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Abstract

The Gromov–Hausdorff distance between two metric spaces measures how far the spaces are

from being isometric. It has played an important and longstanding role in geometry and shape

comparison. More recently, it has been discovered that the Gromov–Hausdorff distance between

unit spheres equipped with the geodesic metric has important connections to Borsuk–Ulam theo-

rems and Vietoris–Rips complexes.

We develop a discrete framework for obtaining upper bounds on the Gromov–Hausdorff distance

between spheres, and provide the first quantitative bounds that apply to spheres of all possible

pairs of dimensions. As a special case, we determine the exact Gromov–Hausdorff distance between

a circle and any higher-dimensional sphere, and determine the precise asymptotic behavior of the

distance from the 2-sphere to the k-sphere up to constants.

1 Introduction

The Gromov–Hausdorff distance dGH(X,Y ) between two compact metric spaces X and Y captures

how closely the spaces can be aligned with one another—in particular, dGH(X,Y ) = 0 if and only if X

and Y are isometric [5, 19]. The Gromov–Hausdorff distance was first defined in 1975 by Edwards [9],

and then rediscovered in 1981 by Gromov [10], and for decades it has played an important role in

metric geometry (see e.g. [7, 8]). In more recent years, it has proved to be a natural tool in the

context of data analysis and shape matching [4, 15, 17, 6].

Precisely determining the Gromov–Hausdorff distance between given metric spaces is computa-

tionally challenging [20, 16, 3]. In particular, computing the Gromov–Hausdorff distance between

finite metric spaces is NP-hard [15]. Exact values of the Gromov–Hausdorff distance in special cases

have been obtained only very recently—for example, between certain discrete metric spaces [11],

between an interval and a circle [12], between vertex sets of regular polygons [21], [14, Appendix C].

The first nontrivial bounds on the Gromov–Hausdorff distance between unit spheres equipped

with the geodesic metric were obtained in recent work of Lim, Mémoli, and Smith [14], who provided
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lower bounds using novel connections to Borsuk–Ulam type theorems, and upper bounds via explicit

constructive techniques. They computed the exact Gromov–Hausdorff distance between Sn and Sk

for n = 0, k = >, and (n, k) * {(1, 2), (1, 3), (2, 3)}. They also provided quantitative upper bounds

in the case k = n+ 1, and for general n and k they showed that dGH(S
n, Sk) is strictly less than the

trivial upper bound of Ã
2 , which follows from the fact that Sn and Sk have diameter Ã.

The aforementioned lower bounds were subsequently improved in a large polymath project [2],

which included the present authors. This project built on insights of Adams, Bush, and Frick [1]

and Lim, Mémoli, and Smith [14] to demonstrate quantitative relationships between the Gromov–

Hausdorff distance dGH(S
n, Sk), Borsuk–Ulam type theorems concerning functions Sk ³ Sn, and

the topology of Vietoris–Rips complexes over Sn and Sk. These quantitative connections further

motivate the question of determining the exact value of the Gromov–Hausdorff distance between

spheres. Explicit upper bounds on dGH(S
n, Sk) for general n and k have remained elusive, and

our work addresses this scarcity by computing the exact value of dGH(S
1, Sk) for all k and giving

quantitative upper bounds on dGH(S
n, Sk) for all n and k.

Quantitative results. For reasons of notational convenience, we will work with the quantity

2dGH(S
n, Sk). The statements of Theorems 1.1 and 1.2 contain two equivalent formulations: first an

upper bound on 2dGH(S
n, Sk), and then a lower bound on the gap between 2dGH(S

n, Sk) and the

elementary upper bound of Ã. When n = 1, our methods are strong enough to meet the existing

lower bounds, and we obtain the following theorem.

Theorem 1.1. Let 3 g 1 be any integer. Then

2dGH(S
1, S23) = 2dGH(S

1, S23+1) =
2Ã3

23+ 1

or equivalently Ã 2 2dGH(S
1, S23) = Ã 2 2dGH(S

1, S23+1) =
Ã

23+ 1
.

The lower bounds for 2dGH(S
1, S23) and 2dGH(S

1, S23+1) were achieved in [2], where it is shown

that, for all n and k, strong bounds for 2dGH(S
n, Sk) can be obtained in terms of the equivariant

topology of Vietoris–Rips complexes. Theorem 1.1 shows that these bounds are sharp in infinitely

many cases, answering half of [2, Question 8.1] in the affirmative. It could be the case that these

topological lower bounds for 2dGH(S
n, Sk) are sharp for every n and k, and Theorem 1.1 provides

the strongest evidence to date in this direction.

The upper bound 2dGH(S
1, S23) f 2Ã3

23+1 can be obtained relatively quickly with our techniques—in

particular, it is a special case of Theorem 1.2 below, with the choice n = 1 and k = 23. The Gromov–

Hausdorff distance between a circle and an odd-dimensional sphere will require a much more careful

analysis, which we carry out in Section 5.

For general n and k, we prove the following result.

Theorem 1.2. For every 1 f n < k < >, we have

2dGH(S
n, Sk) f Ãk

k + 1
or equivalently Ã 2 2dGH(S

n, Sk) g Ã

k + 1
.

We will establish the n = 1 case of Theorem 1.2 in Section 4. The general case is treated in Section 6.
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Packings, coverings, and asymptotic results. The bound of Theorem 1.2 has the advantage

that it is concrete and simple to state. However, we are able to prove a more granular set of results

which gives an asymptotic improvement on Theorem 1.2 for fixed n g 2, and gives a sharp (up to

constants) asymptotic description of 2dGH(S
2, Sk). To discuss these results, we first introduce some

definitions and notation.

We will consider projective space RPn, endowed with the quotient metric induced by the geodesic

metric on Sn. We denote this metric by dRPn . Below, we will make repeated use of the following two

parameters:

pm(RPn)
def

= sup{· > 0 | #x1, . . . , xm in RPn so that dRPn(xi, xj) g · for all i 6= j },

cm(RPn)
def

= inf{· > 0 | #x1, . . . , xm in RPn so that for all x * RPn there is i with dRPn(x, xi) f · }.
The parameter pm(RPn) is the minimum distance between distinct points in an optimal packing of m

points in RPn (i.e. a projective code). The parameter cm(RPn) is the smallest radius needed to cover

RPn by m-many metric balls. By considering an optimal packing with the additional property that as

few points as possible have pairwise distance exactly pm(RPn), one can see that cm(RPn) f pm(RPn).

A standard argument using the fact that the volume of a ball in RPn is proportional to the n-th power

of its radius shows that, for fixed n, pm(RPn) and cm(RPn) are bounded above and below by constant

multiples of 1
n
:
m
. With these parameters in hand, we proceed to our results.

Theorem 1.3. For all 2 f n < k < >, we have

2dGH(S
n, Sk) f max

{

arccos

(2(k 2 1)

k + 1

)

, Ã 2 pk+1(RP
n), 2pk+1(RP

n)

}

.

Using Theorem 1.3, we obtain an asymptotic result describing the gap between 2dGH(S
n, Sk) and

Ã for fixed n. Below, Ω
(

1:
k

)

denotes a function that is bounded below by a positive multiple of 1:
k
.

Corollary 1.4. For fixed n g 2, we have

Ã 2 2dGH(S
n, Sk) = Ω

(

1:
k

)

.

Previous work (see [2, Theorem 5.3]) has shown that 2dGH(S
n, Sk) g Ã2 2ck(RP

n). In particular

Ã 2 2dGH(S
n, Sk) f Θ

(

1
n
:
k

)

, where Θ
(

1
n
:
k

)

denotes a positive function that is bounded above and

below by constant multiples of 1
n
:
k
. For n = 2, this matches (up to constants) the upper bound of

Corollary 1.4, allowing us to exactly determine the asymptotic behavior of Ã 2 2dGH(S
2, Sk).

Corollary 1.5. The Gromov–Hausdorff distance between S2 and Sk satisfies

Ã 2 2dGH(S
2, Sk) = Θ

(

1:
k

)

.

We conjecture that in general the n-th root bound is the correct answer for the asymptotic behavior

of Ã 2 2dGH(S
n, Sk) when n is fixed. Note that Theorem 1.1 and Corollary 1.5 prove this conjecture

for n = 1 and n = 2 respectively.

Conjecture 1.6. For fixed n g 1, we have

Ã 2 2dGH(S
n, Sk) = Θ

(

1
n
:
k

)

.
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Our methods. To prove upper bounds on 2dGH(S
n, Sk), it suffices to construct (possibly discontin-

uous) correspondences between Sn and Sk which do not distort the metric too much (see Section 2).

Lim, Mémoli, and Smith [14] constructed optimal correspondences between low-dimensional spheres

by decomposing the larger sphere into discrete chunks, which were then collapsed to points in the

lower-dimensional sphere. They used a similar approach to build correspondences between Sn+1 and

Sn for all n, a construction which was further developed in [2, Section 6]. Continuing in a similar

vein, our approach provides a clean framework for constructing correspondences between Sn and Sk

for any n and k, and it bounds the resulting distortion (see Theorem 3.1). Despite the thematic

through-line in the development of these methods, the particular correspondences that we construct

are wholly new—existing correspondences in the literature are not a special case of them.

More specifically, our approach uses finite centrally symmetric point sets in Sn and Sk to break

the spheres into discrete chunks, which are then collapsed into the opposite sphere in such a way that

the distortion is quantifiable. It is possible that our bounds could be improved in some cases with

different choices of centrally symmetric point sets, but we suspect that determining the exact value

of dGH(S
n, Sk) for 2 f n < k will require constructions that are not discrete in this way. In fact, the

completely discrete approach is already insufficient to prove the odd-dimensional case of Theorem 1.1;

see Remark 4.5. Our proof of the odd-dimensional case in Section 5 necessarily avoids collapsing full-

dimensional chunks of either sphere to a point, but we maintain enough discrete structure that we are

able to quantify the distortion. This approach builds on the “embedding projection correspondences”

of Mémoli and Smith [18], and such an approach may be fruitful for general n and k.

2 Background

The Gromov–Hausdorff distance dGH(X,Y ) between metric spaces X and Y is the infimum over all

isometric embeddings of X and Y into a larger metric space, of the Hausdorff distance between their

images. In other words, dGH(X,Y ) captures how closely X and Y can be “aligned” in some ambient

space. Below we give an equivalent definition of the Gromov–Hausdorff distance due to Kalton and

Ostrovskii [13], which will prove convenient for our purposes.

We first require some additional terminology. A correspondence between two sets X and Y is a

relation R ¦ X × Y with the property that ÃX(R) = X and ÃY (R) = Y ; that is, the coordinate

projections of R to X and Y are surjective. Equivalently, a correspondence relates every point of X

to a point of Y , and vice versa. If X and Y are metric spaces, the distortion of a correspondence R is

dis(R)
def

= sup
(x,y),(x2,y2)*R

∣

∣dX(x, x2)2 dY (y, y
2)
∣

∣.

Above, dX and dY denote the respective metrics on X and Y . Informally, dis(R) is small if R does not

“pull apart” or “push together” points too much. Finally, the Gromov–Hausdorff distance between

compact metric spaces X and Y is given by the relationship

2dGH(X,Y )
def

= inf
R

dis(R) (1)

where the infimum is taken over all correspondences R ¦ X × Y .
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Our metric spaces of interest are unit spheres Sn def

= {x * R
n+1 | 〈x, x〉 = 1}, equipped with the

geodesic metric

dSn(x, x2)
def

= arccos(〈x, x2〉).
We will always consider spheres of positive finite dimension, as the cases of S0 and S> have been

fully treated by previous work [14]. With the geodesic metric, Sn has diameter equal to Ã, and a

quick consequence is that 2dGH(S
n, Sk) is at most Ã. As previously mentioned, Lim, Mémoli, and

Smith [14] showed that in fact 2dGH(S
n, Sk) is strictly less than Ã when 1 f n < k < >.

We say that a set P ¦ Sn is antipodal or centrally symmetric if x * P implies 2x * P . We often

write finite antipodal sets as P = {±p1, . . . ,±pm}. For a metric space (X, dX ), the separation of a

finite set P ¦ X is the minimum distance between distinct points in the set, that is

sepX(P )
def

= min
p 6=p2

{dX(p, p2)}

where the minimum above is over all p, p2 * P with p 6= p2. Note that if P ¦ Sn is an antipodal set

containing more than two points, then sepSn(P ) f Ã
2 .

Each finite subset P = {p1, . . . , pm} of a metric space (X, dX ) can be associated to its Voronoi

diagram {X1, . . . ,Xm} where Xi
def

= {x * X | dX(x, pi) f dX(x, pj) for all j 6= i}. We call Xi the

Voronoi cell associated to pi. If P = {p1, . . . , pm} is a finite subset of a metric space (X, dX ) with

Voronoi diagram {X1, . . . ,Xm}, then the Voronoi diameter of P is

vdiamX(P )
def

= max
i*[m]

{

diamX(Xi)
}

.

Note that if P ¦ Sn is antipodal, then the Voronoi diagram of P is centrally symmetric. Also note

that vdiamX(P ) f 2dH(X,P ) where dH denotes Hausdorff distance.

3 Correspondences induced by antipodal sets

First, we informally describe our construction. Choose finite antipodal sets in Sn and Sk with equal

size. Each of these sets decomposes Sn and Sk into Voronoi cells. Since there are equally many cells

and points in each sphere, we may collapse cells in Sn to points in Sk, and vice versa, obtaining a

correspondence (see Figure 1 below). Provided that the cells are not too large and the points are

sufficiently separated, such correspondences will have distortion bounded away from Ã. The following

theorem formalizes and quantifies this technique.

Theorem 3.1. Let P = {±p1, . . . ,±pm} ¦ Sn and Q = {±q1, . . . ,±qm} ¦ Sk be finite antipodal

sets of equal size. Let {±F1, . . . ,±Fm} and {±G1, . . . ,±Gm} be the Voronoi diagrams in Sn and Sk

induced by P and Q respectively. Define the correspondence

RP,Q
def

=
{

± (pi, q)
∣

∣ i * [m] and q * Gi

}

*
{

± (p, qi)
∣

∣ i * [m] and p * Fi

}

.

The distortion of RP,Q is at most the maximum of the following four quantities:

vdiamSn(P ) Ã 2 sepSn(P )

vdiamSk(Q) Ã 2 sepSk(Q).
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Figure 1: A sketch of the correspondence RP,Q of Theorem 3.1. The cell

Gi ¦ Sk collapses to the point pi * Sn, and the cell Fj ¦ Sn collapses to the

point qj * Sk.

Proof. First note that RP,Q is indeed a correspondence, as every point in Sn appears in some Voronoi

cell ±Fi, and every point in Sk appears in some Voronoi cell ±Gi. It remains to bound the quantity

sup
(x,y),(x2,y2)*RP,Q

∣

∣dSn(x, x2)2 dSk(y, y2)
∣

∣ . ( )

We achieve this by considering a variety of cases, based on the definition of RP,Q. Many of these

cases are symmetric, thanks to the symmetry in the definition of RP,Q, but we enumerate all of them

for completeness. To see that these nine cases cover all possibilities, note that if (x, y) * RP,Q then

x * P or y * Q (and possibly both are true).

Case 1: x = x2 = ±pi.

We have y, y2 * Gi or y, y
2 * 2Gi. Thus ( ) is equal to dSk(y, y2), which is at most vdiamSk(Q).

Case 2: x = 2x2 = ±pi.

In this case dSn(x, x2) = Ã, so ( ) is equal to Ã2 dSk(y, y2). We have y * Gi and y2 * 2Gi. By central

symmetry of the Voronoi diagram in Sk, we have 2y2 * Gi, and so

dSk(y, y2) = Ã 2 dSk(y,2y2) g Ã 2 diamSk(Gi) g Ã 2 vdiamSk(Q).

Plugging in and simplifying, we see ( ) is again at most vdiamSk(Q).

Case 3: x = ±pi and x2 = ±pj for i 6= j.

Here we have sepSn(P ) f dSn(x, x2) f Ã2 sepSn(P ) since x and x2 are distinct, non-antipodal points

in P . From this, we see that ( ) is at most Ã 2 sepSn(P ).

6



Case 4: x = pi and y2 = qi, or x = 2pi and y2 = 2qi.

By central symmetry, it suffices to consider the case x = pi and y2 = qi. We have y * Gi and x2 * Fi.

Since P and Q are antipodal, we have dSn(x, x2) f Ã/2 and dSk(y, y2) f Ã/2. Thus ( ) is at most

Ã/2, which is in turn at most Ã 2 sepSn(P ) since sepSn(P ) f Ã/2.

Case 5: x = pi and y2 = 2qi, or x = 2pi and y2 = qi.

By central symmetry, it suffices to consider the case x = pi and y2 = 2qi. Here we have x2 * 2Fi

and y * Gi. Using central symmetry of P and Q, the former implies dSn(pi, x
2) g Ã/2, and the latter

implies dSk(y,2qi) g Ã/2. These inequalities imply that ( ) is at most Ã/2, which is in turn at most

Ã 2 sepSn(P ) since sepSn(P ) f Ã/2.

Case 6: x = ±pi and y2 = ±qj for i 6= j.

Here x2 lies in ±Fj, and y lies in ±Gi. We claim that

sepSn(P )/2 f dSn(x, x2) f Ã 2 sepSn(P )/2 and sepSk(Q)/2 f dSk(y, y2) f Ã 2 sepSk(Q)/2.

To see this, consider the case x2 * Fj and x = pi. Note by triangle inequality that

sepSn(P ) f dSn(pi, pj) f dSn(pi, x
2) + dSn(x2, pj) f 2dSn(pi, x

2)

where the last inequality follows from the fact that x2 * Fj . This gives sepSn(P )/2 f dSn(x, x2), and
the remaining cases follow by an analogous triangle inequality argument. Now, using the inequalities

above we find that ( ) is at most Ã 2 (sepSn(P ) + sepSk(Q))/2, which is in turn bounded above by

the maximum of Ã 2 sepSn(P ) and Ã 2 sepSk(Q).

Case 7: y = ±qi and y2 = ±qj for i 6= j.

Symmetric to Case 3. We have sepSk(Q) f dSn(y, y2) f Ã 2 sepSk(Q) since y and y2 are distinct,

non-antipodal points in Q. From this, we see that ( ) is at most Ã 2 sepSk(Q).

Case 8: y = 2y2 = ±qi.

Symmetric to Case 2. Since dSk(y, y2) = Ã, ( ) is equal to Ã 2 dSn(x, x2). However, x * Fi and

x2 * 2Fi, which implies dSn(x, x2) g Ã 2 vdiamSn(P ). Thus we find ( ) is at most vdiamSn(P ).

Case 9: y = y2 = ±qi.

Symmetric to Case 1. Here we have x, x2 * Fi or x, x
2 * 2Fi, and so ( ) is equal to dSn(x, x2), which

is at most diamSn(Fi) f vdiamSn(P ).

Remark 3.2. One may also wish to construct correspondences RP,Q using Voronoi diagrams of non-

antipodal point sets P and Q. This can certainly be done, and a theorem similar to Theorem 3.1

could be obtained, but the casework would be slightly different and more laborious. The advantage

of the antipodal symmetry in our theorem is that RP,Q will generally send antipodes to antipodes,

and we need not worry that points which lie distance diam(Sn) = diam(Sk) = Ã from another

are “pulled together” by the correspondence. Without the antipodal assumption, several further

quantities—such as the diameter of P and Q—would need to be considered. We have chosen the

antipodal formulation since it simplifies our statements and constructions, and we are not aware of

any cases where a non-antipodal argument would improve any of our bounds. This is consistent with

the “helmet trick” established by Lim, Mémoli, and Smith [14], which shows that one may reduce to

the case of antipode-preserving (or “odd”) functions between Sn and Sk when bounding distortion.
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Remark 3.3. The requirement that P and Q have the same size is one of the main technical obstacles in

applying Theorem 3.1. There are many natural antipodal sets in Sn, such as the vertices of the cross-

polytope, the positive and negative copies of the vertices of a geodesic simplex, or the (normalized)

vertices of a hypercube. However, it is usually not so straightforward to find a nice antipodal set of

matching size in Sk.

4 From the 1-sphere to the k-sphere: an initial bound

To use Theorem 3.1, we must construct antipodal point sets in Sn and Sk with small Voronoi diameter

and large separation, to the extent that this is possible. Doing so in S1 is straightforward: the best

choice is simply to space points evenly around the circle. In Sk there are several natural choices, and

one that will prove useful for us is the vertex set of the cross-polytope, i.e. the standard basis vectors

and their negatives. We start by characterizing the Voronoi diameter and separation of this set.

Lemma 4.1. Let Q = {±e1, . . . ,±ek+1} ¦ Sk be the standard basis vectors and their negatives. Then

for k g 1 we have

vdiamSk(Q) = arccos

(2(k 2 1)

k + 1

)

and sepSk(Q) =
Ã

2
.

Proof. The equality sepSk(Q) = Ã
2 is immediate since every pair of non-antipodal points in Q are

distance Ã
2 apart. To obtain the Voronoi diameter, it suffices by symmetry to compute the diameter

of the cell associated to e1. This cell consists of all points in Sk whose first coordinate is positive and

maximum in absolute value among all the coordinates. In particular, every point in this cell has first

coordinate at least as large as 1:
k+1

. Thus if x and x2 lie in this cell, then

〈x, x2〉 =

k+1
∑

i=1

xix
2
i g 1

k + 1
+

k+1
∑

i=2

xix
2
i g 1

k + 1
2 k

k + 1
=

2(k 2 1)

k + 1
.

Above, the last inequality follows by applying the Cauchy–Schwarz inequality to the truncated vectors

obtained by deleting the first coordinates of x and x2, noting that each truncated vector has norm at

most
√

k
k+1 . Taking the arccosine of both sides flips the direction of the inequality, and we obtain

dSk(x, x2) f arccos
(

2(k21)
k+1

)

. Moreover, equality is achieved when x has all coordinates equal to
1:
k+1

and x2 has first coordinate equal to 1:
k+1

and all other coordinates equal to 21:
k+1

.

To analyze correspondences from S1 to Sk, we first require a small technical lemma.

Lemma 4.2. For k g 3, we have arccos
(

2(k21)
k+1

)

f (k21)Ã
k

.

Proof. For k = 3, we have equality. For k g 4, we use the estimate arccos(x) f Ã 2
:
2x+ 2, and

immediately see that arccos
(

2(k21)
k+1

)

f Ã2 2:
k+1

. As k g 4, we have 4k2 g Ã2(k+1), which implies

that 2:
k+1

g Ã
k
. Hence arccos

(

2(k21)
k+1

)

f Ã 2 Ã
k
= (k21)Ã

k
as desired.

Theorem 4.3. For k g 2, we have 2dGH(S
1, Sk) f kÃ

k+1 .
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Proof. Let P ¦ S1 consist of 2(k + 1) evenly spaced points, and let Q ¦ Sk be the standard ba-

sis vectors and their negatives. The correspondence RP,Q of Theorem 3.1 (shown in Figure 2) will

have distortion at most the maximum of vdiam(P ), Ã 2 sep(P ), vdiam(Q), and Ã 2 sep(Q). We

may immediately note that vdiam(P ) = sep(P ) = Ã
k+1 , and sep(Q) = Ã

2 . Lemma 4.1 tells us that

vdiam(Q) = arccos
(

2(k21)
k+1

)

. When k = 2, this is arccos
(

21
3

)

< arccos
(

21
2

)

= 2Ã
3 = kÃ

(k+1) , and for

k g 3 Lemma 4.2 provides a slightly stronger upper bound of (k21)Ã
k

. Plugging all of this in, we see

that RP,Q has distortion at most Ã 2 sep(P ) = kÃ
k+1 as desired.

Remark 4.4. The k = 2 case of Theorem 4.3 shows that 2dGH(S
1, S2) = 2Ã

3 . Lim, Mémoli, and

Smith [14] previously constructed correspondences between S1 and S2 with this optimal distortion,

and their constructions likewise involved decomposing S2 into chunks that were then collapsed to

points in S1. One of their constructions uses six isometric triangular regions, three in the upper

hemisphere and three in the lower hemisphere, and another uses images of rectangular planar regions

under a certain parametrization of S2 (the latter appears in the arxiv version of [14]).

Our correspondence RP,Q uses a new decomposition of S2, consisting of the six centrally projected

facets of the cube. Figure 2 illustrates these decompositions of S1 and S2 that are used to build RP,Q.

Figure 2: Voronoi cells in S1 and S2 induced by finite antipodal sets P and Q

with six points each. The correspondence RP,Q of Theorem 3.1 is optimal in

this case, with distortion 2Ã
3 .

Remark 4.5. Note that Theorem 4.3 already implies that dGH(S
1, S23) = 23Ã

23+1 , which is half of

Theorem 1.1. In the following section, we will establish the second half of Theorem 1.1 by showing

that dGH(S
1, S23+1) = 23Ã

23+1 . It turns out that Theorem 3.1 is fundamentally incapable of estab-

lishing this result. Even more strikingly, Theorem 3.1 is incapable of improving the upper bound

9



dGH(S
1, S23+1) = (23+1)Ã

23+2 by any small · > 0.

An improvement would require us to construct finite antipodal sets P ¦ S1 and Q ¦ S23+1 with

Voronoi diameter strictly less than (23+1)Ã
23+2 , and with separation strictly larger than Ã

23+2 . By the

requirement on separation, such a P can consist of at most 23 pairs of points. Then Q would likewise

consist of at most 23 pairs of points, which would all be contained in an equator of codimension one.

The poles above this equator would lie in every Voronoi cell associated to points in Q, and hence all

Voronoi cells would have diameter Ã, making Theorem 3.1 inapplicable.

5 From the 1-sphere to the k-sphere: a tight bound for odd k

Next we turn our attention to the problem of determining the Gromov–Hausdorff distance between S1

and Sk for odd k. We have seen in Remark 4.5 that Theorem 3.1 is incapable of proving Theorem 1.1

for odd k. The goal of this section is to develop a new correspondence Rk which addresses these issues.

We begin in Section 5.1 with a more detailed analysis of the limitations of Theorem 3.1; in particular,

we see how these limitations suggest a natural geometric construction for the new correspondence

Rk. In Section 5.1 we describe Rk both analytically and geometrically, and in Sections 5.2 and 5.3

we show that Rk has the desired distortion. Section 5.4 contains the resulting proof of Theorem 1.1.

5.1 An improved correspondence

In our proof of Theorem 4.3 we considered a correspondence RP,Q where P ¦ S1 consisted of 2k + 2

evenly spaced points, and Q ¦ Sk consisted of the vertices of a cross-polytope (i.e. the standard

basis vectors and their negatives). This correspondence has distortion kÃ
k+1 , and when k is odd we

would like to improve this to (k21)Ã
k

. We will see that a new geometric idea emerges from studying

the precise limitations of the correspondence RP,Q.

Consider any pair of points pi, pj * P which lie at distance kÃ
k+1 on S1. These points correspond

to two nonantipodal Voronoi cells Gi and Gj in Sk, which intersect nontrivially (in a codimension 1

subset), so that, by the definition of RP,Q, each x * Gi + Gj corresponds to both pi and pj . Thus

the distortion of RP,Q is bounded below by dS1(pi, pj) 2 dSk(x, x) = kÃ
k+1 , larger than our desired

distortion. Similarly, if we instead choose two points p2i, p
2
j * P at distance Ã

k+1 in S1, then any pair

of antipodal points x2 * Gi, 2x2 * Gj produces the same lower bound on distortion.

The evident issue is that, by associating all points of each cell Gi to a single point, we have

collapsed faraway points pi and pj to a single point x, and we have spread nearby points p2i and p2j
to antipodal points ±x2. This suggests that we should not associate all points of Gi to a single point

pi * S1, but rather spread the points from Gi across the cell Fi ¦ S1.

We will achieve this using an embedding ³ : S1 ³ Sk, which takes each Voronoi cell Fi in S1

homeomorphically to a diameter of a Voronoi cell Gi in Sk. The embedding of Fi into Gi induces a

natural correspondence, defined by sending x * Gi to y * Fi, where ³(y) is the point on ³(Fi) which

is nearest to x. In the following sections we describe the details of the construction, showing that

for an appropriately-chosen embedding ³, projecting Voronoi cells in Sk onto segments of ³ yields a

correspondence Rk with the desired distortion.
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Notation and definition of Rk. We first fix a finite antipodal set P = {±p1, . . . ,±pk+1} ¦ S1

where the pi appear counterclockwise and evenly spaced with alternating signs, starting at p1 = e1
(see Figure 3). In Sk, we fix Q = {±q1, . . . ,±qk+1} ¦ Sk, where qi = ei. As usual, the Voronoi

cells in S1 associated to the ±pi are denoted by ±Fi, and similarly the cells in Sk associated to ±qi
are denoted by ±Gi. We will frequently use the fact that Gi consists of the points where the i-th

coordinate is positive and largest in magnitude among all coordinates.

The correspondence Rk is constructed with respect to a certain embedding ³ : S1 ³ Sk, whose

image consists of 2k + 2 geodesic arcs in Sk, such that each arc is the diameter of a Voronoi cell.

The curve ³ crosses the cells in a specific way, and as such, it is convenient to adopt a new notation

for the cells Fi and Gi, whose linear ordering reflects the traversed order of the cells. We order

the ±Fi as F1,F2, . . . ,F2k+2, according to the rule Fm = (21)m+1Fm, where the subscript on Fm

is understood modulo k + 1. Note that this linear order depends on k being odd—for example

Fk+2(21)k+2F1 = 2F1, whereas if k were even we would have repeated F1 in the linear order and

missed 2F1.

Explicitly, the linear order on the ±Fi is as shown below:

F1,2F2, F3,2F4, . . . ,2Fk+1,2F1, F2, . . . , Fk+1.

Similarly, we linearly order the ±Gi as G1,G2, . . . ,G2k+2, where Gm = (21)m+1Gm, and again the

latter subscript is understood modulo k + 1. We can describe each interval Fm explicitly:

Fm =

[

(2m2 3)Ã

2k + 2
,
(2m2 1)Ã

2k + 2

]

.

Figure 3 shows the points and cells in S1 when k = 3.

Figure 3: The points ±p1,±p2,±p3,±p4 in S1, and the linear order on their

Voronoi cells.

Postponing the explicit description of ³, we instead directly define the functions that result from

projecting the various Gm onto ³. For any 1 f m f 2k + 2, we define fm : Gm ¦ R
k+1 ³ S1 by

fm(x1, . . . , xk+1) =
(m2 1)Ã

k + 1
+

Ã

2k(k + 1)
· x1 + · · ·+ xm21 2 xm+1 2 · · · 2 xk+1

xm
,

11



where the subscripts of x in the latter quotient are considered modulo k+1. Note that since |xm| g xi
for all i, this quotient of xi terms maps onto the interval [2k, k], and so fm describes a correspondence

between Gm and Fm, as desired. We also note that the collection of functions fm exhibits certain

natural symmetries, for example, fm(x) = 2fm+k+1(2x) (recall here that Gm = 2Gm+k+1). In

Section 5.2 we also discuss a certain natural cyclic action compatible with the functions fm and their

domains Gm.

Definition 5.1. With the notation given above, the correspondence Rk between Sk and S1 is

Rk
def

=
{

(x, fm(x)) * Sk × S1
∣

∣

∣
x * Gm

}

.

We note that the correspondence Rk is not a function: if x lies on the boundary of two or more Voronoi

cells, then x is in the domain of multiple fm, and hence corresponds to multiple elements of S1. In

fact, at the beginning of this section, we saw that these boundary points caused undesirable distortion

bounds for the correspondence RP,Q. The next example provides evidence that the correspondence

Rk avoids this issue.

Example 5.2. Let x * G1 + Gk+1. Then x1 = 2xk+1, and we compute

fk+1(x)2 f1(x) =
kÃ

k + 1
+

Ã

2k(k + 1)

(

x1 + · · ·+ xk
xk+1

2 2x2 2 · · · 2 xk+1

x1

)

=
kÃ

k + 1
+

Ã

2k(k + 1)

(

2 x1 + · · ·+ xk
x1

2 2x2 2 · · · 2 xk + x1
x1

)

=
(k 2 1)Ã

k
,

the desired distortion bound for Rk.

Our goal in the remainder of this section is to prove that this quantity is exact.

Theorem 5.3. The distortion of Rk is equal to (k21)Ã
k

.

Geometric description of Rk. Before proceeding to the proof of Theorem 5.3, we take a short

detour to offer a geometric interpretation of the correspondence Rk, in particular, to see how Rk

arises by projecting the Voronoi cells Gm onto a particular embedding ³ : S1 ³ Sk.

Remark 5.4. Facundo Mémoli and Zane Smith [18] have explored similar ideas in the form of “embed-

ding projection correspondences”, which arise by projecting points in a metric space to the nearest

point on an embedded copy of another metric space. This strategy seems to have broad utility,

and has yielded promising experimental results including for correspondences between S1 and Sk

arising from piecewise geodesic embeddings S1 ³ Sk (“cartoonizations”). We first learned of these

correspondences during our work on the Gromov–Hausdorff, Borsuk–Ulam, Vietoris–Rips polymath

project [2]. A source of inspiration for our correspondence Rk were the embedding-projection corre-

spondences of Mémoli and Smith [18]. In fact, Rk is actually a variant of an embedding-projection

correspondence, with the caveat that our nearest-point projection is carefully restricted to Voronoi

cells.

The curve ³ consists of 2k+2 geodesic arcs, each of which crosses a diameter of a unique Voronoi

cell Gi. The corners of the Voronoi cells occur at the 2k+1 points of Sk where all coordinates have

12



magnitude 1:
k+1

. We use vectors of k+1 signs to denote these vertices—for example, ++2+ denotes

the vertex
(

1
2 ,

1
2 ,21

2 ,
1
2

)

in S3. Now ³ starts from ++ · · ·+ at time 2 Ã
2k+2 (the left endpoint of F1),

and it crosses Voronoi cells Gi in the order indicated by the index, progressing continuously across

diameters. Note that two diametrically opposite corners of cell ±Gi have opposite signs in all but the

i-th coordinate, and so the initial trajectory of ³ completely determines the 2k+2 vertices which are

visited by ³. For example, when k = 3, the curve ³ : S1 ³ S3 visits corners in the following order:

+ + ++ ³ +2 22 ³ 22++ ³ +++2 ³ 2 2 22

³ 2+++ ³ ++22 ³ 2 2 2+ ³ ++++ .

We emphasize here that this construction depends on k being odd: if k were even, then starting from

++ · · ·+ and switching all but one sign k+1 times, we would return prematurely to ++ · · ·+ after

time Ã. Since k is odd, ³ instead arrives at 22 · · · 2 after time Ã and continues in a Z/2-equivariant

manner: ³(2x) = 2³(x).

An important caveat is that the curve ³ does not move at constant speed. Instead, we define

³ so that it moves at constant speed in R
k+1 after ±Gi is centrally projected outward to a facet

of the cube [21, 1]k+1, via the map x 7³ 1
|xi|x. With this definition of ³, we obtain an alternative

definition for Rk, defined by associating every point x * Gm to the nearest point on the segment

³(Fm). Indeed, while this geometric description is not necessary for the distortion computation, it

can be readily checked that fm : Gm ³ S1 is obtained by centrally projecting Gm to a facet of the

cube [21, 1]k, and then linearly projecting this facet to the diameter ³(Fm) (see Figure 4). In this

way, each point y * Fm is associated to a fiber of the nearest-point map from Gm to ³(Fm)—this

fiber is a portion of a great (k 2 1)-sphere in Sk, orthogonal to ³(Fm) at the point ³(x).

Example 5.5. In this example we again specialize to the case k = 3 and we discuss how the value
2Ã
3 (the claimed distortion) arises naturally here. Eight of the sixteen vertices in S3 lie on the curve

³. Consider x = (12 ,21
2 ,

1
2 ,

1
2), which does not lie on the curve ³. By checking the signs of the

components, we see that x is a corner of the cells G1 = G1, 2G2 = G2, G3 = G3, and G4 = G8, and 2x

is a corner of G4, G5, G6, and G7. By the definition of Rk, we can compute the four correspondents of

x using the various functions fm. For example, one correspondent is

f1(x) =
Ã

24
·
1
2 2 1

2 2 1
2

1
2

= 2 Ã

24

Computing the remaining correspondents, we find that x corresponds to the four points2 Ã
24 ,

7Ã
24 ,

11Ã
24 ,43Ã24 ,

and 2x corresponds to the four points 19Ã
24 ,23Ã24 ,31Ã24 ,35Ã24 . The correspondents of x are pairwise closer

than 2Ã
3 , and the correspondents of 2x are pairwise closer than 2Ã

3 , whereas each correspondent of x

lies at least Ã
3 away from each correspondent of 2x.

For a qualitatively distinct example, we consider a Voronoi vertex which does lie on the curve

³, such as x2 = (12 ,
1
2 ,

1
2 ,

1
2). We find that the three correspondents of x, together with the three

correspondents of 2x, form a set of six equally spaced points on S1. Figure 5 shows these two

situations.
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Figure 4: (Left) The interval F1 =
[

2Ã
8 ,

Ã
8

]

in S1, containing the point 2 Ã
24 .

(Right) The Voronoi cell G1 ¦ S3, consisting of points whose first coordinate is

positive and maximum in magnitude, after central projection to the hyperplane

x1 = 1 in R
4. The bold red diameter is the central projection of ³(F1), and the

transparent blue triangle is the set of points that are closest to the point

³
(

2 Ã
24

)

which lies one third of the distance from ++++ to +2 22. The blue

points in S3 all correspond to 2 Ã
24 * S1.

Figure 5: Correspondents of the points ±x (left) and ±x2 (right) described in

Example 5.5.
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5.2 The distortion of Rk: initial steps

In the following sections, we will study the distortion of Rk by explicitly analyzing the behavior of

the functions fm. Much of this analysis can be simplified by appealing to certain natural symmetries

exhibited by these functions. After discussing these geometric properties of fm, we demonstrate how

these symmetries lead to a significant case reduction in the proof of Theorem 5.3.

Symmetries and geometric properties of the fm. The functions fm and their domains Gm are

compatible with a certain natural cyclic action, which generalizes the aforementioned Z/2-equivariance

fm(x) = 2fm+k+1(2x). Define the isometry

A1 : R
k+1 ³ R

k+1 : (x1, . . . , xk+1) 7³ (xk+1,2x1, . . . ,2xk),

and note that A1 takes Gm to Gm+1, where the subscript on Gm+1 is taken modulo 2k + 2. Let An

refer to the n-fold composition A1 ç · · · ç A1; for example, Ak+1 is the antipodal map, and A2k+2 is

the identity. We have the following lemma, immediate from the definitions of Gm and fm, which we

record for future use.

Lemma 5.6. For each n, An takes Gm to Gm+n, and for x * Gm, fm(x) = nÃ
k+1 + fm+n(An(x)).

Next, we show that each function fm is strictly distance-decreasing.

Lemma 5.7. Each fm is distance-decreasing. That is, for x 6= y * Gm, dS1(fm(x), fm(y)) < dS3(x, y).

Proof. By Lemma 5.6, and since each An is an isometry, it is enough to argue the case m = 1. We

compute for x 6= y:

|f1(x)2 f1(y)| =
Ã

2k(k + 1)

∣

∣

∣

∣

x2 + · · ·+ xk+1

x1
2 y2 + · · · + yk+1

y1

∣

∣

∣

∣

=
Ã

2k(k + 1)

∣

∣

∣

∣

y1(x2 + · · ·+ xk+1)2 x1(y2 + · · ·+ yk+1)

x1y1

∣

∣

∣

∣

<
1:

k(k + 1)

∣

∣

∣

∣

y1(x2 + · · ·+ xk+1)2 x1(y2 + · · ·+ yk+1)

x1y1

∣

∣

∣

∣

, since k g 3 ó Ã < 2
:
k

f 1:
k
|y1(x2 + · · · + xk+1)2 x1(y2 + · · ·+ yk+1)|, since x1y1 g 1

k+1

=
1:
k
|x2y1 2 x1y2 + · · ·+ xk+1y1 2 x1yk+1|

f 1:
k

(

|x2y1 2 x1y2|+ · · ·+ |xk+1y1 2 x1yk+1|
)

.

Let u and v be the k-tuples u = (|x2y1 2x1y2|, . . . , |xk+1y1 2x1yk+1|) and v = (1, . . . , 1). A standard

application of Cauchy–Schwarz recovers a well-known comparison between 1- and 2-norms:

‖u‖1 = 〈u, v〉 f ‖u‖2‖v‖2 =
:
k‖u‖2. (2)
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Applying this to the final term of our inequality, we continue:

1:
k

(

|x2y1 2 x1y2|+ · · ·+ |xk+1y1 2 x1yk+1|
)

f
√

∑

2fifk+1

(xiy1 2 x1yi)2

f
√

∑

1fi<jfk+1

(xiyj 2 xjyi)2

=
√

12 〈x, y〉2 by Lagrange’s identity

= sin(arccos(〈x, y〉)

< arccos(〈x, y〉),

as desired.

Remark 5.8. The proof of Lemma 5.7 is fairly representative of the techniques used to bound the

distortion of Rk, and we will continue to see geometric terms, such as the area
√

12 〈x, y〉2 of the

parallelogram spanned by x and y, arise in these comparisons. A powerful consequence of Lemma 5.7

is that the distortion of Rk can only be achieved at points of Sk lying on the boundary of two or more

cells (see Proposition 5.12). We believe that this observation, combined with a careful analysis of the

boundary components, could lead to a full proof of Theorem 5.3. Our current proof relies on this

observation only in the case k = 3, and for k g 5 we are able to give a more streamlined approach.

A case reduction. Here we demonstrate how the symmetries discussed above can be used to

simplify the distortion analysis for Rk. We have shown in Example 5.2 that the distortion of Rk is at

least (k21)Ã
k

, and it remains to show that this quantity is an upper bound. To achieve this, we must

show that, for each pair (i, j) with 1 f i f j f 2k + 2, the “distortion function”

Di,j : Gi × Gj ³ [0, Ã], Di,j(x, z)
def

=
∣

∣dS1

(

fi(x), fj(z)
)

2 dSk(x, z)
∣

∣

is bounded above by (k21)Ã
k

. That is, we must show that

Di,j(x, z) f
(k 2 1)Ã

k
for all x * Gi, z * Gj. (7)

Using symmetries and some other simple observations, we are able to significantly reduce the

number of pairs (i, j) which must be checked.

Proposition 5.9. For the collection of functions Di,j, the following statements hold:

(a) Di,j satisfies (7) ñó D1,j2i+1 satisfies (7) ñó D1,i2j+1 satisfies (7).

(b) D1,j satisfies (7) ñó Dj,k+2 satisfies (7) ñó D1,k+32j satisfies (7).
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(c) For j * {1, 4, 5, . . . , k 2 2, k 2 1, k + 2}, D1,j satisfies (7).

Proof. The first two items are consequences of certain natural symmetries, which can be used to show

that the claimed functions have identical images; the final item comes from a quick observation about

the image of D1,j for those j in the hypothesis of the statement.

For part (a), we apply Lemma 5.6 and the fact that each An is an isometry. Indeed, we have

D1,j2i+1(x, z) =
∣

∣dS1

(

f1(x), fj2i+1(z)
)

2 dSk(x, z)
∣

∣

=
∣

∣dS1

(

fi(Ai21x), fj(Ai21z)
)

2 dSk

(

Ai21x,Ai21z
)
∣

∣

= Di,j

(

Ai21x,Ai21z
)

,

and a similar argument verifies the statement for D1,i2j+1.

For part (b), we take advantage of the aforementioned Z/2-equivariance in the collection fm: for

x * G1, f1(x) = 2fk+2(2x) (here, recall that the cell Gk+2 is the antipode of the cell G1). Therefore

D1,j(x, z) =
∣

∣dS1

(

f1(x), fj(z)
)

2 dSk(x, z)
∣

∣

=
∣

∣

(

Ã 2 dS1(fk+2(2x), fj(z))
)

2
(

Ã 2 dSk(2x, z)
)∣

∣

= Dj,k+2(2x, z),

establishing the first claimed equivalence. The second claimed equivalence follows from part (a).

For part (c), when j = 1 or j = k + 2: if x, z * G1, then

dS1(f1(x), f1(z)) f Ã
k+1 f (k21)Ã

k

and

dSk(x, z) f diam(G1) = arccos(12k
k+1) f

(k21)Ã
k

by Lemma 4.2. Therefore D1,1 satisfies (7), and by part (b), so does D1,k+2.

For part (c), when 4 f j f k 2 1: observe that dS1(f1(x), fj(z)) takes values in the interval
[

(j22)Ã
k+1 , jÃ

k+1

]

, while dSk(x, z) takes values in the interval [0, Ã]. Therefore the image of D1,j is bounded

above by

max

{

jÃ

k + 1
,
(k 2 j + 3)Ã

k + 1

}

.

When j * {4, 5, . . . , k 2 2, k 2 1}, each of these terms is bounded above by (k21)Ã
k+1 f (k21)Ã

k
.

5.3 The proof of Theorem 5.3

With the case reduction of the previous section, we will see that we need only prove Theorem 5.3

analytically in two cases. We record a few simple bounds to ease the main proof. Recall that for

z * Gm, |zm| g |zi| for all i, and in particular, |zm| g 1:
k+1

, where, as usual, we understand subscripts

on coordinates modulo k + 1.
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Lemma 5.10. Let x * G1 and z * Gm.

(a) (x1 2 |zm|)2 f (x1 2 z1)
2 + (xm 2 zm)2 f 〈x2 z, x2 z〉,

(b) For k g 5, 1 + x1|zm| f 4k2(k+1)
Ã2 x21z

2
m,

(c) For k g 3, 1
2 + x1|zm| f 4k2(k+1)

Ã2 x21z
2
m

Proof. For part (a), we consider two cases:

• if x1 g |zm| then (x1 2 |zm|)2 f (x1 2 z1)
2 since |zm| g z1;

• if |zm| g x1, then (x1 2 |zm|)2 f (zm 2 xm)2 since x1 g xm.

For part (b), since x1|zm| g 1
k+1 , we have

1 + x1|zm|
x21z

2
m

=
1

x21z
2
m

+
1

x1|zm| f (k + 1)2 + (k + 1) = (k + 1)(k + 2) f (k + 1)4k
2

Ã2 ,

where the final inequality requires k g 5.

For part (c), similarly, we have

1 + 2x1|zm|
2x21z

2
m

=
1

2x21z
2
m

+
1

x1|zm| f 1
2(k + 1)2 + (k + 1) = (k + 1)(12k + 3

2) f k(k + 1) f (k + 1)4k
2

Ã2 ,

where the final inequality holds for all k g 3.

To prove Theorem 5.3, we must show that Di,j satisfies (7) for all 1 f i f j f 2k + 2. By

Proposition 5.9, part (a), it suffices to consider the cases i = 1 and 1 f j f k+2. By Proposition 5.9,

part (c), it suffices to consider j * {2, 3, k, k + 1}, and part (b) further reduces this to the two cases

j = k and j = k + 1. The following lemma gives a sufficient condition for our desired inequality in

each of these cases.

Lemma 5.11. To show that D1,j(x, z) f (k21)Ã
k

, it suffices to show,

(a) for j = k :
Ã

2k(k + 1)

(

x1 + · · ·+ xk+1

x1
+

z1 + · · ·+ zk 2 zk+1

zk
2 2k

)

f
√

〈x2 z, x2 z〉.

(b) for j = k + 1:
Ã

2k(k + 1)

(

x1 + · · ·+ xk+1

x1
+

z1 + · · ·+ zk+1

zk+1

)

f
√

〈x2 z, x2 z〉.

Proof. For j = k and j = k + 1, the function D1,j : G1 × Gj ³ [0, Ã] is equal to |dS1(f1(x), fj(z)) 2
dSk(x, z)|. In both cases, the circle distance is sufficiently large (namely, at least Ã

k
), and it suffices

to show that fj(z) 2 f1(x) 2 arccos(〈x, z〉 is bounded above by (k21)Ã
k

. Rearranging, it equivalently

suffices to show that

2 (k21)Ã
k

+ fj(z)2 f1(x) f arccos(〈x, z〉)

for j = k and j = k + 1.
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For part (a), we compute using the definition of f1 and fk that 2 (k21)Ã
k

+ fj(z) 2 f1(x) is equal

to:

2 (k 2 1)Ã

k
+

(k 2 1)Ã

k + 1
+

Ã

2k(k + 1)

(

z1 + · · ·+ zk21 2 zk+1

zk
2 2x2 2 x3 2 · · · 2 xk+1

x1

)

=
(22 2k)Ã

2k(k + 1)
+

Ã

2k(k + 1)

(

z1 + · · · + zk21 2 zk+1

zk
+

x2 + x3 + · · ·+ xk+1

x1

)

=
Ã

2k(k + 1)

(

x1 + · · ·+ xk+1

x1
+

z1 + · · ·+ zk 2 zk+1

zk
2 2k

)

,

where in the final step we have incorporated part of the constant term into the quotients. On the

other hand, since the Euclidean distance between x 6= z is shorter than the spherical distance, we have
√

〈x2 z, x2 z〉 f arccos(〈x, z〉), giving the desired result. A similar computation justifies (b).

With the case reduction and setup complete, we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. We consider each case from Lemma 5.11 separately below. Our argument for

the case j = k works for any value of k (Case 1, below). For j = k + 1, we make two separate

arguments: one when k g 5 (Case 2) and one when k = 3 (Case 3).

Case 1: j = k: Starting with the left side of Lemma 5.11(a), we write

Ã

2k(k + 1)

(

x1 + · · · + xk+1

x1
+

z1 + · · ·+ zk 2 zk+1

zk
2 2k

)

f Ã

2k(k + 1)

(

xk+1

x1
2 zk+1

zk

)

since
xi
x1

f 1 and
zj
zk

f 1

=
Ã

2k(k + 1)

(

xk+1zk 2 x1zk+1

x1zk

)

f |xk+1zk 2 x1zk+1| since
1

|x1zk|
f k + 1.

This final quantity is the area of the planar parallelogram spanned by the vectors (x12zk, xk+12zk+1)

and (zk, zk+1), and hence is bounded above by the product of side lengths

√

(

(x1 2 zk)2 + (xk+1 2 zk+1)2
)(

z2k + z2k+1

)

f
√

(x1 2 zk)2 + (xk+1 2 zk+1)2 since z2k + z2k+1 f 1

f
√

(x1 2 z1)2 + (xk 2 zk)2 + (xk+1 2 zk+1)2 by Lemma 5.10(a)

f
√

〈x2 z, x2 z〉.

By Lemma 5.11(a), this concludes Case 1.
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Case 2: j = k + 1 and k g 5: Starting with the left side of Lemma 5.11(b), we write

Ã

2k(k + 1)

(

x1 + · · ·+ xk+1

x1
+

z1 + · · ·+ zk+1

zk+1

)

f Ã

2k(k + 1)

k+1
∑

i=1

∣

∣

∣

xi
x1

+
zi

zk+1

∣

∣

∣

f Ã

2k
:
k + 1

√

√

√

√

k+1
∑

i=1

(

xi
x1

+
zi

zk+1

)2

by comparison of norms; see (2)

=
Ã

2k
:
k + 1

√

z2k+1 + x21 + 2x1zk+1〈x, z〉
x21z

2
k+1

since x and z are unit.

Focusing on the numerator of the radicand, we write

z2k+1 + x21 + 2x1zk+1〈x, z〉

= (zk+1 + x1)
2 2 2x1zk+1 + 2x1zk+1〈x, z〉

= (zk+1 + x1)
2 2 x1zk+1〈x2 z, x2 z〉

f 〈x2 z, x2 z〉(1 2 x1zk+1) by Lemma 5.10(a)

f 〈x2 z, x2 z〉x21z2k+1(k + 1)4k
2

Ã2 by Lemma 5.10(b), since k g 5.

Plugging back into the radicand and simplifying concludes Case 2.

Case 3: j = k + 1 and k = 3: Here we present a slight modification that allows us to push the

argument through in the case k = 3. This modification relies on the fact that each fm is distance-

decreasing (Lemma 5.7), from which it follows that the maximum value of each Di,j : Gi ×Gj ³ [0, Ã]

occurs only at boundary points (see Proposition 5.12 below).

Assuming the result of Proposition 5.12, the final two steps of Case 2 can be modified as follows.

If x * G1 +Gi for some i and z * Gk+1 +Gj for some j, then (x1 2 z1)
2 and (xi 2 zi)

2 are both at least

(x1+zk+1)
2 by a similar argument to the proof of Lemma 5.10(a). Thus 2(x1+zk+1)

2 f 〈x2z, x2z〉,
and the last three lines of the proof of Case 2 can be replaced by

(zk+1 + x1)
2 2 x1zk+1〈x2 z, x2 z〉

f 〈x2 z, x2 z〉(12 2 x1zk+1)

f 〈x2 z, x2 z〉x21z2k+1(k + 1)4k
2

Ã2

where the final inequality is due to Lemma 5.10(c).

Proposition 5.12. The maximum value of each Di,j : Gi×Gj ³ [0, Ã] occurs only at boundary points,

i.e. when x * "Gi and z * "Gj .
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Proof. By Proposition 5.9(a), it suffices to consider the case i = 1. Suppose that x is an interior point

of G1 and z is any point in Gj . First observe that if dS1(f1(x), fj(z)) = dSk(x, z), then D1,j(x, z) = 0

is not a maximum value.

Next suppose that dS1(f1(x), fj(z)) > dSk(x, z). This implies that x and z are not antipodal, and

we choose y * G1 lying on the minimal geodesic arc c connecting x to z, sufficiently close to x so that

dS1(f1(y), fj(z)) g dSk(y, z). We compute

D1,j(y, z) 2D1,j(x, z) = dS1(f1(y), fj(z))2 dSk(y, z) 2
(

dS1(f1(x), fj(z)) 2 dSk(x, z)
)

= dSk(x, y) + dS1(f1(y), fj(z))2 dS1(f1(x), fj(z))

g dSk(x, y)2 dS1(f1(x), f1(y)) by the triangle inequality,

> 0 by Lemma 5.7,

verifying that the value of D1,j increases when x is moved towards z.

In fact, we have shown that dS1(f1(y), fj(z)) > dSk(y, z), which implies that the set of y lying

on c + G1 and satisfying dS1(f1(y), fj(z)) g dSk(y, z) is nonempty, open, and closed in c + G1, hence

is equal to c + G1. Therefore the value of D1,j, when restricted to the geodesic arc c + G1, is strictly

increasing from x to the boundary of G1.

Now suppose that dS1(f1(x), fj(z)) < dSk(x, z). This implies that x and z are not antipodal, as

follows: since x lies in the interior of G1, antipodality would imply that z = 2x lies in the interior

of 2G1 = Gk+2, but D1,k+2(x,2x) = 0 by Lemma 5.6, contradicting our supposition. Thus we can

choose y * G1 lying on the minimal geodesic arc connecting x to 2z; that is, here we move x away

from z. We compute similarly:

D1,j(y, z) 2D1,j(x, z) = dSk(y, z) 2 dS1(f1(y), fj(z)) 2
(

dSk(x, z)2 dS1(f1(x), fj(z))
)

= dSk(x, y) + dS1(f1(x), fj(z)) 2 dS1(f1(y), fj(z))

g dSk(x, y)2 dS1(f1(x), f1(y)) > 0.

By the same argument as above, we conclude that x must be a boundary point of G1 to maximize

D1,j(x, z). A symmetric argument shows that z must be a boundary point of Gj .

5.4 The proof of Theorem 1.1

We are now prepared to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Using the definition of the Gromov–Hausdorff distance (1), we have

for even k : 2dGH(S
1, Sk) f dis(RP,Q) =

kÃ

k + 1
, by Theorem 4.3,

and

for odd k : 2dGH(S
1, Sk) f dis(Rk) =

(k 2 1)Ã

k
, by Theorem 5.3.

The fact that these estimates are sharp follows from combining Main Theorem and Theorem 5.1

of [2].

21



6 General upper bounds: proving Theorem 1.2 and Theorem 1.3

To prove Theorem 1.2, we will construct point sets in Sn (with n g 2) with Voronoi diameter at most
kÃ
k+1 , and separation at least Ã

k+1 . These sets will consist of 2(k + 1) points, matching the number

of vertices of the cross-polytope in Sk, so that we may apply Theorem 3.1. It turns out that there

is a relatively simple construction: start with the vertices of a cross-polytope in Sn, then add the

remaining points along the projected edges of the cross-polytope, spacing them as evenly as possible.

The following lemma explains this construction.

Lemma 6.1. For each 2 f n < k < >, there exists an antipodal set P ¦ Sn consisting of 2(k + 1)

points, with

vdiam(P ) f Ãn

n+ 1
and sep(P ) g Ã

2
(⌈

k2n
n(n+1)

⌉

+ 1
) g Ã

k 2 n+ 3
.

Proof. To start, set P = {±e1, . . . ,±en+1} ¦ Sn. By Lemma 4.1 we have vdiam(P ) f Ãn
n+1 , and

adding further points can only improve this inequality. We must add 2(k + 1)2 2(n + 1) = 2(k 2 n)

points to P . Consider the 2n(n + 1)-many geodesic arcs in Sn between pairs of points {±ei,±ej},
where i 6= j. Split these arcs into antipodal pairs, choosing one element of each pair as the “positive”

copy of the arc. Set N
def

=
⌈

k2n
n(n+1)

⌉

. Into the interior of each of the n(n + 1)-many positive arcs,

place up to N -many points, evenly spaced with distances between consecutive points (including the

endpoints of the arc) at least Ã
2(N+1) . Copy the points from the positive arcs antipodally to the

negative arcs. Collecting everything, we have up to 2(k + 1) points in P , as shown in Figure 6.

Figure 6: N = 3 points along geodesic arcs between non-antipodal vertices of

the octahedron, as in the proof of Lemma 6.1.

Now, we claim that sep(P ) g Ã
2(N+1) . By construction, this bound holds when we restrict our

attention to any copy of S1 containing {±ei,±ej}. The only other case to worry about is the distance

between p, p2 * P , where p and p2 lie in the interiors of arcs that are not coplanar. In particular,
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the nonzero coordinates in p and p2 do not occur in the same indices. As each point in P has at

most two nonzero coordinates, we either have 〈p, p2〉 = 0 or 〈p, p2〉 f c2 where c is the maximum

absolute value among the coordinates of all points in P that lie on the interiors of arcs. This implies

that dSn(p, p2) is at least as large as the distance from p (respectively, p2) to the nearest ±ei. This

proves that sep(P ) g Ã
2(N+1) as desired. The final inequality follows from the fact that n g 2, so

2
⌈

k2n
n(n+1)

⌉

f k 2 n+ 1.

With this construction, we can now recall and prove Theorem 1.2.

Theorem 1.2. For every 1 f n < k < >, we have

2dGH(S
n, Sk) f Ãk

k + 1
or equivalently Ã 2 2dGH(S

n, Sk) g Ã

k + 1
.

Proof. The case n = 1 follows from Theorem 4.3. For n g 2, let P ¦ Sn be the antipodal set of

2(k + 1) points of Lemma 6.1, and let Q ¦ Sk be the standard basis vectors and their negatives.

The correspondence RP,Q of Theorem 3.1 will have distortion at most the maximum of vdiam(P ),

Ã 2 sep(P ), vdiam(Q), and Ã 2 sep(Q). Lemma 6.1 guarantees that vdiamSn(P ) f Ãn
n+1 < Ãk

k+1 ,

and Ã 2 sepSn(P ) is bounded above by Ã 2 Ã
k2n+3 = Ã(k2n+2)

k2n+3 f kÃ
k+1 . Lemma 4.1 guarantees that

vdiamSk(Q) and Ã 2 sepSk(Q) are bounded above by Ãk
k+1 . The result follows.

The proof of Theorem 1.3 likewise proceeds by choosing appropriate antipodal sets and applying

Theorem 3.1. As before, in the higher dimensional sphere we use the vertices of a cross-polytope. In

the lower dimensional sphere, we simply use an optimal packing of antipodal points.

Theorem 1.3. For all 2 f n < k < >, we have

2dGH(S
n, Sk) f max

{

arccos

(2(k 2 1)

k + 1

)

, Ã 2 pk+1(RP
n), 2pk+1(RP

n)

}

.

Proof. Let P ¦ Sn be an antipodal set of 2(k + 1) points whose image P in RPn is an optimal

packing, with as few points as possible at pairwise distance exactly pk+1(RP
n). Let Q ¦ Sk be the

vertices of a cross-polytope. Applying Theorem 3.1, it will suffice to give appropriate upper bounds

on vdiam(P ), Ã 2 sep(P ), vdiam(Q), and Ã 2 sep(Q). The latter two quantities are bounded above

by arccos
(

2(k21)
k+1

)

by Lemma 4.1, and so it remains to consider the first two quantities.

The separation of P in Sn is exactly equal to pk+1(RP
n). Indeed, the quotient map Sn ³ RPn

exactly preserves the distance between any two points that are within a distance of Ã/2 from one

another. As Sn is antipodal, the closest pair of points in Sn has distance at most Ã/2 between them.

The Voronoi diameter of P is at most 2dH(P, S
n), and we further claim that dH(P, S

n) f
pk+1(RP

n). First note that because P is antipodal, dH(P, S
n) is equal to dH(P ,RPn). Since P has as

few pairs of points as possible at distance exactly pk+1(RP
n), we see that dH(P ,RPn) f pk+1(RP

n);

otherwise we could delete a point in P with distance exactly pk+1(RP
n) to another point in P and

replace it by a point at a strictly larger distance to all other points in P . This proves the result.

Corollary 1.4. For fixed n g 2, we have

Ã 2 2dGH(S
n, Sk) = Ω

(

1:
k

)

.
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Proof. By Theorem 1.3, we see that

Ã 2 2dGH(S
n, Sk) g Ã 2max

{

arccos

(2(k 2 1)

k + 1

)

, Ã 2 pk+1(RP
n), 2pk+1(RP

n)

}

= min

{

arccos

(

k 2 1

k + 1

)

, pk+1(RP
n), Ã 2 2pk+1(RP

n)

}

.

It thus suffices to bound the three quantities above. Using the bound arccos(x) g
:
22 2x, we see

that arccos
(

k21
k+1

)

is at least 2:
k+1

. The quantity Ã 2 2pk+1(RP
n) tends to Ã as k ³ >, and so

can be safely ignored. Lastly, the fact that pk+1(RP
n) is bounded below by a multiple of 1

n
:
k
g 1:

k

completes the proof.

Remark 6.2. For any m, one can chose optimal packings of m points in RPn and RPk, and a similar

argument to the one above shows that

2dGH(S
n, Sk) f max{Ã 2 pm(RPn), 2pm(RPk)}.

Choosing m = k + 1, we note that 2pk+1(RP
k) = Ã, and so this formulation does not generalize or

improve on Theorem 1.3. We are also not aware of examples where choosing some m > k+1 improves

on the bounds in our previously stated theorems via this formulation.

7 Conclusion

We have given the first effective upper bounds on 2dGH(S
n, Sk) that apply to all possible n and k. We

determined the Gromov–Hausdorff distance 2dGH(S
1, Sk) exactly, and characterized the asymptotic

behavior of Ã2 2dGH(S
2, Sk). For general n and k it is likely that our upper bounds are not tight. A

natural next step would be to try and determine the exact asymptotics of Ã2 2dGH(S
n, Sk) for fixed

n g 3.

Conjecture 1.6. For fixed n g 1, we have

Ã 2 2dGH(S
n, Sk) = Θ

(

1
n
:
k

)

.

Another natural next step would be to consider asymptotics for spheres with a fixed gap in

dimension.

Question 7.1. Fix m g 1. What is the asymptotic behavior of the quantity

Ã 2 2dGH(S
n, Sn+m)

as n ³ >? What is the limit of this quantity as n ³ >?

Theorem 1.2 gives a bound on this quantity that tends to zero, but for m = 1 it is known that

the true value of the limit is at least Ã
3 (see [2, Theorem 1.2]). Thus a full answer to Question 7.1 will

likely require new ideas.
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The present paper was motivated our collaborative work in [2], in which the geodesic metric

played a primary role, and so we have restricted our attention to this setting. Lim, Mémoli, and

Smith [14, Corollary 9.8] showed that dGH(S
n
E , S

k
E) f sin(dGH(S

n, Sk)) where the subscript E denotes

the Euclidean metric. Hence we have the following corollaries of Theorem 1.1 and Theorem 1.2.

Corollary 7.2. Let 3 g 1 be any integer. Then

dGH(S
1
E , S

23
E ) f sin

(

2Ã3

2(23+ 1)

)

and

dGH(S
1
E , S

23+1
E ) f sin

(

2Ã3

2(23+ 1)

)

.

Corollary 7.3. For every 1 f n < k < >, we have

dGH(S
n
E , S

k
E) f sin

(

Ãk

2(k + 1)

)

.

Question 7.4. Are the corollaries above tight in any cases? What is the distortion of the correspon-

dences we have constructed when considered with the Euclidean metric?

To obtain the best possible results from Theorem 3.1, we must construct antipodal point sets in Sn

and Sk that have large separation and small Voronoi diameter. If we only optimize the separation,

this is the problem of finding good packings in RPn and RPk (i.e. projective codes). If we only

optimize the Voronoi diameter, this is the problem of finding a good cover of RPn by metric balls.

Each of these problems has been extensively studied, but as are not aware of any work that seeks to

balance both conditions simultaneously.

Question 7.5. Which antipodal point sets P ¦ Sn minimize the quantity max{Ã2sep(P ), vdiam(P )}?

Acknowledgements

We are grateful to Henry Adams, Boris Bukh, Florian Frick, Sunhyuk Lim, and Facundo Mémoli

for helpful discussions and feedback. We are also grateful to all our collaborators in the Gromov–

Hausdorff, Borsuk–Ulam, Vietoris–Rips polymath project [2] which initiated our work on this project.

References

[1] Henry Adams, Johnathan Bush, and Florian Frick. The topology of projective codes and the

distribution of zeros of odd maps. Michigan Mathematical Journal, 2021. (Accepted to appear)

arXiv:2106.14677.

[2] Henry Adams, Jonathan Bush, Nate Clause, Florian Frick, Mario Gómez, Michael Harrison,
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