
JGCL: Joint Self-Supervised and Supervised
Graph Contrastive Learning

Selahattin Akkas
Indiana University Bloomington

Bloomington, Indiana, USA
sakkas@iu.edu

Ariful Azad
Indiana University Bloomington

Bloomington, Indiana, USA
azad@iu.edu

ABSTRACT
Semi-supervised and self-supervised learning on graphs are two
popular avenues for graph representation learning.We demonstrate
that no single method from semi-supervised and self-supervised
learning works uniformly well for all settings in the node classi-
fication task. Self-supervised methods generally work well with
very limited training data, but their performance could be further
improved using the limited label information. We propose a joint
self-supervised and supervised graph contrastive learning (JGCL)
to capture the mutual benefits of both learning strategies. JGCL
utilizes both supervised and self-supervised data augmentation and
a joint contrastive loss function. Our experiments demonstrate that
JGCL and its variants are one of the best performers across various
proportions of labeled data when compared with state-of-the-art
self-supervised, unsupervised, and semi-supervised methods on
various benchmark graphs.

CCS CONCEPTS
• Computing methodologies → Supervised learning; Unsuper-
vised learning; Neural networks; Learning latent representa-
tions.

KEYWORDS
graph representation learning, self-supervised learning, supervised
contrastive learning
ACM Reference Format:
Selahattin Akkas and Ariful Azad. 2022. JGCL: Joint Self-Supervised and
Supervised Graph Contrastive Learning . In Companion Proceedings of the
Web Conference 2022 (WWW ’22 Companion), April 25–29, 2022, Virtual
Event, Lyon, France. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3487553.3524722

1 INTRODUCTION
Graph representation learning aims to learn low-dimensional em-
beddings using neighborhood information and node features. Re-
cently, Graph Neural Network (GNNs) have been very successful
to learn graph representation and solve various downstream tasks
such as node classification and link prediction [10, 16, 34, 37].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9130-6/22/04. . . $15.00
https://doi.org/10.1145/3487553.3524722

In the GNN field, there are multiple learning methods including
semi-supervised, unsupervised, supervised, and self-supervised
learning. Semi-supervised learning uses a small portion of labeled
and abundant unlabeled data for the model training [17, 18, 43].
Recently, many researchers have utilized semi-supervised learning
for graph representation learning [2, 8, 16, 19, 31, 36, 38, 41, 42].
However, training GNNs in a (semi-)supervised fashion requires
labeled graph data that is labor-intensive andmostly unavailable. To
tackle this issue, researchers have applied contrastive loss with self-
supervised learning (SSL), which is an unsupervised model training
approach [11, 14, 24, 30, 32, 39, 40, 44, 45]. SSL creates two views
by augmenting the data and then contrasts pairs. In SSL, nodes
(in different views) that are originated from the same node have
similar representations, while others have different representations.
Several graph augmentation techniques have been discussed in the
literature. For instance, GRACE [44] randomly drops edges and
masks features, GCA [45] uses degree centrality, eigenvector or
PageRank for edge and feature drop probabilities, DGI [35] shuffles
features and contrasts local and global embeddings. Overall, SSL
has enriched graph representation learning, but it lacks supervision:
it ignores limited but beneficial label information.

On the other hand, supervised contrastive learning (SupCon)
[15], a supervised approach in computer vision, uses labels to im-
prove the performance of SSL. In SupCon, pairs of training examples
from the same class are considered positive pairs and others are
considered negative pairs. In graph representation learning, CG3

[36] uses SupCon with supervised and generative loss. The authors
use GCN and hierarchical graph convolutions (HGCN) and contrast
their outputs. While they show combining supervised, SSL, SupCon,
and generative losses help, they give the same importance to SSL
and SupCon. Another work [41] uses SupCon in a student-teacher
network with pseudo-labels in training. While this work uses Sup-
Con, their architecture is different from the contrastive-learning
frameworks.

While the benefits of semi-supervised, SSL, and to some ex-
tent SupCon methods for graph representation learning have been
demonstrated in the literature, it remains unclear which methods
work the best for different settings. We argue that no single method
works uniformly well for all settings. For example, Fig. 1 shows
that SSL excels with very limited labeled data (0.5%), but GCN and
SupCon perform better than SSL when more than 5% nodes are
labeled for training. This observation is not surprising considering
the fact that SSL is designed to tackle the scarcity of labeled data.
Can we utilize SSL, SupCon and GCN simultaneously to unify their
advantages in graph representation learning? This paper answers
this questions affirmatively with a joint self-supervised and super-
vised graph contrastive learning (JGCL). Although joint learning

1099

https://orcid.org/0000-0001-8121-9300
https://orcid.org/0000-0003-1332-8630
https://doi.org/10.1145/3487553.3524722
https://doi.org/10.1145/3487553.3524722
https://doi.org/10.1145/3487553.3524722
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3487553.3524722&domain=pdf&date_stamp=2022-08-16

WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France Akkas and Azad

Label rate

A
cc

ur
ac

y

67

72

77

82

87

92

0.5% 1% 5% 10% 20% 30%

GCN JGCL SupCon GCA-Deg

Figure 1: Accuracy vs training label rate for the Amazon-
Computers dataset. While SSL works better for very lim-
ited labeled data (0.5%), SupCon works better for a reason-
able amount of labeled data (1, 5, 10%). But after 20%, semi-
supervised training gives better results. Ourmethod JGCL is
one of the best performers for all settings.

can be applied to any representation learning task, we focus on
graph presentation learning in this work.

JGCL unifies SSL and SupCon both in data augmentation and in
the contrastive loss function. In between data augmentation and
contrastive loss, JGCL uses GCN encoders to generate node embed-
dings. Thus, it takes advantage of SSL, SupCon and GCN in a joint
learning framework. Moreover, we propose an augmentation strat-
egy for the joint training: for the SupCon part, we apply different
edge drop probabilities for edges connecting to labeled nodes. Our
results demonstrate that JGCL and its variants are one of the best
performers across all settings when compared with state-of-the-art
SSL methods, GCN, and SupCon for some benchmark graphs. The
main contributions of this paper are:
• We developed JGCL for jointly training SSL and SupCon to
improve generalization with different ratios of labeled data.
• We introduce a new label-based augmentation strategy for
the joint training.
• Our results demonstrate that JGCL and it variants perform
better than state-of-the-art SSL methods, GCN, and SupCon
for some benchmark graphs.

2 RELATEDWORK
2.1 Graph Representation Learning
Graph representation learning aims to construct an embedding
representing the graph’s structure and its data [27]. Traditional
graph representation works can be categorized to two classes. Fac-
torization approaches[1, 4, 22, 25] minimizes dot product of rep-
resentations. Random walk based approaches like DeepWalk [23],

node2vec[9], Line[33], Harp[5], and force2vec[26] sample neigh-
borhood nodes and apply skip-gram models to obtain the represen-
tations. Recently, GNN models including GCN [16], GAT[34], and
GIN[37] have been successful in graph representation learning and
are widely used in SSL as graph encoders.

2.2 Contrastive Learning
Contrastive learning is an SSL approach that the encoder learns
to give similar embeddings in the embedding space for similar
input pairs while different embeddings for different pairs. To create
similar pairs from the same input, augmentation techniques are
used. There are many augmentation techniques for images [6, 7, 12,
13, 15] including cropping, cutout, color distortion Sobel filter, noise,
blur, rotating, horizontal flipping, grayscale conversion. Although
many augmentation approaches exist for images, there are quite
limited augmentation options on graphs that mostly consist of
edge dropping and feature masking. DGI [35] shuffles features
and uses contrastive learning to maximize local (node) - global
(graph) mutual information, GRACE [44] drops edges and masks
features randomly, GCA [45] utilizes degree centrality, eigenvectors
or PageRank to keep some important edges and features, GROC
[14] uses gradient information to add or remove edges. GROC’s
approach makes representation more robust to adversarial attacks;
however, training requires more time. MVGLR [11] uses diffusion
and subgraph sampling and contrast local-global pairs, GraphCL
[40] and GraphCL-Automated [39] use node dropping, subgraph
sampling, random edge dropping or adding, feature masking for
augmentation and contrasts global information. Our work is based
on GRACE and GCA. We extend GCA’s degree-based augmentation
to have label-based augmentation and utilize SupCon.

2.3 Graph-based Semi-Supervised Learning
In semi-supervised settings, labeled and unlabeled data are used to-
gether. GCN [16] is considered as semi-supervised training since it
uses unlabeled node’s relationships and features in training. There-
fore, SupCon on graphs is also regarded as semi-supervised learning.
Supervised contrastive learning has been used in computer vision
first [15]. Recently, [36] has used SupCon in graph domain combin-
ing with supervised and generative loss. The authors use localized
(GCN) and hierarchical graph convolutions (HGCN) and contrast
their embeddings. The authors do not apply edge or feature-based
augmentation. The study combines SSL, SupCon, cross-entropy loss,
and generative loss. While generative loss weight can be adjusted in
[36], SSL and SupCon share the same weight. Our work differs from
[36] in the following ways: different weights for SSL and SupCon,
no generative loss, a linear classifier trained after presentations
are learned (cross-entropy loss), degree and label based augmen-
tations, shared GNN encoders. Another work [41] uses SupCon
in a student-teacher network settings. They use pseudo-labels in
training. Since the architectures and the evaluation protocols are
different, we are unable to compare our results with the studies
mentioned above.

1100

JGCL: Joint Self-Supervised and Supervised
Graph Contrastive Learning WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France

SupCon loss x (1- ssl_ratio)

SSL loss x ssl_ratio

input graph

degree augmentation

(no label information)

degree + label augmentation

(low edge drop probability

for labeled nodes)

degree + label augmentation

(high edge drop probability

for labeled nodes)

degree augmentation

(no label information)

GNN

Encoder

positive

pair

positive

pair

positive

pair

shared

GNN

Encoder

negative

pair

JGCL loss

Node embeddings

Node embeddings

unlabeled node

labeled node

negative

pair

Figure 2: Overview of our proposed JGCL framework. There are four views generated where the top two views ignore labels,
and the bottom two views are generated based on augmentations that consider node labels. Label based augmented views show
high and low edge drop probability for labeled nodes. The top part represents SSL and bottom part represents SupCon. The
combined SSL and SupCon losses are optimized jointly.

3 METHOD
3.1 Preliminaries
Here, we introduce the GNN notation we use throughout the paper.
Let G = {V ,E} denote a graph where V = {v1,v2, ..vN } are the
set of N nodes and ei j ∈ E is an edge between vi and vj . Addition-
ally, X∈RN×F denotes a feature matrix where each node has an
F -dimensional feature vector.A ∈ {0, 1}N×N denotes the adjacency
matrix of the graphwhereAi j = 1 if there is an edge betweenvi and
vj ; otherwise Ai j = 0. Finally, y = {y1,y2, ...,yN } denotes labels
for all nodes. In most graph learning tasks, only a small fraction of
nodes are labeled and they are used to train GNN models. The task
is to learn representations H = f (X ,A) where f is a GNN encoder
(e.g. GCN, GAT).

3.2 Overview of the JGCL and Supervised
Contrastive Learning

Our proposed framework jointly trains SSL and SupCon as illustred
in Fig. 2. We generate four views by augmenting the input graph.
While no label information is used in the SSL part, we use label

information in SupCon to generate views. We introduce a new hy-
perparameter for each view to control edge drop probabilities for
edges connecting to a labeled node. The bottom two views in Fig. 2
show low and high drop probability effects. Detailed augmentation
method is explained in section 3.3. After the view generation pro-
cess, we use a shared GNN encoder and get the embeddings of the
views. We apply a contrastive loss to the first two views and a su-
pervised contrastive loss to the other two views. While contrastive
loss uses all node embeddings, the supervised contrastive loss is
applied to nodes in the training set. Finally, we combine two losses
with the sslratio that controls the relative importance of losses.

3.3 Augmentation
We follow GCA’s degree based augmentation strategy since it pro-
vides good results and it is easy to implement. Let ku and kv are
degrees for node u and v . An edge centrality value is defined as
we
uv = (ku + kv)/2 for undirected graphs and we

uv = kv for di-
rected graphs since an edge importance is generally characterized
by the target node [21]. In GCA, the authors use seuv = logwe

uv to
reduce the effect of the nodes with very dense connections. Then

1101

WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France Akkas and Azad

the centrality values are normalized and the edge drop probability
is defined by:

peuv =min(
semax − s

e
uv

semax − µ
e
s
.pe ,pτ), (1)

where pe is the overall edge removing probability, µes is average
seuv , semax is maximum seuv value, and pτ is a cut-off probability to
prevent the overly corrupt graph structure.

3.3.1 Label augmentation. We modify GCA’s overall edge remov-
ing probability for edges connecting to labeled nodes in the SupCon
part of JGCL (see Fig. 2). Depending on the dataset, increasing or
decreasing the contrast ratio affects the performance. Therefore
we use 0.5, 1.0, 1.5, and 2.0 values for the labeled drop multiplier.
For instance, if pe = 0.3 and labeled drop multiplier is 2.0, edge
drop probability for edge connecting to labeled nodes becomes
0.3 ∗ 2.0 = 0.6.

3.4 GNN Encoder
We use a 2-layer GCN [16] as encoder.

H1(X ,A) = σ (D̂−
1
2 ÂD̂−

1
2XW1), (2)

f (X ,A) = H (H1,A) = σ (D̂−
1
2 ÂD̂−

1
2H1W2). (3)

Here, σ is an activation function (i.e. ReLU and pReLU), Â = A+I
is the self loop added adjacency matrix, D̂ is the degree matrix of
the Â andWi is the weight matrix that we train.

3.5 Contrastive-Learning Methods
3.5.1 Self-supervised learning. Self-supervised learning is an unsu-
pervised technique that does not use label information. The task is
to learn representations by contrasting augmented pairs. The aug-
mentation can be done by distorting the adjacency matrix A(e.g.,
dropping or adding edges, subgraph sampling) and the feature
matrix X (e.g., feature masking). We obtain two views after the
augmentation: G1 = {X1,A1} and G2 = {X2,A2}. After represen-
tations are obtained for both views, representations are fed to the
projection head, which is two-layer MLP, and projected representa-
tions Z1 and Z2 are obtained. We can merge them as Z = [Z1,Z2]
where contains 2N pairs. While zi is a projected representation
from a view, zj(i) is the corresponding pair from the other view.
For each node, there is one positive pair (i.e. <zi , zj(i)>), there are
2N − 2 negative pairs.

The idea is that positive pairs originated from same source node
should have more similar representations compared to all other
pairs. This can be learned using the contrastive loss:

LSSL =
−1
2N

2N∑
i=1

loд
exp((zi · zj(i))/τ)∑2N

k=1 1[k,i]exp((zi · zk)/τ)
(4)

Here, · is cosine similarity, τ is temperature parameter, and 1 is an
indicator function that is 1 if i , k else 0.

3.5.2 Supervised contrastive learning. Supervised contrastive learn-
ing (SupCon) is considered semi-supervised representation learning
since it requires labels and aggregates information from unlabeled
neighbors on graphs. SupCon can be defined as:

00 1 0 0 1 0 1 0 0

1 2 3 4 5 6 7 8 9 10

43 4 0 3 2 0 3 3 2

87 4 9 10 2 11 3 12 13

Training mask

Labels

SupConmixed labels

Figure 3: SupConmixed labels for Cora dataset’s first 10 nodes.
We use the labels for the nodes that are in the training
set(blue colors). We assign a unique number for the rest of
nodes starting frommax value of labels + 1 (i.e. 7 for Cora).

LSupCon =
1
2N

∑2N
i=1

−1
|P (i)) |

∑
pϵP (i) loд

exp((zi ·zp)/τ)∑2N
k=1 1[k,i]exp((zi ·zk)/τ)

(5)

Here P(i) denotes all positive samples which belong to the same
class with zi , and |P(i)| represents the number of positive samples
for zi . In this approach, representations belonging to the same
class should be more similar than the others. SupCon improves
generalization [15], but it can only be used for labeled nodes which
are highly limited for most of the graph data.

3.5.3 SupConmixed . While SSL ignores labels, SupCon can only
be used for the labeled nodes. Since the labeled nodes are a small
percentage of the dataset, there will be quite a small number of
positive and negative samples in SupCon which slightly reduces the
performance of the SupCon. Here, we propose a simple technique
to combine SupCon and SSL in a single loss function: we assign
a unique class id for unlabeled nodes (see Fig. 3). We consider
unlabeled nodes as single instance classes. This way, we can use all
nodes in semi-supervised settings. One limitation is that a pair of
labeled and unlabeled samples belonging to the same class will be
considered negative samples.

Algorithm 1 JGCL Algorithm
Require: feature matrix X, adjacency matrix A, labels vector y,

max epoch ep, ssl_ratio
1: for k ← 1 to ep do
2: X1, X2← auд_f eature(X), auд_f eature(X) ▷ Augments

features
3: A1, A2← auд_adj(A), auд_adj(A) ▷ Augments adjaceny

matrix based on GCA-degree
4: A3,A4← auд_adj_lbl(A,y), auд_adj_lbl(A,y) ▷ Augments

adjacency matrix using different drop ratios for labeled nodes
5: z1, z2←model(X1,A1),model(X2,A2)
6: z3, z4←model(X1,A3),model(X2,A4)
7: LSSL ← ssl_loss(z1, z2)
8: LSupCon ← supcon_loss(z3, z4)
9: LJGCL ← ssl_ratio ∗ LSSL + (1 − ssl_ratio) ∗ LSupCon
10: update model
11: end for

3.5.4 JGCL. We jointly train SSL and SupCon and compute the
loss:

1102

JGCL: Joint Self-Supervised and Supervised
Graph Contrastive Learning WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France

Table 1: Dataset Summary

Dataset Nodes Edges Features Classes
Amazon-Computers [29] 13752 491722 767 10
Amazon-Photo [29] 7650 238162 745 8
Cora [38] 2708 10556 1433 7
PubMed [38] 19717 88648 500 3
DBLP [3] 17716 105734 1639 4

LJGCL = ssl_ratio ∗ LSSL + (1 − ssl_ratio) ∗ LSupCon . (6)

Here, ssl_ratio ∈ [0, 1] denotes the ratio. We provide separate
augmented views to SSL and SupCon. We use our label based aug-
mentation approach for the SupCon views.

Algorithm 1 describes how JGCL works. In line 3 and 4, we
generate views of the graph based on SSL and label-based augmen-
tations, respectively. Line 5 and 6 use GCN encoders to embed all
four views. Line 7 and 8 then compute SSL and SupCon losses that
are combined using Equation 6.

3.6 Cross-Entropy Loss
We train a linear classifier after representation learning to evaluate
learned representations. The linear classifier and the cross-entropy
loss can be defined as:

ŷ = loд_so f tmax(HC + b) (7)

Lce =

m∑
i=1

c∑
j=1

yi j loд(ŷi j) (8)

where H learned representations, C and b linear classifier’s pa-
rameters, ŷ predictions, y labels, c number of classes, and m number
of samples in the training set.

4 EXPERIMENTS
4.1 Datasets
We use Cora, PubMed, DBLP, Amazon-Computers, and Amazon-
Photo datasets to evaluate the proposed methods. Summaries of
datasets are provided in Table 1.
• Cora and PubMed [38] are citation networks where nodes
represent papers, edges represent citations, and features are
bag-of-words representations.

• Amazon-Computers, and Amazon-Photo [29] are created
from Amazon co-purchase dataset [20]. Here, nodes rep-
resent products, and edges represent products frequently
bought together. Features are product reviews that are em-
bedded using bag-of-words.
• DBLP [3] is another citation network where nodes represent
papers, edges represent citations, and features are bag-of-
words representations.

We use the same split ratios used in GCA [45]: we use 10% of the
data for training, 10% of the data for validation, and the remaining
for the testing.

4.2 Evaluation protocol
We use linear evaluation protocol which is introduced in [35], and
used in GRACE [44] and GCA [45]. We train the encoder and use
the embeddings to train the logistic regression classifier. While
GRACE and GCA train the encoder once and train the classifier
twenty times, we train both the encoder and the classifier ten times.
The classifier was trained for 3000 epochs using Adam optimizer
with a 0.01 learning rate for each repeat. Note that GRACE and
GCA create a new random split for the logistic regression training.
However, our approach uses a training split in the representation
learning phase and learns the node representations better for the
nodes in the training split. Creating a new random split for the
classifier can put some of these nodes to test split which can give
confusing results. To make the comparison fair, we fix the subset for
the linear classifier training for all methods: we use the same splits
mentioned above. We also use the same split for each experiment
repeat.

For the representation learning, we use the same hyperparam-
eters with GRACE and GCA. We introduce three extra hyperpa-
rameters: ssl_ratio, and two labeled drop probabilities, which are
explained in Section 3.5.4. We find these parameters by grid-search
for each dataset. The hyperparameters are summarized in Table 2.

4.3 Baselines
We compare our results with traditional methods including Deep-
Walk [23], node2vec [9], raw features classification, raw features +
DeepWalk classification, and deep learning methods including GCN
[16], GRACE [44] and GCA [45]. For the traditional methods, we
use the Karate Club framework [28] for DeepWalk and node2vec
experiments. Note that we use the same embedding dimensions
for each method. With different architectures, there can be better
results obtained.

Table 2: Hyperparameters. We use same hyperparameters with GRACE and GCA. The bold columns are newly introduced
hyperparameters. Values are found by grid search.

Dataset edge
drop
prob 1

edge
drop
prob 2

feature
drop
prob 1

feature
drop
prob 2

encoder
dim

projection
dim

tau epochs learning
rate

ssl
ratio

labeled
drop
prob 1

labeled
drop
prob 2

Amazon-Computers 0.6 0.3 0.2 0.3 128 128 0.2 2000 0.01 0.5 1.0 2.0
Amazon-Photo 0.3 0.5 0.1 0.1 256 64 0.3 2000 0.1 0.7 1.5 0.5
Cora 0.2 0.4 0.3 0.4 128 128 0.4 1000 0.0005 0.7 1.0 2.0
PubMed 0.4 0.1 0.0 0.2 256 256 0.7 1500 0.001 0.7 1.5 0.5
DBLP 0.1 0.4 0.1 0.0 256 256 0.9 1000 0.001 0.7 2.0 1.0

1103

WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France Akkas and Azad

Table 3: Classification accuracies of compared methods on Amazon Computers, Amazon Photo, Cora, PubMed, and DBLP
datasets. Standard deviations are also reported for GNN-based methods. The highest accuracy on each dataset is highlighted
in bold.

Method Input Amazon-Computers Amazon-Photo Cora PubMed DBLP

Unsupervised

raw features X 73.30±0.00 80.11±0.00 55.03±0.00 80.48±0.00 67.90±0.00
node2vec A 79.54±0.00 84.54±0.00 55.86±0.00 63.93±0.00 59.12±0.00
DeepWalk A 79.36±0.00 82.45±0.00 56.69±0.00 64.03±0.00 59.66±0.00
DeepWalk + features X, A 79.70±0.00 83.02±0.00 57.43±0.00 75.78±0.00 63.78±0.00

Semi-supervised GCN X, A, Y 88.82±0.23 93.08±0.21 81.17±0.40 85.55±0.16 81.33±0.15

Self-supervised GRACE X, A 87.13±0.17 92.22±0.91 82.81±0.30 85.73±0.42 84.32±0.19
GCA-Degree X, A 86.51±0.46 81.54±23.75 83.63±0.51 85.08±0.50 84.36±0.14

Supervised Contrastive SupCon X, A, Y 88.96±0.11 30.08±5.18 80.01±0.76 84.03±0.39 79.42±0.41

Joint (Ours)
SupConmixed X, A, Y 88.08±0.12 92.21±1.54 84.03±0.36 85.99±0.40 52.87±1.39
JGCL-no label aug X, A, Y 89.14±0.17 79.99±29.35 82.04±0.98 84.12±0.42 80.47±0.53
JGCL X, A, Y 89.28±0.11 93.16±0.10 82.93±0.66 84.84±0.22 81.30±0.15

Table 4: Amazon-Computers results with different training label rates.

Label Rate 0.1% 0.5% 1.0% 5.0% 10.0% 20.0% 30.0% 40.0% 50.0%
GCN 52.08±0.91 72.81±0.53 76.89±1.48 86.85±0.32 88.82±0.23 90.45±0.13 91.14±0.10 91.42±0.12 91.82±0.04
GCA-Deg 57.63±1.45 75.15±1.31 77.69±2.11 85.95±0.68 86.51±0.46 88.69±0.16 88.86±0.31 88.80±0.18 89.07±0.17
GRACE 57.76±1.84 74.58±0.81 77.57±1.50 85.27±0.46 87.13±0.17 87.88±0.32 88.27±0.35 88.30±0.39 88.57±0.23
SupCon 50.31±1.68 67.27±0.62 78.26±2.29 86.97±0.59 88.96±0.11 90.32±0.15 91.14±0.20 91.34±0.23 91.21±0.13
SupConmixed 55.19±0.74 75.20±0.45 77.40±0.35 86.36±0.29 88.08±0.12 89.53±0.14 90.35±0.22 90.96±0.35 91.11±0.14
JGCL-no label aug 57.96±1.98 70.73±1.10 79.52±0.68 87.64±0.18 89.14±0.17 90.74±0.14 91.16±0.07 91.49±0.20 91.56±0.15
JGCL 57.58±1.15 72.20±1.31 79.88±0.32 87.83±0.30 89.28±0.11 90.58±0.19 91.08±0.17 91.28±0.08 91.21±0.25

4.4 Node Classification Results
We evaluate the performance of the joint SSL and SupCon methods
on semi-supervised node classification tasks and show results in
Table 3. Our joint approaches give better results than pure semi-
supervised methods such as GCN and pure self-supervised methods
such as GRACE, and GCA in four out of five datasets.

For Amazon-Computers, SupCon gives better results than the
other baselines. However, SupConmixed performance is worse than
SupCon. This is caused by false negatives since a true positive pair
(i.e., one from the labeled set and the other from the unlabeled set)
repel each other. On the other hand, our JGCL gives the best result.

For Amazon-Photo, degree-based augmentation causes training
to be stuck in the local minima. We can see this looking at the
variances of GCA-Deg. That is why SupCon under-performs. But,
SupConmixed does not stuck in the local minima since there are
more pairs in training. However, the GCN baseline is quite strong;
only JGCL outperforms the GCN. In Cora and PubMed, SupCon
under-performs since the number of training samples is not suffi-
cient. Increasing the samples by using SupConmixed improves the
accuracy. Finally, for DBLP, SupCon doesn’t help since the graph
structure is less important for the datasets. Raw features give better
results than the node2vec and DeepWalk for the datasets. Thus,
combining SSL methods with SupCon harms DBLP.

We also compare JGCL with and without label augmentation (no
label aug) to see if the improvement is caused by labeled augmen-
tation. We set the drop probability multipliers to 1.0. Table 3 shows
that label augmentation improves the results in all datasets.

4.5 Label Rate Results
We also study the performance JGCL for different label rates. Table 4
shows results for the Amazon-Computers dataset. The results show
that combining SSL and SupCon increases the accuracy. However,
GCN gives good results if there are adequate labeled data (more
than 50%) for training. Note that we use the same hyperparameters
from Table 2 in the label rate experiments. Changing the ssl_ratio
or drop ratios for different label rates will lead to better accuracies
for joint training approaches.

5 CONCLUSION
In this work, we have demonstrated that no single method from
semi-supervised and self-supervised learning works well for all
settings.We have introduced our label-based augmentation strategy
and joint graph contrastive learning (JGCL) to capture the benefits
of both self-supervised and supervised contrastive learning. Our
preliminary results show that JGCL and SupCon mixed approaches
improve classification accuracy over baselines. As future work, we
want to explore how we can improve the label-based augmentation
and JGCL and automatically identify the ssl_ratio parameter.

ACKNOWLEDGMENTS
This research is supported by the NSF OAC-2112606 grant.

REFERENCES
[1] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski,

and Alexander J Smola. 2013. Distributed large-scale natural graph factorization.
In Proceedings of the 22nd international conference on World Wide Web. 37–48.

1104

JGCL: Joint Self-Supervised and Supervised
Graph Contrastive Learning WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France

[2] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-
tion: A geometric framework for learning from labeled and unlabeled examples.
Journal of machine learning research 7, 11 (2006).

[3] Aleksandar Bojchevski and Stephan Günnemann. 2017. Deep gaussian embed-
ding of graphs: Unsupervised inductive learning via ranking. arXiv preprint
arXiv:1707.03815 (2017).

[4] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph rep-
resentations with global structural information. In Proceedings of the 24th ACM
international on conference on information and knowledge management. 891–900.

[5] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2018. Harp: Hierar-
chical representation learning for networks. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 32.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[7] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. 2020. Improved baselines
with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020).

[8] Chen Gong, Tongliang Liu, Dacheng Tao, Keren Fu, Enmei Tu, and Jie Yang. 2015.
Deformed graph Laplacian for semisupervised learning. IEEE transactions on
neural networks and learning systems 26, 10 (2015), 2261–2274.

[9] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[10] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025–1035.

[11] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view rep-
resentation learning on graphs. In International Conference on Machine Learning.
PMLR, 4116–4126.

[12] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Momen-
tum contrast for unsupervised visual representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9729–9738.

[13] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil
Bachman, Adam Trischler, and Yoshua Bengio. 2018. Learning deep represen-
tations by mutual information estimation and maximization. arXiv preprint
arXiv:1808.06670 (2018).

[14] Nikola Jovanović, Zhao Meng, Lukas Faber, and Roger Wattenhofer. 2021. To-
wards robust graph contrastive learning. arXiv preprint arXiv:2102.13085 (2021).

[15] Prannay Khosla, Piotr Teterwak, ChenWang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive
learning. arXiv preprint arXiv:2004.11362 (2020).

[16] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[17] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In Thirty-Second AAAI
conference on artificial intelligence.

[18] Wanyu Lin, Zhaolin Gao, and Baochun Li. 2020. Shoestring: Graph-based semi-
supervised classification with severely limited labeled data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4174–4182.

[19] Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. 2019. A flexible generative
framework for graph-based semi-supervised learning. Advances in Neural Infor-
mation Processing Systems 32 (2019), 3281–3290.

[20] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43–52.

[21] Mark Newman. 2018. Networks: An Introduction (Second Edition). Oxford univer-
sity press.

[22] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data mining. 1105–
1114.

[23] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[24] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph
neural network pre-training. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1150–1160.

[25] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In Proceedings of the eleventh ACM international conference on web
search and data mining. 459–467.

[26] Md Khaledur Rahman, Majedul Haque Sujon, and Ariful Azad. 2020. Force2Vec:
Parallel force-directed graph embedding. In 2020 IEEE International Conference
on Data Mining (ICDM). IEEE.

[27] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael
Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural
networks. arXiv preprint arXiv:2004.11198 (2020).

[28] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Karate Club: An
API Oriented Open-source Python Framework for Unsupervised Learning on
Graphs. In Proceedings of the 29th ACM International Conference on Information
and Knowledge Management (CIKM ’20). ACM, 3125–3132.

[29] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[30] Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian
Dallago, Stephan Günnemann, and Pietro Liò. 2021. 3D Infomax improves GNNs
for Molecular Property Prediction. arXiv preprint arXiv:2110.04126 (2021).

[31] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. Infograph: Un-
supervised and semi-supervised graph-level representation learning via mutual
information maximization. arXiv preprint arXiv:1908.01000 (2019).

[32] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. 2021. Adversarial
Graph Augmentation to Improve Graph Contrastive Learning. arXiv preprint
arXiv:2106.05819 (2021).

[33] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[35] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep Graph Infomax. ICLR (Poster) 2, 3 (2019), 4.

[36] Sheng Wan, Shirui Pan, Jian Yang, and Chen Gong. 2020. Contrastive and gener-
ative graph convolutional networks for graph-based semi-supervised learning.
arXiv preprint arXiv:2009.07111 (2020).

[37] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[38] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[39] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph
Contrastive Learning Automated. arXiv preprint arXiv:2106.07594 (2021).

[40] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
Neural Information Processing Systems 33 (2020), 5812–5823.

[41] Hanlin Zhang, Shuai Lin, Weiyang Liu, Pan Zhou, Jian Tang, Xiaodan Liang, and
Eric P Xing. 2020. Iterative graph self-distillation. arXiv preprint arXiv:2010.12609
(2020).

[42] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised
learning using gaussian fields and harmonic functions. In Proceedings of the 20th
International conference on Machine learning (ICML-03). 912–919.

[43] Xiaojin Jerry Zhu. 2005. Semi-supervised learning literature survey. (2005).
[44] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.

Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

[45] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.
Graph contrastive learning with adaptive augmentation. In Proceedings of the
Web Conference 2021. 2069–2080.

1105

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Representation Learning
	2.2 Contrastive Learning
	2.3 Graph-based Semi-Supervised Learning

	3 Method
	3.1 Preliminaries
	3.2 Overview of the JGCL and Supervised Contrastive Learning
	3.3 Augmentation
	3.4 GNN Encoder
	3.5 Contrastive-Learning Methods
	3.6 Cross-Entropy Loss

	4 Experiments
	4.1 Datasets
	4.2 Evaluation protocol
	4.3 Baselines
	4.4 Node Classification Results
	4.5 Label Rate Results

	5 Conclusion
	Acknowledgments
	References

