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Abstract

We study the open and closed embedding dimensions of a convex 3-sparse code FP , which

records the intersection pattern of lines in the Fano plane. We show that the closed embedding

dimension of FP is three, and the open embedding dimension is between four and six, providing

the first example of a 3-sparse code with closed embedding dimension three and differing open and

closed embedding dimensions. We also investigate codes whose canonical form is quadratic, i.e.

“degree two” codes. We show that such codes are realizable by axis-parallel boxes, generalizing a

recent result of Zhou on inductively pierced codes.

We pose several open questions regarding sparse and low-degree codes. In particular, we

conjecture that the open embedding dimension of certain 3-sparse codes derived from Steiner

triple systems grows to infinity.

1 Introduction

A (combinatorial) code is any set system C ¦ 2[n]. Elements of a code are called codewords. We

typically abbreviate codewords by listing out their elements, e.g. {1, 2, 3} is expressed more concisely

as 123. We also typically express inclusion-maximal codewords in boldface.

Given a collection U = {U1, . . . , Un} of sets in R
d, we can use a code to record how the sets

intersect and cover one another:

code(U)
def
=

{

Ã ¦ [n]
∣

∣ there exists p * R
d such that p * Ui if and only if i * Ã

}

.

In other words, we label every point p * R
d according to which Ui contain it, then collect all such labels

to form code(U). The collection U is said to realize a code C when code(U) = C. We are particularly

interested in studying codes that are convex, meaning that they can be realized by a collection of

convex subsets of Euclidean space. For example, the code C = {124,13,234, 12, 23, 24, 1, 2, 3, 4, '} is

convex and has a realization in R
2, as shown in Figure 1.

Convex codes were introduced by Curto, Itskov, Veliz-Cuba, and Youngs [5] to mathematically

model hippocampal place cells. In this applied context, we are interested in open convex codes—

meaning that sets in a realization should be both convex and open—since the regions observed in

experimental work are full-dimensional. One can analogously define closed convex codes, and perhaps
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Figure 1: A planar convex realization of C = {124,13,234, 12, 23, 24, 1, 2, 3, 4, '}.

surprisingly these two classes of codes differ. Lienkaemper, Shiu, and Woodstock [14] described a code

that is closed convex but not open convex, and Cruz, Giusti, Itskov, and Kronholm [1] gave an example

with the opposite behavior. On the other hand, Franke and Muthiah [6] showed that every code be

realized by convex sets in a large enough dimension when no topological requirements are placed on

the sets. The disparity between open and closed realizations motivated the introduction and study

of open and closed embedding dimensions of a code C ¦ 2[n], defined respectively as

odim(C)
def
= min{d | C has an open convex realization in R

d}, and

cdim(C)
def
= min{d | C has a closed convex realization in R

d}.

Above, the minimum over the empty set is defined to be >.

Recent work of Jeffs [12] shows that there can be arbitrary differences between the open and

closed embedding dimensions of a code. In particular, for any 2 f a, b f >, there exists a code

C with odim(C) = a and cdim(C) = b. We are interested in whether or not such behavior remains

present when we restrict to “simple” codes. This paper investigates two distinct notions of being

“simple”—codes with low sparsity, and codes with low degree. Both notions are introduced below.

Sparse codes and FP. We say that C ¦ 2[n] is k-sparse if every codeword in C has cardinality

at most k. For example, the code realized in Figure 1 is 3-sparse. Jeffs, Omar, Suaysom, Wachtel,

and Youngs [13] investigated 2-sparse codes, in particular showing that if C is open or closed convex

and 2-sparse, then cdim(C) = odim(C) f 3. On the other hand, there are 3-sparse convex codes with

odim(C) 6= cdim(C), the first example being a code S3 described in work of Jeffs [11] but implicit in

earlier work of Lienkaemper, Shiu, and Woodstock [14].

We are interested in the open and closed embedding dimensions of the 3-sparse Fano plane code,

FP
def
= {123,145,167,246,257,347,356, 1, 2, 3, 4, 5, 6, 7, '}.

This is precisely the code obtained by recording the intersection pattern of lines in the Fano plane.

Alternatively, this code arises from the unique Steiner triple system on seven indices by adding all

singleton codewords and the empty codeword. See Section 7 for discussion on this latter perspective.

For now, observe that FP is intersection complete, meaning that the intersection of any two

codewords is again a codeword. This fact, together with the observations that FP is 3-sparse and

has seven maximal codewords, and results of Cruz, Giusti, Itskov, and Kronholm [1] and Jeffs [11]

imply that cdim(FP) f 5 and odim(FP) f 6. In fact, we can refine these bounds significantly.
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Theorem 1. The open and closed embedding dimensions of FP satisfy

cdim(FP) = 3 and 4 f odim(FP) f 6.

Theorem 1 provides the first example of a 3-sparse code with cdim(C) = 3 and odim(C) > cdim(C).

The general behavior of embedding dimensions for 3-sparse codes remains a wide open question. In

particular, it is not known if there can be a gap of more than one between the open and closed

embedding dimensions of 3-sparse codes, nor whether the closed dimension can exceed the open

dimension. Perhaps most crucially, it remains unclear whether or not there is any uniform upper

bound on the open or closed embedding dimensions of 3-sparse convex codes. These questions and

potential avenues of progress will be further discussed in Section 7.

Receptive field relations, the canonical form, and the degree of a code. Curto, Itskov,

Veliz-Cuba, and Youngs [5] took an algebraic approach to the study of codes and their realizations,

generalizing the theory of Stanley–Reisner rings to arbitrary set systems. Their approach allows

one to isolate minimal set-theoretic relationships that sets in a realization must satisfy. Below, we

give a combinatorial and geometric account of their approach, which is equivalent to their algebraic

framework.

Given a code C ¦ 2[n] with a (not necessarily open, closed, or convex) realization U = {U1, . . . , Un}

in R
d, we say that a pair (Ã, Ç) with Ã, Ç ¦ [n] is a receptive field relation or RF relation if

⋂

i*Ã

Ui ¦
⋃

j*Ç

Uj .

As usual, the empty union is the empty set, and we adopt the convention that
⋂

i*' Ui is all of Rd.

We will only consider codes realizable by bounded sets, and so we never have (', Ç) as an RF relation.

Also, we note that the containment above is only interesting when Ã and Ç are disjoint, and from

here on we only work with RF relations where Ã+ Ç = '. The RF relations of C do not depend on the

realization U , since C fully encodes the intersection and covering information of any of its realizations.

We say that an RF relation (Ã, Ç) for C is minimal if (Ã \ {i}, Ç) and (Ã, Ç \ {j}) are not RF

relations for any i * Ã or j * Ç . The canonical form of a code C is

CF(C)
def
= {(Ã, Ç) | (Ã, Ç) is a minimal RF relation for C}.

The canonical form exactly captures the minimal set-theoretic (i.e. intersection and covering) rela-

tionships between sets in any realization of C, and has been studied extensively from an algebraic

perspective [5, 3, 7, 9, 4, 8]. We say that the degree of an RF relation (Ã, Ç) is |Ã|+ |Ç |, and the degree

of a code C is the maximum degree of the relations in CF(C).

Curry, Jeffs, Youngs, and Zhao [2] showed that “inductively pierced” codes have degree two, and

can be realized not just by convex sets, but by open balls. In a recent master’s thesis, Zhou [16]

showed that inductively pierced codes can also be realized by axis-parallel boxes. These results

suggest a relationship between the degree of a code, and the complexity of its possible geometric

realizations: codes with low degree should have simpler realizations. We add to the evidence of this

trend for degree two codes with the following theorem, proved in Section 6.

Theorem 2. Let C ¦ 2[n] be a degree two code. Then C can be realized by axis-parallel boxes in

dimension max{1, n 2 1}.
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2 Background and supporting lemmas.

Before proving our results, we first recall some useful geometric and combinatorial results, and justify

several supporting lemmas. Throughout, we will use the notation pq to denote the line segment

between points p and q in R
d. We start by noting that a line spanned by a vertex of a simplex and

one of its interior points must pass through the facet opposite the vertex in question. We set this

apart as a lemma since we make use of it in several cases, but omit the proof.

Lemma 3. Let P = {p1, . . . , pk+1} ¦ R
d with k f d such that its points are in general position, and

let q be in the relative interior of the k-simplex conv(P ). Then the line L which passes through pi
and q intersects the facet conv(P \ {pi}).

Radon partitions. Given a set P ¦ R
d with |P | = d+ 2, Radon’s theorem guarantees that there

exists a partition P = P1 ¶P2 so that conv(P1)+ conv(P2) 6= '. In fact, when P is in general position

such a partition is unique, and conv(P1)+conv(P2) consists of a single point, which we call the Radon

point of P .

We will be interested in various cases based on the sizes of P1 and P2. To this end, the Radon

partition P1 ¶ P2 is called an n–m split when |P1| = n and |P2| = m (we will assume n g m

throughout). Given enough points in general position, we can always find a split among a subset of

them that is as even as possible. The following lemma explains such a situation in R
3.

Lemma 4. Let P = {p1, . . . , p6} ¦ R
3 be in general position. Then there exists a 5-element subset

of P whose Radon partition is a 3–2 split.

Proof. Consider the first five points. If these form a 3–2 split, we are done. Otherwise, they form a

4–1 split. Without loss of generality, let p5 * conv(p1, . . . , p4). We consider two cases.

Case 1: p6 /* conv(p1, . . . , p4).

The line segment p5p6 intersects a facet of the 3-simplex conv(p1, . . . , p4). Without loss of generality,

let this facet be conv(p1, p2, p3). Then {p1, p2, p3} ¶ {p5, p6} is a 3–2 Radon partition.

Case 2: p6 * conv(p1, . . . , p4).

We may consider conv(p1, . . . , p4) as the union of four smaller simplices, each with p5 as a vertex,

and the other three vertices coming from {p1, p2, p3, p4}. The point p6 lies in one of these simplices,

say without loss of generality p6 * conv(p1, p2, p3, p5). Then the line segment p4p6 intersects a facet

of this 3-simplex, and as in the first case we obtain a 3–2 Radon partition.

Symmetries in the Fano plane. The Fano plane has a great deal of symmetry. For our purposes,

the most important fact is that the symmetry group of the Fano plane is “doubly transitive.” In

our language, this means that any pair of maximal codewords can be mapped to any other pair of

maximal codewords by a symmetry. We record this in a lemma below, which we will make extensive

use of to reduce the casework in our arguments.

Lemma 5. Let m1, . . . ,m7 be the maximal codewords of FP . Then for every choice of (mi,mj),

(mk,m3) where i 6= j, k 6= 3, there exists a permutation Π of [7] which maps Π(mi) = mk and

Π(mj) = m3, and under which FP is invariant.
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Sunflowers of convex open sets. We say that U = {U1, U2, . . . , Un} is a sunflower if

code(U) = {[n], 1, 2, . . . , n, '},

i.e. if all the sets have a common intersection, and each set only appears alone outside this intersection.

Sunflowers of convex open sets have played an important role in the study of convex codes, in particular

serving as building blocks to describe rich families of codes with gaps between open and closed

embedding dimensions [10, 11]. The first implementation of these ideas was given by Lienkaemper,

Shiu, and Woodstock [14] who proved the following result.

Lemma 6 (Lemma 3.2 of [14]). Let {U1, U2, U3} be a sunflower of convex open sets in R
d. If a line

L intersects each Ui, then in fact L intersects U1 + U2 + U3.

The following lemma is an immediate consequence of this result, and will be used extensively in our

analysis of the open embedding dimension of FP .

Lemma 7. Let {U1, U2, U3} be a sunflower of convex open sets in R
d. Let p1 * U1, p2 * U2, and

p3 * U3 be points such that p3 * p1p2. Then p3 * U1 + U2 + U3.

Proof. Lemma 6 guarantees that p1p2 contains a point p123 in U1 +U2 +U3 We then have p3 * p1p123
or p3 * p123p2. The former case implies p3 * U1 by convexity of U1, and similarly the latter case

implies p3 * U2. Since {U1, U2, U3} is a sunflower, both cases in fact imply that p3 lies in U1+U2+U3,

as desired.

A realization of FP contains seven different sunflowers, one for each maximal codeword. In fact,

FP contains many induced copies of the previously mentioned code S3 = {123,14,24,34, 1, 2, 3, 4, '}

implicit in Lienkaemper, Shiu, and Woodstock’s work [14]. One can use Lemma 6 to prove that

cdim(S3) = 2 and odim(S3) = 3 (dimension-minimal realizations are shown in Figure 2). The Fano

plane code FP contains 28 different isomorphic copies of S3: one may take any of the seven maximal

codewords, and add any of the remaining four indices to find such a copy. Our Theorem 1 can be

thought of as saying that these 28 copies of S3 are “sufficiently entangled” in FP that the closed

dimension increases by one, and the open dimension increases by at least one.

Figure 2: Dimension-minimal closed and open realizations of S3 in R
2 and R

3.
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3 The closed dimension of FP

Figure 3 shows a closed realization of FP in R
3. The sets in this realization are four facets of the

octahedron, and three axis-parallel line segments passing through opposite vertices of the octahedron.

Formally, this realization is defined by

X1 = conv{e1,2e1} X4 = conv{2e1,2e2, e3}

X2 = conv{e2,2e2} X5 = conv{2e1, e2,2e3}

X3 = conv{e3,2e3} X6 = conv{e1,2e2,2e3}

X7 = conv{e1, e2, e3}.

The remainder of this section is devoted to proving that the realization in Figure 3 is dimension-

minimal. Throughout the proof below, we use the notation L(p, q) to denote the line through points

p and q.

Figure 3: A closed realization of FP in R
3.

Theorem 8. There is no closed convex realization of FP in the plane. Consequently, cdim(FP) = 3.

Proof. Suppose for contradiction that {X1, . . . ,X7} is a closed convex realization FP in R
2. By

intersecting our sets with a sufficiently large closed ball, we may assume that the realization is

compact. Choose a set of seven points

P = {pijk * Xi +Xj +Xk | {i, j, k} * FP}.

Observe that any such P must have positive area. If not, P would be contained in a line L, and

applying Helly’s theorem to the collection of segments L +Xi would yield a point in all seven sets, a

contradiction. By compactness, we may choose P to minimize the area of conv(P ): we are choosing

seven points from disjoint compact subsets of R2, and the area of their convex hull varies continuously

with the choices of points. From here on, we assume that P has minimum area among all possible

choices of P , and consider two cases.
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Case 1: conv(P ) is not a triangle. It will suffice to restrict our attention to four vertices on the

boundary of conv(P ). Consider the crossing point of the diagonals determined by these vertices. Up

to symmetry (i.e. by Lemma 5), we may assume that p123 and p145 are the endpoints of one of these

diagonals. Since the line segment between any two vertices is contained in some Xi, the crossing point

is contained in two sets, and hence also in a third. The possible codewords arising at the crossing

point are 123, 145, and 167, but the former two are impossible, for otherwise we could replace p123
or p145 by the crossing point, obtaining a smaller area for the convex hull of P . Thus the codeword

arising at the crossing point is 167, and since this point lies in the convex hull of the other points, we

can assume without loss of generality that it is in fact equal to p167.

Observe that FP is invariant under the permutation (1)(2435)(67), and this permutation induces

a cyclic permutation of the maximal codewords not containing 1, while transposing 123 and 145 and

leaving 167 fixed. Applying this permutation, we can assume that p246 is one of our remaining two

boundary points of interest, which leaves p356 as the only valid choice for the opposite point. The

situation is shown in Figure 4.

Figure 4: Case 1 in the proof of Theorem 8.

Now, we claim that there is a point giving rise to one of the codewords 257 or 347 in the closed

regions A, B, C, or D in Figure 4. If p257 lies in one of these regions the claim is immediate. If p257
lies outside of the quadrilateral, then the segment p167p257 is contained in X7 and must cross one of

the edges of the quadrilateral. The edges lie in X2, X3, X4, and X5 respectively, so this crossing

point must give rise to one of the codewords 257 or 347.

Considering the various cases, we see that we have have arrived at a contradiction. If the codeword

257 appears in region A at a point q, then the crossing point of qp123 and p167p246 lies in X2, X4,

and X6, and we could have replaced p246 with this point to obtain a smaller convex hull. Similar

contradictions arise in regions B, C, and D. For example, in region B the crossing point of the

segments qp145 and p167p246 will lie in X3, X5, and X6, contradicting our choice of p356. If the

codeword 347 arises in region A, B, C, or D then examining crossing points of appropriate line

segments yields analogous contradictions.

Case 2: conv(P ) is a triangle. Up to symmetry, we may assume that two of the vertices of

7



this triangle are p123 and p145. The third vertex cannot be p167, since this would mean P ¦ X1, a

contradiction. We may assume without loss of generality that the third vertex is p246 by applying the

permutation (1)(2435)(67) that we used in the previous case. Applying an affine transformation, we

can assume that conv(P ) is an equilateral triangle with p246 at its apex.

We now claim that any choice for the set Q = {p167, p257, p347} cannot be collinear. Suppose for

contradiction that Q can be chosen to lie on a line. The permutation (124)(365)(7) is a symmetry

of FP , and cyclically permutes the vertices of our equilateral triangle as well as the points in Q.

Applying this permutation, we may assume that p167 lies between p257 and p347. But p257 and p347
must lie outside the triangle conv{p123, p145, p167} ¦ X1, and so one of the line segments p257p123 or

p347p123 crosses the line segment p145p167 (the first case is shown in Figure 5). This crossing point is

contained in X1, X2, and X3, and could have been chosen as p123 to yield a smaller area for conv(P ),

a contradiction. Hence Q comprises the vertices of a triangle.

Figure 5: Proving that Q = {p167, p257, p347} cannot be collinear.

But now consider the point p356. This point cannot be contained in conv(Q) ¦ X7. Hence the line

segment from p356 to one of the vertices of Q crosses the edge determined by the other two vertices

of Q. Again using the symmetry (124)(365)(7), we can reduce to the situation shown in Figure 6.

But here the crossing point of p167p356 and p257p347 lies in X6, X7, and hence also X1. Thus we could

have chosen Q to be collinear, and we have arrived at a final contradiction.

Figure 6: The final contradiction in Case 2: the set Q could have been chosen to be collinear.
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Remark 9. We have shown that FP cannot be realized by closed convex sets in R
2. Our inves-

tigations strongly indicate that in fact FP cannot be realized by any convex sets (not necessarily

open or closed) in R
2, but it seems that a complete proof in the style of the one given above would

entail significant casework. We in fact conjecture the even stronger result that there is no collection

of convex sets {C1, . . . , C7} with Ci + Cj + Ck 6= ' precisely when ijk * FP . In other words, we

conjecture that the abstract simplicial complex ∆(FP), which is obtained by adding every pair to

FP , is not “2-representable.” For background on d-representable complexes, we recommend Tancer’s

2011 survey paper [15].

4 The open dimension of FP

Cruz, Giusti, Itskov, and Kronholm [1] showed that every intersection complete code with m max-

imal codewords has open embedding dimension at most max{2,m 2 1}, and hence it follows that

odim(FP) f 6. All that remains to establish Theorem 1 is to prove that odim(FP) > 3, which we

will do below.

Theorem 10. The Fano plane code has no open convex realization in R
3. That is, odim(FP) g 4.

Proof. Suppose for the sake of contradiction that U = {U1, . . . , U7} realizes FP with convex open

sets in R
3. Choose P = {p123, p145, p167, p246, p257, p347, p356} such that pijk * Ui + Uj + Uk and the

points are in general position. This can be done because Ui +Uj +Uk are open and nonempty for the

chosen points.

Employing Lemma 4, we may choose a 3–2 Radon partition P1 ¶ P2 on five out of the first six

points. Let P1 be the set consisting of three points and P2 be the set consisting of two points. Let

q * conv(P1) + conv(P2) be the Radon point of this partition. By Lemma 5, we can assume without

loss of generality that P2 = {p123, p145} (note using this symmetry may mean that p356 ends up in

P1, however this will not cause any problems). By convexity of U1, conv(P2) ¦ U1 so q * U1. We

now consider two possible cases, both of which will establish that q in fact lies in U1 +U6 +U7. These

cases are illustrated in Figure 7.

Case 1. All elements of P1 are in a common set U6 or U7.

Without loss of generality, let P1 = {p167, p246, p356} ¦ U6. A similar argument can be applied to

P1 = {p167, p257, p347} ¢ U7. By convexity of U6, conv(P1) ¦ U6 so q * U6. Since U realizes FP , the

fact that q lies in U1 + U6 implies q * U1 + U6 + U7.

Case 2. All elements of P1 are not in a common set.

Without loss of generality, let P1 = {p167, p246, p347}. This can be assumed because the following

argument relies on two points of P1 being in a common set U6 and the remaining point being in U7

(or vice versa). Indeed, any 3 element subset of {p246, p356, p167, p257, p347} contains 2 elements from

U6 or from U7 by the pigeonhole principle. By assumption, the remaining point will not be in a

common set with these two and will therefore be in the opposing set (U7 or U6, respectively).

Now, consider the line L through p246 and q. By Lemma 3, we may choose q2 * L + p167p347. By

convexity of U7, q
2 * U7. Now, noting that q * p246, q2, p246 * U6, q * U1, q

2 * U7, and {U1, U6, U7}

form a sunflower, we can apply Lemma 7 and conclude that q * U1 + U6 + U7.

9



We have shown that in either case we have q * U1 +U6 +U7, and we are ready to derive our final

contradiction. Since q * p123p145, p123 * U2, p145 * U4, and q * U6 and the collection {U2, U4, U6}

forms a sunflower, we can apply Lemma 7 to conclude that q * U2 + U4 + U6. But then q lies in

U1 + U2 + U4 + U6 + U7, which contradicts the assumption that U realizes FP .

Figure 7: The two cases in the proof of Theorem 10.

5 Studying FP in dimension four.

We are not sure whether or not odim(FP) exceeds four. This section will discuss the limitations of

the argument used to prove Theorem 10 when applied in R
4. One may suppose for contradiction

that U = {U1, . . . , U7} is an open convex realization of FP in R
4, and similarly choose a point set

P = {p123, p145, p167, p246, p257, p347, p356} with each point chosen from the intersection of sets it is

labeled by. We still have sufficiently many points to apply Radon’s theorem, but now we have three

cases to consider: a 5–1 split, a 4–2 split, and a 3–3 split.

The first two cases are easier to consider, since the smaller part of the split will be contained in

some Ui, and hence the Radon point will be contained in some Ui. In fact, similar—albeit lengthier

and more technical—geometric arguments to the ones used to prove Theorem 10 are sufficient to rule

these cases out.

When a Radon partition of points in P is a 3–3 split, the Radon point may or may not be contained

in some Ui. For example, if P = {p123, p246, p347}¶{p145, p167, p356}, then neither part of the partition

is contained in any Ui, and it is not clear how to proceed. However, since P has seven points, there

are seven different subsets of size six which we can try. Could all of these lead to the “bad” 3–3 split

case?

The answer is in fact yes, with the relevant arrangement being given by points along the moment

curve in R
4. In particular, suppose that the points of P appear in the following order along the

moment curve:

p123 < p145 < p246 < p167 < p347 < p356 < p257.

The relevant property of this ordering is that all six pairs of adjacent points, as well as the pair of

endpoints p123 and p257, are contained in a unique set Ui. Radon partitions of points along the moment

curve are always 3–3 splits whose parts “interlace,” i.e. alternate with one another. For example, the

Radon partition of the last six points is given by P1 = {p145, p167, p356} and P2 = {p246, p347, p257}.

One may check that all seven Radon partitions which follow this alternating pattern will yield a
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3–3 split such that P1 and P2 are both not a subset of any Ui. Hence we are not able to derive a

contradiction analogous to our previous arguments in this case.

It is reasonable to speculate that such an arrangement could be used to construct an open convex

realization of FP in R
4. Starting with the seven triangles which are convex hulls of the points

containing a given index, we have a closed convex realization of FP . Could this be “thickened”

appropriately to obtain an open realization, for example by taking a Minkowski sum with a carefully

chosen open convex set? This may be the most promising path towards determining the exact open

embedding dimension of FP .

6 Realizing degree two codes with boxes

We will use and inductive approach to prove Theorem 2, facilitated by the lemmas below. Before

proceeding, we note several features of degree two codes that will be useful in our proofs. First, there

are only two types of RF relation with degree two:

({i, j}, ') which corresponds to Ui + Uj = ', and

({i}, {j}) which corresponds to Ui ¦ Uj .

We will write these relations more concisely as (ij, ') and (i, j) respectively. We pause briefly to

justify that deleting an index does not increase the degree of a code.

Lemma 11. Let C ¦ 2[n] be a degree two code. For any i * [n], the code

C \ i
def
= {c \ {i} | c * C}

is degree at most two.

Proof. Let (Ã, Ç) be a minimal RF relation of C \ i. Every RF relation for C \ i is an RF relation for

C, and hence (Ã, Ç) is in fact a minimal RF relation for C. Hence (Ã, Ç) has degree at most two, and

it follows that C \ i is degree at most two.

The only RF relations with degree one are of the form (i, '), corresponding to Ui = '. By

relabeling such indices to the end, and then forgetting about them, we can always reduce a degree

two code C to an equivalent code where every RF relation has degree exactly two, and in particular

all sets in a realization of C are nonempty.

We say that an index i * [n] is inclusion minimal in a code C if there is no j 6= i with (j, i) an

RF relation of C (equivalently, if Ui is inclusion-minimal among all sets in any realization of C). Note

that inclusion minimal indices always exist, provided that C does not have any indices which appear

in identical sets of codewords. If two indices i and j do appear in identical sets of codewords, then

we must have Ui = Uj in every realization of C, and thus we must have (i, j) and (j, i) both as RF

relations for C. If we are only interested in forming a realization of C of a certain type (by convex

sets, or boxes, for example) then we can apply Lemma 11 to delete one of these indices. In this way,

we can reduce to the case where every two indices in C have distinct behavior.

One last important feature of degree two codes is that they are intersection complete: the inter-

section of any two codewords is again a codeword. This fact is nontrivial to prove, but can be inferred
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as an immediate consequence of work of Curto, Gross, Jeffries, Morrison, Rosen, Shiu, and Youngs [4,

Proposition 3.7]. This fact streamlines the proof of the following lemma.

Lemma 12. Let C ¦ 2[n] be a degree two code, and let i * [n] be an inclusion minimal index. Then

C \ i is a subset of C.

Proof. Let c * C be a codeword with i * c. We must argue that c \ {i} is also a codeword of C.

For contradiction, suppose not. Observe that every codeword containing c \ {i} must also contain i:

otherwise we could intersect such a codeword with c to obtain c \ {i} as a codeword, since degree

two codes are intersection complete. This means that (c \ {i}, i) is an RF relation. Since C is degree

two, this relation must reduce to a minimal relation of degree at most two. A relation of the form

({j, k}, ') with j, k * c \{i} is not possible since c is a codeword, and so we must have a relation (j, i)

where j * c \ {i}. This contradicts the fact that i is inclusion minimal.

The most important tool for our proof is the following lemma, which allows us to extend a

realization of C \ n in R
d to a realization of C in R

d+1 whenever C is degree two and n is inclusion-

minimal.

Lemma 13. Let C ¦ 2[n] be a degree two code, and suppose n is an inclusion-minimal index. Define

Ã = {i * [n 2 1] | (n, i) is an RF relation}, and

Ç = {i * [n 2 1] | ({i, n}, ') is not an RF relation}.

Given a realization U = {U1, . . . , Un21} of C \ n in R
d, the collection V = {V1, . . . , Vn} given by

Vi =

ù

ü

ü

ú

ü

ü

û

Ui × [0, 1] if i * [n2 1] \ Ç,

Ui × [0, 3] if i * Ç,
(

⋂

j*Ã Uj

)

× [2, 3] if i = n.

is a realization of C in R
d+1.

Proof. Fix p * R
d+1, and consider the codeword that arises at p in the realization V. If the last

coordinate of p lies outside the range [0, 3], then we simply obtain the empty codeword at p. Let q

denote the projection of p to R
d, i.e. the point obtained by setting the last coordinate of p to zero.

Let c * C \n denote the codeword that arises at q in the realization U . If the last coordinate of p lies

in the range [0, 1], then the codeword arising at p in the realization V is exactly c. In particular, the

codewords arising for such p are exactly those in C \ n, which is a subset of C by Lemma 12.

It remains to consider the case that the last coordinate of p lies in the range (1, 3]. Here we must

carefully consider several cases.

Case 1: p /* Vn.

The codeword arising at p in V will be precisely c+Ç . Let ³ denote c+Ç and suppose for contradiction

that ³ is not a codeword of C, and in particular not a codeword of C \ n. This means that (³, ·) is

an RF relation of C \ n for some · ¦ [n 2 1] \ Ç . Since C \ n is degree two and c is a codeword of

C \n this reduces to an RF relation (i, j) where i * ³ and j * [n2 1] \ Ç . The latter condition implies

12



that ({j, n}, ') is an RF relation in C. But these two relations together imply that ({i, n}, ') is an

RF relation in C, contradicting the fact that i * Ç .

Case 2: p * Vn. Observe that the codewords arising at such p in V are precisely of the form

(c + Ç) * {n} where c is a codeword of C \ n that contains Ã. It thus suffices to show that these are

precisely the codewords of C that contain n.

First suppose that c̃ is a codeword of C containing n. Then Ã ¦ c̃ because Ã by definition records

the indices in [n 2 1] that appear in every codeword of C containing n, and c̃ \ {n} ¦ Ç since every

index in c̃ \ {n} appears together with n in the codeword c̃. Setting c = c̃ \ {n}, we see that c is a

codeword of C \ n containing Ã, and c̃ = (c + Ç) * {n} as desired.

For the converse, let c be a codeword of C \ n that contains Ã. Let ³ = c + Ç , and note that the

argument from Case 1 shows that ³ is a codeword of C \ n. Suppose for contradiction that ³ * {n} is

not a codeword of C. Then (³ * {n}, ·) is an RF relation for C, for some · ¦ [n2 1] \Ã. This reduces

to a degree two relation, but each possibility leads to a contradiction. A relation ({i, j}, ') where

{i, j} ¦ ³ is not possible since ³ is a codeword. A relation ({i, n}, ') with i * ³ is not possible since

³ ¦ Ç . A relation (i, j) where i * ³ and j * · is not possible since (³, ·) is not a relation. Finally, a

relation (n, i) where i * · is not possible since · is disjoint from Ã.

We have thus shown that the codewords arising inside Vn in V are exactly the codewords of C

that contain n, concluding the proof.

Example 14. Consider the code

C = {123,1345, 135, 145, 134, 12, 13, 1, 4, '}.

The minimal RF relations for this code are

({2, 4}, '), ({2, 5}, '), (2, 1), (3, 1), (5, 1), (5, 3).

In particular, it is a degree two code. Moreover, C \ 5 has a realization by intervals in R
1. Figure 8

shows the construction of Lemma 13 applied to this realization, in order to obtain a realization of C

by axis-parallel boxes in R
2. The sets Ã and Ç of Lemma 13 are Ã = {3} and Ç = {1, 3, 4} in this

case.

Theorem 2. Let C ¦ 2[n] be a degree two code. Then C can be realized by axis-parallel boxes in

dimension max{1, n 2 1}.

Proof. We proceed by induction on n. The base cases n = 1 and n = 2 can be verified straightfor-

wardly, since every code on one or two indices is degree two and also realizable by intervals in R
1. For

the inductive step with n g 3, fix a degree two code C ¦ 2[n]. By Lemma 11, C \ n is also degree two,

and by inductive hypothesis there exists a realization {U1, . . . , Un21} of C \n in R
n22 by axis-parallel

boxes. The realization of C in R
n21 provided by Lemma 13 consists of products of the various Ui and

their intersections with intervals, and hence also consists of axis-parallel boxes.

13



Figure 8: The construction of Lemma 13, extending a realization of C \ 5 in R
1 (below) to a

realization of C in R
2 (above).

7 Conclusion

Several lines of investigation remain open. Perhaps the most pressing question is to resolve the

ambiguity regarding the open embedding dimension of FP .

Question 15. What is the precise value of odim(FP)?

Our study of FP was motivated by the broader question of studying 3-sparse codes. A more

general family of 3-sparse codes can be obtained from “Steiner triple systems,” which are sets of

triples in [n] where every pair in n appears in a unique triple in the system. A Steiner triple system

on n exists precisely when n c 1 or n c 3 modulo 6, and the maximal codewords of FP form the

smallest nontrivial Steiner triple system, which is in fact the unique such system on seven indices.

Given any Steiner triple system, one can form an associated convex code by adding the singletons and

the empty codeword. Call such a code a Steiner triple code. Every Steiner triple code is 3-sparse and

intersection complete, and so has closed embedding dimension at most five (see [11, Theorem 1.9]).

However, our Theorem 1 shows that the open embedding dimension can exceed the closed embedding

dimension in a Steiner triple code. As we have seen, a reason for this is that realizations of such codes

contain many sunflowers of three sets, to which we can potentially apply Lemma 7. We posit that as

the Steiner systems in question grow, so must the open embedding dimension.

Conjecture 16. For every d g 1 there exists a Steiner triple code C with odim(C) g d.

The route to establishing this conjecture is not at all straightforward. Our proof that FP is not

open convex in R
3 made frequent use of the Fano plane’s symmetries, and also the property that any

two maximal codewords share a unique index. This poses a challenge to generalizing our methods to

higher order Steiner triple codes, and new techniques may be needed.
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As regards codes of low degree, a natural next step is to investigate degree three codes. Another

interesting question is to study codes which are both sparse and low degree.

Question 17. Among convex degree three codes, what pairs of embedding dimensions can arise?

Question 18. Can we determine bounds on the embedding dimensions of k-sparse, degree 3 codes,

in terms of k and 3?
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