Check for
Updates

Session 2: Privacy

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

Genomic Data Sharing under Dependent Local Differential
Privacy

Emre Yilmaz
University of Houston-Downtown
Houston, Texas
yilmaze@uhd.edu

Erman Ayday

Case Western Reserve University
Cleveland, Ohio
exa208@case.edu

ABSTRACT

Privacy-preserving genomic data sharing is prominent to increase
the pace of genomic research, and hence to pave the way towards
personalized genomic medicine. In this paper, we introduce (e, T)-
dependent local differential privacy (LDP) for privacy-preserving
sharing of correlated data and propose a genomic data sharing
mechanism under this privacy definition. We first show that the
original definition of LDP is not suitable for genomic data sharing,
and then we propose a new mechanism to share genomic data. The
proposed mechanism considers the correlations in data during data
sharing, eliminates statistically unlikely data values beforehand,
and adjusts the probability distributions for each shared data point
accordingly. By doing so, we show that we can avoid an attacker
from inferring the correct values of the shared data points by uti-
lizing the correlations in the data. By adjusting the probability
distributions of the shared states of each data point, we also im-
prove the utility of shared data for the data collector. Furthermore,
we develop a greedy algorithm that strategically identifies the pro-
cessing order of the shared data points with the aim of maximizing
the utility of the shared data. Our evaluation results on a real-life
genomic dataset show the superiority of the proposed mechanism
compared to the randomized response mechanism (a widely used
technique to achieve LDP).

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols; « Ap-
plied computing — Genomics.

KEYWORDS

Genomics, Data sharing, Local differential privacy

ACM Reference Format:
Emre Yilmaz, Tianxi Ji, Erman Ayday, and Pan Li. 2022. Genomic Data
Sharing under Dependent Local Differential Privacy. In Proceedings of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODASPY ’22, April 24-27, 2022, Baltimore, MD, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9220-4/22/04...$15.00
https://doi.org/10.1145/3508398.3511519

77

Tianxi Ji
Case Western Reserve University
Cleveland, Ohio
txjl16@case.edu

Pan Li
Case Western Reserve University
Cleveland, Ohio
pxl1288@case.edu

Twelveth ACM Conference on Data and Application Security and Privacy
(CODASPY °22), April 24-27, 2022, Baltimore, MD, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3508398.3511519

1 INTRODUCTION

Recent advances in genome sequencing technologies have enabled
individuals to access their genome sequences easily, resulting in
massive amounts of genomic data. On one hand, sharing this mas-
sive amount of data is important for the progress of genomics
research. Genomic data collected by research laboratories or pub-
lished in public repositories leads to significant breakthroughs in
medicine, including discovery of associations between mutations
and diseases. On the other hand, since genomic data contains sen-
sitive information about individuals, such as predisposition to dis-
eases and family relationships, individuals are generally hesitant to
share their genomic data. Therefore, how to facilitate genomic data
sharing in a privacy-preserving way is a crucial problem.

One way to preserve privacy in genomic data sharing and anal-
ysis is to utilize cryptographic techniques. However, encrypted
data can only be used for a limited number of operations and high
computation costs decrease the applicability of these techniques
for large scale datasets. Local differential privacy (LDP) is a state-
of-the-art definition to preserve the privacy of the individuals in
data sharing with an untrusted data collector, and hence it is a
promising technology for privacy-preserving sharing of genomic
data. Perturbing data before sharing provides plausible deniability
for the individuals. However, the original LDP definition does not
consider the data correlations. Hence, applying existing LDP-based
data sharing mechanisms directly on genomic data makes perturbed
data vulnerable to attacks utilizing correlations in the data.

In this work, our goal is to provide privacy guarantees for the
shared genomic sequence of a data owner against inference attacks
that utilize correlations in the data while providing high data utility
for the data collector. For that, we develop a new genomic data
sharing mechanism by defining a variant of LDP under correlations,
named (¢, T)-dependent LDP. We use randomized response (RR)
mechanism as a baseline since the total number of states for each
genomic data point is 3 and the RR provides the best utility for
such a small number of states [30]. Moreover, RR uses the same
set of inputs and outputs without an encoding, which allows the
data collector to use perturbed data directly. We first show how
correlations in genomic data can be used by an attacker to infer

https://doi.org/10.1145/3508398.3511519
https://doi.org/10.1145/3508398.3511519
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3508398.3511519&domain=pdf&date_stamp=2022-04-15

Session 2: Privacy

the original values of perturbed data points when RR mechanism
is directly used. We describe a correlation attack and show how
estimation error of the attacker (a commonly used metric to quantify
genomic privacy) decreases due to the direct use of RR.

In the correlation attack, the attacker detects (and eliminates)
the data values that are not consistent with the other shared values
based on correlations. Thus, in the proposed data sharing scheme,
we consider such an attack by-design and do not share the values
of the shared data points which are inconsistent with the previ-
ously shared data points. During sharing of each data point (single
nucleotide polymorphism - SNP) with the data collector, the pro-
posed algorithm eliminates a particular value of a shared SNP if the
corresponding value of the SNP occurs with negligible probability
considering its correlations with the other shared SNPs (to prevent
an attacker utilize such statistically unlikely values to infer the
actual values of the SNPs). Then, the algorithm adjusts the sharing
probabilities for the non-eliminated values of the SNP by normal-
izing them and making sure that the attacker’s distinguishability
between each possible values of the SNP is bounded by e€, which
achieves (e, T)-dependent LDP.

To improve utility, we introduce new probability distributions
(for the shared states of each SNP), such that, for each shared SNP,
the probability of deviating significantly from its “useful values”
is small. Useful values of a SNP depend on how the data collector
intends to use the collected SNPs. For this, we focus on genomic data
sharing beacons (a system constructed with the aim of providing
a secure and systematic way of sharing genomic data) and show
how to determine probability distributions for different states of
each shared SNP with the aim of maximizing the utility of the
collected data (this can easily be extended for other uses of genomic
data, such as in statistical databases). In the proposed mechanism,
SNPs of a genome donor are processed sequentially. Although the
proposed (e, T)-dependent LDP definition is satisfied in any order,
the number of eliminated states for each SNP can be different based
on the order of processing. Hence, we also show how to determine
an optimal order of processing (which provides the highest utility)
via Markov decision process (MDP) and provide a value iteration-
based algorithm to optimize the utility of shared data. Furthermore,
due to complexity of the optimal algorithm, we propose an efficient
greedy algorithm to determine the processing order of the SNPs in
the proposed data sharing mechanism.

We conduct experiments with a real-life genomic dataset to
show the utility and privacy provided by the proposed scheme.
Our experimental results show that the proposed scheme provides
better privacy and utility than the original randomized response
mechanism. We also show that using the proposed greedy algorithm
for the order of processing, we improve the utility compared to
randomly selecting the order of processed SNPs.

The rest of the paper is organized as follows. We review the
related work in Section 2 and provide the technical preliminaries
in Section 3. We present the proposed framework in Section 4. We
propose an algorithm for optimal data processing order in Section 5.
We evaluate the proposed scheme via experiments in Section 6.
Finally, we conclude the paper in Section 7.

2 RELATED WORK

In this section, we discuss relevant existing works.

78

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

2.1 Genomic Privacy

Genomic privacy topic has been recently explored by many re-
searchers [22]. Several works have studied various inference at-
tacks against genomic data including membership inference [24, 29]
and attribute inference [2, 11, 17]. To mitigate these threats, some
researchers proposed using cryptographic techniques for privacy-
preserving processing of genomic data [1, 3, 36]. The differential
privacy (DP) concept [13] has also been used to release summary
statistics about genomic data in a privacy-preserving way (to mit-
igate membership inference attacks) [19, 35]. Unlike the existing
DP-based approaches, our goal is to share the genomic sequence of
an individual, not summary statistics. To share genomic sequences
in a privacy-preserving way, techniques to selectively share (or
hide) data points (SNPs) have been proposed [18, 33]. However,
they do not provide formal privacy guarantees. For the first time,
we study the applicability of LDP for genomic data sharing and
develop a variant of LDP for correlated data.

2.2 Local Differential Privacy

Differential privacy (DP) [13] is a concept to preserve the privacy of
records in statistical databases while publishing statistical informa-
tion about the database. Although DP provides strong guarantees
for individual privacy, there may be privacy risks for individuals
when data is correlated. Several approaches have been proposed
[7, 20, 26] in order to protect the privacy of individuals under cor-
relations. Since these works focus on privacy of aggregate data
release (e.g., summary statistics about data), they are not suitable
for individual data sharing. Local differential privacy (LDP) is a
state-of-the-art definition to preserve the privacy of the individuals
in data sharing with an untrusted data collector. However, a very
limited number of tasks, such as frequency estimation [30], heavy
hitters [4], frequent itemset mining [31], and marginal release [9]
have been demonstrated under LDP and the accuracy of these tasks
are much lower than performing the same task under the cen-
tral model of differential privacy. Collecting perturbed data from
more individuals decreases the accuracy loss due to randomization.
Hence, practical usage of LDP-based techniques needs a high num-
ber of individuals (data owners), which limits the practicality of
LDP-based techniques. To overcome the accuracy loss due to LDP,
a shuffling technique [14] has recently been proposed. The main
idea of shuffling is to utilize a trusted shuffler which receives the
perturbed data from individuals and permutes them before sending
to data collector. However, requiring a trusted shuffler also restricts
the practical usage of this method.

Another approach to improve utility of LDP is providing differ-
ent privacy protection for different inputs. In the original definition
of LDP, indistinguishability needs to be provided for all inputs. Mu-
rakami et al. divided the inputs into two groups as sensitive and non-
sensitive ones [21]. They introduced the notion of utility-optimized
LDP, which provides privacy guarantees for only sensitive inputs.
Gu et al. [15] proposed input-discriminative LDP, which provides
distinct protection for each input. However, grouping inputs based
on their sensitivity is not realistic in practice due to the subjectivity
of sensitivity. In this work, we discriminate the inputs based on their
likelihood instead of their sensitivity. We focus on how correlations
can be used by an attacker to degrade privacy and how we mitigate

Session 2: Privacy

such degradation. Hence, we provide indistinguishability between
possible states by eliminating the states that are rarely seen in the
population using correlations. By doing so, we aim to decrease the
information gain of an attacker that uses correlations for inference
attacks. Furthermore, both of these works [15, 21] aim to improve
utility by providing less indistinguishability for non-sensitive data
and providing more accurate estimations. In our work, the accuracy
does not rely on estimations. Instead, we provide high accuracy by
eliminating rare values from both input and output sets. We also
improve the utility by increasing the probability of “useful values”
considering the intended use of the shared data.

3 TECHNICAL PRELIMINARIES

In this section, we give brief backgrounds about genomics and LDP.

3.1 Genomics Background

The human genome contains approximately 3 billion pairs of nu-
cleotides (A, T, C, or G). Approximately 99.9% of these pairs are
identical in all people. When more than 0.5% of the population does
not carry the same nucleotide at a specific position in the genome,
this variation is considered as single-nucleotide polymorphism
(SNP). More than 100 million SNPs have been identified in humans.
For a SNP, the nucleotide which is observed in the majority of the
population is called the major allele and the nucleotide which is
observed in the minority of the population is called the minor allele.
Each person has two alleles for each SNP position, and each of these
alleles are inherited from a parent of the individual. Hence, each
SNP can be represented by the number of its minor alleles, which
can be 0, 1, or 2. In this work, we study the problem of sharing the
values of SNPs in a privacy-preserving way. It is shown that SNPs
may have pairwise correlations between each other (e.g., linkage
disequilibrium [25]). Since an attacker can use such correlations to
infer the original values of the shared SNPs, privacy of the family
members should also be considered in genomic data sharing.

3.2 Definition of Local Differential Privacy

Local differential privacy (LDP) is a variant of differential privacy
that allows to share data with an untrusted party. In LDP settings,
each individual shares her data with the data collector after pertur-
bation (randomization). Then, the data collector uses all collected
perturbed data to estimate statistics about the population. During
data perturbation, the privacy of the individuals are protected by
achieving indistinguishability.

In this work, we adopt the general definition of LDP [12], which
is expressed as follows:

DEFINITION 1 (LocAL DIFFERENTIAL PRIVACY [12]). A random-
ized mechanism A satisfies e-local differential privacy if

o PG =do)
yeo () dudgex PrYIAG =dp)) =
where dy and dg are two possible values of an element x, y is the
output value, Y is the collection of all possible output values of x, and
o(Y) denotes an appropriate o-filed on Y.

Definition 1 captures a type of plausible-deniability, i.e., no mat-
ter what input value of x is released, it is nearly equally as likely to
have come from any of its possible values. The parameter € is the
privacy budget, which controls the level of privacy. Randomized re-
sponse (RR) [32] is a mechanism for collecting sensitive information

79

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

Privacy-Preserving

. Genomic Data Sharing
[{(i) identify the order of sharing (Sec. 5) -

For each SNP: Query -
. === mmmmmmmmmmm e . —
. (ii) Eliminate states by 1 Res: o
=7 i Iations (S HE esponse
| [CEai e T | |
TP
1 |(iii) Adjust probability distributions of ‘h !
1 -
@ fueemanngsaesiecss) 1 oata collector Researcher
- H v
Genome Donors Provide privacy guarantees Utility
among possible states Optimization

Figure 1: System Model.

from individuals by providing plausible deniability. We use the gen-
eral definition of LDP (i.e., Definition 1), instead of the commonly
used one, i.e., Pr (A(x) € Range(A))/Pr (A(x’) € Range(A)) < €€
(x and x” are a pair of user’s possible private data element, and
Range(A) is the range of the mechanism A) [4, 31], because the gen-
eral definition explicitly considers the possible (statistical likely)
input and output values of each data point by using o-algebra,
which is more convenient for us to incorporate correlation models
and develop dependent LDP (Section 4.3). Although RR is originally
defined for two possible inputs (e.g., yes/no), this mechanism can
also be generalized. In generalized RR [31], the correct value is
shared with probability p = e€/(e€+m—1) and each incorrect value
is shared with probability ¢ = 1/(e€+m—1) to achieve e-LDP, where
m is the number of states.

4 PROPOSED FRAMEWORK

In this section, we first introduce the problem and explain genomic
data sharing with an untrusted data collector by directly applying
RR mechanism. We then present a correlation attack that utilizes
correlations between SNPs and show the significant decrease in
privacy after the attack. We also show how to simultaneously im-
prove privacy against the correlation attacks and improve utility
for genomic analysis. Finally, we present our proposed genomic
data sharing mechanism.

4.1 Problem Statement

System Model. Figure 1 shows the overview of the system model
and the steps of the proposed framework. We focus on a prob-
lem, where genome donors share their genomic data in a privacy-
preserving way with a data collector who will use collected data to
answer queries about the population. In genomic data sharing sce-
nario, there are n individuals (Iy, ..., I,) as genome donors. A genome
donor I; has a sequence of SNPs denoted by X/ = [x{, R le]. Since
each SNP is represented by the number of minor alleles it carries,
each x{ has a value from the set {0, 1, 2}. Today, individuals can
obtain their genomic sequences via various online service providers,
such as 23andMe, and they also share their sequences with other
service providers or online repositories (e.g., for research purposes).
Hence, the proposed system model has real-world applications,
where individuals want to preserve privacy of their genomic data
when they share their genomic sequences.

Threat Model. The data collector is considered as untrusted. It
can share the data directly with another party or use it to answer
queries. Hence, we assume the attacker has data shared by all
genome donors with the data collector, however, it does not know
the original values of any SNPs. In addition, we assume that the
attacker knows the pairwise correlations between SNPs (which

Session 2: Privacy

can be computed using public datasets), the perturbation method,
and the privacy budget e. Thus, the attacker can infer whether the
shared value of a SNP is equal to its original value using correlations.
Data Utility. The data collector uses data collected from genome
donors to answer queries. Therefore, we define the utility as the
accuracy of data collector to answer such queries. For genomic
data, typically, the utility of each value of a SNP is different and
the utility of a SNP may change depending on the purpose of data
collection (e.g., statistical genomic databases, genomic data sharing
beacons, or haploinsufficiency studies). Thus, one of our aims is
to improve the utility of LDP-based data collection mechanism by
considering data utility as a part of the data sharing mechanism.
Genomic Data Sharing Under Local Differential Privacy. In
[30], several approaches have been explained for estimating fre-
quency of inputs under LDP such as direct encoding, histogram
encoding, and unary encoding. As shown in [30], when the size of
input set is less than 3e€ + 2, direct encoding is the best among these
approaches. Since the size of input set for genomic data is 3, we also
use direct encoding approach for genomic data sharing. In direct
encoding approach, no specific encoding technique is applied to in-
puts before perturbation and randomized response (RR) mechanism
(introduced in Section 3.2) is used for perturbing inputs. To apply
RR mechanism and achieve e-LDP for genomic data, the value of a
SNP is shared correctly with probability p = e€/(e€ + 2) and each
incorrect value is shared with probability ¢ = 1/(e€ + 2). After
receiving perturbed values from n individuals, the data collector
estimates the frequency of each input in the population as C’;_nq'q,
where ¢; is the number of individuals who shared i € {0, 1, 2}.

4.2 Correlation Attack Against LDP-Based
Genomic Data Sharing

When multiple data points are shared with the RR mechanism, e-
LDP is still guaranteed if the data points are independent. However,
it is known that SNPs have pairwise correlations between each
other (e.g., linkage disequilibrium [25]). An attacker can use the
correlations between SNPs to infer incorrectly or correctly shared
SNPs as a result of the RR mechanism.

To show this privacy risk, we consider a correlation attack that
can be performed by an attacker in the following. We represent a
SNP i as SNP; and we represent the value of SNP; for individual
I; as x{ . We assume that all pairwise correlations between SNPs
are publicly known. Hence, Pr(SNP; = dy | SNPy = dg) is known
by the attacker for any i,k € {1,...,1} and da,dﬁ € {0,1,2}. Let
Y=1yl..... y{] be the perturbed data that is shared by I; with
the data collector (potential attacker whose goal is to infer the
actual SNP values). Without using the correlations, the attacker’s

only knowledge about any x{ is the probability distribution of
RR mechanism. However, using the correlations, the attacker can
enhance its knowledge about the probability distribution of x{ by
eliminating the values that are not likely to be observed (i.e., that
have low correlation with the other received data points).

To achieve this, for each SNP; of I, using all other received
data points [y{, . ,,y{] (except for y{), the attacker counts the
number of inconsistent instances in terms of correlations between
different values of SNP; and all other received data points (i.e.,
having correlation less than a threshold). Let 7 be the correlation

80

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

threshold of the attacker. The attacker keeps a count for the number
of instances for each SNPy (k € {1,...,1},k # i) having Pr(x{ =
0A| x]jc = yi)A< 7 Pr(x{ = 1] x,j< = yi) < 1, and Pr(x{ =2| xljc =

yi) <ras c{’o, cl{l, and c{’z, respectively. If any of these values is
greater than or equal to y - [(where y is an attack parameter for
the number of inconsistent data points), the attacker eliminates
that value in the probability distribution of xlj and considers the

remaining values for its inference about the correct value of x{ .

To show the effect of this correlation attack on privacy, we im-
plemented the RR mechanism for genomic data and computed the
attacker’s estimation error, a metric used in genomic privacy, to
quantify the distance of the attacker’s inferred values from the
original data, before and after the attack. Our results (in Figure 5,
Section 6.1) clearly show the vulnerability of directly using RR in
genomic data sharing. For instance, when € = 1, the attacker’s esti-
mation error decreases from 0.8 to 0.4 after the correlation attack. In
general, we observed that the attacker’s estimation error decreases
approximately 50% by using this attack strategy.

4.3 (e, T)-dependent Local Differential Privacy

To handle data dependency in privacy-preserving data sharing,
some works, such as [7, 20] extend the definition of traditional dif-
ferential privacy by considering the correlation between elements
in the dataset. However, there is a lack of such variants for local
differential privacy models, which hinders the application of LDP-
based solutions for privacy-preserving genomic data sharing. In
this paper, inspired by [20], which handles data dependency by
considering the number of elements that can potentially be affected
by a single element, we propose the following definition.

DEFINITION 2. Anelementx in a dataset X is said to be T-dependent
under a correlation model (denoted as Corr) if its released value y de-
pends on at most other T elements in X. The dependency is measured
in terms of the conditional probability of x taking value y given the
knowledge on the value of another element in X.

Furthermore, let Q; be the set of elements on which a T-dependent
element x; € X is dependent (through model Corr;) (|Q;| < T),
A(Q;) be the set of released values of elements in Q;, and dy|4(Q,),Corr;
represent the possible value(s) of x; that can be released due to the
releasing of A(Q;) and model Corr;. Note that it is possible for
some elements to have only one possible value to be shared under a
specific correlation model. If the only possible value happens to be
the true value of that element, we call these elements ineliminable
elements, whose privacy will be inevitably compromised for the
sake of the utility improvement of the entire shared elements (we
formally investigate this issue in Section 5). Thus, we propose the
following definition.

DEFINITION 3 (DEPENDENT LOCAL DIFFERENTIAL PRIVACY). A
randomized mechanism A is said to be (¢, T)-dependent local defer-
entially private for an element that is not ineliminable if

Pr (y|A(xi = da|A(Q,~),Corr,-))
sup < e
y€o(Y).duja(@;),Corr;»dplAQ;),Corr; PT (y|A(xl~ = dﬁlA(Q,-),Corr,-))

Session 2: Privacy

Definition 3 can be considered as a specialization of the general
LDP definition (Definition 1) by having dy = dg|a(@;),corr; and
dg = dg|A(Q;),Corr; Essentially, Definition 3 means that any output
of a T-dependent element x is nearly equally as likely to have come
from any of its possible input values given other already shared
elements (i.e., A(Q;) and a correlation model Corr;). In other words,
a specific element x;, taking value of | 4(@;),Corr; OT 461A(Q;),Corr;>
will be almost equally perturbed as y € o(Y) by the randomized
mechanism A.

REMARK. It is noteworthy that our definition of dependent local
differential privacy does not compromise the privacy guarantee of
the conventional LDP, because if we assume no correlation model,
i.e., Corr; = 0, Vi, then dependent LDP reduces to the conventional
LDP. By incorporating the correlation model, given the same privacy
guarantee with conventional LDP, our proposed dependent LDP can
achieve higher data utility by eliminating statistically unlikely values.

4.4 Achieving (¢, T)-dependent LDP in Genomic
Data Sharing

Our experimental results show the vulnerability of directly applying
RR mechanism for genomic data sharing.

Thus, here, our goal is to come up with a genomic data sharing
approach achieving (e, T)-dependent LDP that is robust against
the correlation attack. The definition of LDP states that given any
output, the distinguishability between any two possible inputs
needs to be bounded by e€. In Section 4.2, all values in set {0, 1,2}
are considered as possible inputs for all SNPs during data sharing.
However, we know that the attacker can eliminate some input states
using correlations. Hence, for the rest of the paper, we consider
the possible input states as the ones that are not eliminated by
using correlations. In other words, we provide indistinguishability
between the values that are statistically possible.

In the correlation attack described in Section 4.2, the attacker
uses two threshold values. The correlation values less than 7 are
considered as low correlation. In addition, if the fraction of SNPs
having low correlation with a state of a particular SNP is more
than y, such state of the SNP is eliminated by the attacker. In the
data sharing scheme, we also use these two parameters to eliminate
states. However, the parameters used by the algorithm may not be
same with the ones used by the attacker. Hence, to distinguish the
parameters used by the algorithm and the attacker, we represent
the parameters used in the algorithm as 7 and y (which are the
design parameters of the proposed data sharing algorithm). We
describe this algorithm for a donor I; as follows.

In each step of the proposed algorithm, one SNP x{ is processed.
The algorithm first determines the states to be eliminated by con-
sidering previously processed SNPs. Then, the algorithm selects
the value to be shared (y{) by limiting the distinguishability of
non-eliminated states by e€. Hence, the order of processing may
change the number of eliminated states for a SNP, which may also
change the utility of the shared data. For instance, when a SNP is
processed as the first SNP, all its three states are possible (for shar-
ing) since there is no previously shared SNP. However, processing
the same SNP as the last SNP may end up eliminating one or more
of its states (due to their correlations with previously shared SNPs).

81

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

OUTPUT OUTPUT OUTPUT OUTPUT
0 1 2 0 1 2 0 1 2
= 0|lp a qf|= 0 0.5 0.5 | = 0|p ¢
2 1lq p qf| |22 poal |2 2 1|q p
2 2 2 2
= 2|q q p = 2 q p = = 2]0.5 0.5
OUTPUT OUTPUT OUTPUT OUTPUT
0 1 2 0 1 2 0 1 2 0 1 2
= 0 1l |= 0|1 = =
21 1|12 1[12 2 2
r4 2 2 2
=2 1| [F 21 = =

Figure 2: Probability distribution used by the data sharing
mechanism after eliminating states using correlations as
described in Section 4.4. p = €/(e€ + 2), ¢ = 1/(e€ + 2),
p’ = p/(p+q),and ¢’ = q/(p + q)- Red columns represent
the eliminated states.

We propose an algorithm to select the optimal processing order
(considering utility of shared data) in Section 5. In the following,
we assume that a processing order is provided by the algorithm in
Section 5 and SNPs are processed one by one following this order.

For x{ , the algorithm considers the previously processed data
points and identifies the states which will be eliminated. As ex-
plained in the correlation attack, the algorithm counts the number
of previously processed SNPs which have low correlation with
states 0, 1, and 2 of x{.

Thus, the algorithm keeps counts for the previously processed
SNPs (SNPy) having Pr(x{ =0] xi = yi) < 1, Pr(x{ =1 xlj(=

yi) <1, Pr(xlj =2 xi = yi) < Tas c{o, c{l, and c{z, respectively.
If any of these values is greater than or equal to y - i, the algorithm
eliminates such value from the possible outputs of x{ .Letp =

e€/(e€ +2) and g = 1/(e + 2), and the value of x{ be 0. Then,
the algorithm assigns the probabilities of non-eliminated states as
follows:

o If there are three possible outputs (i.e., no eliminated state),
the algorithm uses the same probability distribution with
the RR mechanism as (p, ¢, q). Thus, Pr(y{ =0) = pand
Pr(y] =1) =Pr(y/ =2) = ¢q.

o If there are two possible outputs (i.e., one eliminated state)
and x{ (state 0) is not eliminated, the algorithm uses an
adjusted probability distribution as (p/(p +q),q/(p + q),0)
(or (p/(p + q),0,q9/(p + q)), depending on which state is
eliminated).

o If there are two possible outputs (i.e., one eliminated state)
and x{ is eliminated, the algorithm uses an adjusted proba-
bility distribution as (0, 0.5, 0.5).

o If there is one possible output (i.e., two eliminated states),
the corresponding state is selected as the output.

o If there is no possible output (i.e., three eliminated states),
the algorithm uses the same probability distribution as the
RR mechanism.

For other values of x{ , the algorithm also works in a similar way.
The probability distributions for sharing a data point are also shown
in Figure 2. Based on these probabilities, the algorithm selects the
value of y{ . If the attacker knows 7 and j used in the algorithm, it
can compute the possible values for each SNP using perturbed data

yf:[y{,...

s y{], 7, ¥ and the correlations between the SNPs. Since

Session 2: Privacy

e€ ratio is preserved in each case, the attacker can only distinguish
the possible inputs with e€ difference.

4.5 Improving Utility by Adjusting Probability
Distributions

In Section 4.4, we proposed a data sharing mechanism to improve
the privacy of RR mechanism against the correlation attack. The
mechanism guarantees that the perturbed data Y/ = [y{, ey y;]
belonging to I; does not include any value that have low correlation
with other SNPs. However, consistent with existing LDP-based
mechanisms, the algorithm assigns equal sharing probabilities for
each incorrect value of a SNP i. However, this may cause significant
utility loss since the accuracy of genomic analysis may significantly
decrease as the values of shared SNPs deviate more from their
original values (e.g., in genomic data sharing beacons or when
studying haploinsufficiency). For genomic data, typically, the utility
of each value of a SNP is different and the utility of a SNP may
change depending on the purpose of data collection. Here, our goal
is to improve the utility of shared data by modifying the probability
distributions without violating (e, T)-dependent LDP.

To improve utility, we introduce new probability distributions,
such that, for each shared SNP, the probability of deviating high
from its “useful values” is small. Useful values of a SNP depend
on how the data collector intends to use the collected SNPs. For
instance, for genomic data sharing beacons, changing the value of
a shared SNP with value 2 to 1 does not decrease the utility, but
sharing it as 0 may cause a significant utility loss. Similarly, while
studying haploinsufficiency, obfuscating a SNP with value 2 results
in a significant utility loss while changing a 0 to 1 (or 1 to 0) does
not cause a high utility loss. Here, to show how the proposed data
sharing mechanism improves the utility, we focus on genomic data
sharing beacons without loss of generality (similar analysis can be
done for other uses of genomic data as well).

Genomic data sharing beacons allow users (researchers) to learn
whether individuals with specific alleles (nucleotides) of interest are
present in their dataset. A user can submit a query, asking whether
a genome exists in the beacon with a certain nucleotide at a certain
position, and the beacon answers as “yes” or “no”. Since having
at least one minor allele is enough for a “yes” answer, having one
minor allele (a SNP value of 1) or two minor alleles (a SNP value of 2)
at a certain position is equivalent in terms of the utility of beacon’s
response. Therefore, if the correct value of a SNP is 1 or 2, sharing
the incorrect value as 2 or 1 will have higher utility than sharing
it as 0. Considering this, we change the probability distributions
of the data sharing mechanism (given in Section 4.4) as shown in
Figure 3) to improve the utility. As in Section 4.4, p = e€/(e€ + 2)
and q = 1/(e® + 2). These probability distributions still preserve
the e€ ratio between states. Note that for eliminating the states, the
same process is used as described in Section 4.4. To determine the
processing order of the SNPs, the algorithm in Section 5 is used.

4.6 Proposed Data Sharing Algorithm

In Section 4.4, we described how to improve privacy by eliminating
statistically unlikely values for each SNP. In Section 4.5, we ex-
plained how to modify probability distributions to improve utility
of shared data for genomic data sharing beacons. Using these two
ideas, we describe our proposed genomic data sharing algorithm in

82

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

OUTPUT OUTPUT OUTPUT OUTPUT

0 1 2 0 1 2 0 1 2
- 0|lp g ¢q - 0 0505 |= Of p' -
21 q p q 21 p'q 21 q' 2
2 E PN I ! 2
~2|q g p||T 2 q_p 2)q

OUTPUT OUTPUT OUTPUT

0 1 2 0 1 2 0 1 2
= 0 1l |= 0|1 = =
21 1|2 1|1 2 2
z 2 2 2
=2 1 = 2|1 = =

Figure 3: Probability distribution used by the data sharing
mechanism to improve utility of beacon queries (in genomic
data sharing beacons). p = e€/(e€+2),q = 1/(e+2),p’ = p/(p+
q), and ¢’ = q/(p + q). Red columns represent the eliminated
states. The differences with Figure 2 are highlighted with
yellow.

the following and provide the details for an individual I; in Algo-
rithm 4.1. The algorithm processes all SNPs one by one and in each
iteration, it computes a value to share for the SNP being processed
(eventually, all SNPs are processed and they are shared at the same
time with the data collector). The algorithm first eliminates the
states having low correlations with the previously processed SNPs,
as described in Section 4.4. Two thresholds 7 and y are used to
determine the eliminated states. We evaluate the effect of these
threshold values on utility and privacy in Section 6.2. Then, the
algorithm decides the shared value of the SNP using the probability
distribution in Figure 3. This process is repeated for all SNPs and
the SNP sequence to be shared (i.e., output) is determined. Since we
consider all pairwise correlations, changing the order may change
the utility of the proposed scheme by eliminating different states.
We discuss the optimal selection of this order (in terms of utility)
in Section 5 and Algorithm 5.1 outputs the optimal order for each
individual I; (i.e., 777). Due to the computational complexity of
Algorithm 5.1, we also propose a greedy algorithm in Section 5.2.
Thus, either the output of the optimal or the greedy algorithm is
used as the input for the proposed data sharing algorithm.

LEMMA 4.1. Given a processing order, Algorithm 4.1 achieves (e, [—
1)-dependent local differential privacy for each genomic data point
that is not ineliminable.

Proor. The proof directly follows from the reallocation of prob-
ability mass used in the RR mechanism. Since Corr; is the pairwise
correlation between SNPs, we have T = [— 1. Besides, the e€ ratio is
preserved in the modified RR mechanism, and hence the condition
in Definition 3 can always hold for ineliminable SNPs. O

5 OPTIMAL DATA PROCESSING ORDER FOR
THE PROPOSED GENOMIC DATA SHARING
MECHANISM

Algorithm 4.1 considers/processes one SNP at a time and as dis-
cussed, different processing orders may cause elimination of dif-
ferent states of a SNP, which, in turn, may change the utility of
the shared data. Assuming there are totally I SNPs in X/ of an
individual I}, Algorithm 4.1 can process them in [! different orders.
As a result, determining an optimal order of processing to maxi-
mize the utility of the shared sequence of SNPs is a critical and
challenging problem. In this section, we formulate the problem of

Session 2: Privacy

ALGORITHM 4.1: Genomic data sharing scheme for donor
Ij under (e, T)-dependent LDP.

:Original data X/ = [x{, e x;] of I}, processing order 7/, privacy
budget €, correlation threshold 7, inconsistency threshold y,

pairwise correlations between data points.

input

output:Perturbed data Y/ = [y{, e y{]

1 foralla € {1,2,...,1} do

2 i — 7/ (a);

K] C{O’ 0{1’ C{Z — 0

4 forallb € {1,2,..., a—1}do

5 k — n] (b);

6 1fPr(x —0|x —yk)<rthen

7 ‘ c’ —cly+1;

8 else if Pr(x/ = 1 |xJ yi) < 7 then
9 ‘ c{ L — c L

10 else 1f Pr(xJ = 0 | xJ yk) < 7 then
11 ‘ CJ — C a1
12 end
13 ifciozy~athen

14 ‘ eliminate state 0;

15 else if c{l > - athen

16 ‘ eliminate state 1;
17 else if ¢/ 2 2 V- athen

18 ‘ ehmmate state 2;
19 y{ «— random value from non-eliminated states using probability
distribution in Figure 3.

20 end

determining the optimal order of processing as a Markov Decision
Processes (MDP) [27], which can be solved by value iteration using
dynamic programming. Note that the algorithm locally processes
all SNPs, and then perturbed data is shared all at once. Hence, the
data collector does not see or observe the order of processing.

Since we consider genomic data sharing beacons to study the
utility of shared data (as in Section 4.5) and the proposed sharing
scheme is non-deterministic, we aim at achieving the maximum
expected utility for the beacon responses using the shared SNPs.
Note that similar analysis can be done for other uses of genomic
data as well. Beacon utility is typically measured over a population
of individuals, however, in this work, we consider an optimal pro-
cessing order, which maximizes the expected beacon utility for each
individual. The reason is twofold: (i) an individual does not have
access to other individuals’ SNPs and (ii) a population’s maximum
expected beacon utility can be achieved if all individuals’ maximum
expected beacon utility are obtained due to the following Lemma,
whose proof is given in [34].

LEMMA 5.1. Maximizing the expectation of individuals’ beacon
utility is a sufficient condition for maximizing the expectation of a
population’s beacon utility.

The sufficient condition in Lemma 5.1 can easily be extended
to other genomic data sharing scenarios as long as the individuals
share their SNPs independently from each other.

5.1 Determining the Optimal Processing Order
via Markov Decision Processes (MDP)

Here, we proceed with obtaining the optimal order of processing
which maximizes individuals’ expected beacon utility. First, we

83

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

MDP state sf i.e., the list recording all previous
observations of shared SNPs (41, 4, * -, ¥/7)

reward 7‘27 i.e., the utility of beacon response on yf

Environment

Figure 4: The interaction between the agent (individual I;)
and the environment (Algorithm 4.1) at time step i, i.e., when

processing the ith SNP (xf) of individual I;.

model the SNP state elimination and processing order as an agent-
environment interaction framework, where the agent is a specific
individual (donor), the environment is the proposed SNP sharing
scheme considering correlations (in Algorithm 4.1), and the inter-
action between the agent and environment follows a MDP.

For instance, consider the individual (donor) I; in the population.
Then, her MDP interaction with the environment is characterized as
a tuple {S/, s’ s> A, Prf(), RJ,H/}, where S/ is the set of all MDP
states of individual I3, s1 is her initial MDP state, A7 is her action set,
Pr/(-) is the transition probability between two MDP states of I i3 RJ
is her set of rewards, and H/ is the horizon of the MDP (i.e., number
of rounds in discrete time). In our case, H = I (number of SNPs
to be processed), and s{ = (. At each time step i € {1,2,--- ,H}
(i.e., when individual I; processes her ith SNP), the agent chooses
an action a{ from her action pool ﬂ{ c A/ (ie., selects a specific
SNP from her remaining unprocessed SNPs), where ﬂ{ is the set
of remaining unprocessed SNPs and A/ is the set of all SNPs of
individual I; J Then, the environment prov1des the agent with a
MDP state s and a reward r . In particular, s = {yl, yz, LY }
(i.e., the list recordmg all observatlons of prev10usly processed SNPs
of individual I}) and r is the utility of the beacon response on y ,

and hence, we have r e R = {0, 1}
After observmg s and recelvrng r , the agent takes the next ac-

1€ A/ i1 Wthh causes s to tran51t tos’

probablhty Pr(s l|s

via the transition

i+1
l i {1,--~ J)—Pr(sl+l|sl,a)Here
the equality holds due to the Markov property [27] and Pr (s’ i1 |s aJ)
is determined by the probability distribution with improved ut111ty
in Figure 3. An illustration of the MDP interaction between the
agent (individual I;) and the environment (Algorithm 4.1) at time
step i (processing the ith SNP) is shown in Figure 4.

Since the optimal order can be predetermined and should be
invariant in time, we model the agent’s (individual I;) decision

tion a

policy at time step i as a deterministic mapping as 7r] S/ — ﬂj

ie., a? = rr{(s,-),Vl € {1,2,---,1}. Let i/ = {rrl,rt ﬁj}be
the sequence of decision policies of the agent. Due to the non-
deterministic behavior of Algorithm 4.1, we characterize the en-
vironment’s behavior on individual I; jasa probabilistic mapping
asp: S/ x .711 S/ x RJ (ie., Pr(s] +1|sl , af)). Furthermore, we
define the future cumulative return for individual I; starting from
MDP state s as RJ Z” ! and the state-value function of MDP

state sl. under policy 7rl. as o (s,-) =U,[R l+1|s] (Up[] indicates
that utility is considered in an expected manner with respect to

Session 2: Privacy

ALGORITHM 5.1: Determining the optimal order of pro-
cessing for individual ;.

input :the MDP tuple {8/, s{, AP (), R/, HI} of I.

output:the optimal order of processing that maximizes individual I;’s
expected beacon utility, i.e.,
" = (" (), (),

(s}

1 foralli € {1,2,---,1} do

2 randomly initialize v(slj) Vs{ e S8/,

3 randomly initialize a positive parameter J;

4 while § > 0 do

5 forall s{ € S8/ do

6 c— v(s{);

7 v(s{) maxj Zp(sfﬂ, rlqﬂ |s{,aj) [rlJ + u(s{+1)];
5 8 « max{5, e — o(s)) |};

9 end
10 end
11 b (sj) = argmaxa]p(slﬂ, 1o |sl ,al) [r + v(sHl)]

12 end

the environment’s probabilistic mapping p). Then, to maximize
an individual’s expected beacon utility at time step i, the agent
j* /

takes the optimal decision 7; € argmaxﬂ;v”{ (si), Vslj €S/ande

suggests that ﬂl.J ’ may not be unique.

Thus, we have formulated the optimal order of processing prob-
lem as a finite-horizon MDP problem, whose state, action, and
reward sets are all finite and dynamics are characterized by a finite
set of probabilities (i.e., Pr(s |sl » ‘—1))' The finite-horizon MDP
problem is P-complete, as it can be reduced from the circuit value
problem, which is a well-known P-complete problem [23]. In the
literature, exact optimal solution of finite-horizon MDP problem
can be obtained by quite a few methods, for example value itera-
tion, policy iteration, or linear programming [5]. In Algorithm 5.1,
we provide a value iteration [27] based approach to determine the
optimal order of processing for an individual.

Algorithm 5.1 is implemented using dynamic programming start-
ing from the last time step, and it has a computational complexity
of O(|S7|2|AJ|) for individual T ;i [27]. For finite-horizon MDP, the
number of MDP states grows exponentially with the number of
variables, which is known as the curse of dimensionality. For ex-
ample, in our case, at time step i, Algorithm 5.1 needs to calculate
the state-value function for 3! states. In the literature, many ap-
proaches have been proposed to address this issue, such as state
reduction [10] and logical representations [6], which, however are
outside the scope of this paper. Therefore, Algorithm 5.1 may be
computationally expensive to process large amount of data, and
hence in the following section, we also propose a heuristic approach
to process long sequence of SNPs.

5.2 A Heuristic Approach

In this work, we consider sharing thousands of SNPs of individuals
in a population. As a consequence, it is computationally prohibitive
to obtain the exact optimal order of processing for each individual.
We propose the following heuristic approach for an individual
I; to process her SNPs in a local greedy manner. Specifically, at
each time step i, the algorithm selects the SNP with the maximum

expected beacon utility, i.e., a] = argmax Al U,;, where &21] is

we
the set of remaining SNPs of individual I}, and U,; denotes the

expected immediate utility if individual I; selects SNP @/ and it

84

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

can be determined by the adjusted state distribution in Figure 3.
After evaluating the state elimination condition using a specific
SNP, we greedily choose one SNP to share. For example without
loss of generality, assume that at time step [— 1, SNPs x and x are

left in _7(; " after the elimination check, xJ has state distribution
P J q
0, == et erq) withU =1, andx has state distribution (p+q , erq)

with U =
process at tlme step | — 1. If there is a tie between two SNPs, we
randomly choose one. As a result, the computational complexity
of the heuristic approach is O(|A7|?). The difference between the
heuristic approach and Algorithm 5.1 is that Line 7 in Algorithm
5.1is replaced with the maximizer of U,;. For finite-horizon MDP
problem, the gap between the optimal and heuristic solution can
be established by exploring the asynchronous value iteration that
updates a subset of the states of an MDP at each iteration [16],
which, however, is outside the scope of this work. We will compare
the heuristic approach with the optimal algorithm (in Algorithm 5.1)
experimentally in Section 6.3.

6 EVALUATION

We implemented the proposed data sharing scheme in Section 4.6
and used a real genomic dataset containing the genomes of the Utah
residents with Northern and Western European ancestry (CEU) pop-
ulation of the HapMap project [8] for evaluation. We used 1000
SNPs of 156 individuals from this dataset for our evaluations. Using
this dataset, we computed all pairwise correlations between SNPs.
For each 1 million (1000 X 1000) SNP pairs, we computed 9 (3 X 3)
conditional probabilities. Hence, we totally computed 9 million
conditional probabilities (for all pairwise correlations between all
SNPs). Note that, to quantify the privacy of the proposed scheme
against the strongest attacks, we used the same dataset to compute
the attacker’s background knowledge. However, in practice, the at-
tacker may use different datasets to compute such correlations and
its attacks may become less successful when less accurate statistics
are used. We also assumed that each donor has the same privacy
budget (e). To quantify privacy, we used the attacker’s estimation
error. Estimation error is a commonly used metric to quantify ge-
nomic privacy [28], which quantifies the average distance of the
attacker’s inferred SNP values from the original data (X/) as

Then the heuristic algorithm selects SNP x to

E= Pr(xi = U)||x£

0ve{0,1,2};ke{1,....1}

—oll|/L,

where Pr(x]]C = v) is the attacker’s inference probability for xi being
v. We assume the attacker’s only knowledge is p and q initially,
which are computed based on €. Then, using the correlations, the
attacker improves its knowledge by eliminating the statistically less
likely values. For the eliminated states, attacker sets the correspond-
ing probability to 0. Since ||x£ —o|| can be at most 2 for genomic
data, E is always in the range [0, 2], where higher E indicates better
privacy. Thus, when the attacker’s estimation error decreases, the
inference error of the attacker (e.g., to infer the predisposition of a
target individual to a disease) decreases accordingly. To quantify
the utility, we used the accuracy of beacon responses. For each SNP,
we first run the beacon queries using the original values and then
run the same queries with the perturbed values. Let the number

Session 2: Privacy

Estimation Error

02 =@~ Privacy of the Original RR
—A— Privacy of the Original RR after Correlation Attack
Privacy of the Proposed Method

0 L
0.2 0.4 0.6 0.8 1 12 14 16 18 2

€
Figure 5: Comparison of the proposed method with original
RR mechanism in terms of attacker’s estimation error.

of beacon responses (SNPs) for which we obtain the same answer
for both original data and perturbed data be ns. We computed the
accuracy as A = ng/l (I is the total number of beacon queries),
which is always in the range [0, 1].

In the following, we first compare the proposed algorithm with
the original RR mechanism in terms of privacy and utility. Then, we
evaluate the effect of the design parameters on privacy and utility.
Finally, we show the effect of the order of processing on utility.

6.1 Comparison with the Original Randomized
Response Mechanism

As we discussed in Section 4.2, the original randomized response
(RR) mechanism is vulnerable to correlation attacks because when
a given state of a SNP is loosely correlated with at least y - [other
SNPs, the attacker can eliminate that state, and hence improve
its inference power for the correct value of the SNP. In Figure 5,
we show this vulnerability in terms of attacker’s estimation error
(blue and red curves in the figure). We observed that attacker’s
estimation error is the smallest (i.e., its inference power is the
strongest) when the correlation threshold of the attacker (z) is 0.02
and inconsistency threshold of the attacker (y) is 0.03, and hence
we used these parameters for the attack.

Under the same settings, we also computed the estimation error
provided by the proposed algorithm when 7 = 0.02 and y = 0.03.
Therefore, during data sharing, we eliminated states of the SNPs
having correlation less than 7 = 0.02 (the correlation threshold
of the algorithm) with at least y = 0.03 of the previously shared
SNPs (in Section 6.2, we also evaluate the effect of these parame-
ters on privacy and utility). We also let the attacker conduct the
same attack in Section 4.2 with the same attack parameters as be-
fore. Figure 5 shows the comparison of the proposed scheme with
original RR mechanism (green curve in the figure is the privacy
provided by the proposed scheme). The results clearly show that
the proposed method improves the privacy provided by RR after
correlation attack. For instance, for € = 1, the proposed scheme
provides approximately 25% improvement in privacy compared to
the RR mechanism. Note that the privacy of RR before the attack
(blue curve in the figure) is computed by assuming the attacker does
not use correlations. Hence, when the attacker uses correlations, it
is not possible to reach that level of privacy with any data sharing
mechanism and the privacy inevitably decreases. With the pro-
posed scheme, we reduce this decrease in the privacy. To observe
the limits of the proposed approach, we performed the correlation
attack by assuming the attacker has 0 value for all SNPs (which is
the mostly observed value in genomic data) and we observed the

85

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

09

Accuracy
o o
3 ®

o
Py

=©- Utility of the Original RR
=% = Utility of the Proposed Method

0.5
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

€
Figure 6: Comparison of the proposed method with RR mech-
anism in terms of utility, which is measured as the accuracy
of responses provided from a genomic beacon.

attacker’s estimation error as 0.66 (under the same experimental
settings) after the correlation attack. Hence, with any mechanism
it is not possible to exceed 0.66 after correlation attack and the
privacy provided by the proposed scheme is remarkable.

Focusing on genomic data sharing beacons, we also compared the
utility of shared data using the proposed scheme with the original
RR mechanism in terms of accuracy of beacon answers (using the
accuracy metric introduced before). We randomly selected 60 people
from the population and used their 1000 SNPs to respond to the
beacon queries. For 257 SNPs there was no minor allele, and hence
the original response of the beacon query was “no”. There was at
least one minor allele in 60 people for the remaining 743 SNPs (and
hence, the original response of the beacon query was “yes”).

For the original RR mechanism, we shared 1000 SNPs of 60 indi-
viduals after perturbation. In the RR mechanism, the data collector
eliminates the noise by estimating the frequency of each value
using the sharing probabilities as described in Section 4.1. Hence,
if 60 - p or more individuals report 0 for the value of a SNP (after
perturbation), we considered the answer of beacon as “no”. For the
proposed data sharing scheme, we did not apply such an estima-
tion since in the proposed scheme, the sharing probabilities of the
states are different for each SNP. Figure 6 shows the accuracy of the
beacon for 1000 queries. We observed that our proposed scheme
provides approximately 95% accuracy even for small values of ¢,
while the accuracy of the RR mechanism is less than 70% for small
€ values and it only reaches to 85% when € increases. We provide
the accuracy evaluation for the “yes” and “no” responses separately
in [34]. Note that we do not quantify the utility over the probability
of correctly reporting a point. We quantify the utility over the ac-
curacy of beacon answers. When the answer of the beacon query is
“yes”, the original response of the beacon is mostly preserved after
perturbation in both the original RR and the proposed mechanism
(while the proposed mechanism still outperforms the RR mecha-
nism, especially for smaller € values). On the other hand, when
the original answer of a beacon query is “no”, all individuals must
report 0 for that SNP (to preserve the accuracy of the response). In
this case, applying the original RR cannot provide high accuracy
when € is small, because with high probability, at least one indi-
vidual reports its SNP value as 1 or 2 (i.e., incorrectly). Hence, our
proposed approach significantly outperforms the RR mechanism
in terms of the accuracy of the “no” responses. We conclude that
the proposed scheme provides significantly better utility than the
original RR mechanism.

Session 2: Privacy

Table 1: Comparison of the proposed method with original
RR mechanism (with and without post-processing) in terms
of utility (accuracy of responses provided from a genomic
data sharing beacon).

€ 0.4 0.8 1.2 1.6 2
RR without post-processing ~ 0.697 0.791 0.808 0.831 0.849
RR with post-processing 0.667 0715 0.734 0.765 0.788
Proposed method 0.934 0941 0945 0.952 0.961

Table 2: Privacy (in terms of estimation error) of the origi-
nal randomized response mechanism after the correlation
attack for different values of y (inconsistency threshold of
the attacker) when 7 = 0.02and e = 1.

Y [001] 0.02 [003] 004 | 0.05
Estimation error (E) | 0.491 [0.380 | 0.348 | 0368 [0.415

Although here we evaluated utility for genomic data sharing
beacons, similar utility analyses can be done for other applications
as well. Since the proposed scheme eliminates statistically unlikely
values, the proposed scheme will still outperform the original RR
mechanism under similar settings. Since the proposed data sharing
mechanism considers the correlations with the previously shared
data points (as in Algorithm 4.1) its computational complexity is
O(I?), where [is the number of shared SNPs of a donor.

One alternative approach to improve privacy in the original
RR mechanism can be adding a post-processing step that includes
identifying the SNPs having low correlations with the other SNPs
and replacing them with the values that have high correlations.
Such an approach can be useful to prevent correlation attacks due
to eliminating less likely values. However, this approach provides
much lower utility compared to the proposed mechanism since
the proposed mechanism improves utility by adjusting probability
distributions and optimizing the order of processing. We also im-
plemented this alternative post-processing approach and compared
with the proposed mechanism. We observed similar estimation er-
ror with the proposed mechanism, which shows that this approach
can also prevent correlation attacks. However, as shown in Table 1,
post-processing approach provides even lower utility than the orig-
inal RR mechanism without post-processing, because it becomes
harder to do efficient estimation after the post-processing. Hence,
the proposed mechanism outperforms the original RR mechanism
even if post-processing is applied.

6.2 The Effect of Parameters on Utility and
Privacy

In Section 6.1, we used the correlation threshold of the attacker (r)
as 0.02 and inconsistency threshold of the attacker (y) as 0.03 in its
correlation attack. In our experiments, these parameters provided
the strongest attack against the original RR mechanism. In Table 2,
we show how the estimation error of the attacker changes for
different values of y when € = 1 and 7 = 0.02. When € = 1in
the original RR mechanism, we computed the estimation error
before the attack as 0.78. Increasing y results in eliminating less
states by the attacker. For instance, if attacker selects y = 0.5, it
cannot eliminate any states and the estimation is still 0.78. As y
decreases, more states are eliminated and the estimation error keeps
decreasing up to a point (up to y = 0.03 in our experiments, which
provides the smallest estimation error). As we further decreased

86

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

Table 3: Privacy (in terms of estimation error) and utility
(in terms of accuracy of beacon responses) of the proposed
scheme for different values of 7 (correlation threshold) when
y =0.03 and € = 1. Estimation error is computed by assuming
the attacker uses 7 = 0.02 and y = 0.03.

T 0.02 0.04 0.06 0.08 0.1
Estimation Error (E) | 0.483 | 0.486 | 0.492 | 0.499 | 0.503
Accuracy (A) 0.950 | 0.942 | 0.918 | 0.892 | 0.865

Table 4: Privacy (in terms of estimation error) and utility
(in terms of accuracy of beacon responses) of the proposed
scheme for different values of y (inconsistency threshold)
when 7 = 0.02 and ¢ = 1. Estimation error is computed by
assuming the attacker uses 7 = 0.02 and y = 0.03.

0.01 0.02 0.03 0.04 0.05
Estimation Error (E) | 0.490 | 0.487 | 0.483 | 0.479 | 0.476
Accuracy (A) 0.932 | 0.940 | 0.950 0.954 | 0.959

y beyond this point, we observed higher estimation error values,
since as y approaches to 0, all 3 states are eliminated for more SNPs.
Also, when y = 0, we computed the estimation error as 0.78 as well.
We also observed similar results for different values of €. Similarly,
when y = 0.03, we obtained the smallest estimation error for the
attacker (and hence the strongest attack) when 7 = 0.02.

Since the attack against the original RR mechanism is the strongest
when 7 = 0.02 and y = 0.03, we set the correlation parameters of the
proposed data sharing algorithm the same as the attack parameters
(i.e., 7 = 0.02 and y = 0.03) in Section 6.1. Here, we study the effect
of changing these parameters on the performance of the proposed
mechanism. We assume that the attacker does not know the pa-
rameters (7 and y) used in the algorithm and uses the parameters
providing the strongest attack (r = 0.02 and y = 0.03) against the
original RR mechanism. First, we evaluated the effect of correla-
tion threshold 7 on privacy and utility (all correlations that are
smaller than 7 are considered as low by the algorithm). Our results
are shown in Table 3. We observed that increasing 7 increases the
attacker’s estimation error since we assume the attacker does not
know 7 and uses 7 = 0.02 in its attack. However, using 7 = 0.02
provided the best utility for the proposed algorithm. Since there
is no correlation (conditional probability) that is less than 0.02 in
our dataset, the minimum possible value that we can use for 7 in
the algorithm is 0.02. We also show the privacy and utility of the
proposed scheme for different values of y in Table 4. We observed
that increasing y slightly increases utility, however, the privacy also
decreases at the same time.

In the previous experiments (Table 3 and 4), we assumed that
the attacker does not know the parameters used in the experiments
and uses 7 = 0.02 and y = 0.03. However, the attacker can perform
stronger attacks if it knows the design parameters (7 and y) of the
algorithm. Thus, we also computed the attacker’s estimation error
by assuming it knows the parameters used in the algorithm (7 = 0.02
and y = 0.03)). Estimation error of the attacker for different values
of 7 and y are shown in Table 5. When we increased 7 up to 0.1,
we observed a slight decrease in the estimation error. For instance,
when 7 = 0.1 and 7 = 0.02, we observed the estimation error of the
attacker as 0.42. Similarly, the attacker can decrease the estimation
error to 0.434 by knowing the value of y and selecting y = 0.01. We
also observed that for 7 values greater than 0.1 and y values less than

Session 2: Privacy

Table 5: Privacy (in terms of estimation error) of the proposed
scheme for different values of 7 (correlation threshold of
the attacker) and y (inconsistency threshold of the attacker)
when € = 1. The parameters used in the data sharing algo-
rithm are 7 = 0.02 and y = 0.03.

7 (y = 0.03) [002] 0.04 [006 [008 [0.10
Estimation Error (E) | 0.483 | 0.478 | 0.462 | 0.446 | 0.420
y (r =0.02) [001] 0.02 [003 [0.04 [0.05
Estimation Error (E) | 0.434 | 0.468 | 0.483 | 0.497 | 0.508

0.01, the decrease in attacker’s estimation error converged. Overall,
we conclude that the attacker can slightly reduce its estimation error
by knowing the design parameters of the proposed mechanism,
however, the gain of the attacker (in terms of reduced estimation
error) is negligible (at most 0.07). Furthermore, the proposed scheme
still preserves its advantage over the original RR mechanism in
all considered scenarios. These results show that varying design
parameters only slightly affect the performance of the proposed
scheme.

In our experiments, we assume that the attacker has the same
background knowledge (i.e., correlations between SNPs) as the data
owner. If the attacker’s knowledge is weaker than this assumption
(e.g., if the computed correlations on the attacker’s side are not
accurate), then its estimation error will be higher than the one we
computed in our experiments. On the other hand, if the attacker’s
knowledge about the correlations in the data is stronger than the
data owner, it can perform more successful attacks. To validate this,
we added Gaussian noise to the correlations computed by the data
owner and observed that the attacker’s estimation error decreases
when the amount of noise increases. For instance, when ¢ = 1,
the mean is equal to 0 and standard deviation is 0.1 in Gaussian
distribution, estimation error decreases from 0.491 to 0.451. In the
worst case scenario, when the data owner does not know (or use)
the correlations in the data, the estimation error of the attacker
becomes equal to its estimation error when it performs the attack
to the original RR mechanism (i.e., solid line marked with triangles
in Figure 5). In [34], we discuss more how attacker’s background
knowledge affects the privacy guarantees.

6.3 The Effect of the Processing Order on Utility

In this section, we show the effect of different order of processing on
the utility of the beacon responses. For all experiments, we set the
parameters the same as in Section 6.1 (i.e., 7 = 0.02 and y = 0.03)
and we also quantified the accuracy in terms of the fraction of
correct beacon responses for a population. We reported the results
averaged over 100 trials.

To demonstrate that the greedy order of processing (in Sec-
tion 5.2) outperforms the random order and provides an accuracy
that is close to the optimal order (in Algorithm 5.1), we first com-
pared them using a small dataset of 10 SNPs of 10 individuals
(obtained from the same HapMap dataset [8] introduced before).
When processing the SNPs of an individual I; using the random
order, we randomly permuted the order of her SNP sequence and
then fed it into Algorithm 4.1. Assuming each donor has the same
privacy budget (¢) and varying the privacy budget from 0.2 to 2,
we show the results in Figure 7. We observed that for all the pri-
vacy budgets, the accuracy obtained by the greedy order is close

87

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

o
©
©

o 9o
© @
= o

Accuracy
o
©

0.78

—#—Optimal order
—6-Greedy order
Random order

0.76 -

074 I S R I
0.2 0.4 0.6 0.8 1 12 14 1.6 1.8 2

€
Figure 7: Accuracy of beacon responses on 10 SNPs from 10 in-
dividuals using optimal (Algorithm 5.1), greedy (Section 5.2),
and random orders of processing.

0.97

Accuracy
o o o
© ® @
S (9] (2]

I
©
]

)
Random order
0.9 N Y N S R R
0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2
€
Figure 8: Accuracy of beacon responses on the original
dataset using greedy and random orders of processing.

to that obtained by the optimal order (when € > 1, the accuracy
provided by both orders differ only by less than 2%). Whereas, the
accuracy achieved by the random order is the lowest for all the
privacy budgets because the random order does not try to maximize
individuals’ expected beacon utility. These results show that greedy
order of processing (in Section 5.2) performs comparably to the
optimal algorithm (in Algorithm 5.1), and hence we use the greedy
algorithm for our evaluations with larger datasets.

Next, we compared the accuracy achieved by the greedy and
random orders on the original dataset (i.e., 1000 SNPs of 156 individ-
uals). The experiment results are shown in Figure 8. We observed
that compared to the small dataset, the accuracy is improved signif-
icantly. For example, even under very limited privacy budgets (e.g.,
€ < 0.4), both orders can achieve an accuracy over 93% since large
dataset contains stronger (and more) correlations among SNPs. Cor-
relations in the data is critical for the utility of the proposed data
sharing mechanism, since when data is correlated, the proposed
algorithm eliminates statistically unlikely states and adjusts the
probability distributions of the remaining states in such a way that
deviating highly from the “useful values" of the shared SNPs is
small (as discussed in Section 4.5). From Figure 8, we also observed
that the accuracy achieved by the greedy order consistently outper-
forms that obtained by the random processing order. This suggests
that the utility varies under different processing orders and we
can improve the utility of shared data points (SNPs) in a strategic
way (e.g., by selecting them in a greedy manner). This outcome can
also be generalized when sharing other types of correlated data.
Another advantage of determining the processing order using the
greedy algorithm is its computational complexity (O(I2), where [is
the number of shared SNPs of a donor), whereas the computational
complexity of the optimal algorithm (in Algorithm 5.1) is 0(31).

Session 2: Privacy

7 CONCLUSION

In this paper, we have introduced (€, T)-dependent LDP and pro-
posed a data sharing scheme for genomic data sharing achieving
(€, T)-dependent LDP. We have first described a correlation attack
to show that directly applying the randomized response mecha-
nism to correlated data causes vulnerabilities. To improve privacy
against the correlation attacks, we have proposed a scheme that
eliminates certain states of a SNP (and does not use such states dur-
ing data sharing) which are loosely correlated with the previously
shared SNPs. The proposed scheme decides a value to share among
the non-eliminated states by providing formal privacy guarantees.
To improve the utility of the shared data, we have shown how to
adjust probability distributions for the non-eliminated states of the
SNPs while still guaranteeing (e, T)-dependent LDP. We have also
proposed an optimal algorithm and a greedy algorithm to deter-
mine the processing order of SNPs in the proposed data sharing
algorithm to optimize utility. We have implemented the proposed
scheme and evaluated its privacy and utility via experiments on a
real-life genomic dataset. The proposed data sharing mechanism
can also be utilized for sharing of similar sensitive information
that includes correlations (e.g., location patterns). In future work,
we will evaluate the proposed mechanism considering different
application of the data collector. We will also study how to compute
the data sharing probabilities for different values of the SNP as a
donor shares data with more data collectors.

ACKNOWLEDGMENTS

Research reported in this publication was partly supported by the
National Library Of Medicine of the National Institutes of Health
under Award Number R0O1LM013429 and by the National Science
Foundation (NSF) under grant number OAC-2112606.

REFERENCES

[1] Erman Ayday, Jean Louis Raisaro, Jean-Pierre Hubaux, and Jacques Rougemont.
2013. Protecting and evaluating genomic privacy in medical tests and personalized
medicine. In Proceedings of the 12th ACM workshop on Workshop on privacy in
the electronic society. ACM, 95-106.

[2] Kerem Ayoz, Erman Ayday, and A Ercument Cicek. 2021. Genome reconstruction
attacks against genomic data-sharing beacons. Proceedings on Privacy Enhancing
Technologies 2021, 3 (2021), 28-48.

[3] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene
Tsudik. 2011. Countering gattaca: efficient and secure testing of fully-sequenced
human genomes. In Proceedings of the 18th ACM conference on Computer and
communications security. ACM, 691-702.

[4] Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Guha Thakurta. 2017.
Practical locally private heavy hitters. In Advances in Neural Information Process-
ing Systems. 2288-2296.

[5] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P
Bertsekas. 1995. Dynamic programming and optimal control. Vol. 1. Athena
scientific Belmont, MA.

[6] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. 2000. Stochastic

dynamic programming with factored representations. Artificial intelligence 121,

1-2 (2000), 49-107.

Thee Chanyaswad, Alex Dytso, H Vincent Poor, and Prateek Mittal. 2018. Mvg

mechanism: Differential privacy under matrix-valued query. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security.

230-246.

International HapMap Consortium et al. 2003. The international HapMap project.

Nature 426, 6968 (2003), 789.

[9] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. 2018. Marginal release

under local differential privacy. In Proceedings of the 2018 International Conference

on Management of Data. 131-146.

Thomas Dean and Robert Givan. 1997. Model minimization in Markov decision

processes. In AAAI/TAAL 106-111.

Iman Deznabi, Mohammad Mobayen, Nazanin Jafari, Oznur Tastan, and Erman

Ayday. 2018. An inference attack on genomic data using kinship, complex corre-

lations, and phenotype information. IEEE/ACM Transactions on Computational

[7

[

8

=

[10]
(1]

88

CODASPY 22, April 24-27, 2022, Baltimore, MD, USA

Biology and Bioinformatics (TCBB) 15, 4 (2018), 1333-1343.
[12] John C Duchi, Michael I Jordan, and Martin] Wainwright. 2013. Local privacy
and statistical minimax rates. In 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science. IEEE, 429-438.
Cynthia Dwork. 2008. Differential privacy: A survey of results. In International
Conference on Theory and Applications of Models of Computation. Springer, 1-19.
Ulfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal
Talwar, and Abhradeep Thakurta. 2019. Amplification by shuffling: From local to
central differential privacy via anonymity. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2468-2479.
Xiaolan Gu, Ming Li, Li Xiong, and Yang Cao. 2019. Providing Input-
Discriminative Protection for Local Differential Privacy. arXiv preprint
arXiv:1911.01402 (2019).
Eric A Hansen and Shlomo Zilberstein. 1999. Solving Markov decision prob-
lems using heuristic search. In Proceedings of AAAI Spring Symposium on Search
Techniques from Problem Solving under Uncertainty and Incomplete Information.
Mathias Humbert, Erman Ayday, Jean-Pierre Hubaux, and Amalio Telenti. 2013.
Addressing the concerns of the lacks family: quantification of kin genomic privacy.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 1141-1152.
Mathias Humbert, Erman Ayday, Jean-Pierre Hubaux, and Amalio Telenti. 2014.
Reconciling utility with privacy in genomics. In Proceedings of the 13th Workshop
on Privacy in the Electronic Society. ACM, 11-20.
Aaron Johnson and Vitaly Shmatikov. 2013. Privacy-preserving data exploration
in genome-wide association studies. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 1079-
1087.
Changchang Liu, Supriyo Chakraborty, and Prateek Mittal. 2016. Dependence
Makes You Vulnberable: Differential Privacy Under Dependent Tuples.. In NDSS,
Vol. 16. 21-24.
Takao Murakami and Yusuke Kawamoto. 2019. Utility-optimized local differen-
tial privacy mechanisms for distribution estimation. In 28th { USENIX} Security
Symposium ({USENIX} Security 19). 1877-1894.
Muhammad Naveed, Erman Ayday, Ellen W Clayton, Jacques Fellay, Carl A
Gunter, Jean-Pierre Hubaux, Bradley A Malin, and XiaoFeng Wang. 2015. Privacy
in the genomic era. ACM Computing Surveys (CSUR) 48, 1 (2015), 6.
Christos H Papadimitriou and John N Tsitsiklis. 1987. The complexity of Markov
decision processes. Mathematics of operations research 12, 3 (1987), 441-450.
Suyash S Shringarpure and Carlos D Bustamante. 2015. Privacy risks from
genomic data-sharing beacons. The American Journal of Human Genetics 97, 5
(2015), 631-646.
Montgomery Slatkin. 2008. Linkage disequilibrium—understanding the evolu-
tionary past and mapping the medical future. Nature Reviews Genetics 9, 6 (2008),
477-485.
Shuang Song, Yizhen Wang, and Kamalika Chaudhuri. 2017. Pufferfish privacy
mechanisms for correlated data. In Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, 1291-1306.
Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.
Isabel Wagner. 2017. Evaluating the strength of genomic privacy metrics. ACM
Transactions on Privacy and Security (TOPS) 20, 1 (2017), 1-34.
Rui Wang, Yong Fuga Li, XiaoFeng Wang, Haixu Tang, and Xiaoyong Zhou. 2009.
Learning your identity and disease from research papers: information leaks in
genome wide association study. In Proceedings of the 16th ACM conference on
Computer and communications security. ACM, 534-544.
Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017. Locally dif-
ferentially private protocols for frequency estimation. In 26th { USENIX} Security
Symposium ({USENIX} Security 17). 729-745.
Tianhao Wang, Ninghui Li, and Somesh Jha. 2018. Locally differentially private
frequent itemset mining. In 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 127-143.
Stanley L Warner. 1965. Randomized response: A survey technique for eliminating
evasive answer bias. J. Amer. Statist. Assoc. 60, 309 (1965), 63-69.
Emre Yilmaz, Erman Ayday, Tianxi Ji, and Pan Li. 2020. Preserving genomic
privacy via selective sharing. In Proceedings of the 19th Workshop on Privacy in
the Electronic Society. 163-179.
Emre Yilmaz, Tianxi Ji, Erman Ayday, and Pan Li. 2021. Genomic Data Sharing
under Dependent Local Differential Privacy. arXiv preprint arXiv:2102.07357
(2021).
Fei Yu, Stephen E Fienberg, Aleksandra B Slavkovi¢, and Caroline Uhler. 2014.
Scalable privacy-preserving data sharing methodology for genome-wide associa-
tion studies. Journal of biomedical informatics 50 (2014), 133-141.
Xiaojie Zhu, Erman Ayday, Roman Vitenberg, and Narasimha Raghavan Veerara-
gavan. 2021. Privacy-Preserving Search for a Similar Genomic Makeup in the
Cloud. IEEE Transactions on Dependable and Secure Computing (2021).

(13

=
it

[15

[16]

(17

=
&

[19

[20

[21

[23

[24

[25]

[26

[27

™
&,

[29

[30

[35

[36

	Abstract
	1 Introduction
	2 Related Work
	2.1 Genomic Privacy
	2.2 Local Differential Privacy

	3 Technical Preliminaries
	3.1 Genomics Background
	3.2 Definition of Local Differential Privacy

	4 Proposed Framework
	4.1 Problem Statement
	4.2 Correlation Attack Against LDP-Based Genomic Data Sharing
	4.3 (,T)-dependent Local Differential Privacy
	4.4 Achieving (,T)-dependent LDP in Genomic Data Sharing
	4.5 Improving Utility by Adjusting Probability Distributions
	4.6 Proposed Data Sharing Algorithm

	5 Optimal Data Processing Order for the Proposed Genomic Data Sharing Mechanism
	5.1 Determining the Optimal Processing Order via Markov Decision Processes (MDP)
	5.2 A Heuristic Approach

	6 Evaluation
	6.1 Comparison with the Original Randomized Response Mechanism
	6.2 The Effect of Parameters on Utility and Privacy
	6.3 The Effect of the Processing Order on Utility

	7 Conclusion
	Acknowledgments
	References

