuples is referred
to as mutable attributes, the other attributes are immutable
attributes. The attribute that is updated in hypothetical updates is
called the update attribute, and the� nal e�ect is measured on an
output attribute as speci�ed by the user. The update and output
attributes are always mutable, and the key attributes are always
immutable.

E������3. In Figure 1a, the database has two relations Product
and Review with keys {PID} and {PID, ReviewID} respectively. For
example, suppose Dom(%A824) = [0, 500 ]. In tuple?1,⇠0C46>A~ [?1] =
!0?C>? and %A824 [?1] = 999 etc. The mutable attributes are Price,
Quality, Color, Rating, and Sentiment, whereas Brand and
Category are immutable. The update attribute is Price in relation
Product, and the output attribute is Rating in relation Review.

We assume the update and output attributes do not appear in
multiple relations, but as Example 3 illustrates, they can appear in
two di�erent tuples.

2.1 Probabilistic Hypothetical Updates
H���R interprets hypothetical updates in terms of real-world inter-
ventions that potentially in�uence the value of other attributes in
the data due to probabilistic dependencies between the attributes
and tuples. To capture such probabilistic in�uence, we use the no-
tion of possible worlds from the literature of probabilistic databases
[15] as the set of all possible instances on the same schema with the
same number of tuples in each relation that may contain di�erent
values in their mutable attributes from the appropriate domains.

D��������� 1 (P������� ������). Let ' in ⇡ be a relation, where
in Attr('), �1, · · · ,�< are immutable attributes (including keys)
and ⌫1, · · · ,⌫✓ are mutable attributes. For a tuple C 2 ', a possible
world of tuple C is the set (assuming values are associated with

corresponding attribute names for disambiguation)
%,⇡ (C ) = {�1 [C ], · · · ,�< [C ], E1, · · · , E✓ : E8 2 Dom(⌫8 ), 8 = 1 to ✓ }.
The possible worlds of relation ' is %,⇡ (') = ⇥C 2'%,⇡ (C).
Thepossibleworlds of a database⇡ is %,⇡ (⇡) = ⇥'2⇡%,⇡ (').

Next we de�ne the notion of hypothetical updates.

D��������� 2 (H����������� �������). A hypothetical up-
date* = D',⌫,5 ,( on a database⇡ is a 4-tuple that includes a relation
' in ⇡ containing the mutable update attribute ⌫ 2 Attr('), a sub-
set of tuples ( ✓ ' where the update will be applied, and a function
5 : Dom(⌫) ! Dom(⌫) specifying the update for attribute ⌫ [C] for
tuples C 2 ( to 5 (⌫ [C]).

In other words, the hypothetical update D',⌫,5 ,( forces all tuples
in set ( in relation ' to take the value 5 (⌫ [C]) instead of ⌫ [C]. In
the what-if query in Example 1, intuitively, ' = Product, ( de�nes
the set of Asus laptops, ⌫ is Price, and 5 increases the price by 10%
(see Section 3.1 for details). This update, in turn, may change values
of other mutable attributes in ' or even mutable attributes in other
relations '0 in ⇡ through causal dependencies as discussed next
in Section 2.2, eventually (possibly) changing the output attribute.
These changes are likely not deterministic (e.g., changing price
of a laptop does not change its reviews or their sentiments in a
�xed way), therefore, we model the state of the database after a
hypothetical update as a probability distribution called the post-
update distribution.

D��������� 3 (P���������� ������������). Given a database
⇡ and an update * = D',⌫,5 ,( (De�nition 2), the post-update
distribution is a probability distribution over possible worlds, i.e.,
Pr⇡,* : %,⇡ (⇡) ! [0, 1] such that

Õ
� 2%,⇡ (⇡) Pr⇡,* (� ) = 1.

While the previous de�nition de�nes the post-update distribu-
tion in a generic form, there will be restrictions imposed by the
hypothetical update as well as by its e�ect on the distribution of
other attributes (e.g., for all possible worlds with non-zero proba-
bility, the value of attribute ⌫ for tuples C 2 ( must be 5 (⌫ [C])). We
de�ne this post-update distribution with the help of a probabilistic
relational causal model in Section 2.2.

2.2 Causal Model for Probabilistic Updates
In this paper, we use causal modeling to capture probabilistic causal
dependencies between attributes in relational domains, and to ac-
count for the collateral e�ect of hypothetical updates on other
attributes. Speci�cally, H���R rests on relational causal models,
recently introduced in [46], which are brie�y reviewed next.
Probabilistic Relational Causal Models (PRCM). A probabilis-
tic relational causal model (PRCM) associated with a relational
instance ⇡ is a tuple (n,V, %An ,q), where n is a set of unobserved
exogenous (noise) variables distributed according to %An , V is a set
of endogenous ground1 variables associated with observed attribute
values of each tuple �[C], for all � 2 Attr('), C 2 ' and ' 2 ⇡ ,
and q is a set of structural equations. The structural equations cap-
ture the causal dependencies among the attributes and are of the
1The endogenous variables are called ground variables since in a PRCM the attribute
� [C ] associated with each tuple C form the variables, generating multiple variables
corresponding to the same attribute, in contrast to the standard probabilistic causal
model [38] where each attribute or feature� forms a unique variable.
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Quality[?1]

Category[?1]

Brand[?1]

Color[?1]

Price[?1]

Rating[A1]Sentiment[A1]

Quality[?2]

Category[?2]

Brand[?2]

Color[?2]

Price[?2]

Rating[A2]Sentiment[A2] Rating[A3]Sentiment[A3]

Figure 3: Part of the ground causal graph for the tuples in
Figure 1. �[?8 ] (�[A 9 ]) represents the attribute � of tuple ?8
(A 9 ). Blue nodes are related to ?1, red nodes are related to ?2,
and dashed edges represent cross-tuple dependencies. Cross-
tuple edges between Quality and Rating are dropped.

form q�8 [C ] : Dom(%0V (�8 [C]))⇥ Dom(%0n (�8 [C]))! Dom(�8 [C]),
where %0n (�8 [C])✓ n and %0V (�8 [C]) ✓ V �{ �8 [C]} respec-
tively denote the exogenous and endogenous parents of �8 [C]. A
PRCM is associated with a ground causal graph⌧ , whose nodes are
the endogenous variablesV and whose edges are all pairs (- ,. )
(directed edges) such that - 2 V and . 2 %0V (�8 [C]). In this
paper we assume the underling causal model is acyclic. Due to
uncertainty over the unobserved noise variables, the structural
equations can be seen a set of probabilistic dependencies2 of the
form Pr(�[C] | %0V (�[C])) between the attributes. From now on,
we will use �[C] interchangeability to refer to both an attribute
value and the ground variable associated with it.

E������4. Reconsider the database in Figure 1 and the causal
diagram in Figure 2. Part of its ground version w.r.t. the database is de-
picted in Figure 3, where the blue nodes are related to the tuple ?1 and
the red nodes are related to the tuple ?2. Cross-attribute dependencies
within the same tuple are illustrated as solid edges and cross-tuple
dependencies between the tuples are shown as dashed edges.

To be able to estimate the conditional probability distributions
Pr(�[C] | %0V (�[C])), for C 2 ', from the relational instance ⇡ ,
we make the following assumptions that are common in causal
inference from relational data [46, 52]. First, since %0V (�[C]),
the set of parents of �[C] may have variable cardinality for each
C 2 ', we assume there exists a distribution preserving summary
function k that projects %0V (�[C]) into a� xed size vector such
that Pr(�[C] | %0V (�[C])) = Pr(�[C] | k (%0V (�[C]))), for each
C 2 ' . Second, we assume the conditional probability distributions
Pr(�[C] | k

�
%0V (�[C]))

�
are the same for all C 2 ⇡ , i.e., the con-

ditional probability distributions Pr(�8 [C] | k
�
%0V (�8 [C]))

�
are

independent of a particular C 2 ' and can be readily estimated from

2Note that it is not necessary to have relational connections through database con-
straints like foreign key dependencies or functional dependencies for causal depen-
dencies and vice versa.

⇡ , hence we denote them by uni�ed notation Pr⇡ (�8 | k (%0(�8 ))).
For more discussion on these assumptions, please see [46].

E������5. Continuing Example 1, suppose we want to update
attribute Price and examine its e�ect on Rating. Since each product has
one price but several review ratings in Figure 1, we will summarize the
Rating attribute into the Product table by, e.g., averaging the Rating
for each product and price. Thus, for ?2, we will have %A824 = 529
and '0C8=6 = �E4A064 (4, 2) = 3 (the average over tuples A2 and A3).

Post-update distribution by PRCM. We describe how the post-
update distribution (De�nition 3) is de�ned using a PRCM in H���R.
Given a relation ' in ⇡ , an update attribute ⌫ 2 Attr('), a hypo-
thetical update* = D',⌫,5 ,( (De�nition 2) can be interpreted as an
intervention that modi�es the underlying PRCM and replaces the
structural equation associated with the variables ⌫ [C] for all C 2 (
with the constant 5 (⌫ [C]). Updating ⌫ [C] propagates through all
relations, tuples and attributes according to the underlying PRCM.
The post-update state of a tuple C 0 2 '0 in a relation '0 in ⇡ is
the solutions to each ground variable �[C 0], for � 2 Attr('0), in
the modi�ed set of structural equations. Now, the uncertainty over
unobserved noise variables n induces uncertainty over post-update
states of all tuples C 0 captured by their post-update distribution on
the possible worlds (De�nition 1): Pr⇡,* (g) for g 2 %,⇡ (C 0), and
in turn, the post-update distribution of the entire database Pr⇡,* (� )
for � 2 %,⇡ (⇡). As we will show in Section 3.3, to answer what-if
and how-to queries in H���R, it su�ces to estimate the post-update
conditional distributions of the form Pr⇡,* (. = ~ | ⌫ = 1,C = 2),
where . ,⌫ ,C 2 Attr('), that measures the probabilistic in�uence
of the update * on subset of tuples for which ⌫ = 1 and C = c. It
is known that if C satis�es a graphical criterion called backdoor-
criterion (see Section 3.3) w.r.t. ⌫ and . in the causal model ⌧ , then
the following holds:

Pr⇡,* (. = ~ | ⌫ = 1,C = c) = Pr⇡ (. = ~ | ⌫ = 5 (1),C = c) (1)

Where, the RHS of (1) can be estimated from ⇡ using standard
techniques in causal inference and Machine Learning. Equation (1)
also extends to multi-relation databases (see [22]).

Background knowledge on causal DAG. While in this pa-
per we assume the underlying causal model is available, H���R
is designed to work with any level of background knowledge. If
the causal DAG is not available, H���R assumes a canonical causal
model in which all attributes a�ect both the output and the updated
attribute. In other words, H���R assumes (1) holds for C = Attr('),
i.e., all attributes are considered in the backdoor set in Equation 1,
ensuring that the ground truth backdoor set is a subset of Attr(').
We also examine this case experimentally in Section 5.

3 PROBABILISTIC WHAT-IF QUERIES
In this sectionwe describe the syntax of probabilistic what-if queries
supported by H���R (Section 3.1), describe their semantics as ex-
pected value from the post-update distribution on possible worlds
(Section 3.2), and present e�cient algorithms and optimizations to
compute the answers to what-if queries (Section 3.3).

3.1 Syntax of Probabilistic What-If Queries
A what-if query has two parts (see Figure 4):
• The required U�� operator in the� rst part de�nes a single table
as the relevant view with relevant attributes including the up-
date and the output attribute to be used in the second part. The
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U�� '4;4E0=C+84F A�
(S�����) 1.%�⇡,) 1.⇠0C46>A~,) 1.%A824,) 1.⌫A0=3,
A��((4=C8<4=C )A� (4=C8, A��() 2.'0C8=6)A� 'C=6

F��� %A>3D2C A�) 1,'4E84F A�) 2
W����) 1.%�⇡ = ) 2.%�⇡
G����B� ) 1.%�⇡,) 1.⇠0C46>A~,) 1.%A824,) 1.⌫A0=3)

W��� ⌫A0=3 =0 �BDB0

U�����(%A824) = 1.1 ⇥ P��(%A824)
O����� A��(%$() ('C=6))
F��P�� (⇠0C46>A~) = ‘!0?C>?0 A��P�� (⌫A0=3) = ‘�BDB0

A�� P���((4=C8) > 0.5

Figure 4: What-if query asking “If the prices of all Asus prod-
ucts is increased by by 10%, what would the e�ect on average
ratings of Asus laptops having average sentiments in the
reviews > 0.5 after the update?”

U�� operator can simply mention the table name if no transfor-
mation is needed, and both update and output attributes belong
to this table (e.g., ‘U�� Review’). Otherwise, a standard SQL
query within the U�� operator can de�ne this relevant view as
discussed below.

• The second part includes the new operators for hypothetical
what-if queries supported by H���R: the required U����� and
O����� operators for specifying the update and outcome at-
tribute from the relevant view, and optional W��� and F��
operators.

The second part takes as input the relevant view, denoted VA4;

(named as RelevantView in Figure 4), as de�ned by the required
U�� operator in the� rst part containing all relevant attributes,
and therefore does not mention any table name for disambiguation
in its operators. Recall that a hypothetical update in H���R is of the
form* = D',⌫,5 ,( , where the updated attribute ⌫ 2 Attr(') in ⇡ ,
and is changed for all tuples C 2 ( in ' according to the function 5
(De�nition 2). In the what-if query, the relevant view VA4; de�ned
by the� rst part combines the update and outcome attributes (Price
and Rating in Figure 4) along with other attributes used in the
second part. In particular, the SQL query de�ningVA4; includes
the update attribute ⌫ in the S����� clause along with the key of
' (here PID), and other attributes from ' and (in aggregated form)
from other relations in ⇡ that are used in the second part of the
query. A group-by is performed on the attributes coming from
relation ' Note that the� rst part always outputs a view having the
same number of tuples as in ', which is ensured as the S����� and
Group By clauses include the key of '.

The required U����� operator mentions the update attribute
⌫ along with the function 5 . H���R allows hypothetical update
functions 5 of the form *?30C4 (⌫) =< 2>=BC >, *?30C4 (⌫) =<
2>=BC > ⇥ P��(⌫), and *?30C4 (⌫) =< 2>=BC > + P��(⌫), where
< 2>=BC > is a constant speci�ed by the user (here 1.1 models a 10%
price increase). P��(�) and P���(�) respectively denote the value
of an attribute� before the hypothetical update (i.e., as given in the
database instance ⇡) and after the update according to the PRCM
(see Sections 2.2 and 3.2); except in the operator as ‘U�����(⌫)’
which de�nes updating the value of ⌫, P�� is assumed by default
if P�� or P��� is not explicitly mentioned in the query. U����� is
always performed w.r.t. the P�� value of an attribute, rather than

the P��� value which is the result of the update. The optional SQL
query in the U�� operator de�ning the relevant view can only have
P�� values of attributes, so P�� is omitted in the query. Note that
for immutable attributes �, P��(�) = P���(�).

The optionalW��� operator speci�es the set ( in De�nition
2; any valid SQL predicate can be used here that is de�ned for each
tuple in the relevant view VA4; , and allows selection of a subset of
tuples from VA4; , e.g., � =< 2>=BC >, � 2 (S����� · · ·A� � · · · )
etc. If the W��� operator is not speci�ed, we assume ( = ' and the
hypothetical update is applied to all tuples in '. Since the update
is applied to the original attribute values, it can only use P��(�)
value for an attribute �, and therefore P�� is omitted.

The required O����� operator mentions the output attribute
. (here, Rtng) on which we want to measure the e�ect of the
hypothetical update. If . belongs to another table '0 < ', the
SQL query in the U�� operator describes how ' and '0 are com-
bined in the join condition, and a SQL aggregate operator 066A1
((*",�+⌧,⇠$*#) ) is used to aggregate. (here A��() 2.'0C8=6))
to have a unique value for each tuple in ' identi�ed by its key in
the relevant view. Note that the e�ect of an update is output as a
single value, so another SQL aggregate operator 066A is used in the
O����� operator (here again A��). If the user wants to measure
e�ects on di�erent subsets of tuples, it can be achieved by the use of
the optional F�� operator described below. The O����� operator
can only use P���(�) values of attributes after the update.

The output speci�ed in the O����� operator is computed only
considering the tuples in the relevant view VA4; that satisfy the
conditions in the optional F�� operator (details in Section 3.2). If
no F�� operator is provided, all tuples inVA4; are used to compute
the output. F�� can contain both P��(�) and P���(�) values of
attributes, and P�� can be optionally provided for clarity. Further,
like W���, any valid SQL predicate can be used that is de�ned on
individual tuples in relevant viewVA4; .

E������6. Consider the what-if query statement shown in Figure
4. It checks the e�ect of hypothetically updating the price by 10%
(U�����) on Brand = ’Asus’ (W���). The e�ect is measured on their
average of average ratings (O�����) – the� rst average on ratings of
the same type of Asus products, and the second average is on di�erent
types of Asus products, but only for Category = ‘Laptop’ (i.e., does
not include phones for instance), and where the post-update average
sentiment is still above 0.5. Since Rating and Sentiment come from
the Review table whereas the update attribute Price belongs to the
Product table, they are aggregated in the SQL query in the U��
operator for each Product tuple.

H���R supports multiple updates in a what-if query with at-
tributes⌫1,⌫2, · · · , e.g., U�����(%A824) = 500A��U �����(⇠>;>A ) =
'43 , provided there are no paths from any ⌫8 [C] to any ⌫ 9 [C 0] for
any two tuples C,C 0 - a fact that we will use in Section 4 for how-to
queries; we discuss other extensions in Section 7. Here, we discuss
single-attribute updates for simplicity.

3.2 Semantics of Probabilistic What-If Queries
Here we de�ne the semantics of what-if queries described in Sec-
tion 3.1 as the expected value of the output attribute over possible
worlds consistent with a what-if queries.
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The operators in the what-if queries are evaluated in this order:
U��!W���! U�����! F��! O�����.

(1) The U�� operator outputs the relevant view VA4; that con-
tains all relevant attributes for the what-if query by a standard
group-by SQL query.

(2) The W��� operator takes VA4; as input, and de�nes the
set ( in the update * = D',⌫,5 ,( . Suppose this operator uses an
SQL predicate `W��� de�ned on a subset of attributes of VA4; .
Then the output of the W��� operator is the view VA4;

F = {C 2
VA4; : `W���(C) = CAD4}. Note that in both U�� and W���
operators, the pre-update values (Pre values are assumed by default)
from the given database ⇡ are used.

(3) Then the ‘U����� ⌫ = 5 (P��(⌫))’ operation is applied to
the tuples C 2 VA4;

F on attribute ⌫. As described in Section 2.2,
this update is equivalent to modifying the structural equation q⌫ [C ]
in the PRCM by replacing them with a constant value 5 (P��(⌫)).
Due to uncertainty induced by the noise variables, at this point, we
get a set of possible worlds %,⇡ (⇡) (De�nition 1) along with a
post-update distribution Pr⇡,* on %,⇡ (⇡) induced by the update
* . Clearly, some possible worlds � have Pr⇡,* (� ) = 0, e.g., if for a
tuple C in relation ' of � such that C corresponds to a tuple inVA4;

F
with the same key, ⌫ [C] < 5 (P��(⌫ [C])).

(4 and 5) For the F�� and O����� operators,� rst,� x a possible
world � 2 %,⇡ (⇡) obtained from the previous step. LetV�

A4; be
the output of the SQL query in the U�� operator on � . Suppose the
predicate in the F�� operator is ` F��, which may include P��(�)
and P���(�0) values for di�erent attributes �,� 0. For every tuple
C (in any relation in ⇡) and attribute �, consider two values of
�[C]: P��(�[C]) of C in ⇡ and P���(�[C]) of C in � (some values
remain the same in P�� and P���, e.g., if � is immutable or if there
is no e�ect of updating ⌫ for ( tuples on �). Using these values, we
evaluate the predicate ` F��, and using tuples from ' that satisfy
this predicate, we compute the aggregate 066A& (A��('0C8=6) in
Figure 4) mentioned in the O����� operator using their values in �
(i.e., P��� values).

This aggregate 066A& is computed on attribute values . [C] for
C 2 V�

A4; , where . itself can be an aggregated attribute . =
066AU�� (. 0) if it is coming from a di�erent relation than the one
containing the update attribute as de�ned by the SQL query in the
U�� operator (in Figure 4, . = 'C=6, 'C=6 = A��('4E84F .'0C8=6),
and both 066A& and 066AU�� are A��). Hence, when a possible world
is� xed, the what-if query answer is computed as follows:

D��������� 4 (W������ ���� ������ �� � �������� �����).
Given a what-if query & and a database ⇡ , the answer to & on a
given possible world � 2 %,⇡ (⇡) is the aggregate 066A& over .� [C]
values using the notations above:

valwhatif (&,⇡,� ) = 066A ( {.� [C ] : ` F�� (C ) = CAD4,C 2 VA4; }) (2)

where .� [C] denotes the value of attribute . for tuple C in the possi-
ble world � . Here C is tuple in the relevant view VA4; and therefore
corresponds to a unique tuple in relation '.

Then the� nal value of the what-if query is the expected query
result on all possible worlds of ⇡ :

D��������� 5 (W������ ���� ������). Given a what-if query
& and a database ⇡ , the result of & (⇡) is the expected value of

valwhatif (&,⇡,� ) over all possible worlds � 2 %,⇡ (⇡), using the
post-update probability distribution Pr⇡,* :

valwhatif (&,⇡ ) = E�2%,⇡ (⇡ ) [valwhatif (&,⇡,� ) ]

=
’

�2%,⇡ (⇡ )
valwhatif (&,⇡,� ) · Pr⇡,* (� ) (3)

3.3 Computation of What-If Queries
The semantics presented in Section 3.2 does not directly lead to
an e�cient algorithm to compute the answer to what-if queries
by De�nition 5, since (1) the number of possible worlds can be
exponential in the size of the database ⇡ , and (2) computation of
post-update distribution Pr⇡,* is non-trivial. In this section, we
present our algorithm for computingwhat-if query answers that use
two key ideas to address these challenges: (a) Instead of computing
the what-if query over the entire database, we decompose it into
smaller problems and compute modi�ed queries on subsets of tuples
that are ‘independent’ of each other (as fewer tuples make the
computation more e�cient). Then we combine the results to get
the result of the original query over the entire database. (b) To
compute the distribution Pr⇡,* needed for estimating the query
result, we use techniques from the observational causal inference
and the graphical causal model literature [38] when the post-update
distribution is determined by a PRCM.

Decomposing the computation. The decomposition, and subse-
quently the composition of answers, is achieved by the use of block-
independent databases and decomposable aggregate functions sup-
ported by H���R (SUM, COUNT, AVERAGE) described below.
Block-independent database decomposition. We adapt the no-
tion of block-independent database model that has been used in
probabilistic databases [14, 41] and hypothetical reasoning [30]. First,
we need the notion of independence in our context. We say that
two tuples C,C 0 2 ⇡ are independent if there are no paths in the
ground causal graph ⌧ (ref. Section 2.2) between �[C] and �0[C 0]
for any two attributes �,� 0.

Given a database ⇡ and a PRCM with a ground causal graph ⌧ ,
B = {⇡1, . . . ,⇡✓ } is called a block-independent decomposition
of ⇡ if (i) {⇡1, . . . ,⇡✓ } forms a partition of ⇡ , i.e., each ⇡8 ✓ ⇡ ,
[;8=1⇡8 = ⇡ , and ⇡8 \ ⇡ 9 = ; for 8 < 9 , and (ii) for each C 2 ⇡8
and C 0 2 ⇡ 9 where 8 < 9 , C and C 0 are independent. Note that these
tuples C and C 0 can come from the same or di�erent relations of ⇡ .

We compute block-independent decomposition of database ⇡
given a causal graph⌧ as follows. The block decomposition process
performs a topological ordering of the nodes in the causal graph
and then performing a DFS or BFS on it, and is therefore linear
in the size of the causal DAG. The causal DAG has at most = ⇥ :
nodes where = is the number of tuples in ⇡ and : = |Attr(⇡) |. In
particular, the decomposition does not depend on the structure or
complexity of the query. Block-independent decomposition pro-
vides an optimization in our algorithms; in the worst case, all tuples
may be included in a single block.

E������7. Consider the causal graph of the PRCM (Figure 3)
de�ned on the database presented in Figure 1. The procedure�rst
performs a topological sort of the nodes. For example, in Figure 2, the
node ⌫A0=3 [?1] is� rst, and then the node &D0;8C~ [?1] etc. Then,
the algorithm performs a BFS to detect the connected components
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of the graph which are all tuples belonging to the same category,
along with their reviews. The block-independent decomposition of
the database ⇡ in Figure 1 is then B = {⇡1,⇡2,⇡3} where ⇡1 =
{?1, ?2, ?3, A1, A2, A3, A4, A5},⇡2 = {?4, A6}, and⇡3 = {?5} correspond-
ing to laptops, camera, and books along with their reviews.

Decomposable functions. The aggregate functions supported
by H���R are decomposable as de�ned below, which allows us
to combine results from each block after a block-independent de-
composition to compute the answer to a what-if query. Since the
immutable attributes include keys that are unchanged in all possible
worlds � 2 %,⇡ (⇡) of ⇡ (De�nition 1), given a block-independent
decomposition B of ⇡ , we will use the corresponding decomposi-
tion B� of � where the same tuples identi�ed by their keys go to
the same blocks in B and B� . The aggregate functions 5&,⇡ , 5 0&,⇡
below map a set of tuples to a real number whereas 6 maps a set of
real numbers to another real number.

D��������� 6 (D����������� ��������� ��������). Given a
database ⇡ , a block-independent decomposition B = {⇡1, . . . ,⇡✓ } of
⇡ , a what-if query & , and any possible world � 2 %,⇡ (⇡) of ⇡ , an
aggregate function 5&,⇡ is decomposable if there exist aggregate
functions 5 0&,⇡ and 6 such that:

• 5&,⇡ (� ) = 6({5 0&,⇡ (⇡8 ) | 8⇡8 2 B� }) where B� is the block
partition of � corresponding to B,

• U6({G1, . . . , G; }) = 6({UG1, . . . ,UG; }), 8U � 0, and
• 6({G1, . . . , G; }) + 6({~1, . . . , ~; }) = 6({G1 + ~1, . . . , G; + ~; })

When the aggregate function 066A given in Equation (2):
valwhatif (&,⇡,� ) = 066A ({.� [C] : ` F�� (C) = CAD4,C 2 VA4; }) is
decomposable, we show that the computation can be performed on
the blocks B� and then aggregated to compute valwhatif (&,⇡,� ).
We note that every supported aggregate function in this paper (S��,
A��, C����) is decomposable. We demonstrate this for A�� below.

E������8. Reconsider the what-if query in Figure 4. Suppose
the database can be partitioned into blocks by Category as demon-
strated in Example 7. In this case, 066A = A�� and . = 'C=6 =
A��()2.'0C8=6), and for any � 2 %,⇡ (⇡), valwhatif (&,⇡,� ) =
A��({'C=6� [C] | C 2 VA4; ,⇠0C46>A~ [C] = !0?C>?,⌫A0=3 [C] =
�BDB, P���((4=C8 [C]) > 0.5}) We use the standard formula for de-
composing average: A��(⇡) = 1

|⇡ |
Õ✓
8=1 S��(⇡8 ). For each block

⇡8 2 B� , 5 0&,⇡ (⇡8 ) = 1
|⇡ | S��({'C=6� [C] | C 2 V�

A4; \ ⇡8 ,
⇠0C46>A~ [C] = !0?C>? , ⌫A0=3 [C] = �BDB , P���((4=C8 [C]) > 0.5})
Here, 6 = S��, and S�� satis�es the properties in De�nition 6.

In the proof of the following proposition, we leverage the ability
to marginalize the distribution Pr⇡,* over the possible worlds of
the database ⇡ (De�nition 3) given a what-if query& to get a distri-
bution and a set of possible worlds for any block ⇡8 2 B, which we
denote by %,⇡ (⇡8 ) ✓ %,⇡ (⇡). %,⇡ (⇡8 ) are all instances where
all tuples C 0 8 ⇡8 remain unchanged and all mutable attributes of
C 2 ⌫8 get all possible values from their respective domains. We
further denote %,⇡ (⇡8 ) as the set of possible worlds of ⇡8 that
only includes the tuples in ⇡8 ; i.e., %,⇡ (⇡8 ) is the projection of
%,⇡ (⇡8 ) on ⇡8 . All proofs are deferred to the full version [22] due
to space constraints.

P���������� 1 (D��������� �����������). Given a database
⇡ , its block-independent decomposition B = {⇡1, . . . ,⇡✓ }, and a
what-if query & whose result on a possible world � 2 %,⇡ (⇡) is
valwhatif (&,⇡,� ) = 066A ({.� [C] : ` F�� (C) = CAD4,C 2 VA4; })
(De�nition 4), if 066A is a decomposable function, i.e., if there exist
functions 6 and 5 0&,⇡ according to De�nition 6, then

valwhatif (&,⇡ ) = 6 ( {valwhatif (&0,⇡8 ) | 8⇡8 2 B}) (4)

where & 0 is the same query as & with 5 0&,⇡ replacing 066A and

valwhatif (&0,⇡8 ) = E� 9 2%,⇡ (⇡8 ) [valwhatif (&
0,⇡8 , � 9 ) ] (5)

Computing results with causal inference. We show the connection
between the what-if query results and techniques in observational
causal inference. This connection will allow us to compute the
results for each block as given in Equation (5). Speci�cally, we
show how the computation in each block is done by the post-update
probabilities, which we further reduce to pre-update probabilities.

P���������� 2 (C��������� �� ������ ��������� ���C����).
Given a database ⇡ with its block independent decomposition B⇡ ,
a block ⇡8 2 B⇡ , a ground causal graph ⌧ , a what-if query & 0
where �66 = C����, and the F�� operator is denoted by ` F�� =
_: (`:F��,P��^`

:
F��,P���), and ` F��,P�� and ` F��,P��� are de�ned with

the P�� and P��� operators, respectively, the following holds.

valwhatif (&0,⇡8 ) =
’
C2⇡8

©≠
´
’
:

⇣
Pr⇡8 ,* (`:F��,P��� (C ) = true |`:F��,P�� (C ) = true)

⌘™Æ
¨

In this equation, Pr⇡8 ,* (`:F��,P��� (C) = true|`:F��,P�� (C) = true)
denotes the sum of probabilities of all possible worlds of ⇡8 such that
the tuple C that satis�ed `:F��,P�� (C) = true before the update* also
satis�es `:F��,P��� (C) after the update.

The proof of the proposition relies on the fact that a F�� clause
can be represented as a CNF of P�� and P��� conditions (as shown
in [22]). Proposition 2 assumes �66 = C����, however, a similar
result for �66 = S��/A�� can be found in the full version [22].
Estimating the probability values. The expression in Proposi-
tion 2 relies on the post-update distribution to evaluate conditional
probability of certain attribute values. For example, we need a way
to estimate Pr⇡,* (�8 = 08 | � 9 = 0 9 , `W���) when 066A = C����.
Our goal is to� nd a way to estimate these probability values from
the input database ⇡ , assuming we have a PRCM.

To do so, we leverage the notion of backdoor criterion from
causal inference [38]. A set of attributes C satis�es the backdoor
criterion w.r.t.�8 and ⌫ if no attribute⇠ 2 C is a descendant of�8 or
⌫ and all paths from ⌫ to�8 which contain an incoming edge into�8
are blocked by C. For example, in Figure 3, Brand[?1], Quality[?1],
and Category[?1] satisfy the backdoor criterion with respect to
Sentiment[?1] and Rating[?1]. Using this criterion, we show (in the
full version) that the element Pr⇡,* (�8 = 08 | ⌫ = 1,⇠ = 2,� 9 =
0 9 , `W���) in the query result expression in Proposition 2 can be
estimated from Pr⇡ using the following calculations.
Pr⇡,* (�8 = 08 | �9 = 0 9 , `W���) =’
22Dom(⇠ )

Pr⇡,* (�8 = 08 | ⇠ = 2,� 9 = 0 9 , `W���)Pr⇡ (⇠ = 2 |�9 = 0 9 , `W���)

The� rst probability term can be simpli�ed as:
Pr⇡,* (�8 = 08 | ⇠ = 2,� 9 = 0 9 , `W���) =

Õ
12Dom(⌫) Pr⇡,* (�8 = 08 |

⌫ = 1,⇠ = 2,� 9 = 0 9 , `W���) · Pr⇡ (⌫ = 1 |⇠ = 2,� 9 = 0 9 , `W���) .
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U�� (. . .) /* same as Figure 4 */

W��� ⌫A0=3 = ‘�BDB0 A��⇠0C46>A~ = ‘!0?C>?0

H��T�U����� %A824,⇠>;>A
L���� 500  %>BC (%A824)  800 A��

!1(P��(%A824), P���(%A824)) 400
T�M������� A��(P���('C=6))
F�� (P��(⇠0C46>A~) =0 !0?C>?0 O�

P��(⇠0C46>A~) =0 ⇡(!' ⇠0<4A00) A�� ⌫A0=3 =0 �BDB0

Figure 5: How-to query asking “how tomaximize the average
rating of Asus laptops and cameras over the determined view
by changing the price and/or color of Asus laptops so that it
will not drop below 500 and increase above 800, and will be
at most 400 away from it original value?”

This shows that the query output relies on Pr⇡,* (�8 = 08 | ⌫ =
1,⇠ = 2,� 9 = 0 9 , `W���), which can be estimated from Pr⇡ using
equation (1). Using these probability calculations, we estimate the
query output from the input data distribution Pr⇡ . The equations
require that we iterate over the values in the domain of B and C,
which can be ine�cient as the domain set size increases exponen-
tially with the number of attributes in the set. However, the majority
of the values in Dom(C) would have zero-support in the database
⇡ , implying Pr⇡ (⇠ = 2 |� 9 = 0 9 , `W���) = 0 for C = 2 . Therefore,
we build an index of values in Dom(C) to e�ciently identify the
set of values that would generate a positive probability-value. This
optimization ensures that the runtime is linear in the database size.

4 PROBABILISTIC HOW-TO QUERIES
How-to queries support reverse data management (e.g., [34]), and
suggest how a given mutable attribute can be updated to optimize
the output attributes subject to various constraints. In this section
we describe the syntax of probabilistic how-to queries supported
by H���R (Section 4.1), describe their semantics (Section 4.2), and
present algorithms to compute their answers (Section 4.3). How-to
queries are computed by solving an optimization problem over
several relevant what-if queries.

4.1 Syntax of Probabilistic How-To Queries
The syntax of how-to queries in H���R is similar to that of what-if
queries (see Figures 4 and 5, and Section 3.1). How-to queries have
two parts. The� rst part uses the required U�� operator and is iden-
tical to the U�� operator in the what-if queries in its functionality
– it de�nes the relevant view VA4; that contains the key of the
relation containing the update attribute, and includes all attributes
used in the second part of the query; attributes coming from other
relations are aggregated.

The optional W��� and F�� operators have the same func-
tions as in what-if queries. TheW��� operator speci�es the set ( on
which an update* = D',⌫,5 ,( can be applied, whereas the F�� oper-
ator de�nes the subset on which the e�ect is estimated. Like what-if
queries, W��� only includes pre-update values P��(�), whereas
F�� can include both pre- and post-update values P��(�), P���(�).

The required H��T�U����� operator corresponds to the
U����� operator of what-if queries, and uses P��(�), but instead

of specifying an attribute (or a set of attributes) to update, it speci-
�es the set of mutable attributes that can be updated. In Figure 5,
‘H��T�U����� Price, Color’ states that any combination of these
three attributes can be updated, and some attributes can be left un-
changed as well. To ensure that the updates on these attributes are
valid, our algorithms assume that, for any pair of the attributes men-
tioned in this clause �1,�2, there are no paths in the ground causal
graph of the PRCM between �1 [C] and �2 [C 0] for any C,C 0 2 ⇡ .

Possible outputs of the how-to queries are of these forms
for each attribute � speci�ed in the H��T�U����� operator: (i)
U�����(⌫) =< 2>=BC >, (ii) U�����(⌫) =< 2>=BC > ⇥ P��(⌫), (iii)
U�����(⌫) =< 2>=BC > + P��(⌫), and U�����(⌫) = no change,
where < 2>=BC > is a constant found by our algorithms from the
search space. One example output of this HowToUpdate query is

{Price: 1.1x, Color: no change}

stating the price should be increased by 10%, the color should be
changed to red, and the category should not be changed.

The optional Limit operator states the constraints for optimiza-
tion, i.e., it de�nes the conditions that restrict the post-update values
of update attributes speci�ed in the H��T�U�����U����� opera-
tor for tuples in VA4; that satisfy the W��� operator. In particular,
if an attribute � is numeric, its updates can be bounded by numeric
limits, e.g., ;  P���(�)  ⌘, P���(�)  P��(�)+ < 2>=BC >,
P���(�)  P��(�)⇥ < 2>=BC >, etc., and if � is categorical or
numeric, the user can specify the permissible values as a set, e.g.,
P���(�) I� (E1, E2, E3). Furthermore, this operator allows users to
specify the maximal or minimal !1 distance between the original
attribute values (P��(�)) and the updated ones (P���(�)) for at-
tributes � in the HowToUpdate operator for the tuples satisfying
the condition in the W��� operator: !1(P���(�), P��(�)) takes a
vector of values+D and+D [8] is an update value of the 8’th attribute
mentioned in the L���� operator, and returns the normalized !1
distance between the original value vector and the vector of up-
date values |+D �+>A86 |. The !1 operator helps model the cost of
an update (with suitable weights) as some updates can be more
expensive than the others.

Finally, the how-to query needs to include a requiredT�M�������
or T�M������� operator, which speci�es an aggregated value
of an attribute from the relevant view VA4; that is to be maxi-
mized or minimized using the updates on the attributes speci�ed
in the H��T�U����� operator. Only post-update values P���(�)
of attributes are allowed in T�M������� and T�M�������.

E������9. Consider the query in Figure 5. It asks for the max-
imum value of the average value of Rtng (HowToUpdate) by up-
dating the tuples with Brand = ‘Asus’, Category = ‘Laptop’

(W���). The attributes allowed to be updated are Price, Color

(HowToUpdate). The update to the Price attribute is restricted to
[500, 800], where distance between the original values and the up-
dated values in this attribute has to be  400. The average of Rtng is
computed over the view de�ned by the F�� operator.

4.2 Semantics of Probabilistic How-To Queries
We next de�ne the results of how-to queries in terms of what-if
queries. Intuitively, every how-to query optimizes over a set of what-
if queries, where each what-if query contains a possible update
allowed in the how-to query. Assuming, without losing generality,
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that the how-to query contains a T�M�������operator, the result of
the how-to query is then the what-if query that yields the maximum
result of the output attribute in the T�M������� operator of the
how-to query, subject to the constraints on post-update values of
attributes speci�ed in the Limit operator.

D��������� 7 (C�������� ������� ����). Given a how-to
query&�) that includes (i) a T�M������� operator of�66(%>BC (. )),
(ii) a H��T�U����� operator with update attributes ⌫1, . . . , ⌫2 , and
(iii) a L���� operator that speci�es permissible rangesR8 and!1(P��(⌫8 ),
P���(⌫8 )) < \8 , 88 2 [1, 2] (if there are no constraints on the range
for ⌫8 , R8 = Dom(⌫8 ) and if no !1 constraint is speci�ed, \8 = 1), a
candidate what-if query is a what-if query &,� such that:

• The U��, W���, and F�� operators in &,� are identical to
the ones in &�) ,

• &,� contains U�����⌫ 91 = 11, . . . , ⌫ 9: = 1: , where { 91, . . . , 9: }
✓ {1, . . . , 2}, 18 2 R 98 , and !1(P��(⌫ 98 ), P���(⌫ 98 )) < \ 98 .

• TheO����� operator in&,� speci�es the attribute�66(%>BC (. ))
from the T�M������� operator in &�) .

This query is denoted as&,� ((⌫81 ,11), . . . , (⌫82 ,12 )). The set of all
candidate what-if queries for a how-to query &�) is denoted by
QF⌘0C8 5 (&�) ).

E������10. A candidate what-if query &,) ((%A824, 500)) for
the how-to query depicted in Figure 5 is given below (U�� operator is
the same as that in Figure 4):

U�� (. . .)
W��� ⌫A0=3 = ‘�BDB0 A��⇠0C46>A~ = ‘!0?C>?0

U����� %A824 = 500
O����� A��(P���('0C8=6))
F�� (P��(⇠0C46>A~) =0 !0?C>?0 O�

P��(⇠0C46>A~) =0 ⇡(!' ⇠0<4A00) A�� ⌫A0=3 =0 �BDB0

In particular, the update on the Price attribute is in [500, 800] and
satis�es the L1 distance since the original price of the Asus laptop is
529, and the rest of the query is identical to the query in Figure 5.

We now de�ne the result of a how-to query that optimizes over
the result of all candidate what-if queries.

D��������� 8 (H����� ���� ������). Given a database ⇡ and
a how-to query &�) with a T�M������� operator, the result of &�)
is de�ned as 0A6<0G&,� 2QF⌘0C8 5 (&�) )valwhatif (&,� ,⇡), where
valwhatif (&,� ,⇡) denotes the result of the what-if query &,� on
D as de�ned in De�nition 5; ToMinimize is de�ned similarly.

We take the argmax of QF⌘0C8 5 (&�) ) since a how-to query asks
about the manner in which the database needs to be updated and
not about the result. This corresponds to the output we de�ned
and demonstrated in Section 4.1. De�nition 8 requires taking the
maximum over a large set of candidate what-if queries, which can
even be in�nite if the domain is continuous. In the next section, we
provide optimizations to make their computation feasible.

4.3 Computation of How-to queries
The naive approach to compute the result of a how-to query by
De�nition 8 is ine�cient as it evaluates a large number of can-
didate what-if queries. Instead, we model the problem of com-
puting the result of how-to queries as an Integer Program (IP).

Denote by U = {⌫1, · · · ,⌫2 } the set of update attributes in the
H��T�U����� operator. For each attribute ⌫8 2 U, we enumer-
ate all permissible updates (denoted by (⌫8 ) and de�ne an indi-
cator variable X18 for every 18 which denotes the potential up-
dated value of attribute ⌫8 . For example, (%A824 can consist of
the following updates: {1.1 x Pre(Price), 1.2 x Pre(Price), . . .,
2.5 x Pre(Price), 100 + Pre(Price), 200 + Pre(Price), . . . ,

500 + Pre(Price), 250 , 300, . . . , 600}.
The elements of set (� are de�ned such that all these updates

satisfy the constraints mentioned in Limit operator. If the set of
potential updates is continuous, we bucketize them so that we can
treat their values as discrete. Given a set (⌫8 and variables X18 for all
18 2 (⌫8 , we add a constraint for each attribute that

Õ
18 2(⌫8 X18  1

to ensure that at most one of the updates is performed. If X18 is zero
for all values in (⌫8 , then ⌫8 is not updated. Given this formulation,
the corresponding what-if query is estimated as a linear expression
by using Proposition 2 and training a regression function over the
dataset ⇡ . Let this linear function be q : Dom(U) ! $ , where $ is
the range of the output of candidate what-if queries. The following
IP models the solution to the how-to query using the variables X18 .

argmax q (⇡,
’

112(⌫1

X1111, . . . ,
’

12 2(⌫2

X1212 ) (6)

subject to
’

18 2(⌫8

X18  1, 88 = 1 C> 2 (7)

X18 2 {0, 1}, 818 2 (⌫8 , 88 = 1 C> 2 (8)

In addition to these constraints, additional constraints are added
to the IP based on the constraints in the Limit operator. Since all
constraints and the objective function are linear equations, we lever-
age standard IP solvers to calculate the output of the HowToUpdate
query3. Note that the number of constraints in the IP grows linearly
with the number of attributes in U and the number of variables
grows linearly in the number of possible updates for each attribute.
Extension to preferential multi-objective optimization. H��
��R can be adapted to the settings where an user aims to optimize
multiple objectives that are lexicographically ordered based on pref-
erence. Consider an ordered set of preferences ?1, . . . , ?C where
each preference ?8 is less important than ? 9 for 9 < 8 . In this case,
we propose to solve IP iteratively as follows. First, we can solve
the optimization problem for the� rst preference ?1 as described
above, ignoring other preferences. In the second iteration, the iden-
ti�ed objective value of the� rst objective is added as a constraint
to maximize the second preference ?2. In this way, all previously
solved objectives are added as constraints while optimizing for a
preference ?8 . The solution to the last IP that optimizes for ?C where
all other preferences are added as constraints is returned as the
�nal solution to the preferential multi-objective optimization.

E������11. Consider the database in Figure 1 and a how-to query
that aims to maximize the average ratings as a� rst priority and the
average sentiment as a second priority. In the� rst IP, we will solve
for the clause T�M������� A��(P���('C=6)), where 'C=6 are the
ratings. Suppose the maximum average rating we get is 2 . We then
solve the IP for the clause T�M������� A��(P���((4=C8<4=C)) and
add the constraint that (A��(P���('C=6))) will equal 2 .
3As an alternate formulation, our framework allows optimizing the cost (L1 distance
between the original attribute and the updated value) while adding a constraint on
the aggregated attribute. We discuss more details in the full version [22].
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5 EXPERIMENTS
We evaluate the e�ectiveness of H���R and its variants on various
datasets and answer the following questions:

(1) Do the results provided by H���R make sense in real-world
scenarios?

(2) How does H���R compare to other baselines for hypothetical
reasoning when the ground truth is available?

(3) How does the runtime of H���R depend on query complexity
and dataset properties like number of tuples, the causal graph
structure, discretization of continuous attributes, and the
number of attributes in di�erent operators of the query?

(4) How does combining a sampling approach with H���R in-
�uences runtime performance and the quality of the results?

Our experimental study includes 5 datasets and 3 baselines that are
either inspired by previous approaches or simulate the absence of
a causal model. We provide a qualitative and quantitative evalua-
tion of H���R, showing that it gives logical results in real-world
scenarios and achieves interactive performance in most cases.
Implementation and setup.We implemented the algorithms in
Python. H���R was run on a MacOS laptop with 16GB RAM and
2.3 GHz Dual-Core Intel Core i5 processor. We used random forest
regressor [51] to estimate conditional probabilities.

5.1 Datasets and Baselines
We describe the datasets and baselines used in this section.
Datasets. The following datasets and causal models were used.

• TheAdult income dataset [32] comprises demographic infor-
mation of individuals along with their education, occupation,
hours of work, annual income, etc. It is composed of a single
table. We used the causal graph from prior studies [11].

• German dataset [20] contains details of bank account hold-
ers including demographic and� nancial information along
with their credit risk. It composed of a single table and the
causal graph was used from [11].

• Amazon dataset [28] is a relational database consisting of
two types of tables, as described in Figure 1, and the causal
graph is presented in Figure 2. We identi�ed product brand
from their description, used Spacy [2] for sentiment analysis
of reviews and estimated quality score from expert blogs [1].

• German-Syn is a synthetically generated dataset using the
same causal graph as German dataset [20]. It consists of a sin-
gle table. We consider two di�erent versions for our analysis,
one with 20K records and the other with 1 million records.

• Student-Syn dataset contains two di�erent tables (a) Stu-
dent information consisting of their age, gender, country
of origin and their attendance. (b) Student participation at-
tributes like discussion points, assignment scores, announce-
ments read, and overall grade. Each student was considered
to enroll in 5 di�erent courses and their overall grade is an
average over respective courses. This data was generated
keeping in mind the e�ect of attendance on class discussions,
announcements and grade. The causal model has student age,
gender and country of origin as the root nodes, which a�ect
their attendance and other performance related attributes.

(a) Solution quality (b) Running time
Figure 6: E�ect of varying sample size on H���R-sampled
output and running time for German-Syn (1M) dataset

Variations. In the experiments, H���R is run assuming that back-
ground knowledge about the causal graph is known a priori. Addi-
tionally, we consider the following variations.

• H���R-NB:when no causal model is available, all attributes
are assumed to a�ect the updated attribute and the output.

• H���R-sampled: is an optimized version of H���R that
considers a randomly chosen subset of 100k records for the
calculation of conditional probabilities of Proposition 2. The
choice of sample size is discussed in Section 5.2

Baselines. We consider two di�erent baselines of H���R to evalu-
ate hypothetical queries:

• Indep baseline inspired by previous work using provenance
[16]: it ignores the causal graph and assumes that there is
no dependency between di�erent attributes and tuples.

• Opt-HowTo baseline for how-to analysis where we compute
the optimal solution by enumerating all possible updates,
evaluating what-if query output for each update and choos-
ing the one that returns the optimal result.

5.2 H���R and H���R-sampled
We evaluate the e�ectiveness of H���R with its variant H���R-
sampled to understand the tradeo� between quality and running
time. Figure 6 compares the e�ect of changing the sample size on
the quality of the output (Figure 6a) and running time (Figure 6b)
by H���R-sampled. Figure 6a shows that the standard deviation in
query output of H���R-sampled reduces with an increase in sample
size and is within 1% of the mean whenever more than 100: sam-
ples are considered. In terms of running time, we observe a linear
increase in time taken to calculate the output. Due to low variance
of H���R-sampled for 100: samples and reasonable running time,
we consider 100k as the sample-size for subsequent analysis.

5.3 What-If Real World Use Cases
In this experiment, we evaluate the output of H���R on di�erent
hypothetical queries on various real-world datasets. Due to the ab-
sence of ground-truth, we discuss the coherence of our observations
with intuitions from existing literature.
German. We considered a hypothetical update of� xing attributes
‘Status’, ‘Credit history’, and ‘housing’ to their respective minimum
and maximum values to evaluate the e�ect of these attributes on
individual credit. Figure 7a demonstrates the query template, where
- , G,-2, G2 are varied to evaluate the e�ect of di�erent updates.
Whenever status or credit history are updated to the maximum
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U�� ⇡ U�����(⌫) = 1 O�����C���� (⇠A438C = ⌧>>3) F��P�� (�) = 0

(a) What-if query (German dataset): What fraction of individuals
will have good credit if ⌫ is updated to 1?

U�� ⇡ U�����(⌫) = 1 O�����C���� (⇤)
F�� P���(�=2><4) > 50: A��P�� (�) = 0

(b) What-if query (Adult dataset): How many individuals with at-
tribute � = 0 will have income � 50 if ⌫ is updated to 1?

Figure 7: What-if queries for real world use cases

Table 1: Average Runtime in seconds for a C���� what-if query.
The time in (..) is by H���R(-NB)-sampled, which has identical
runtime as H���R(-NB) on all other datasets with < 100: tuples.
Dataset Att. [#] Rows[#] H���R H���R-NB Indep

Adult [32] 15 32k 45s 105s 3s
German [20] 21 1k 1.2s 12.5s 0.4s
Amazon [28] 5,3 3k, 55k 1.7s 10.5s 0.8s
Student-syn 3,6 10k,50k 4.5s 12.3s 1.2s
German-Syn (20k) 6 20k 7.2s 22.45s 1.4s
German-Syn (1M) 6 1M 390s (44.5s) 1173s (132s) 73s

(a) German (b) Adult
Figure 8: What-if query output for German and Adult datasets
on updating each attribute to their min and max values; a
larger gap denotes higher attribute importance.

value, more than 81% of the individuals have good credit. Similarly,
updating these attributes to the minimum value reduces the credit
rating of more than 30% individuals. On the other hand, updating
other attributes like ‘housing’ and ‘investment’ a�ects the credit
score of less than 20% individuals. Figure 8a presents the e�ect of
updating these attributes to their minimum and maximum value.
Larger gap in the query output for Status and credit history shows
that these attributes have a higher impact on credit score. We also
tested the e�ect of updating pairs of attributes and observed that
updating ‘credit history’ and ‘status’ at the same time can
a�ect the credit score of more than 70% individuals. These
observations are consistent with our intuitions that credit history
and account status have the maximum impact of individual credit.
Adult.This dataset has beenwidely studied in the fairness literature
to understand the impact of individual’s gender on their income.
It has a peculiar inconsistency where married individuals report
total household income demonstrating a strong causal impact of
marital status on their income [45, 50, 56]. We ran a hypothetical
what-if query to analyze the fraction of high-income individuals
when everyone is married (Figure 7b). We observed that 38% of the
individuals have more than 50K salary. Similarly, if all individ-
uals were unmarried or divorced, less than 9% individuals

have salary more than 50K. This wide gap in the fraction of
high-income individuals for two di�erent updates of marital status
demonstrate its importance to predict household income. Figure 8b
shows the e�ect of updating the attributes with the minimum or
the maximum value in their domain. These observations match
the observations of existing literature [23], where marital status,
occupation and education have the highest in�uence on income.
Amazon. We evaluated the e�ect of changing price of products of
di�erent brands on their rating. When all products have price more
than the 80C⌘ percentile, around 32% of the products have average
rating of more than 4. On further reducing the laptop prices
to 60C⌘ and 40C⌘ percentiles, more than 60% of the products
get an average rating of more than 4. This shows that reducing
laptop price increases average product ratings. Among di�erent
brands, we observed that Apple laptops have the maximum increase
in rating on reducing laptop prices, followed by Dell, Toshiba, Acer
and Asus. These observations are consistent with previous studies
on laptop brands [3], which mention Apple as the top-quality brand
in terms of quality, customer support, design, and innovation.

5.4 Solution Quality Comparison
In this experiment, we analyzed the quality of the solution gener-
ated by H���R with respect to the ground truth and baselines over
synthetic datasets. The ground truth values are calculated using
the structural equations of the causal DAG for the synthetic data.
What-if. For the German-Syn (1M) dataset, Figure 10a presents
the output of a query that updates di�erent attributes related to
individual income and evaluates the probability of achieving good
credit. For all attributes, H���R-sampled, and H���R-NB estimate
the query output accurately with an error margin of less than 5%.
In contrast, Indep baseline ignores the causal structure and relies
on correlation between attributes to evaluate the output. Since, the
individuals with high status are highly correlated with good credit,
Indep incorrectly outputs that updating Status would automatically
improve credit for most of the individuals.

For the Student-Syn dataset, Figure 10b presents the average
grade of individuals on updating di�erent attributes that are an in-
dicator of their academic performance. In all cases, H���R-sampled
and H���R-NB output is accurate while Indep is confused by corre-
lation between attributes and outputs noisy results. In addition to
these hypothetical updates, we considered complex what-if queries
that analyzed the e�ect of assignment and discussion attributes on
individuals that read announcements and have high attendance. In
these individuals, we observed that improving assignment score
has the maximum e�ect on the overall grade of individuals.
How-to. For the German-Syn (20k) dataset, we considered a how-
to query that aims to maximize the fraction of individuals receiv-
ing good credit. We provided Status, Savings, Housing and Credit
amount as the set of attributes in the HowToUpdate operator. H��
��R-sampled returned that updating two attributes i) account status,
and ii) housing attributes is su�cient to achieve good credit. This
showed that updating a single attribute would not maximize the
fraction of individuals with good credit. We evaluated the ground
truth (Opt-HowTo) by enumerating all possible update queries and
used the structural equations of the causal graph to evaluate the
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(a) Solution quality (b) Running time
Figure 9: How-to Query output for German-Syn (20k) with
varying number of buckets.

post-update value of the objective function for each update. We
identi�ed that H���R’s output matches the ground truth update.

For the Student-Syn dataset, we evaluated a how-to query to
maximize average grades of individuals with a budget of updating
atmost one attribute. H���R-sampled returned that improving indi-
vidual attendance provide the maximum bene�t in average grades.
This output is consistent with ground truth calculated by evaluating
the e�ect of all possible updates (Opt-HowTo).
E�ect of discretization. H���R bucketizes all continuous at-
tributes before solving the integer program. In this experiment, we
evaluate the e�ect of number of buckets on the solution quality and
running time on a modi�ed version of German-Syn (20k) dataset
that contains continuous attributes. We partitioned the dataset into
equiwidth buckets and compared the solution returned by H���R-
sampled and the optimal solution calculated after discretization
(Opt-discrete) with the ground truth (OptHowTo). Figure 9a com-
pares the quality of H���R-sampled and Opt-discrete as a ratio of
the optimal value. We observe that the solution quality improves
with the increase in the number of buckets and the returned so-
lution is within 10% of the optimal value whenever we consider
more than 4 buckets. The time taken by Opt-discrete increases ex-
ponentially with the number of buckets, while the time taken by
H���R-sampled does not increase considerably as the number of
variables in the integer program depends linearly on the number of
buckets. This shows that running H���R-sampled over a bucketized
dataset leads to competitive quality in reasonable amount of time.

5.5 Runtime Analysis and Comparison
In this section, we evaluate the e�ect of di�erent facets of the
input on the runtime of H���R. H���R comprises two steps: (a)
creating the aggregate view onwhich the query should be computed
(done using a join-aggregate query), and (b) training regression
functions to calculate conditional probability in the calculation
of query output. This training is performed over a subset of the
attributes of the view computed in the previous step. Training a
regression function is more time-consuming than computing the
aggregate view in step (1). Therefore, H���R is as scalable as prior
techniques for regression (we use a random forest regressor from
the sklearn package). Hence the parameters we consider include (1)
database size, (2) backdoor set size (see Section 3.3), and (3) query
complexity. Since the e�ect of (1), (2) on the runtime of what-if
query evaluation is directly translated to an e�ect on the runtime
of how-to query evaluation, for how-to queries, we focus on the

(a) German-Syn (1M) (b) Students-Syn
Figure 10: What-If Query output.

e�ect of the number of attributes in the H��T�U����� operator
which will change the optimization function q (see Section 4.3).
What-if: database size. Table 1 presents the average running
time to evaluate the response to a what-if query. To evaluate the
e�ect of database size on running time, we varied the number of
tuples in German-Syn dataset from 10 to 1" . Figure 11 compares
the average time taken by H���R, H���R-sampled with Indep for
�ve di�erent What-If queries and Opt-HowTo for How-to queries.
We observed a linear increase in running time with respect to the
dataset size for all techniques except H���R-sampled. The increase
in running time is due to the time taken to train a regressor which
is used to estimate conditional probabilities for query output calcu-
lation To answer a hypothetical query, aggregate view calculation
requires less than 1% of the total time. The majority of the time is
spent on calculating the query output using the trained regressor.
Therefore, the time taken by H���R-sampled does not increase
considerably when the dataset size is increased beyond 100 .
What-if: backdoor set size. This experiment changed the back-
ground knowledge to increase the backdoor set from 2 attributes to
6 attributes. The running time to calculate expected fraction of high
credit individuals on updating account status increased from 7.2
seconds when backdoor set contains age and sex to 22.45 seconds
when the backdoor set contains all attributes.
What-if: query complexity. In this experiment, we synthetically
addmultiple attributes in the Student-syn dataset and the di�erent
operators of the query to estimate their on running time.

On adding multiple attributes in the U�� operator, the time taken
to compute the relevant view increases minutely. For Student-Syn,
U�� operator was evaluated in less than 0.5 seconds when 5 di�erent
attributes are added from other datasets. The increase in these
attributes do not a�ect the running time of subsequent steps unless
the attributes in F�� operator increase.

We now compare the e�ect of adding attributes in the F�� op-
erator of a Count query. Adding conditions involving Pre value
of attributes increases the number of attributes used to train the
regressor, which increases the running time (Figure 12a). Running
time increased from 4.2 seconds when F�� operator is empty to
12.1 seconds and 17.7 seconds when it contains 5 and 10 attributes,
respectively. In contrast, Indep is more e�cient as it does not use ad-
ditional attributes to compute query output. However, if the added
attribute is in the backdoor set, then the output is evaluated faster.
To understand the e�ect of adding such attributes, we considered a
query where the backdoor set contained 10 attributes. To evaluate
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(a) What-if query (b) How-to query
Figure 11: Running Time comparison on varying dataset size
for German-Syn dataset averaged over� ve di�erent queries.

(a) What-if ( F�� operator) (b) How-to (HowToUpdate)
Figure 12: Running Time comparison on varying number of
attributes in di�erent operators for Student-Syn dataset.

the output, H���R required 49.7 seconds and the time reduced to
7.4 seconds when 5 conditions on these attributes are added.
How-to: query complexity. Figure 12b presents the e�ect of the
number of attributes in HowToUpdate operator on the time taken
to process the query. Increasing attributes leads to a linear increase
in the number of variables in the integer program (IP). Therefore,
the time taken by H���R-sampled increases from 7 seconds for 5
attributes to 20 seconds for 10 attributes. In contrast, Opt-HowTo
considers all possible combinations of attribute values in the domain
of attributes in the HowToUpdate operator. It takes around 4minutes
for 5 attributes andmore than 90minutes for 10 attributes, justifying
the usefulness of the IP based formulation.

6 RELATEDWORK
We review relevant literature in hypothetical reasoning in databases,
probabilistic databases, and causality. The main distinction of this
paper from previous work is a framework that allows for hypothetical
reasoning over relational databases using a post-update distribution
over possible worlds that is able to capture both direct and indirect
probabilistic dependencies between attributes and tuples using a prob-
abilistic relational causal model.

Previous work has focused on What-if and How-to analysis
mainly in terms of provenance and view updates. Due to its prac-
ticality, and real applications like evaluating business strategies,
there have been several works that developed support for hypothet-
ical what-if reasoning in SQL, OLAP, and map-reduce environments
[9, 29, 31, 37, 55]. What-if reasoning through provenance updates
have been studied in [7, 16–18] to e�ciently measure the direct
e�ect of updating values in the database on a view created by the
query. Nguyen et. al. [36] study the problem of e�ciently perform-
ing what-if analysis with con�icting goals using data grids. Other

works have considered models for hypothetical reasoning in tem-
poral databases [8, 27], where Arenas et. al. [8] focused on a logical
model in which each transaction updates the database and the goal
is to answer a query about the generated sequence of states, without
performing the update on the whole database, and GreyCat [27] fo-
cused on time-evolving graphs. Christiansen et. al. [12] propose an
approach that considers a single possible world and then modi�es
the query evaluation procedure within a logic-based framework.
Another part of hypothetical reasoning is how-to queries which
have been explored mostly in terms of provenance updates [33–35]
that compute their results with hypothetical updates modeled as
a Mixed Integer Program. MCDB [30] allows users to create an
uncertain database that has randomly generated values in the at-
tributes or tuples (that may be correlated with other attributes or
tuples). These are generated using variable generation functions
that can be arbitrarily complex. It then evaluates queries over this
database using Monte Carlo simulations. Eisenreich et. al. [21] pro-
pose a data analysis system allowing users to input attribute-level
uncertainty and correlations using histograms and then perform
operations on the data such as aggregating or� ltering uncertain
values. We note that uncertainty in databases has been studied in
previous work on probabilistic databases [4, 6, 14, 15, 48], where
each tuple or value has a probability or con�dence level attached
to it, and in stochastic package queries [10] that allow for optimiza-
tion queries on stochastic attributes. We adapt and use the concept
of block-independent database model from probabilistic databases
[14, 41] in this paper. The framework suggested in this paper uses a
probabilistic relational causal model [46] to model updates as inter-
ventions and generate the post-update distribution that describes
the dependencies between the attributes and tuples. There is a vast
literature on observational causal inference on stored data in AI and
Statistics (e.g., [5, 13, 25, 26, 38, 42–44, 49]), and we use standard
techniques from this literature to compute query output.

7 CONCLUSIONS
We have de�ned a probabilistic model for hypothetical reason-
ing in relational databases. While the post-update distribution can
stem from any probabilistic model, we focus here on causal models.
We develop H���R: a novel framework that supports what-if and
how-to queries and performs hypothetical updates on the database,
measures their e�ect, and computes the query results. Our frame-
work includes new SQL-like operators to support these queries for
testing di�erent hypothetical scenarios. We prove that the query
output can be computed using causal inference and we further
devise optimizations. We show that our approach provides query
results that are rational and account for implicit dependencies in the
database. In future work, we plan to add support for multi-attribute
updates consisting of dependent attributes and also account for
database constraints and other semantic constraints. Extensions to
cyclic dependencies of attributes in causal graphs is an intriguing
future work. We also plan to develop an interactive UI, where users
can pose and explore hypothetical queries.
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