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Sequential Joint Shape and Pose Estimation of Vehicles with
Application to Automatic Amodal Segmentation Labeling
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Abstract— Shape and pose estimation is a critical perception
problem for a self-driving car to fully understand its surround-
ing environment. One fundamental challenge in solving this
problem is the incomplete sensor signal (e.g., LiDAR scans),
especially for faraway or occluded objects. In this paper, we
propose a novel algorithm to address this challenge, which
explicitly leverages the sensor signal captured over consecutive
time: the consecutive signals can provide more information
about an object, including different viewpoints and its motion.
By encoding the consecutive signals via a recurrent neural
network, not only our algorithm improves the shape and
pose estimates, but also produces a labeling tool that can
benefit other tasks in autonomous driving research. Specifically,
building upon our algorithm, we propose a novel pipeline to
automatically annotate high-quality labels for amodal segmen-
tation on images, which are hard and laborious to annotate
manually. Our code and data will be made publicly available.

I. INTRODUCTION

A self-driving car must perceive its environment, identify
other traffic participants (e.g., vehicles and pedestrians), and
importantly, estimate their shapes and poses in order to plan
and act safely. One of the fundamental challenges for these
problems is the sensor signal: a LiDAR scan may only
capture one partial view of an object, making shape and pose
estimation an ill-posed problem. Many existing approaches
address this challenge by training a neural network to encode
prior knowledge of complete object shapes [1], [2], [3], [4].
While showing promising results, these approaches are still
highly sensitive to the quality of input signals. Specifically,
the accuracy of shape and pose estimation drastically drops
for faraway or heavily occluded objects whose signals are
sparse and limited.

In this paper, we propose to address this challenge by
explicitly leveraging consecutive LiDAR scans: we find that
existing methods process each LiDAR scan independently,
even though the same object may appear consecutively over
time. We argue that consecutive LiDAR scans are crucial
for high-quality pose and shape estimation. First, while
an object may be partially or sparsely observed at each
time step, the observations can collectively render a more
complete shape over time. Second, traffic participants like
vehicles usually move in relatively constrained ways such
that temporal information can help correct unreliable pose
estimates, as evidenced by the improvement of video-based
object detection [5] and object tracking [6], [7] over frame-
wise detection. Third, for objects that are rarely seen in
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the past (i.e., in the training data), the observation over
time essentially offers extra data to adapt the algorithm for
improved estimation.

We propose a novel learning-based approach for joint
shape and pose estimation that explicitly takes advantage
of the consecutive LiDAR scans. Given a sequence of
point cloud segments that coarsely captures a single object!
(specifically, vehicles in this paper), we propose to fuse
the newly extracted features from the current point cloud
segment with those from the past via a recurrent neural net-
work [8]. Leveraging past measurements provides additional
information, especially for estimating the complete shape.
In addition, the network can internally learn a motion and
behavioral model that is beneficial for pose estimation. We
demonstrate that our approach in using consecutive LiDAR
scans improves the accuracy of shape and pose estimates
through validation on both simulated and real datasets.

Besides improving the shape and pose estimation along
with other downstream tasks online, our sequential approach
can also benefit other autonomous driving tasks offline.
Specifically, for this paper, we propose to apply the approach
to automatically annotate labels for the task of amodal
instance segmentation of images, a task aiming to segment
the full (amodal) masks of objects irrespective of potential
occlusions [9], [10], [11], [12]. This is particularly important
in autonomous driving, where dense traffic and adverse
conditions (e.g., snow, rain, night) may obfuscate objects.
One bottleneck of this research, aside from the algorithm
design, is the lack of large-scale datasets annotated with
ground-truth amodal masks. Concretely, manual annotation
of amodal masks is laborious and heavily relies on the
subjective intuition of the occluded objects’ shape by the
annotator, making it hard to maintain consistency and reli-
ability of the labels. Fortunately, autonomous driving data
is typically collected in sequence, and usually includes both
image and LiDAR information. Thus, we leverage the point
cloud sequence and our sequential algorithm to estimate the
complete 3D object shapes at each time frame, these 3D
shape results are then projected onto the corresponding image
to obtain the amodal masks. The occlusion ordering can be
immediately obtained from depth information. Overall, our
automatic labeling pipeline helps to resolve the ambiguity in
manually annotating amodal masks from just a single image.

Our main contributions are:

IPoint cloud segments of individual objects can be extracted from LiDAR
scenes through 3D instance segmentation, 3D object detection, or clustering,
followed by tracking and data association over time.



o The first joint shape and pose estimation algorithm
that leverages information in time frames to improve
sequential estimates.

o A simulated dataset of sequences of partial LIDAR mea-
surements of vehicles along with their corresponding
complete 3D shapes. The data and data generation code
will also be released to enable other researchers to create
their own data.

o A novel automatic annotation pipeline for amodal in-
stance segmentation that is built upon our sequential
algorithm.

II. RELATED WORK
A. Shape Estimation

Previous works have proposed different methods and
representations in estimating vehicles’ shapes from LiDAR
observations for fine-grained understanding beyond simple
bounding boxes [13], [14], [15], [16]. However, these works
obtain shape estimates only for parts of vehicles that have
been previously seen, often resulting in incomplete shape
estimates. [17], [18] predict the complete shape of an object
from an image through a shape matching process, i.e.,
representing the object shape as a combination of shape
basis, requiring an extensive CAD model library. While 2D
image projections of the resulting shape estimates may be
accurate, RGB-based methods lack the 3D depth spatial in-
formation that is crucial to produce accurate shape estimates
in 3D space. As LiDAR sensor is commonly available in
autonomous driving setup, 3D point cloud information can
be utilized for more accurate shape and pose predictions.

Point cloud completion aims to predict the complete shape
of an object given an incomplete point cloud measurement.
Point Completion Network (PCN) [1], one of the pioneers for
learning-based shape completion, proposes a simple encoder-
decoder shape completion network. [19] designs a new
decoder architecture that generates point cloud based on a
hierarchical tree structure. More recently, [20] proposes a
completion method that directly predicts the missing point
cloud and appends it to the point cloud input. However, they
all assume well-aligned, canonical point cloud inputs, which
are hard to obtain for actual sensor data. Thus, these methods
require a pose estimation and a point cloud alignment to a
canonical pose as preprocessing steps to operate on real-
world data. Consequently, the shape estimation is subject
to errors from the pose estimation. To address this issue,
[3] proposes a network that jointly estimates the pose and
complete shape of vehicles, sharing information between the
two tasks. Our work builds upon these efforts. However,
unlike existing works which make an independent estimate
for each point cloud input, our method fuses information over
time to produce more accurate shape and pose estimates.

B. Pose Estimation

Pose estimation in autonomous driving refers to inferring
the location and orientation of an object. Many detection and
tracking algorithms represent vehicles by bounding boxes
(parameterized by sizes, orientations, and center locations)

and perform traditional filtering, such as the Kalman filter,
to fuse new measurements with prior beliefs [21]. However,
representing vehicles by bounding boxes eliminates detailed
shape information that can facilitate accurate and robust
tracking. To make full use of shape information, some
trackers [22] apply Iterative Closest Point (ICP) to align point
cloud measurements. However, they heavily rely on good
initialization and often get stuck in local minima. As opposed
to ICP, Annealed Dynamic Histogram (ADH) tracker [13]
globally explores the state space to find the best Markovian
alignment between measurements. However, ADH scores
the point cloud alignment only based on the latest two
measurements. Thus, ADH lacks robustness when the point
cloud is sparse, or the viewpoint changes rapidly. Learning-
based approaches [23], [24], [25], [26] benefit from curated
training data and can learn to be robust against occlusions
and inferior sensor data. However, most of these approaches
operate separately on individual frames and do not utilize
past information along tracks.

C. Amodal Mask Labeling

Labeling amodal masks is commonly deemed as a sub-
jective and ill-posed problem, as it involves the annotators’
intuition to predict the occluded masks. Thus, it requires
rigorous guidelines and control to ensure the consistency
and quality of the labels. For example, the KINS dataset
[27] provides manually annotated amodal mask labels on
the autonomous driving KITTI object detection data [28]. To
obtain high-quality labels, the data is repetitively labeled six
times by three different annotators. This shows the difficulty
of amodal mask labeling.

Several attempts have been made to automate the amodal
mask label generation. [9] intentionally introduces occlu-
sion to the image by overlaying unoccluded instances with
other object masks. The new overlaid image is used as the
input data, while the original unoccluded masks serve as
the amodal mask labels. While this can efficiently provide
accurate amodal mask labels, the generated images may not
look realistic or reflect a realistic occlusion relationship in
the real world. [29] aligns 3D CAD models from PASCAL
3D+ dataset [30] to the target instances in PASCAL VOC
[31] images and projects the model onto the image frames to
acquire the labels. While the generated images come from a
real-world occlusion relationship, the process requires object
3D CAD models and manual alignment of the models.

III. SEQUENTIAL JOINT SHAPE AND POSE ESTIMATION

We formulate the problem of sequential joint shape and
pose estimation as estimating the complete point cloud X;
and homogeneous transformation 7; (from the canonical
reference pose) of an object at time ¢, given unaligned
partial point cloud measurements Z;.; of the same object.
As vehicles commonly move on a planar ground, we only
estimate the planar translation and rotation for 7;. Z7.; can
be obtained by a frame-wise point cloud segmentation (e.g.,
via object detection [33], [34], [35], [36] or 3D instance
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Fig. 1: Overview diagram of our sequential shape and pose estimation pipeline. The encoder consists of two stacked PointNet
[32] layers. The fusion network is a single layer GRU. The shape and pose decoders are Multi-layer Perceptrons (MLPs).

segmentation [37], [38]), followed by a standard data asso-
ciation over time [39], [6], [7]. Our approach outputs the
complete point cloud in the original pose of the unaligned
measurement Z,; rather than in its canonical pose.

A. Pipeline

Our algorithm begins with estimating the complete shape
and pose of a vehicle from its first observation using an
encoder-decoder-style neural network inspired by [3]. For
the sequential time frames, however, unlike existing work, we
recursively fuse the newly extracted point cloud features with
those from the past through Gated Recurrent Units (GRUs)
[8]. Figure 1 shows the overall pipeline of our sequential
shape and pose estimation framework. First, we preprocess
the input by shifting the partial point cloud measurement Z;
by its mean Z; (demeaning in Figure 1):

Zy =2y — Zy )

In our pipeline, demeaning assists the fusion process by
coarsely aligning point cloud measurements from different
time steps to the same origin coordinate. Additionally, this
step makes training and inference easier by narrowing the
network input and output range around the origin. The
demeaned point cloud Z; is then passed to the joint encoder
to extract the feature vector f;:

fe=1(Z)

which summarizes the measurement at time ¢.

Instead of using f; alone to predict the complete shape
and pose, our method leverages all measurements Zi.; up to
the latest frame in making the prediction. In particular, we
employ a GRU module which recursively updates its hidden
state h; by fusing the previous hidden state h;_; with the
current measurement feature f:

ht = GRU (hi—1, ft)

2
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The hidden state h;, which can be seen as a summary of all
available measurements 7., is then used as the input to the
pose and shape decoders. This fusion process is executed at
the feature level instead of the point-cloud level, allowing
the network to learn better how to combine and extract the
most useful information from Z.;.

The updated hidden state h; is then passed to the shape
and pose decoders to estimate the complete point cloud X/
and pose T}:

Xt/ = gshape(ht)a Tt/ = gpose(ht) 4)
These shape and pose estimates are still in the Z; coordi-
nate frame (i.e., coordinate frame whose origin lies at the
measurement mean). A forward transformation is applied to
bring each back to the original measurement Z; frame:

Xi= X[+ 2, T, = {I Zﬂ 7 5)

0 1
Overall, our pipeline shares some conceptual similarities
to shape estimation of a moving object using traditional
filtering methods [14], [16], [40] which consists of dynamics
and measurement update steps. Dynamics update aims to
transform the shape estimate to the same coordinate frame as
the new measurement to assist the measurement update (e.g.,
point cloud fusion process). Our demeaning block is analo-
gous to the dynamics update, but instead of transforming the
shape estimate forward, it transforms the new measurement
back to the previously fused state frame. We design the
dynamics update in reverse to avoid having to decode h;_
to shape and pose before transforming then encoding them
again to get the next time step hidden state h;. This redundant
decoding-encoding step will induce information loss and
produce sub-optimal results. Meanwhile, our GRU fusion
is analogous to the measurement update, which utilizes
the measurement information to update the shape and pose
estimates.

B. Training

Neural networks that contain multiple components are
challenging to train in a naive end-to-end manner. We thus
follow [3] to employ a multi-stage training procedure.

Stage 1: We train the encoder, GRU, and shape decoder
by minimizing the Chamfer Distance (CD) shape loss [41]
between the point cloud estimate X and ground truth X&'
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Stage 2: As features from previous shape training have
captured some notions about pose [3], we train the pose
decoder on top of those features while freezing the rest of the
network weights. We train the pose decoder by minimizing
the pose loss [42]:

1
LP(T7 Tg[; th) =
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where T and T® are the estimated and ground truth trans-
formations. This loss function penalizes both the translation
and rotation errors.

Stage 3: Finally, we jointly train the entire network for
sequential shape and pose estimation using the following
joint loss Ly [43]:

1 1
= - Lcp + 5 Lp +log(ocpop) (8)
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where ocp and op are learnable parameters, denoting the
uncertainty of each prediction task. By training the two tasks
simultaneously, learning in one task benefits the other, since
the tasks are coupled. Moreover, the network can learn a
more general representation capturing both tasks and is less
likely to overfit.

IV. AUTOMATIC AMODAL SEGMENTATION LABELING

We extend our sequential shape and pose estimation algo-
rithm in point clouds to automatic amodal segmentation la-
beling in images, building on the following key observation.
An object instance commonly appears in multiple frames, as
driving data is collected in a continuous sequence. Thus, a
part of an amodal mask occluded in one frame may be visible
in other frames. If we can fuse the information from multiple
frames, we can produce amodal masks that are consistent
across time frames. One naive way is to fuse 2D inmodal
masks in the image space — 2D inmodal masks are easier
to annotate or can be obtained from existing segmentation al-
gorithms like Mask-RCNN [44]. This method, however, has
several challenges. First, an object’s 2D size and shape vary
across frames depending on its relative pose to the camera.
Second, the mask shape is also influenced by the object’s
3D orientation, a piece of information that is missing in 2D.
Third, while multiple frames provide extra information about
an object, some parts may never be seen in any frames.

To solve these issues, we propose to fuse the information
over time in 3D by taking advantage of 1) the 3D LiDAR
signal that is commonly available in the autonomous driving
configuration, and 2) our learned network for shape comple-
tion that encodes the prior of complete shapes from training
data. We feed the point cloud sequence into our sequential
point completion network in order to obtain the full amodal
information of the object. The complete point cloud is then
projected to the image space and post-processed to get an
alpha shape as the amodal mask label. Finally, the occlusion
ordering is reasoned from depth information.

We present two different scenarios where our automatic
labeling pipeline can be used. The first assumes the avail-
ability of 3D bounding box ground truth and association,

which are typically available on a public driving dataset, on
the data to be labeled. In this case, the 3D bounding boxes are
used to segment the point cloud objects to get a sequence of
partial point cloud objects containing only the target vehicle.
Given a segmented point cloud sequence and ground truth
transformations, one can simply accumulate these segmented
point clouds using the ground truth transformations and use
the symmetrical property of vehicles to mirror the point
cloud with respect to its heading axis in order to obtain
the amodal shape information. However, this may still result
in incomplete amodal information for many cases, as will
be shown in subsection V-C. So instead, we leverage our
sequential point completion network to fuse and complete
the amodal information. As our goal is labeling, we can train
and evaluate the network on the same dataset.

In the second scenario, we handle situations where 3D
bounding box labels are unavailable. In this case, we deploy a
pretrained Mask-RCNN [44] inmodal instance segmentation
and LDLS [37] (a 2D to 3D label diffusion framework) to
segment the point cloud, followed by data association. Since
3D bounding box labels are not available, we deploy our
sequential completion network that is pretrained on another
dataset, e.g., synthetic dataset.

V. EXPERIMENTS

We first evaluate the quality of the completed point cloud
and pose estimates on the synthetic and Argoverse [45] real
dataset. The translation and rotation errors are computed to
evaluate the pose estimate quality. Besides Chamfer Distance
(CD), Earth Mover Distance (EMD) [42], [46] is also com-
puted to evaluate the completed point cloud through different
aspects. The CD captures the global structure of the point
cloud, while the EMD captures the point density.

Next, we evaluate our automatic amodal labeling pipeline
on the KITTI tracking dataset, comparing our generated
masks to the manually annotated labels from KINS [27] by
computing the mean intersection over union (mloU), as well
as % miss, i.e., the percentage of instances that do not have
a matching or IoU < 0.5.

A. Data Generation

The synthetic dataset can generate perfect and complete
point clouds required for training and evaluation. However,
the synthetic dataset does not contain real-world challenges
such as occlusions, contamination from ground points, Li-
DAR time synchronization issues, and data mislabeling.
Thus, we complement our analysis by training and evaluating
on the real-world Argoverse dataset [45].

1) Synthetic Dataset: We obtain 183 vehicle CAD models
from [47] and randomly split them to 168/15 for training
and validation. Each CAD model is fit into 11 different
trajectories, where each may contain a different number
of frames, resulting in 1848/165 tracks for training and
validation. To mimic the real-world behavior of vehicles, we
use the trajectory log from the Argoverse dataset [45]. To
simulate partial point cloud measurements, we transform the
CAD models to the desired poses in the track and apply



raytracing using the Trimesh library [48]. We generate a
synthetic dataset with VLP-16 LiDAR configuration placed
at a 2m height from the ground. To generate a complete point
cloud shape, we use Open3D library [49] to sample points
from the CAD models and remove interior points that are
not visible from the outside.

2) Argoverse: We evaluate our results on car objects in the
Argoverse tracking dataset [45] split into 2298/638 tracks for
training and validation, where each track contains an average
of 70 frames. As we do not focus on segmentation and data
association problems, ground truth bounding boxes and track
ids are used to crop the LiDAR scene.

While ground truth pose is provided by Argoverse, com-
plete point clouds are not available. Thus, to acquire a shape
reference, LiDAR point clouds of vehicles are accumulated
over multiple frames. Furthermore, since vehicles are usually
symmetrical about their heading axes, we mirror the points
along the symmetrical heading axes [50]. Note that even after
the LiDAR point clouds are accumulated and mirrored, the
developed shape reference may still be non-ideal (e.g., dis-
playing noise, inaccuracy, incompleteness, and non-uniform
point density), as it is built from measurements. As EMD is
highly sensitive to these properties, evaluating EMD against
such point cloud reference is not meaningful. Thus, we do
not report the EMD for Argoverse evaluation.

B. Shape and Pose Estimation

We run our method recursively from each vehicle’s initial
to final detection. The shape and pose errors are evaluated at
each time step. We compare our method to the joint shape
and pose estimation from [3] as a baseline. Different from
our proposed approach, the baseline makes a prediction on
each frame independently.

1) Results on Synthetic Dataset: Table I shows the se-
quential shape and pose estimation results on the synthetic
dataset. Our method outperforms the baseline in both shape
completion and pose estimation tasks. While CD is the direct
metric for training, EMD quantifies the quality of point
density. The reported EMD value is much higher than CD
due to requiring one-to-one correspondences between points.
Nevertheless, our method still outperforms the baseline even
on the EMD metric.

To complement the quantitative analysis, shape estimate
results at three different time steps are shown in Figure 2.
In this case, the sensor data is initially (frame 1) very
sparse. As a result, both methods do not produce accurate
shape estimates; they also mispredict the car’s orientation
by roughly 180°. At frame 40, the sensor data is denser,
and both methods produce more accurate shape estimates.

TABLE I: Quantitative result on the synthetic dataset.

Method Shape Error que Error .
CD EMD | Translation | Rotation

Baseline | 3.1 cm | 0.50 m 122 cm 20.2¢

Ours 23 cm | 0.25 m 9.4 cm 12.0°

Frame 80  °GT
oOQurs

eBaseline

Frame 1 Frame 40

Fig. 2: Qualitative shape completion results on a track from
the synthetic data over time. Top: Ours. Bottom: Baseline.

Nevertheless, our shape estimate still fits the ground truth
better. At frame 80, the sensor data becomes sparse again. As
a result, the baseline approach produces an inaccurate shape
estimate and a significant orientation error, as seen from
Figure 2. Yet, at this time, our method produces an accurate
shape estimate despite the challenging sensor measurement.
This shows that by leveraging temporal information, we can
produce more accurate and consistent estimates over time.
2) Results on Argoverse Dataset: Figure 3 plots the shape
and pose estimate error metrics with respect to the number
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Argoverse dataset. Lower is better.



Fig. 4: Amodal mask labels from our proposed pipelines. Top: GT-Accumulation. Bottom: GT-SC. The masks inside the red
boxes highlight the benefit of using our sequential completion network.

of detections. Our method outperforms the baseline in all
metrics and shows a general trend of improvement in the
quality of shape estimates with more detections. This aligns
with our initial claim that performance improves with more
frames if fused properly.

C. Automatic Labeling of Amodal Segmentation on KITTI

We compare our automatically-generated label qualities
under different ablations and cases to KINS manual anno-
tation [27] in Table II. KINS-manual mloU represents the
consistency of manually annotated labels across different
annotators, denoting the quality of the manual labels. GT-
Accumulation is our method of accumulating and mirroring
partial point cloud sequences. SC-GT refers to our improve-
ment of GT-Accumulation by utilizing our sequential com-
pletion. Finally, SC-MRCNN refers to sequential completion
using Mask-RCNN [44] and label diffusion when 3D ground
truth bounding boxes are unavailable.

In all three cases (with and without 3D bounding box la-
bels), our proposed labeling approaches achieve comparable
mloU consistency to human-level performance, i.e., KINS
cross-annotators consistency. In the case where 3D ground
truth bounding boxes are available, running through sequen-
tial completion (SC-GT) yields less missing instance match
than just accumulating and mirroring (GT-Accumulation). It
is important to note that we compare our generated labels
to the manually annotated KINS labels and not to the actual
amodal mask ground truth that is practically unavailable. The
KINS Ilabel itself has some noise, i.e., its internal consistency
across different annotators is ~0.8. Thus, achieving a higher
mloU than that does not necessarily imply a better quality
mask.

TABLE II: Amodal mask consistency.

Method 3D GT label | % Miss | mloU
KINS-manual - - 0.809
GT-Accumulation Available 2.69 0.813
SC-GT Available 0.90 0.813
SC-MRCNN No 5.53 0.788

To give a better insight into the advantage of our sequential

completion network, we qualitatively show several amodal
mask examples in Figure 4. Specifically, note the area inside
the red boxes. We observe cases where merely accumu-
lating and mirroring (GT-Accumulation) is not enough to
cover the complete amodal information. Additionally, GT-
Accumulation is prone to error or noise in the point cloud,
as shown in the white car inside the red box in Figure 4
top left. On the other hand, despite the noise, our sequential
completion network has a smoothing effect that filters out
this noise.

Finally, in the absence of 3D ground truth bounding boxes,
we can not perform our accumulation and mirroring method
(GT-Accumulation). But our sequential completion network
(SC-MRCNN) still provides comparable quality masks to
human-annotated labels despite the absence of any labels.
Although as expected, the performance of SC-MRCNN is
slightly worse than SC-GT. This is because segmenting out
point cloud using Mask-RCNN and LDLS is not as accurate
as using human-annotated 3D ground truth bounding boxes.
Additionally, due to the absence of 3D ground truth bounding
boxes, the sequential completion network in SC-MRCNN is
trained on the synthetic data, which introduces some domain
adaptation gap when applied to the KITTI data.

VI. CONCLUSION

We propose a learning-based approach for joint point
completion and pose estimation of vehicles from LiDAR
point cloud measurements. Uniquely, our method explicitly
leverages the temporal information of tracks. We evaluate
our method on synthetic and real-world datasets, showing
better performance in both shape and pose estimation tasks
against the baseline approach. We demonstrate that properly
fusing extra temporal information benefits shape and pose
estimation. Finally, we propose a novel automatic amodal
labeling pipeline using our sequential completion network.
We evaluate our automatic amodal labeling pipeline and
demonstrate comparable quality to human annotations.
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