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Abstract

The Gromov—Hausdorff distance between two metric spaces measures how far the spaces are
from being isometric. It has played an important and longstanding role in geometry and shape
comparison. More recently, it has been discovered that the Gromov-Hausdorff distance between
unit spheres equipped with the geodesic metric has important connections to Borsuk—Ulam theo-
rems and Vietoris—Rips complexes.

We develop a discrete framework for obtaining upper bounds on the Gromov—Hausdorff distance
between spheres, and provide the first quantitative bounds that apply to spheres of all possible
pairs of dimensions. As a special case, we determine the exact Gromov—Hausdorff distance between
a circle and any higher-dimensional sphere, and determine the precise asymptotic behavior of the
distance from the 2-sphere to the k-sphere up to constants.

1 Introduction

The Gromov—Hausdorff distance dgi(X,Y) between two compact metric spaces X and Y captures
how closely the spaces can be aligned with one another—in particular, dgg(X,Y) = 0 if and only if X
and Y are isometric [5, 19]. The Gromov-Hausdorff distance was first defined in 1975 by Edwards [9],
and then rediscovered in 1981 by Gromov [10], and for decades it has played an important role in
metric geometry (see e.g. [7, 8]). In more recent years, it has proved to be a natural tool in the
context of data analysis and shape matching [4, 15, 17, 6].

Precisely determining the Gromov—Hausdorff distance between given metric spaces is computa-
tionally challenging [20, 16, 3]. In particular, computing the Gromov—Hausdorff distance between
finite metric spaces is NP-hard [15]. Exact values of the Gromov—Hausdorff distance in special cases
have been obtained only very recently—for example, between certain discrete metric spaces [11],
between an interval and a circle [12], between vertex sets of regular polygons [21], [14, Appendix C].

The first nontrivial bounds on the Gromov—Hausdorff distance between unit spheres equipped
with the geodesic metric were obtained in recent work of Lim, Mémoli, and Smith [14], who provided
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lower bounds using novel connections to Borsuk—Ulam type theorems, and upper bounds via explicit
constructive techniques. They computed the exact Gromov-Hausdorff distance between S™ and S*
for n =0, k = oo, and (n,k) € {(1,2),(1,3),(2,3)}. They also provided quantitative upper bounds
in the case k = n + 1, and for general n and k they showed that dgm(S™, S*) is strictly less than the
trivial upper bound of 7, which follows from the fact that S™ and Sk have diameter 7.

The aforementioned lower bounds were subsequently improved in a large polymath project [2],
which included the present authors. This project built on insights of Adams, Bush, and Frick [1]
and Lim, Mémoli, and Smith [14] to demonstrate quantitative relationships between the Gromov—
Hausdorff distance dgp(S™,S*), Borsuk-Ulam type theorems concerning functions S¥ — S™, and
the topology of Vietoris-Rips complexes over S and S¥. These quantitative connections further
motivate the question of determining the exact value of the Gromov—Hausdorff distance between
spheres. Explicit upper bounds on dqp(S™, S*) for general n and k have remained elusive, and
our work addresses this scarcity by computing the exact value of dgu(S', S¥) for all k and giving
quantitative upper bounds on dgp(S”, S*) for all n and k.

Quantitative results. For reasons of notational convenience, we will work with the quantity
2dgn(S™, S*). The statements of Theorems 1.1 and 1.2 contain two equivalent formulations: first an
upper bound on 2dag(S™, S¥), and then a lower bound on the gap between 2daw(S™, S*) and the
elementary upper bound of 7. When n = 1, our methods are strong enough to meet the existing
lower bounds, and we obtain the following theorem.

Theorem 1.1. Let £ > 1 be any integer. Then

21l
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or equivalently 7 —2dcu(S',S*) =71 — 2dgu(S*, S*T) = 267—1 1

The lower bounds for 2dgu(S*, 5?¢) and 2dgy (ST, S?*1) were achieved in [2], where it is shown
that, for all n and k, strong bounds for 2dgu(S™, S*) can be obtained in terms of the equivariant
topology of Vietoris—Rips complexes. Theorem 1.1 shows that these bounds are sharp in infinitely
many cases, answering half of [2, Question 8.1] in the affirmative. It could be the case that these
topological lower bounds for 2dgn(S™, S¥) are sharp for every n and k, and Theorem 1.1 provides
the strongest evidence to date in this direction.

The upper bound 2dgn (S, 5%¢) < 225—7_‘1;61 can be obtained relatively quickly with our techniques—in
particular, it is a special case of Theorem 1.2 below, with the choice n = 1 and k = 2¢. The Gromov—
Hausdorff distance between a circle and an odd-dimensional sphere will require a much more careful
analysis, which we carry out in Section 5.

For general n and k, we prove the following result.

Theorem 1.2. For every 1 <n < k < oo, we have

k
2dGH(S",Sk) < k‘i 1 or equivalently T — 2dGH(S",Sk) > ? i T

We will establish the n = 1 case of Theorem 1.2 in Section 4. The general case is treated in Section 6.



Packings, coverings, and asymptotic results. The bound of Theorem 1.2 has the advantage
that it is concrete and simple to state. However, we are able to prove a more granular set of results
which gives an asymptotic improvement on Theorem 1.2 for fixed n > 2, and gives a sharp (up to
constants) asymptotic description of 2dgm (52, S¥). To discuss these results, we first introduce some
definitions and notation.

We will consider projective space RP", endowed with the quotient metric induced by the geodesic
metric on S™. We denote this metric by dgpr. Below, we will make repeated use of the following two
parameters:

Pm(RP™) = sup{e > 0| 3zy,. .., 2, in RP™ so that dgpn (i, ;) > & for all i # 5 },

def

cm(RP™) = inf{e > 0| 3x1,..., 2y in RP" so that for all z € RP" there is ¢ with dgpn(z,2;) <e }.

The parameter p,, (RP™) is the minimum distance between distinct points in an optimal packing of m
points in RP™ (i.e. a projective code). The parameter ¢, (RP™) is the smallest radius needed to cover
RP™ by m-many metric balls. By considering an optimal packing with the additional property that as
few points as possible have pairwise distance exactly p,,(RP™), one can see that ¢,,(RP") < p,, (RP™).
A standard argument using the fact that the volume of a ball in RP™ is proportional to the n-th power
of its radius shows that, for fixed n, p,,(RP™) and ¢,,(RP™) are bounded above and below by constant
multiples of —-—=. With these parameters in hand, we proceed to our results.

Vm
Theorem 1.3. For all 2 < n < k < oo, we have
—(k—-1
2dan(S", S*) < max {arccos (%) , T — pr+1(RP™), 2pk+1(RP")} :

Using Theorem 1.3, we obtain an asymptotic result describing the gap between 2day (S™, S¥) and

w for fixed n. Below, 2 (ﬁ) denotes a function that is bounded below by a positive multiple of ﬁ

Corollary 1.4. For fixzed n > 2, we have
7 —2dgu(S™, S*) = Q (%) .
Previous work (see [2, Theorem 5.3]) has shown that 2dgu(S™, S¥) > 7 — 2¢,(RP™). In particular
7 —2dgu(S™, S*) <O (%\/E)’ where © (%/E> denotes a positive function that is bounded above and
below by constant multiples of "%/E For n = 2, this matches (up to constants) the upper bound of
Corollary 1.4, allowing us to exactly determine the asymptotic behavior of 7 — 2dgm(S?, S¥).

Corollary 1.5. The Gromov-Hausdorff distance between S% and S* satisfies

7 —2dgu(5?%,5%) =0 <\/%> .

We conjecture that in general the n-th root bound is the correct answer for the asymptotic behavior
of m —2dgu(S™, S*) when n is fixed. Note that Theorem 1.1 and Corollary 1.5 prove this conjecture
for n = 1 and n = 2 respectively.

Conjecture 1.6. For fired n > 1, we have

7 —2dgu(S™, %) =© ( %) .
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Our methods. To prove upper bounds on 2dqy(S™, S*), it suffices to construct (possibly discontin-
uous) correspondences between S™ and S* which do not distort the metric too much (see Section 2).
Lim, Mémoli, and Smith [14] constructed optimal correspondences between low-dimensional spheres
by decomposing the larger sphere into discrete chunks, which were then collapsed to points in the
lower-dimensional sphere. They used a similar approach to build correspondences between S"*! and
S™ for all n, a construction which was further developed in [2, Section 6]. Continuing in a similar
vein, our approach provides a clean framework for constructing correspondences between S™ and S*
for any n and k, and it bounds the resulting distortion (see Theorem 3.1). Despite the thematic
through-line in the development of these methods, the particular correspondences that we construct
are wholly new—existing correspondences in the literature are not a special case of them.

More specifically, our approach uses finite centrally symmetric point sets in S™ and S* to break
the spheres into discrete chunks, which are then collapsed into the opposite sphere in such a way that
the distortion is quantifiable. It is possible that our bounds could be improved in some cases with
different choices of centrally symmetric point sets, but we suspect that determining the exact value
of dgu(S™, S*) for 2 < n < k will require constructions that are not discrete in this way. In fact, the
completely discrete approach is already insufficient to prove the odd-dimensional case of Theorem 1.1;
see Remark 4.5. Our proof of the odd-dimensional case in Section 5 necessarily avoids collapsing full-
dimensional chunks of either sphere to a point, but we maintain enough discrete structure that we are
able to quantify the distortion. This approach builds on the “embedding projection correspondences”
of Mémoli and Smith [18], and such an approach may be fruitful for general n and k.

2 Background

The Gromov—Hausdorfl distance dgn(X,Y’) between metric spaces X and Y is the infimum over all
isometric embeddings of X and Y into a larger metric space, of the Hausdorff distance between their
images. In other words, dgi(X,Y) captures how closely X and Y can be “aligned” in some ambient
space. Below we give an equivalent definition of the Gromov—Hausdorff distance due to Kalton and
Ostrovskii [13], which will prove convenient for our purposes.

We first require some additional terminology. A correspondence between two sets X and Y is a
relation R C X x Y with the property that 7x(R) = X and my(R) = Y; that is, the coordinate
projections of R to X and Y are surjective. Equivalently, a correspondence relates every point of X

to a point of Y, and vice versa. If X and Y are metric spaces, the distortion of a correspondence R is
dis(R) o sup |dX(a:,a:’) — dy(y,y')|.
(zy),(2",y)ER

Above, dx and dy denote the respective metrics on X and Y. Informally, dis(R) is small if R does not
“pull apart” or “push together” points too much. Finally, the Gromov-Hausdorff distance between
compact metric spaces X and Y is given by the relationship

2dau(X,Y) < inf dis(R) (1)

where the infimum is taken over all correspondences R C X x Y.



Our metric spaces of interest are unit spheres 5" & {x € R"" | (z,2) = 1}, equipped with the
geodesic metric
dgn(z,2") & arccos((x, 2')).

We will always consider spheres of positive finite dimension, as the cases of S and S> have been
fully treated by previous work [14]. With the geodesic metric, S™ has diameter equal to 7, and a
quick consequence is that 2dgp(S™, S¥) is at most 7. As previously mentioned, Lim, Mémoli, and
Smith [14] showed that in fact 2dgy (S™, S¥) is strictly less than @ when 1 < n < k < oo.

We say that a set P C S™ is antipodal or centrally symmetric if x € P implies —x € P. We often
write finite antipodal sets as P = {£p,...,£py}. For a metric space (X,dx), the separation of a
finite set P C X is the minimum distance between distinct points in the set, that is

sepy(P) < gﬁi;}{dx (p.0")}

where the minimum above is over all p,p’ € P with p # p’. Note that if P C S™ is an antipodal set
containing more than two points, then sepgn(P) < 7.

Each finite subset P = {p1,...,pm} of a metric space (X,dx) can be associated to its Voronoi
diagram {X1,...,Xm} where X; & {z € X | dx(z,p;) < dx(z,p;) for all j #i}. We call X; the
Voronoi cell associated to p;. If P = {p1,...,pm} is a finite subset of a metric space (X, dx) with
Voronoi diagram {X7,..., X,,}, then the Voronoi diameter of P is

vdiamy (P) & max { diamy (X;)}.
i€[m]
Note that if P C S™ is antipodal, then the Voronoi diagram of P is centrally symmetric. Also note
that vdiamx (P) < 2dg(X, P) where di denotes Hausdorff distance.

3 Correspondences induced by antipodal sets

First, we informally describe our construction. Choose finite antipodal sets in S™ and S* with equal
size. Each of these sets decomposes S™ and S* into Voronoi cells. Since there are equally many cells
and points in each sphere, we may collapse cells in S™ to points in S¥, and vice versa, obtaining a
correspondence (see Figure 1 below). Provided that the cells are not too large and the points are
sufficiently separated, such correspondences will have distortion bounded away from 7. The following
theorem formalizes and quantifies this technique.

Theorem 3.1. Let P = {£p1,...,+pn} C S and Q = {£q1,...,xqn} C S* be finite antipodal
sets of equal size. Let {£F,...,+F,} and {£Gy,...,£Gy} be the Voronoi diagrams in S™ and S*
induced by P and Q respectively. Define the correspondence

def

Rpqo = {+ (pi,q)|i€[m] and g € Gi} U{ =+ (p,q:)|i € [m] and p € F}.
The distortion of Rpq is at most the mazimum of the following four quantities:

vdiamgn (P) T — sepgn (P)

vdiamgr (Q) T — sepgr(Q).



Figure 1: A sketch of the correspondence Rp of Theorem 3.1. The cell
G; C S* collapses to the point p; € S™, and the cell F; C S™ collapses to the
point ¢; € Sk.

Proof. First note that Rp is indeed a correspondence, as every point in S" appears in some Voronoi
cell £F;, and every point in S¥ appears in some Voronoi cell +G;. It remains to bound the quantity

sup |dgn (x,2") — dgr(y,y")| - (1)

(z,y),(2' y')ERP,Q
We achieve this by considering a variety of cases, based on the definition of Rpg. Many of these
cases are symmetric, thanks to the symmetry in the definition of Rp g, but we enumerate all of them
for completeness. To see that these nine cases cover all possibilities, note that if (x,y) € Rpg then
x € P ory € @ (and possibly both are true).
Case 1: z =2/ = +p;.
We have y,y' € G; or y,y' € —G,;. Thus (1) is equal to dgxr(y,y’), which is at most vdiamgr(Q).
Case 2: x = —2' = +p;.
In this case dgn(z,2') = m, so (1) is equal to m — dgr (y,y"). We have y € G; and ¢/ € —G;. By central
symmetry of the Voronoi diagram in S*, we have —y/ € G;, and so

dgr(y,9') = m — dgi(y, —y') > m — diamgr (G;) > m — vdiamgr (Q).

Plugging in and simplifying, we see (1) is again at most vdiamgx (Q).

Case 3: © = +p; and 2’ = +p; for i # j.

Here we have sepgn(P) < dgn(z,2') < m —sepgn(P) since z and 2’ are distinct, non-antipodal points
in P. From this, we see that (}) is at most ™ — sepgn (P).



Case 4: r =p; and ¢y = q;, or v = —p; and ¢y = —g¢;.

By central symmetry, it suffices to consider the case x = p; and v = ¢;. We have y € G; and 2’ € Fj.
Since P and @ are antipodal, we have dgn(z,2') < 7/2 and dgk(y,y’) < m/2. Thus (f) is at most
7/2, which is in turn at most m — sepgn (P) since sepgn (P) < /2.

Case 5: x =p; and iy = —¢q;, or x = —p; and ¥ = g;.

By central symmetry, it suffices to consider the case z = p; and v’ = —¢;. Here we have 2/ € —F;
and y € G;. Using central symmetry of P and @, the former implies dgn (p;, 2') > 7/2, and the latter
implies dgr(y, —¢;) > m/2. These inequalities imply that (f) is at most 7/2, which is in turn at most
7 — sepgn (P) since sepgn(P) < /2.

Case 6: = = +p; and y' = £q; for i # j.

Here 2’ lies in +F}, and y lies in +£G;. We claim that

sepgn (P)/2 < dgn(x,2") < 7 —sepgn(P)/2 and sepgr(Q)/2 < dgr(y,y") < 7 — sepgr(Q)/2.

To see this, consider the case 2’ € F; and « = p;. Note by triangle inequality that
sepgn (P) < dgn(pi, pj) < dsn(ps, ') + dgn (2, pj) < 2dgn (pi, z")

where the last inequality follows from the fact that 2/ € F};. This gives sepgn(P)/2 < dgn(z, '), and
the remaining cases follow by an analogous triangle inequality argument. Now, using the inequalities
above we find that (1) is at most m — (sepgn (P) + sepgr(Q))/2, which is in turn bounded above by
the maximum of m — sepgn (P) and 7 — sepgr (Q).

Case 7: y = *¢; and y' = +q; for i # j.

Symmetric to Case 3. We have sepgr(Q) < dgn(y,y') < m — sepgr(Q) since y and 3’ are distinct,
non-antipodal points in ). From this, we see that (}) is at most m — sepgr (Q).

Case 8: y = —y = +g;.

Symmetric to Case 2. Since dgr(y,y’) = 7, (1) is equal to 7 — dgn(z,2"). However, x € F; and
a2’ € —F;, which implies dgn(z,2") > m — vdiamgn (P). Thus we find (}) is at most vdiamgn (P).
Case 9: y = ¢y = +g¢;.

Symmetric to Case 1. Here we have z,2' € F; or z,2’ € —F}, and so (1) is equal to dgn(z,z"), which
is at most diamgn (F;) < vdiamgn (P). O

Remark 3.2. One may also wish to construct correspondences Rp g using Voronoi diagrams of non-
antipodal point sets P and ). This can certainly be done, and a theorem similar to Theorem 3.1
could be obtained, but the casework would be slightly different and more laborious. The advantage
of the antipodal symmetry in our theorem is that Rpg will generally send antipodes to antipodes,
and we need not worry that points which lie distance diam(S") = diam(S*) = 7 from another
are “pulled together” by the correspondence. Without the antipodal assumption, several further
quantities—such as the diameter of P and ()—would need to be considered. We have chosen the
antipodal formulation since it simplifies our statements and constructions, and we are not aware of
any cases where a non-antipodal argument would improve any of our bounds. This is consistent with
the “helmet trick” established by Lim, Mémoli, and Smith [14], which shows that one may reduce to
the case of antipode-preserving (or “odd”) functions between S™ and S* when bounding distortion.



Remark 3.3. The requirement that P and () have the same size is one of the main technical obstacles in
applying Theorem 3.1. There are many natural antipodal sets in S™, such as the vertices of the cross-
polytope, the positive and negative copies of the vertices of a geodesic simplex, or the (normalized)
vertices of a hypercube. However, it is usually not so straightforward to find a nice antipodal set of
matching size in S*.

4 From the 1-sphere to the k-sphere: an initial bound

To use Theorem 3.1, we must construct antipodal point sets in S™ and S* with small Voronoi diameter
and large separation, to the extent that this is possible. Doing so in S' is straightforward: the best
choice is simply to space points evenly around the circle. In S* there are several natural choices, and
one that will prove useful for us is the vertex set of the cross-polytope, i.e. the standard basis vectors
and their negatives. We start by characterizing the Voronoi diameter and separation of this set.

Lemma 4.1. Let Q = {£ey,...,+ep11} C Sk be the standard basis vectors and their negatives. Then
for k > 1 we have

vdiamgr(Q)) = arccos <%> and sepgr(Q) = g

Proof. The equality sepgr(Q) = § is immediate since every pair of non-antipodal points in @ are

distance 5 apart. To obtain the Voronoi diameter, it suffices by symmetry to compute the diameter
of the cell associated to e;. This cell consists of all points in S* whose first coordinate is positive and
maximum in absolute value among all the coordinates. In particular, every point in this cell has first

coordinate at least as large as \/1—1 Thus if z and 2’ lie in this cell, then

kit
k+1 k+1
1 1 k —(k—1)
N — > x> — = .
(@) ;” = k+1+§x2xl = k+1 k+1 k+ 1

Above, the last inequality follows by applying the Cauchy—Schwarz inequality to the truncated vectors
obtained by deleting the first coordinates of x and z’, noting that each truncated vector has norm at

most w/kiﬂ. Taking the arccosine of both sides flips the direction of the inequality, and we obtain

dgr(z,2') < arccos (_,(i_ll)) Moreover, equality is achieved when x has all coordinates equal to
1 1

! : : —1
Tt and z’ has first coordinate equal to T and all other coordinates equal to NESE O

To analyze correspondences from S* to S*, we first require a small technical lemma.

—(k—1 k—1)m
]E:-Fl)) <( k) :

Lemma 4.2. For k > 3, we have arccos (

Proof. For k = 3, we have equality. For k > 4, we use the estimate arccos(z) < m — v/2x + 2, and
immediately see that arccos (%) <7 ——2—. As k > 4, we have 4k? > 72(k + 1), which implies

- Vk+1
that \/IS—H > - Hence arccos <_,(€]1_1)) <m—%= @ as desired. O

Theorem 4.3. For k > 2, we have 2dgu(S*, S*) < kk—fl



Proof. Let P C S' consist of 2(k 4 1) evenly spaced points, and let @ C S* be the standard ba-
sis vectors and their negatives. The correspondence Rpg of Theorem 3.1 (shown in Figure 2) will
have distortion at most the maximum of vdiam(P), = — sep(P), vdiam(Q), and m — sep(Q). We
may immediately note that vdiam(P) = sep(P) = 75, and sep(Q) = 5. Lemma 4.1 tells us that

vdiam(Q) = arccos <_(k_1)). When k& = 2, this is arccos (—%) < arccos (—%) = 2% = (kkTﬂ—l)7 and for

k+1
k > 3 Lemma 4.2 provides a slightly stronger upper bound of @ Plugging all of this in, we see
that Rp g has distortion at most m — sep(P) = kk—fl as desired. O

Remark 4.4. The k = 2 case of Theorem 4.3 shows that 2dgu(S',S?) = %’r Lim, Mémoli, and
Smith [14] previously constructed correspondences between S and S? with this optimal distortion,
and their constructions likewise involved decomposing S? into chunks that were then collapsed to
points in S'. One of their constructions uses six isometric triangular regions, three in the upper
hemisphere and three in the lower hemisphere, and another uses images of rectangular planar regions
under a certain parametrization of S? (the latter appears in the arxiv version of [14]).

Our correspondence Rp ¢ uses a new decomposition of S 2 consisting of the six centrally projected
facets of the cube. Figure 2 illustrates these decompositions of S' and S? that are used to build R P.Q-

D2 q3
p3 pl
G
—q2 ® q1 q2
— D1 — Ps3
— P2 — g3

Figure 2: Voronoi cells in S and S? induced by finite antipodal sets P and Q
with six points each. The correspondence Rp g of Theorem 3.1 is optimal in

this case, with distortion %’T

Remark 4.5. Note that Theorem 4.3 already implies that dgmp(S', S%*) = %Il’ which is half of
Theorem 1.1. In the following section, we will establish the second half of Theorem 1.1 by showing
that dgu(S?t, S2t1) = %. It turns out that Theorem 3.1 is fundamentally incapable of estab-
lishing this result. Even more strikingly, Theorem 3.1 is incapable of improving the upper bound



deu(St, 52+ = % by any small € > 0.

An improvement would require us to construct finite antipodal sets P C S and Q C S%*+! with
(20+1)m

2042
requirement on separation, such a P can consist of at most 2¢ pairs of points. Then @ would likewise

Voronoi diameter strictly less than and with separation strictly larger than 7. By the
consist of at most 2¢ pairs of points, which would all be contained in an equator of codimension one.
The poles above this equator would lie in every Voronoi cell associated to points in @), and hence all
Voronoi cells would have diameter 7, making Theorem 3.1 inapplicable.

5 From the 1-sphere to the k-sphere: a tight bound for odd &

Next we turn our attention to the problem of determining the Gromov-Hausdorff distance between S*
and S* for odd k. We have seen in Remark 4.5 that Theorem 3.1 is incapable of proving Theorem 1.1
for odd k. The goal of this section is to develop a new correspondence Ry, which addresses these issues.
We begin in Section 5.1 with a more detailed analysis of the limitations of Theorem 3.1; in particular,
we see how these limitations suggest a natural geometric construction for the new correspondence
Ri. In Section 5.1 we describe R both analytically and geometrically, and in Sections 5.2 and 5.3
we show that Ry has the desired distortion. Section 5.4 contains the resulting proof of Theorem 1.1.

5.1 An improved correspondence

In our proof of Theorem 4.3 we considered a correspondence Rp¢g where P C S1 consisted of 2k + 2
evenly spaced points, and @ C S* consisted of the vertices of a cross-polytope (i.e. the standard
basis vectors and their negatives). This correspondence has distortion A%

k+1°
would like to improve this to (k_kl)”. We will see that a new geometric idea emerges from studying

and when k is odd we

the precise limitations of the correspondence Rp .

Consider any pair of points p;,p; € P which lie at distance kk—fl on S'. These points correspond
to two nonantipodal Voronoi cells G; and G in Sk which intersect nontrivially (in a codimension 1
subset), so that, by the definition of Rp g, each z € G; N G; corresponds to both p; and p;. Thus

the distortion of Rpg is bounded below by dgi(pi,pj) — dgr(x,x) = kk—fl, larger than our desired

distortion. Similarly, if we instead choose two points p}, p;- € P at distance 77 in S 1 then any pair
of antipodal points 2’ € G;, —z’ € G; produces the same lower bound on distortion.

The evident issue is that, by associating all points of each cell G; to a single point, we have
collapsed faraway points p; and p; to a single point z, and we have spread nearby points p; and p;
to antipodal points 4=z’. This suggests that we should not associate all points of G; to a single point
p; € St but rather spread the points from G; across the cell F; C ST

We will achieve this using an embedding v: S — S*, which takes each Voronoi cell F; in S?
homeomorphically to a diameter of a Voronoi cell G; in S*. The embedding of F; into G; induces a
natural correspondence, defined by sending z € G; to y € F;, where «(y) is the point on ~(F;) which
is nearest to z. In the following sections we describe the details of the construction, showing that
for an appropriately-chosen embedding v, projecting Voronoi cells in S* onto segments of 7 yields a

correspondence R with the desired distortion.
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Notation and definition of R;. We first fix a finite antipodal set P = {&py,...,+ppy1} C S*
where the p; appear counterclockwise and evenly spaced with alternating signs, starting at p; = e
(see Figure 3). In S*, we fix Q = {%qi,...,2qps1} € S*, where ¢; = ;. As usual, the Voronoi
cells in S' associated to the +p; are denoted by +£F;, and similarly the cells in S* associated to +¢;
are denoted by +G;. We will frequently use the fact that G; consists of the points where the i-th
coordinate is positive and largest in magnitude among all coordinates.

The correspondence Ry, is constructed with respect to a certain embedding v: S — S*, whose
image consists of 2k + 2 geodesic arcs in S*, such that each arc is the diameter of a Voronoi cell.
The curve -y crosses the cells in a specific way, and as such, it is convenient to adopt a new notation
for the cells F; and G;, whose linear ordering reflects the traversed order of the cells. We order
the +F; as Fi,Fs,..., Fopio, according to the rule F,, = (—1)"*+1F,,, where the subscript on F,
is understood modulo k£ + 1. Note that this linear order depends on k being odd—for example
Fryo(—1)F2F = —F|, whereas if k were even we would have repeated F} in the linear order and
missed —F].

Explicitly, the linear order on the +F; is as shown below:

F17_F27F37_F47”’7_Fk+17_F17F27"'7Fk+1'
Similarly, we linearly order the £G; as Gi,Go, ..., Goryo, where G,, = (—1)""'G,,, and again the
latter subscript is understood modulo k£ + 1. We can describe each interval F,, explicitly:

2m—-3)r (2m—1)7

Fm =12 0 ok 12

Figure 3 shows the points and cells in S* when k = 3.

b3

— D3

Figure 3: The points £p1, £po, £p3, £p4 in S', and the linear order on their
Voronoi cells.

Postponing the explicit description of 7, we instead directly define the functions that result from
projecting the various G,, onto 4. For any 1 < m < 2k + 2, we define f,,,: G € RFt1 — ST by

(m—Dm + m L1t Tl — Tl T Tl
kE+1 2k(k+1) T, ’

fm(ﬂjly- .- 7$k‘+l) =

11



where the subscripts of x in the latter quotient are considered modulo k4 1. Note that since |z,,| > =;
for all 4, this quotient of z; terms maps onto the interval [—k, k], and so f,,, describes a correspondence
between G,, and F,,, as desired. We also note that the collection of functions f,, exhibits certain
natural symmetries, for example, f,(z) = —fiakt1(—2x) (recall here that G,, = —Gik+1). In
Section 5.2 we also discuss a certain natural cyclic action compatible with the functions f,,, and their
domains G,,.

Definition 5.1. With the notation given above, the correspondence Ry, between S* and S' is
Ry {(x,fm(a;)) € §* x 8 ( ze gm}.

We note that the correspondence Ry, is not a function: if z lies on the boundary of two or more Voronoi
cells, then z is in the domain of multiple f,,, and hence corresponds to multiple elements of S. In
fact, at the beginning of this section, we saw that these boundary points caused undesirable distortion
bounds for the correspondence Rpg. The next example provides evidence that the correspondence
R avoids this issue.

Example 5.2. Let x € G1 N Gk41. Then 1 = —x,41, and we compute
_ km 0 x4+ T —T2— - — Tpyl
_ kn N T STt tTy T2 - Tt m (k= 1)m
S k+1 0 2k(k41) T T Sk

the desired distortion bound for Ry.
Our goal in the remainder of this section is to prove that this quantity is exact.

Theorem 5.3. The distortion of Ry is equal to w

Geometric description of R;. Before proceeding to the proof of Theorem 5.3, we take a short
detour to offer a geometric interpretation of the correspondence Ry, in particular, to see how Ry
arises by projecting the Voronoi cells G,, onto a particular embedding ~: S* — S*.

Remark 5.4. Facundo Mémoli and Zane Smith [18] have explored similar ideas in the form of “embed-
ding projection correspondences”, which arise by projecting points in a metric space to the nearest
point on an embedded copy of another metric space. This strategy seems to have broad utility,
and has yielded promising experimental results including for correspondences between S' and S*
arising from piecewise geodesic embeddings S' — S* (“cartoonizations”). We first learned of these
correspondences during our work on the Gromov-Hausdorff, Borsuk—Ulam, Vietoris—Rips polymath
project [2]. A source of inspiration for our correspondence Ry were the embedding-projection corre-
spondences of Mémoli and Smith [18]. In fact, Ry is actually a variant of an embedding-projection
correspondence, with the caveat that our nearest-point projection is carefully restricted to Voronoi
cells.

The curve ~y consists of 2k + 2 geodesic arcs, each of which crosses a diameter of a unique Voronoi
cell G;. The corners of the Voronoi cells occur at the 2F+1 points of S% where all coordinates have

12



1

magnitude We use vectors of k+ 1 signs to denote these vertices—for example, ++ —+ denotes

VE+1'
the vertex (%, %, —%, %) in S3. Now ~ starts from + + - - - + at time — o3 (the left endpoint of F7),

and it crosses Voronoi cells G; in the order indicated by the index, progressing continuously across
diameters. Note that two diametrically opposite corners of cell £G; have opposite signs in all but the
i-th coordinate, and so the initial trajectory of v completely determines the 2k + 2 vertices which are
visited by 7. For example, when k = 3, the curve v: S' — S3 visits corners in the following order:

tHHt o = o — = o e 5 ————
= —ttt 5 = 5 ==+ =+ttt

We emphasize here that this construction depends on k being odd: if k were even, then starting from
+ 4 - - -+ and switching all but one sign k + 1 times, we would return prematurely to + + - - - + after
time 7. Since k is odd, v instead arrives at — — - - - — after time 7 and continues in a Z/2-equivariant
manner: y(—x) = —y(x).

An important caveat is that the curve v does not move at constant speed. Instead, we define
v so that it moves at constant speed in R¥*! after +G; is centrally projected outward to a facet
of the cube [—1,1]**!, via the map z — ﬁ:p With this definition of v, we obtain an alternative
definition for Ry, defined by associating every point = € G,, to the nearest point on the segment
v(Fm). Indeed, while this geometric description is not necessary for the distortion computation, it
can be readily checked that f,,: G, — S' is obtained by centrally projecting G,, to a facet of the
cube [—1,1]%, and then linearly projecting this facet to the diameter ~(F;,) (see Figure 4). In this
way, each point y € F,, is associated to a fiber of the nearest-point map from G,, to v(F,,)—this

fiber is a portion of a great (k — 1)-sphere in S*, orthogonal to v(F,,) at the point y(z).

Ezample 5.5. In this example we again specialize to the case k = 3 and we discuss how the value

%’T (the claimed distortion) arises naturally here. Eight of the sixteen vertices in S® lie on the curve
1111
20727202
components, we see that x is a corner of the cells G; = G1, —Go = Go, G3 = G3, and G4 = Gg, and —x

v. Consider z = ( ), which does not lie on the curve 7. By checking the signs of the
is a corner of Gy, G5, Gg, and G7. By the definition of Ry, we can compute the four correspondents of
x using the various functions f,,. For example, one correspondent is

Computing the remaining correspondents, we find that x corresponds to the four points — ﬁv%v%v%’
and —z corresponds to the four points %,%,%,%. The correspondents of x are pairwise closer
than %’T, and the correspondents of —z are pairwise closer than 2%, whereas each correspondent of
lies at least § away from each correspondent of —z.

For a qualitatively distinct example, we consider a Voronoi vertex which does lie on the curve
7, such as 2’/ = (%, %, %, %) We find that the three correspondents of x, together with the three
correspondents of —x, form a set of six equally spaced points on S'. Figure 5 shows these two
situations.

13



+ -

+++

Figure 4: (Left) The interval F; = [—%, %] in S', containing the point —57-
(Right) The Voronoi cell G; C S3, consisting of points whose first coordinate is
positive and maximum in magnitude, after central projection to the hyperplane
r1 =1 in R%. The bold red diameter is the central projection of v(F}), and the
transparent blue triangle is the set of points that are closest to the point

s

ol (—ﬂ) which lies one third of the distance from + + ++ to + — ——. The blue
points in S3 all correspond to —91 € St

T T

/
— T

Figure 5: Correspondents of the points £z (left) and £z’ (right) described in
Example 5.5.
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5.2 The distortion of R;: initial steps

In the following sections, we will study the distortion of Ry by explicitly analyzing the behavior of
the functions f,,,. Much of this analysis can be simplified by appealing to certain natural symmetries
exhibited by these functions. After discussing these geometric properties of f,,, we demonstrate how
these symmetries lead to a significant case reduction in the proof of Theorem 5.3.

Symmetries and geometric properties of the f,,. The functions f,, and their domains G,, are
compatible with a certain natural cyclic action, which generalizes the aforementioned Z/2-equivariance
fm(x) = = fmak+1(—x). Define the isometry

Ali Rk+1 — Rk+12 (331, - ,wk+1) — (xk+1, —X1,..., —xk),

and note that A; takes G,, to G,,11, where the subscript on G,,+1 is taken modulo 2k + 2. Let A,
refer to the n-fold composition A; o --- o Ay; for example, A1 is the antipodal map, and Aoy is
the identity. We have the following lemma, immediate from the definitions of G,, and f,,, which we
record for future use.

Lemma 5.6. For each n, A, takes G, t0 Gmin, and for x € G, fm(x) = t Jman(An(z)).
Next, we show that each function f,, is strictly distance-decreasing.
Lemma 5.7. Each f,, is distance-decreasing. That is, forx # y € G, dg1 (fm(2), fm(y)) < dgs(z,y).

Proof. By Lemma 5.6, and since each A, is an isometry, it is enough to argue the case m = 1. We
compute for x # y:

T |zt dae ypt o yen
x) — = —
o yi(z2 + -+ 1) —w1(y2 + 0+ Yrga)
Qk(k-i- 1) T1Y1
1 —
< yi(we + t+ 2r41) — 21 (y2 + + Y1) , sincek>3=mn< Wk
VE(k +1) T1Y1
1 . 1
< \/_E|y1($2 ot @) — @Yz + o+ Y| since 21y1 > 73

1
= \/—E|:132y1 —T1Y2 + + Ter1Y1 — T1Ykt 1]

1
é—(ﬂ?2y1—ﬂf1y2 + o+ [ Tpr1Y — T1Yk 1)-
7k | | | T+ +1]

Let u and v be the k-tuples v = (|xoy1 — z1y2|, - - -, |Tpr1y1 — T1yk+1|) and v = (1,...,1). A standard
application of Cauchy—Schwarz recovers a well-known comparison between 1- and 2-norms:

lully = (u,0) < [lullllvllz = VEullz. (2)
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Applying this to the final term of our inequality, we continue:

1
\/_E (’332?41 —x1y2| + -+ [Ty — xlyk+1\)

< Z (Tiy1 — 21y;)?

2<i<k+1

< > (wiys — xw)?

1<i<j<k+1
=+/1—(z,y)? by Lagrange’s identity
= sin(arccos({x,y))
< arccos({x,y)),

as desired. O

Remark 5.8. The proof of Lemma 5.7 is fairly representative of the techniques used to bound the
distortion of Ry, and we will continue to see geometric terms, such as the area /1 — (x,y)? of the
parallelogram spanned by x and y, arise in these comparisons. A powerful consequence of Lemma 5.7
is that the distortion of Ry, can only be achieved at points of S* lying on the boundary of two or more
cells (see Proposition 5.12). We believe that this observation, combined with a careful analysis of the
boundary components, could lead to a full proof of Theorem 5.3. Our current proof relies on this
observation only in the case k = 3, and for £ > 5 we are able to give a more streamlined approach.

A case reduction. Here we demonstrate how the symmetries discussed above can be used to
simplify the distortion analysis for Rj. We have shown in Example 5.2 that the distortion of Ry, is at

least w, and it remains to show that this quantity is an upper bound. To achieve this, we must

show that, for each pair (4,j) with 1 < < j <2k 4+ 2, the “distortion function”

Dij: Gi x Gj — [0,7], D; j(z,2) = |dgi (fi(2), f;(2)) — dgr(, 2)]

is bounded above by @ That is, we must show that

(k—1)m

D;j(x,z) < k:

for all x € G;,z € Gj. (*)

Using symmetries and some other simple observations, we are able to significantly reduce the
number of pairs (7, 7) which must be checked.

Proposition 5.9. For the collection of functions D; ;, the following statements hold:
(a) D;; satisfies (x) <= Dij_it1 satisfies (x) <= Di,;_j41 satisfies (x).

(b) D satisfies (x) <= Djpq2 satisfies (x) <= Di 43—, satisfies (x).
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(¢c) For j € {1,4,5,...,k =2,k — 1,k + 2}, Dy ; satisfies (*).

Proof. The first two items are consequences of certain natural symmetries, which can be used to show
that the claimed functions have identical images; the final item comes from a quick observation about
the image of Dy ; for those j in the hypothesis of the statement.

For part (a), we apply Lemma 5.6 and the fact that each A,, is an isometry. Indeed, we have
Dyj_ivi(x,2) = |dgr (fi(), fj—it1(2)) — dgr(z, 2)|
= |dg1 (fi(Aic12), f;(Aim12)) — dgr (Aic12, Ai—12) |
=D;j(Aimiw, Ai12),

and a similar argument verifies the statement for Dy ;1.

For part (b), we take advantage of the aforementioned Z/2-equivariance in the collection f,,: for
x € Gy, fi(x) = — frao(—2x) (here, recall that the cell Gy o is the antipode of the cell G;). Therefore

Dy j(z, 2) |dg1 (f1 x), fj(z)) —dsk(iU,Z)‘
= |(7 = dg1(frr2(—2), f;(2))) — (7 — dgr(—=,2))]
j7k+2(_$7z)7

establishing the first claimed equivalence. The second claimed equivalence follows from part (a).

For part (c), when j =1 or j =k + 2: if 2,z € Gy, then

dsi(f1(z), f1(2)) < 77 < ( kl)w

and

dgr(x,z) < diam(G;) = arccos(k_k) < (k—k1)7r
by Lemma 4.2. Therefore Dy ; satisfies (x), and by part (b), so does Dy j 2.

For part (c), when 4 < j < k — 1: observe that dgi(fi(x), fj(2)) takes values in the interval
[(j 2 ﬂ} , while dgk (z, z) takes values in the interval [0, 7r]. Therefore the image of Dy ; is bounded

k+1 7 k+1
above by
ax g (k—j7+3)7
k+1  k+1 '
When j € {4,5,...,k — 2,k — 1}, each of these terms is bounded above by % < (k_kl)w. O

5.3 The proof of Theorem 5.3

With the case reduction of the previous section, we will see that we need only prove Theorem 5.3
analytically in two cases. We record a few simple bounds to ease the main proof. Recall that for

2 € Gm, |2m| > |zi| for all ¢, and in particular, |z,,| > \/— where, as usual, we understand subscripts

k+17
on coordinates modulo k£ + 1.
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Lemma 5.10. Let x € Gy and z € G,,.

(a) (21— |zml)? < (21— 21)* + (¥m — 2m)? < (2 — 2,2 = 2),

(b) Fork>5,14 x1|zpm| < M r222,

(¢) For k>3, 3+ x1]2m| < M x322

Proof. For part (a), we consider two cases:
o if 21 > |z,] then (21 — |2|)? < (21 — 21)? since |z,| > 21;
o if [2,,] > z1, then (21 — |2m|)? < (2m — 2m)? since 21 > 2.

For part (b), since z1|zp,| > k+1, we have

1+ z1|2m| 1
= E+1)*+k+1)=(k+1)(k+2 k+1
P e S () = (o (R 2) < (4 )

where the final inequality requires k& > 5.

For part (c), similarly, we have

1+ 222 1 1 1 2 1,3 4k
= < s(k+1 Ek+D)=(k+1D(5k+35)<k(k+1 k+1
o = o o SR () = (b DR D) SR ) < G D2
where the final inequality holds for all £ > 3. O

To prove Theorem 5.3, we must show that D, ; satisfies (x) for all 1 < i < j < 2k + 2. By
Proposition 5.9, part (a), it suffices to consider the cases i = 1 and 1 < j < k+2. By Proposition 5.9,
part (c), it suffices to consider j € {2,3,k,k + 1}, and part (b) further reduces this to the two cases
j=kand j = k+ 1. The following lemma gives a sufficient condition for our desired inequality in
each of these cases.

Lemma 5.11. To show that D j(x,z) < (k_kl)”, it suffices to show,

(a) for j =k: U )<x1+'-¥+xk+1+21+”-+zk—

Rk+1
%) <VE—zz—2).
2%k + 1 > S Vip—ze—z)

1 2k

(b) for j =k+1: T )<$1+..¥+xk+1+21+...+2k+1

< — —Z).
2%k + 1 . et )- (v —zo—2)

Proof. For j =k and j = k + 1, the function D j: G x G; — [0, 7] is equal to |dg1(f1(x), fj(2)) —
dgr(z,2)|. In both cases, the circle distance is sufficiently large (namely, at least 7), and it suffices

to show that f;(z) — fi(z) — arccos((z, z) is bounded above by g Rearranging, it equivalently
suffices to show that

_ (k=1)m 1 + fy( ) fl(gj) < arCCOS(<33,Z>)
forj=kand j=k+1.
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For part (a), we compute using the definition of f; and fj that —@ + fj(z) — fi(z) is equal

to:

_(k—l)ﬂ+(k—1)ﬂ+ ™ 21+---+2k_1—2k+1_—xg—x3—~--—xk+1
k k+1 Qk(k-l-l) Zk T

(2—2/€)7T+ T 21+---+zk_1—zk+1+x2+x3+'~+xk+1

Qk(k-l-l) Qk(k-i-l) Zk I

U T1+ -+ Tgr1 | R1+ 2 — 2R+
+ -2k ),
2k(k +1) T 2k

where in the final step we have incorporated part of the constant term into the quotients. On the
other hand, since the Euclidean distance between x # z is shorter than the spherical distance, we have
(x — z,x — z) < arccos({x, z)), giving the desired result. A similar computation justifies (b). O

With the case reduction and setup complete, we are ready to prove Theorem 5.3.
Proof of Theorem 5.3. We consider each case from Lemma 5.11 separately below. Our argument for

the case j = k works for any value of k (Case 1, below). For j = k + 1, we make two separate
arguments: one when k > 5 (Case 2) and one when k = 3 (Case 3).

Case 1: j = k: Starting with the left side of Lemma 5.11(a), we write

™ <331+"'+33k+1+21+"'+2k—2k+1_2k>

2k(k+1) x1 2,
< il Thtl _ Zk+1 since Li <1 and Z <1
2k(k+1) \ x4 2k x1 2k
_ Th412k — T1 241
2k(k+1) 12k
< |Tga12K — T12K11] since <k+1.
|21 25|

This final quantity is the area of the planar parallelogram spanned by the vectors (z1— 2z, 11— 2k+1)
and (2x, zx+1), and hence is bounded above by the product of side lengths

\/((331 — 2)? + (41 — 2041)?) (22 + Zi%+1)

< V(@1 — 2)? + (@pe1 — 2041)? since 2 + Zl%+1 <1

< V(z1 —20)2 + (2 — 20)2 + (Tpg1 — 2641)2 by Lemma 5.10(a)

<V{x—zz—2).

By Lemma 5.11(a), this concludes Case 1.
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Case 2: j=k+1and k > 5: Starting with the left side of Lemma 5.11(b), we write

U <x1+---+xk+1+21+---+zk+1>

2k(k+1) x1 2+l
T k+1 T .
. LT
2k(k +1) ; T Zkyl
7 ARy zi \?
< —~ 4 = > by comparison of norms; see (2
2kvk+1 ; (961 k41 ®

P Zi 1 ot 4 2212041 (2, 2)
2kvVEk +1 rizi

Focusing on the numerator of the radicand, we write

since z and z are unit.

zgﬂ + x% + 2z 2541 (2, 2)
= (241 + x1)2 — 221241 + 2@ 241 (x, 2)
= (2hs1 +11) — T12pp1 (7 — 2,3 — 2)
<(zx—z,x—2)(1 —x12811) by Lemma 5.10(a)

<(x—z,x— 22222 (k+1 ﬁ“; by Lemma 5.10(b), since k > 5.
17k+1 T

Plugging back into the radicand and simplifying concludes Case 2.

Case 3: j =Fk+ 1 and kK = 3: Here we present a slight modification that allows us to push the
argument through in the case k = 3. This modification relies on the fact that each f,, is distance-
decreasing (Lemma 5.7), from which it follows that the maximum value of each D; ;: G; x G; — [0, 7]
occurs only at boundary points (see Proposition 5.12 below).

Assuming the result of Proposition 5.12, the final two steps of Case 2 can be modified as follows.
If z € Gi NG, for some i and z € Gy NG; for some j, then (21 — 21)% and (z; — z;)? are both at least
(714 2x11)? by a similar argument to the proof of Lemma 5.10(a). Thus 2(z1 +2541)% < (x—2,2—2),
and the last three lines of the proof of Case 2 can be replaced by

(Zpy1 +21)? — 212841 (T — 2,2 — 2)
<(x—zx—2)(3 — 21241)
<(rx—z1z-— z>x%zg+1(k‘ + 1)%2
where the final inequality is due to Lemma 5.10(c). O

Proposition 5.12. The mazimum value of each D; j: Gix Gj — [0, 7] occurs only at boundary points,
i.e. when x € 0G; and z € 0G;.
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Proof. By Proposition 5.9(a), it suffices to consider the case i = 1. Suppose that x is an interior point
of Gi and z is any point in G;. First observe that if dgi(fi(x), fj(2)) = dgr(z, 2), then Dy j(x,2) =0
is not a maximum value.

Next suppose that dg1(f1(x), fj(2)) > dgr(z, z). This implies that  and z are not antipodal, and
we choose y € Gp lying on the minimal geodesic arc ¢ connecting z to z, sufficiently close to x so that

ds1(f1(y), fj(2)) = dgr(y, z). We compute
Dyj(y,z) = Dyj(@,2) = dsi (f1(y), [5(2)) — dsr(y, 2) = (ds1 (f1(2), fj(2)) — dgr(, 2))
= dgr(z,y) +ds1(f1(y), £i(2)) — ds1 (f1(2), £;(2))
> dgr(x,y) —ds1(fi(z), f1(y)) by the triangle inequality,

>0 by Lemma 5.7,

verifying that the value of D ; increases when x is moved towards z.

In fact, we have shown that dg:1(f1(y), fj(2)) > dgr(y,2), which implies that the set of y lying
on ¢ NGy and satisfying dg1(f1(y), fj(2)) > dgk(y, 2) is nonempty, open, and closed in ¢ N Gy, hence
is equal to ¢ G;. Therefore the value of D ;, when restricted to the geodesic arc ¢ N Gy, is strictly
increasing from x to the boundary of G;.

Now suppose that dg:(f1(z), fj(2)) < dgr(x,z). This implies that « and z are not antipodal, as
follows: since x lies in the interior of Gi, antipodality would imply that z = —z lies in the interior
of =G = Giy2, but Dy pyo(z,—2) = 0 by Lemma 5.6, contradicting our supposition. Thus we can
choose y € Gy lying on the minimal geodesic arc connecting x to —z; that is, here we move = away
from z. We compute similarly:

Dyj(y,2) — Duj(w,2) = dr(y, 2) — ds1 (f1(y), f5(2)) — (dgx(x, 2) — ds1 (f1(2), £;(2)))
= dgr(z,y) + dg1(fi(2), f5(2)) — ds1(f1(y), f3(2))

> dgi(z,y) — ds1(f1(), f1(y)) > 0.

By the same argument as above, we conclude that x must be a boundary point of G; to maximize
D j(x,z). A symmetric argument shows that z must be a boundary point of G;. O

5.4 The proof of Theorem 1.1

We are now prepared to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Using the definition of the Gromov—Hausdorff distance (1), we have

k
for even k:  2dgu(S', S*) < dis(Rpg) = ’ _7:1, by Theorem 4.3,
and
1 ok : (k—D)m
forodd k:  2dgu(S*,S") < dis(Rg) = — by Theorem 5.3.
The fact that these estimates are sharp follows from combining Main Theorem and Theorem 5.1
of [2]. O
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6 General upper bounds: proving Theorem 1.2 and Theorem 1.3

To prove Theorem 1.2, we will construct point sets in S™ (with n > 2) with Voronoi diameter at most
k

R R
of vertices of the cross-polytope in S¥, so that we may apply Theorem 3.1. It turns out that there

and separation at least These sets will consist of 2(k + 1) points, matching the number
is a relatively simple construction: start with the vertices of a cross-polytope in S”, then add the
remaining points along the projected edges of the cross-polytope, spacing them as evenly as possible.
The following lemma explains this construction.

Lemma 6.1. For each 2 < n < k < oo, there exists an antipodal set P C S™ consisting of 2(k + 1)
points, with

vdiam(P) < ™ and  sep(P) > - T > . Z 3
2 (lrn(n-i-l)—‘ T 1)

“n+1
Proof. To start, set P = {%eq,...,+e,11} € S". By Lemma 4.1 we have vdiam(P) < ;%% and
adding further points can only improve this inequality. We must add 2(k +1) —2(n + 1) = 2(k — n)

points to P. Consider the 2n(n + 1)-many geodesic arcs in S™ between pairs of points {%e;, +e;},

where i # j. Split these arcs into antipodal pairs, choosing one element of each pair as the “positive”

copy of the arc. Set N & %—‘ Into the interior of each of the n(n + 1)-many positive arcs,

place up to N-many points, evenly spaced with distances between consecutive points (including the
s

endpoints of the arc) at least TNFT) Copy the points from the positive arcs antipodally to the
negative arcs. Collecting everything, we have up to 2(k + 1) points in P, as shown in Figure 6.

Figure 6: N = 3 points along geodesic arcs between non-antipodal vertices of
the octahedron, as in the proof of Lemma 6.1.

Now, we claim that sep(P) > m By construction, this bound holds when we restrict our

attention to any copy of S! containing {+e;, +e;}. The only other case to worry about is the distance
between p,p’ € P, where p and p’ lie in the interiors of arcs that are not coplanar. In particular,
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the nonzero coordinates in p and p’ do not occur in the same indices. As each point in P has at
most two nonzero coordinates, we either have (p,p’) = 0 or (p,p’) < ¢® where ¢ is the maximum
absolute value among the coordinates of all points in P that lie on the interiors of arcs. This implies
that dgn(p,p’) is at least as large as the distance from p (respectively, p) to the nearest +e;. This

proves that sep(P) > m as desired. The final inequality follows from the fact that n > 2, so
k—n
2|ty <k —nt1 O

With this construction, we can now recall and prove Theorem 1.2.

Theorem 1.2. For every 1 <n < k < oo, we have

wk . k i
_ n > .
o or equivalently m—2dga(S",S%) > T

Proof. The case n = 1 follows from Theorem 4.3. For n > 2, let P C S™ be the antipodal set of
2(k + 1) points of Lemma 6.1, and let @ C S* be the standard basis vectors and their negatives.
The correspondence Rpg of Theorem 3.1 will have distortion at most the maximum of vdiam(P),

2dau(S", 5%) <

7 — sep(P), vdiam(Q), and m — sep(Q). Lemma 6.1 guarantees that vdiamgn(P) < ;7% < J—J’ﬁ,
and 7 — sepgn(P) is bounded above by 7 — == = ﬂ%k:n"$2) < kk—ﬂ Lemma 4.1 guarantees that
vdiamgr (@) and ™ — sepgr(Q) are bounded above by k”—fl The result follows. O

The proof of Theorem 1.3 likewise proceeds by choosing appropriate antipodal sets and applying
Theorem 3.1. As before, in the higher dimensional sphere we use the vertices of a cross-polytope. In
the lower dimensional sphere, we simply use an optimal packing of antipodal points.

Theorem 1.3. For all 2 < n < k < oo, we have

2dcr(S™, S%) < max {arccos <_(k — 1)

TH) y T —pk+1(RPn)a 2pk+1(RPn)}-

Proof. Let P C S™ be an antipodal set of 2(k + 1) points whose image P in RP™ is an optimal
packing, with as few points as possible at pairwise distance exactly pp1(RP™). Let Q C S* be the
vertices of a cross-polytope. Applying Theorem 3.1, it will suffice to give appropriate upper bounds
on vdiam(P), m — sep(P), vdiam(Q), and m — sep(Q). The latter two quantities are bounded above

by arccos <_,(€]1_11)) by Lemma 4.1, and so it remains to consider the first two quantities.

The separation of P in S™ is exactly equal to pxy1(RP™). Indeed, the quotient map S™ — RP"
exactly preserves the distance between any two points that are within a distance of 7/2 from one
another. As S™ is antipodal, the closest pair of points in S™ has distance at most 7/2 between them.

The Voronoi diameter of P is at most 2dy(P,S™), and we further claim that dy(P,S™) <
pre1(RP™). First note that because P is antipodal, dy (P, S™) is equal to di (P, RP™). Since P has as
few pairs of points as possible at distance exactly pj,1(RP™), we see that dy(P,RP") < pr,1(RP");
otherwise we could delete a point in P with distance exactly pg,i(RP™) to another point in P and
replace it by a point at a strictly larger distance to all other points in P. This proves the result. O

Corollary 1.4. For fixed n > 2, we have

7 —2dgu(S™, S*) = Q (%) .
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Proof. By Theorem 1.3, we see that

k1)

T — 2dar(S™, S¥) > 7 — max {arccos <l(<:T> , ™ — pr+1(RP™), 2pk+1(RP")}

. k—1 n n
= min {arccos <k—+1> , Pe+1(RP™), m — 2pgq (RP )} .

It thus suffices to bound the three quantities above. Using the bound arccos(z) > /2 — 2x, we see

that arccos (llz—;}) is at least \/%? The quantity m — 2pg41(RP™) tends to m as kK — oo, and so
1

can be safely ignored. Lastly, the fact that pg.1(RP™) is bounded below by a multiple of %/E > N
completes the proof. O
Remark 6.2. For any m, one can chose optimal packings of m points in RP™ and RP*, and a similar

argument to the one above shows that
2dau(S™, S*) < max{m — p,,(RP™), 2p,, (RP¥)}.

Choosing m = k + 1, we note that 2pk+1(RPk) = m, and so this formulation does not generalize or
improve on Theorem 1.3. We are also not aware of examples where choosing some m > k+1 improves
on the bounds in our previously stated theorems via this formulation.

7 Conclusion

We have given the first effective upper bounds on 2dgn (S™, S¥) that apply to all possible n and k. We
determined the Gromov-Hausdorff distance 2dq (S, S*) exactly, and characterized the asymptotic
behavior of 7 —2dqu(S?, S¥). For general n and k it is likely that our upper bounds are not tight. A
natural next step would be to try and determine the exact asymptotics of © — 2dgu(S™, S*) for fixed
n > 3.

Conjecture 1.6. For fired n > 1, we have

7 —2dgu(S™, S¥) =© ( %) .

Another natural next step would be to consider asymptotics for spheres with a fixed gap in

dimension.

Question 7.1. Fix m > 1. What is the asymptotic behavior of the quantity
7 — 2dgu(S™, S"T™)

as n — oo? What is the limit of this quantity as n — co?

Theorem 1.2 gives a bound on this quantity that tends to zero, but for m = 1 it is known that
the true value of the limit is at least % (see 2, Theorem 1.2]). Thus a full answer to Question 7.1 will
likely require new ideas.
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The present paper was motivated our collaborative work in [2], in which the geodesic metric
played a primary role, and so we have restricted our attention to this setting. Lim, Mémoli, and
Smith [14, Corollary 9.8] showed that dgu (S%, S%) < sin(dgu(S™, S*)) where the subscript £ denotes
the Euclidean metric. Hence we have the following corollaries of Theorem 1.1 and Theorem 1.2.

Corollary 7.2. Let £ > 1 be any integer. Then

dan(SE, S¥) < sin <%> and

dan(Sk, $2+1) < sin <%> .

Corollary 7.3. For every 1 < n < k < oo, we have

wk
dgu(SE, SE) <sin [ ——— ) .
an(Sk, Sg) < <2(k + 1)>
Question 7.4. Are the corollaries above tight in any cases? What is the distortion of the correspon-
dences we have constructed when considered with the Euclidean metric?

To obtain the best possible results from Theorem 3.1, we must construct antipodal point sets in S™
and S* that have large separation and small Voronoi diameter. If we only optimize the separation,
this is the problem of finding good packings in RP™ and RP* (i.e. projective codes). If we only
optimize the Voronoi diameter, this is the problem of finding a good cover of RP™ by metric balls.
Each of these problems has been extensively studied, but as are not aware of any work that seeks to
balance both conditions simultaneously.

Question 7.5. Which antipodal point sets P C S™ minimize the quantity max{m —sep(P), vdiam(P)}?
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