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Abstract

We study the open and closed embedding dimensions of a convex 3-sparse code FP, which
records the intersection pattern of lines in the Fano plane. We show that the closed embedding
dimension of FP is three, and the open embedding dimension is between four and six, providing
the first example of a 3-sparse code with closed embedding dimension three and differing open and
closed embedding dimensions. We also investigate codes whose canonical form is quadratic, i.e.
“degree two” codes. We show that such codes are realizable by axis-parallel boxes, generalizing a
recent result of Zhou on inductively pierced codes.

We pose several open questions regarding sparse and low-degree codes. In particular, we
conjecture that the open embedding dimension of certain 3-sparse codes derived from Steiner
triple systems grows to infinity.

1 Introduction

A (combinatorial) code is any set system C C 2", Elements of a code are called codewords. We
typically abbreviate codewords by listing out their elements, e.g. {1,2,3} is expressed more concisely
as 123. We also typically express inclusion-maximal codewords in boldface.

Given a collection U = {Uy,...,U,} of sets in R? we can use a code to record how the sets
intersect and cover one another:

code(U) def {o C [n] | there exists p € R? such that p € U; if and only if i € o}

In other words, we label every point p € R? according to which U; contain it, then collect all such labels
to form code(U). The collection U is said to realize a code C when code(U) = C. We are particularly
interested in studying codes that are conver, meaning that they can be realized by a collection of
convex subsets of Euclidean space. For example, the code C = {124,13,234,12,23,24,1,2,3,4,0} is
convex and has a realization in R?, as shown in Figure 1.

Convex codes were introduced by Curto, Itskov, Veliz-Cuba, and Youngs [5] to mathematically
model hippocampal place cells. In this applied context, we are interested in open convexr codes—
meaning that sets in a realization should be both convex and open—since the regions observed in
experimental work are full-dimensional. One can analogously define closed convex codes, and perhaps
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Figure 1: A planar convex realization of C = {124,13,234,12,23,24,1,2,3,4,0}.

surprisingly these two classes of codes differ. Lienkaemper, Shiu, and Woodstock [14] described a code
that is closed convex but not open convex, and Cruz, Giusti, Itskov, and Kronholm [1] gave an example
with the opposite behavior. On the other hand, Franke and Muthiah [6] showed that every code be
realized by convex sets in a large enough dimension when no topological requirements are placed on
the sets. The disparity between open and closed realizations motivated the introduction and study
of open and closed embedding dimensions of a code C C 2["), defined respectively as

odim(C) &t min{d | C has an open convex realization in R}, and

cdim(C) of min{d | C has a closed convex realization in R%}.

Above, the minimum over the empty set is defined to be oco.

Recent work of Jeffs [12] shows that there can be arbitrary differences between the open and
closed embedding dimensions of a code. In particular, for any 2 < a,b < oo, there exists a code
C with odim(C) = a and c¢dim(C) = b. We are interested in whether or not such behavior remains
present when we restrict to “simple” codes. This paper investigates two distinct notions of being
“simple” —codes with low sparsity, and codes with low degree. Both notions are introduced below.

Sparse codes and FP. We say that C C 2l is k-sparse if every codeword in C has cardinality
at most k. For example, the code realized in Figure 1 is 3-sparse. Jeffs, Omar, Suaysom, Wachtel,
and Youngs [13] investigated 2-sparse codes, in particular showing that if C is open or closed convex
and 2-sparse, then cdim(C) = odim(C) < 3. On the other hand, there are 3-sparse convex codes with
odim(C) # cdim(C), the first example being a code S3 described in work of Jeffs [11] but implicit in
earlier work of Lienkaemper, Shiu, and Woodstock [14].

We are interested in the open and closed embedding dimensions of the 3-sparse Fano plane code,

FP Y (123,145,167, 246,257, 347, 356,1,2,3,4,5,6,7, 0}.

This is precisely the code obtained by recording the intersection pattern of lines in the Fano plane.
Alternatively, this code arises from the unique Steiner triple system on seven indices by adding all
singleton codewords and the empty codeword. See Section 7 for discussion on this latter perspective.

For now, observe that FP is intersection complete, meaning that the intersection of any two
codewords is again a codeword. This fact, together with the observations that FP is 3-sparse and
has seven maximal codewords, and results of Cruz, Giusti, Itskov, and Kronholm [1] and Jeffs [11]
imply that cdim(FP) <5 and odim(FP) < 6. In fact, we can refine these bounds significantly.



Theorem 1. The open and closed embedding dimensions of FP satisfy
cdim(FP) =3 and 4 <odim(FP) <6.

Theorem 1 provides the first example of a 3-sparse code with cdim(C) = 3 and odim(C) > cdim(C).
The general behavior of embedding dimensions for 3-sparse codes remains a wide open question. In
particular, it is not known if there can be a gap of more than one between the open and closed
embedding dimensions of 3-sparse codes, nor whether the closed dimension can exceed the open
dimension. Perhaps most crucially, it remains unclear whether or not there is any uniform upper
bound on the open or closed embedding dimensions of 3-sparse convex codes. These questions and
potential avenues of progress will be further discussed in Section 7.

Receptive field relations, the canonical form, and the degree of a code. Curto, Itskov,
Veliz-Cuba, and Youngs [5] took an algebraic approach to the study of codes and their realizations,
generalizing the theory of Stanley—Reisner rings to arbitrary set systems. Their approach allows
one to isolate minimal set-theoretic relationships that sets in a realization must satisfy. Below, we
give a combinatorial and geometric account of their approach, which is equivalent to their algebraic
framework.

Given a code C C 2/ with a (not necessarily open, closed, or convex) realization i = {Ux,...,U,}
in R, we say that a pair (o, 7) with 0,7 C [n] is a receptive field relation or RF relation if

icp Ui is all of R4,
We will only consider codes realizable by bounded sets, and so we never have (), 7) as an RF relation.

As usual, the empty union is the empty set, and we adopt the convention that [

Also, we note that the containment above is only interesting when ¢ and 7 are disjoint, and from
here on we only work with RF relations where o N7 = (). The RF relations of C do not depend on the
realization U, since C fully encodes the intersection and covering information of any of its realizations.

We say that an RF relation (o,7) for C is minimal if (o \ {i},7) and (0,7 \ {j}) are not RF
relations for any i € o or j € 7. The canonical form of a code C is

CF(C) of {(o,7) | (6,7) is a minimal RF relation for C}.

The canonical form exactly captures the minimal set-theoretic (i.e. intersection and covering) rela-
tionships between sets in any realization of C, and has been studied extensively from an algebraic
perspective [5, 3, 7, 9, 4, 8]. We say that the degree of an RF relation (o, 7) is |o|+|7|, and the degree
of a code C is the maximum degree of the relations in CF(C).

Curry, Jeffs, Youngs, and Zhao [2] showed that “inductively pierced” codes have degree two, and
can be realized not just by convex sets, but by open balls. In a recent master’s thesis, Zhou [16]
showed that inductively pierced codes can also be realized by axis-parallel boxes. These results
suggest a relationship between the degree of a code, and the complexity of its possible geometric
realizations: codes with low degree should have simpler realizations. We add to the evidence of this
trend for degree two codes with the following theorem, proved in Section 6.

Theorem 2. Let C C 2" be a degree two code. Then C can be realized by axis-parallel boxes in
dimension max{1,n — 1}.



2 Background and supporting lemmas.

Before proving our results, we first recall some useful geometric and combinatorial results, and justify
several supporting lemmas. Throughout, we will use the notation pg to denote the line segment
between points p and ¢ in R¢. We start by noting that a line spanned by a vertex of a simplex and
one of its interior points must pass through the facet opposite the vertex in question. We set this
apart as a lemma since we make use of it in several cases, but omit the proof.

Lemma 3. Let P = {py,...,pps1} € R? with k& < d such that its points are in general position, and
let ¢ be in the relative interior of the k-simplex conv(P). Then the line L which passes through p;
and ¢ intersects the facet conv(P \ {p;}).

Radon partitions. Given a set P C R? with |P| = d + 2, Radon’s theorem guarantees that there
exists a partition P = P, L P so that conv(P;) Nconv(P2) # (. In fact, when P is in general position
such a partition is unique, and conv(P;)Nconv(P,) consists of a single point, which we call the Radon
point of P.

We will be interested in various cases based on the sizes of P; and P,. To this end, the Radon
partition P} U Py is called an n—m split when |Pj| = n and |P;|] = m (we will assume n > m
throughout). Given enough points in general position, we can always find a split among a subset of
them that is as even as possible. The following lemma explains such a situation in R3.

Lemma 4. Let P = {p1,...,ps} C R? be in general position. Then there exists a 5-element subset
of P whose Radon partition is a 3-2 split.

Proof. Consider the first five points. If these form a 3-2 split, we are done. Otherwise, they form a
4-1 split. Without loss of generality, let ps € conv(py,...,ps). We consider two cases.

Case 1: pg ¢ conv(py,...,p4).
The line segment p5pg intersects a facet of the 3-simplex conv(py, ..., ps). Without loss of generality,
let this facet be conv(pi,p2,ps). Then {p1,p2,ps} LU {ps,ps} is a 3-2 Radon partition.

Case 2: pg € conv(py,...,D4).

We may consider conv(py,...,ps) as the union of four smaller simplices, each with p5 as a vertex,
and the other three vertices coming from {p1,p2, ps,ps}. The point pg lies in one of these simplices,
say without loss of generality pg € conv(pi,p2,p3,ps). Then the line segment pypg intersects a facet
of this 3-simplex, and as in the first case we obtain a 3-2 Radon partition. O

Symmetries in the Fano plane. The Fano plane has a great deal of symmetry. For our purposes,
the most important fact is that the symmetry group of the Fano plane is “doubly transitive.” In
our language, this means that any pair of maximal codewords can be mapped to any other pair of
maximal codewords by a symmetry. We record this in a lemma below, which we will make extensive
use of to reduce the casework in our arguments.

Lemma 5. Let my,...,m7 be the maximal codewords of FP. Then for every choice of (m;,m;),
(my,mg) where ¢ # j, k # /£, there exists a permutation II of [7] which maps II(m;) = my and
II(m;) = my, and under which FP is invariant.



Sunflowers of convex open sets. We say that U = {Uy,Us,...,U,} is a sunflower if
code() ={[n],1,2,...,n,0},

i.e. if all the sets have a common intersection, and each set only appears alone outside this intersection.
Sunflowers of convex open sets have played an important role in the study of convex codes, in particular
serving as building blocks to describe rich families of codes with gaps between open and closed
embedding dimensions [10, 11]. The first implementation of these ideas was given by Lienkaemper,
Shiu, and Woodstock [14] who proved the following result.

Lemma 6 (Lemma 3.2 of [14]). Let {Uy,Us, U3} be a sunflower of convex open sets in R%. If a line
L intersects each Uj;, then in fact L intersects Uy N Uy N Us.

The following lemma is an immediate consequence of this result, and will be used extensively in our
analysis of the open embedding dimension of F7P.

Lemma 7. Let {U,Us,,Us} be a sunflower of convex open sets in R?. Let p; € Up,pa € Us, and
p3 € Us be points such that ps € p1ps. Then p3 € Uy N U N Us.

Proof. Lemma 6 guarantees that pips contains a point piog in Uy N Us N Us We then have ps € p1pi23
or p3 € pioagp2. The former case implies p3 € Uy by convexity of Uy, and similarly the latter case
implies p3 € Us. Since {Uy, Uy, Us} is a sunflower, both cases in fact imply that ps lies in U1 NU2 NUs,
as desired. O

A realization of FP contains seven different sunflowers, one for each maximal codeword. In fact,
FP contains many induced copies of the previously mentioned code S3 = {123,14,24,34,1,2,3,4,(}
implicit in Lienkaemper, Shiu, and Woodstock’s work [14]. One can use Lemma 6 to prove that
cdim(S3) = 2 and odim(S3) = 3 (dimension-minimal realizations are shown in Figure 2). The Fano
plane code FP contains 28 different isomorphic copies of S3: one may take any of the seven maximal
codewords, and add any of the remaining four indices to find such a copy. Our Theorem 1 can be
thought of as saying that these 28 copies of S3 are “sufficiently entangled” in FP that the closed
dimension increases by one, and the open dimension increases by at least one.

Figure 2: Dimension-minimal closed and open realizations of Sz in R? and R3.



3 The closed dimension of FP

Figure 3 shows a closed realization of FP in R3. The sets in this realization are four facets of the
octahedron, and three axis-parallel line segments passing through opposite vertices of the octahedron.
Formally, this realization is defined by

X1 = conv{ey, —e1} Xy = conv{—ey, —eg,e3}
Xy = conv{ey, —es} X5 = conv{—ej, ez, —e3}
X3 = conv{es, —e3} Xg = conv{er, —e2, —e3}

X7 = conv{ey, e, e3}.

The remainder of this section is devoted to proving that the realization in Figure 3 is dimension-
minimal. Throughout the proof below, we use the notation L(p,q) to denote the line through points
p and gq.

Figure 3: A closed realization of FP in R3.

Theorem 8. There is no closed convex realization of FP in the plane. Consequently, cdim(FP) = 3.

Proof. Suppose for contradiction that {Xi,..., X7} is a closed convex realization FP in R2. By
intersecting our sets with a sufficiently large closed ball, we may assume that the realization is
compact. Choose a set of seven points

P ={pyr € XiN X; N Xy, | {3,5,k} € FP}.

Observe that any such P must have positive area. If not, P would be contained in a line L, and
applying Helly’s theorem to the collection of segments L N X; would yield a point in all seven sets, a
contradiction. By compactness, we may choose P to minimize the area of conv(P): we are choosing
seven points from disjoint compact subsets of R?, and the area of their convex hull varies continuously
with the choices of points. From here on, we assume that P has minimum area among all possible
choices of P, and consider two cases.



Case 1: conv(P) is not a triangle. It will suffice to restrict our attention to four vertices on the
boundary of conv(P). Consider the crossing point of the diagonals determined by these vertices. Up
to symmetry (i.e. by Lemma 5), we may assume that pjo3 and pi45 are the endpoints of one of these
diagonals. Since the line segment between any two vertices is contained in some X, the crossing point
is contained in two sets, and hence also in a third. The possible codewords arising at the crossing
point are 123,145, and 167, but the former two are impossible, for otherwise we could replace pio3
or p145 by the crossing point, obtaining a smaller area for the convex hull of P. Thus the codeword
arising at the crossing point is 167, and since this point lies in the convex hull of the other points, we
can assume without loss of generality that it is in fact equal to pig7.

Observe that FP is invariant under the permutation (1)(2435)(67), and this permutation induces
a cyclic permutation of the maximal codewords not containing 1, while transposing 123 and 145 and
leaving 167 fixed. Applying this permutation, we can assume that posg is one of our remaining two
boundary points of interest, which leaves p3s¢ as the only valid choice for the opposite point. The
situation is shown in Figure 4.

P145
D246

P67 B

D123

D356

Figure 4: Case 1 in the proof of Theorem 8.

Now, we claim that there is a point giving rise to one of the codewords 257 or 347 in the closed
regions A, B, C, or D in Figure 4. If po57 lies in one of these regions the claim is immediate. If pos7
lies outside of the quadrilateral, then the segment pi1g7p257 is contained in X7 and must cross one of
the edges of the quadrilateral. The edges lie in X5, X3, X4, and X5 respectively, so this crossing
point must give rise to one of the codewords 257 or 347.

Considering the various cases, we see that we have have arrived at a contradiction. If the codeword

257 appears in region A at a point ¢, then the crossing point of gpi23 and Pigrpass lies in Xo, Xy,
and Xg, and we could have replaced psgg with this point to obtain a smaller convex hull. Similar
contradictions arise in regions B, C, and D. For example, in region B the crossing point of the
segments gpia; and Pigrpaag will lie in X3, X5, and Xg, contradicting our choice of pssg. If the
codeword 347 arises in region A, B, C, or D then examining crossing points of appropriate line
segments yields analogous contradictions.

Case 2: conv(P) is a triangle. Up to symmetry, we may assume that two of the vertices of



this triangle are pi23 and py45. The third vertex cannot be pig7, since this would mean P C X4, a
contradiction. We may assume without loss of generality that the third vertex is pagg by applying the
permutation (1)(2435)(67) that we used in the previous case. Applying an affine transformation, we
can assume that conv(P) is an equilateral triangle with poys at its apex.

We now claim that any choice for the set Q = {p167, p257, P3a7} cannot be collinear. Suppose for
contradiction that ) can be chosen to lie on a line. The permutation (124)(365)(7) is a symmetry
of FP, and cyclically permutes the vertices of our equilateral triangle as well as the points in Q.
Applying this permutation, we may assume that pig7 lies between pos7 and psq7. But posr and psar
must lie outside the triangle conv{pi23, p145, p167} C X1, and so one of the line segments Pas7pia3 or
P3a7P123 crosses the line segment pii5pie7 (the first case is shown in Figure 5). This crossing point is
contained in X7, X, and X3, and could have been chosen as pj23 to yield a smaller area for conv(P),
a contradiction. Hence ) comprises the vertices of a triangle.

D246

D123 P145
Figure 5: Proving that Q = {p167, p257, P347} cannot be collinear.

But now consider the point pss56. This point cannot be contained in conv(Q) C X7. Hence the line
segment from pss¢ to one of the vertices of () crosses the edge determined by the other two vertices
of Q. Again using the symmetry (124)(365)(7), we can reduce to the situation shown in Figure 6.

But here the crossing point of p167P356 and pas7p3a7 lies in Xg, X7, and hence also X;. Thus we could

have chosen @) to be collinear, and we have arrived at a final contradiction. O
P347
Pie7
P3s6
P257

Figure 6: The final contradiction in Case 2: the set () could have been chosen to be collinear.



Remark 9. We have shown that FP cannot be realized by closed convex sets in R%2. Our inves-
tigations strongly indicate that in fact FP cannot be realized by any convex sets (not necessarily
open or closed) in R?, but it seems that a complete proof in the style of the one given above would
entail significant casework. We in fact conjecture the even stronger result that there is no collection
of convex sets {C1,...,C7} with C; N C; N Cy # 0 precisely when ijk € FP. In other words, we
conjecture that the abstract simplicial complex A(FP), which is obtained by adding every pair to
FP,is not “2-representable.” For background on d-representable complexes, we recommend Tancer’s
2011 survey paper [15].

4 The open dimension of FP

Cruz, Giusti, Itskov, and Kronholm [1] showed that every intersection complete code with m max-
imal codewords has open embedding dimension at most max{2,m — 1}, and hence it follows that
odim(FP) < 6. All that remains to establish Theorem 1 is to prove that odim(FP) > 3, which we
will do below.

Theorem 10. The Fano plane code has no open convex realization in R3. That is, odim(F7P) > 4.

Proof. Suppose for the sake of contradiction that U = {U,...,Us} realizes FP with convex open
sets in R3. Choose P = {p123, P145, D167, P246, P257, D347, P356 } such that pijk € Ui NU; NUj, and the
points are in general position. This can be done because U; NU; NUj, are open and nonempty for the
chosen points.

Employing Lemma 4, we may choose a 3-2 Radon partition P; LI P, on five out of the first six
points. Let P; be the set consisting of three points and P» be the set consisting of two points. Let
q € conv(P;) Nconv(P,) be the Radon point of this partition. By Lemma 5, we can assume without
loss of generality that P = {p123,p145} (note using this symmetry may mean that pss¢ ends up in
Py, however this will not cause any problems). By convexity of Uy, conv(P) C U so ¢ € U;. We
now consider two possible cases, both of which will establish that ¢ in fact lies in U; NUg N Uz. These
cases are illustrated in Figure 7.

Case 1. All elements of P; are in a common set Ug or Us.

Without loss of generality, let P = {p167,p246, 356} < Us. A similar argument can be applied to
Py = {p167, p257, p3a7} C Uz. By convexity of Ug, conv(P;) C Ug so q € Us. Since U realizes FP, the
fact that ¢ lies in Uy N Ug implies ¢ € Uy N Ug N Ux.

Case 2. All elements of P; are not in a common set.

Without loss of generality, let P, = {pi67,p246, p3a7}. This can be assumed because the following
argument relies on two points of P; being in a common set Ug and the remaining point being in Uz
(or vice versa). Indeed, any 3 element subset of {pa4¢, 356, P167, P257, P34a7} contains 2 elements from
Ug or from U7 by the pigeonhole principle. By assumption, the remaining point will not be in a
common set with these two and will therefore be in the opposing set (U; or Ug, respectively).

Now, consider the line L through poss and q. By Lemma 3, we may choose ¢’ € L N Dig7p3a7. By
convexity of Uz, ¢’ € Uz. Now, noting that q € pasg, ¢, pouas € Us, q¢ € Uy, ¢ € Uz, and {Uy, Us, U7}
form a sunflower, we can apply Lemma 7 and conclude that ¢ € Uy N Ug N Ur.



We have shown that in either case we have ¢ € U; N Ug N Uz, and we are ready to derive our final
contradiction. Since ¢ € P123pias, P123 € Uz, p1as € Uy, and g € Ug and the collection {Us, Uy, Ug}
forms a sunflower, we can apply Lemma 7 to conclude that ¢ € Uy N Uy N Ug. But then ¢ lies in
Ui NU;NUL N Ug N U7, which contradicts the assumption that U/ realizes FP. O

P123 P123

P356 D347

D246

P167 Pb145 D167 D145

Figure 7: The two cases in the proof of Theorem 10.

5 Studying FP in dimension four.

We are not sure whether or not odim(FP) exceeds four. This section will discuss the limitations of
the argument used to prove Theorem 10 when applied in R%. One may suppose for contradiction
that 4 = {Uy,...,U;} is an open convex realization of FP in R*, and similarly choose a point set
P = {p123, D145, P167, P246, D257, D347, P356 } With each point chosen from the intersection of sets it is
labeled by. We still have sufficiently many points to apply Radon’s theorem, but now we have three
cases to consider: a 5-1 split, a 4-2 split, and a 3-3 split.

The first two cases are easier to consider, since the smaller part of the split will be contained in
some U;, and hence the Radon point will be contained in some U;. In fact, similar—albeit lengthier
and more technical—geometric arguments to the ones used to prove Theorem 10 are sufficient to rule
these cases out.

When a Radon partition of points in P is a 3-3 split, the Radon point may or may not be contained
in some U;. For example, if P = {p123, p246, P347 } U{P145, P167, P356 }, then neither part of the partition
is contained in any U;, and it is not clear how to proceed. However, since P has seven points, there
are seven different subsets of size six which we can try. Could all of these lead to the “bad” 3-3 split
case?

The answer is in fact yes, with the relevant arrangement being given by points along the moment
curve in R%. In particular, suppose that the points of P appear in the following order along the
moment curve:

P123 < P145 < P246 < P167 < P347 < P356 < P257-

The relevant property of this ordering is that all six pairs of adjacent points, as well as the pair of
endpoints p123 and pos7, are contained in a unique set U;. Radon partitions of points along the moment
curve are always 3—3 splits whose parts “interlace,” i.e. alternate with one another. For example, the
Radon partition of the last six points is given by P1 = {p1457p1677p356} and P2 = {p2467p3477p257}'
One may check that all seven Radon partitions which follow this alternating pattern will yield a
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3-3 split such that P; and P, are both not a subset of any U;. Hence we are not able to derive a
contradiction analogous to our previous arguments in this case.

It is reasonable to speculate that such an arrangement could be used to construct an open convex
realization of FP in R* Starting with the seven triangles which are convex hulls of the points
containing a given index, we have a closed convex realization of FP. Could this be “thickened”
appropriately to obtain an open realization, for example by taking a Minkowski sum with a carefully
chosen open convex set? This may be the most promising path towards determining the exact open
embedding dimension of FP.

6 Realizing degree two codes with boxes

We will use and inductive approach to prove Theorem 2, facilitated by the lemmas below. Before
proceeding, we note several features of degree two codes that will be useful in our proofs. First, there
are only two types of RF relation with degree two:

({4,7},0) which corresponds to U; N U; = 0, and
({i},{4}) which corresponds to U; C Uj.

We will write these relations more concisely as (ij,0) and (i,j) respectively. We pause briefly to
justify that deleting an index does not increase the degree of a code.

Lemma 11. Let C C 2" be a degree two code. For any i € [n], the code

C\i® e\ {i} |cec)

is degree at most two.

Proof. Let (0,7) be a minimal RF relation of C \ i. Every RF relation for C \ i is an RF relation for
C, and hence (o, 7) is in fact a minimal RF relation for C. Hence (o, 7) has degree at most two, and
it follows that C \ ¢ is degree at most two. O

The only RF relations with degree one are of the form (i,0), corresponding to U; = 0. By
relabeling such indices to the end, and then forgetting about them, we can always reduce a degree
two code C to an equivalent code where every RF relation has degree exactly two, and in particular
all sets in a realization of C are nonempty.

We say that an index ¢ € [n] is inclusion minimal in a code C if there is no j # i with (j,7) an
RF relation of C (equivalently, if U; is inclusion-minimal among all sets in any realization of C). Note
that inclusion minimal indices always exist, provided that C does not have any indices which appear
in identical sets of codewords. If two indices ¢ and j do appear in identical sets of codewords, then
we must have U; = Uj in every realization of C, and thus we must have (i,7) and (j,7) both as RF
relations for C. If we are only interested in forming a realization of C of a certain type (by convex
sets, or boxes, for example) then we can apply Lemma 11 to delete one of these indices. In this way,
we can reduce to the case where every two indices in C have distinct behavior.

One last important feature of degree two codes is that they are intersection complete: the inter-
section of any two codewords is again a codeword. This fact is nontrivial to prove, but can be inferred
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as an immediate consequence of work of Curto, Gross, Jeffries, Morrison, Rosen, Shiu, and Youngs [4,
Proposition 3.7]. This fact streamlines the proof of the following lemma.

Lemma 12. Let C C 2" be a degree two code, and let i € [n] be an inclusion minimal index. Then
C\ i is a subset of C.

Proof. Let ¢ € C be a codeword with ¢ € ¢. We must argue that ¢\ {i} is also a codeword of C.
For contradiction, suppose not. Observe that every codeword containing ¢\ {7} must also contain i:
otherwise we could intersect such a codeword with ¢ to obtain ¢\ {i} as a codeword, since degree
two codes are intersection complete. This means that (¢ \ {i},4) is an RF relation. Since C is degree
two, this relation must reduce to a minimal relation of degree at most two. A relation of the form
({7, k},0) with j,k € ¢\ {i} is not possible since ¢ is a codeword, and so we must have a relation (j, )
where j € ¢\ {i}. This contradicts the fact that 7 is inclusion minimal. O

The most important tool for our proof is the following lemma, which allows us to extend a
realization of C \ n in R? to a realization of C in R¥! whenever C is degree two and n is inclusion-
minimal.

Lemma 13. Let C C 2[" be a degree two code, and suppose n is an inclusion-minimal index. Define

o={i€[n—1]]|(n,?) is an RF relation}, and
T={ien—-1]| ({i,n},0) is not an RF relation}.

Given a realization U = {Uy,...,U,_1} of C\ n in RY, the collection V = {Vi,...,V,} given by

Ui x [0,1] ifien—1\r
Vi: Uix[073] ifZ'ET,
<mjar Uj) x[2,3] ifi=n.

is a realization of C in R*1,

Proof. Fix p € R%1, and consider the codeword that arises at p in the realization V. If the last
coordinate of p lies outside the range [0, 3], then we simply obtain the empty codeword at p. Let ¢
denote the projection of p to R?, i.e. the point obtained by setting the last coordinate of p to zero.
Let ¢ € C\ n denote the codeword that arises at ¢ in the realization U. If the last coordinate of p lies
in the range [0, 1], then the codeword arising at p in the realization V is exactly c. In particular, the
codewords arising for such p are exactly those in C \ n, which is a subset of C by Lemma 12.

It remains to consider the case that the last coordinate of p lies in the range (1,3]. Here we must
carefully consider several cases.

Case 1: p ¢ V.

The codeword arising at p in V will be precisely ¢N7. Let v denote cN7 and suppose for contradiction
that - is not a codeword of C, and in particular not a codeword of C \ n. This means that (v, J) is
an RF relation of C \ n for some 6 C [n — 1] \ 7. Since C \ n is degree two and ¢ is a codeword of
C\ n this reduces to an RF relation (i,7) where i € v and j € [n — 1]\ 7. The latter condition implies
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that ({j,n},0) is an RF relation in C. But these two relations together imply that ({7,n},() is an
RF relation in C, contradicting the fact that i € 7.

Case 2: p € V,,. Observe that the codewords arising at such p in V are precisely of the form

(cnN7)U{n} where c is a codeword of C \ n that contains ¢. It thus suffices to show that these are
precisely the codewords of C that contain n.

First suppose that ¢ is a codeword of C containing n. Then o C ¢ because ¢ by definition records
the indices in [n — 1] that appear in every codeword of C containing n, and ¢\ {n} C 7 since every
index in ¢\ {n} appears together with n in the codeword ¢. Setting ¢ = ¢\ {n}, we see that c is a
codeword of C \ n containing o, and ¢ = (¢cN7) U {n} as desired.

For the converse, let ¢ be a codeword of C \ n that contains o. Let v = ¢ N 7, and note that the
argument from Case 1 shows that v is a codeword of C \ n. Suppose for contradiction that U {n} is
not a codeword of C. Then (yU{n},0d) is an RF relation for C, for some é C [n — 1]\ o. This reduces
to a degree two relation, but each possibility leads to a contradiction. A relation ({i,j},0) where
{i,7} C ~ is not possible since v is a codeword. A relation ({7,n},0) with ¢ € v is not possible since
v C 7. A relation (i,7) where i € v and j € ¢ is not possible since (7,4) is not a relation. Finally, a
relation (n,i) where ¢ € § is not possible since ¢ is disjoint from o.

We have thus shown that the codewords arising inside V,, in V are exactly the codewords of C
that contain n, concluding the proof. O

Example 14. Consider the code
C ={123,1345,135,145,134,12,13,1,4, 0}.
The minimal RF relations for this code are

({2,4}1,0), ({2,5}, 0), (2,1), 3,1), (5,1), (5,3).

In particular, it is a degree two code. Moreover, C \ 5 has a realization by intervals in R!. Figure 8
shows the construction of Lemma 13 applied to this realization, in order to obtain a realization of C
by axis-parallel boxes in R2. The sets 0 and 7 of Lemma 13 are 0 = {3} and 7 = {1,3,4} in this
case.

Theorem 2. Let C C 2" be a degree two code. Then C can be realized by axis-parallel boxes in
dimension max{1,n — 1}.

Proof. We proceed by induction on n. The base cases n = 1 and n = 2 can be verified straightfor-
wardly, since every code on one or two indices is degree two and also realizable by intervals in R!. For

", By Lemma 11, C \ n is also degree two,

the inductive step with n > 3, fix a degree two code C C 2I
and by inductive hypothesis there exists a realization {Uy,...,U,_1} of C\ n in R"~2 by axis-parallel
boxes. The realization of C in R”~! provided by Lemma 13 consists of products of the various U; and

their intersections with intervals, and hence also consists of axis-parallel boxes. O
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Figure 8: The construction of Lemma 13, extending a realization of C \ 5 in R! (below) to a
realization of C in R? (above).

7 Conclusion

Several lines of investigation remain open. Perhaps the most pressing question is to resolve the
ambiguity regarding the open embedding dimension of F7P.

Question 15. What is the precise value of odim(FP)?

Our study of FP was motivated by the broader question of studying 3-sparse codes. A more
general family of 3-sparse codes can be obtained from “Steiner triple systems,” which are sets of
triples in [n] where every pair in n appears in a unique triple in the system. A Steiner triple system
on n exists precisely when n = 1 or n = 3 modulo 6, and the maximal codewords of FP form the
smallest nontrivial Steiner triple system, which is in fact the unique such system on seven indices.
Given any Steiner triple system, one can form an associated convex code by adding the singletons and
the empty codeword. Call such a code a Steiner triple code. Every Steiner triple code is 3-sparse and
intersection complete, and so has closed embedding dimension at most five (see [11, Theorem 1.9]).
However, our Theorem 1 shows that the open embedding dimension can exceed the closed embedding
dimension in a Steiner triple code. As we have seen, a reason for this is that realizations of such codes
contain many sunflowers of three sets, to which we can potentially apply Lemma 7. We posit that as
the Steiner systems in question grow, so must the open embedding dimension.

Conjecture 16. For every d > 1 there exists a Steiner triple code C with odim(C) > d.

The route to establishing this conjecture is not at all straightforward. Our proof that FP is not
open convex in R3 made frequent use of the Fano plane’s symmetries, and also the property that any
two maximal codewords share a unique index. This poses a challenge to generalizing our methods to
higher order Steiner triple codes, and new techniques may be needed.
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As regards codes of low degree, a natural next step is to investigate degree three codes. Another
interesting question is to study codes which are both sparse and low degree.

Question 17. Among convex degree three codes, what pairs of embedding dimensions can arise?

Question 18. Can we determine bounds on the embedding dimensions of k-sparse, degree £ codes,
in terms of k and ¢7
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