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Abstract

Despite remarkable progress in text-to-SQL semantic parsing, the performance
of state-of-the-art parsers are still far from perfect. At the same time, modern
deep learning based text-to-SQL parsers are often over-confident and thus casting
doubt on its trustworthiness when used in an interactive setting. In this paper,
we propose to train parser-independent error detectors for text-to-SQL semantic
parsers. We test our proposed approach with two parsers, SmBop and Bridge v2,
and show our model could outperform parser-dependent uncertainty measures in
simulated interactive evaluations. As a result, when used for answer triggering
or interaction trigger in interactive semantic parsing systems, our model could
effectively improve the usability of the base parser.

1 Introduction

Recent years have witnessed a renewed interest in text-to-SQL semantic parsing [Rubin and Berant,
2021, Lin et al., 2020, Cao et al., 2021, Wang et al., 2020, Gan et al., 2021, Scholak et al., 2021].
Although state-of-the-art semantic parsers have achieved remarkable performance on Spider [Yu
et al., 2018], a large-scale cross-domain text-to-SQL benchmark, their performance is still far from
satisfactory for real use. To harness the benefit of text-to-SQL parsers in real application scenarios,
several interactive semantic parsing frameworks have been proposed. In this work, we explore
building parser-independent error detection models to enable easy adaptation of semantic parsers in
interactive frameworks. We conduct a case study with SmBop [Rubin and Berant, 2021] and Bridge
v2 [Lin et al., 2020], two state-of-the-art text-to-SQL parsers, and examine two key applications of
error detectors in interactive semantic parsing: answer triggering and interaction triggering.

When error detectors are used for answer triggering, the base parser refuses to give an answer when
an error is detected. The precision of answers is essential to the trustworthiness of interactive systems
in real use. For example, NL-EDIT[Elgohary et al., 2020, 2021] corrects parsing errors through user
feedback. It would be very frustrating for users, who assume their feedback would be incorporated
correctly, to receive an inaccurate answer. In such cases, an accurate error detector could allow the
system to acknowledge its failure, leading to improved trustworthiness.

When using error detection models as interaction triggers, the system initiates interactions for error
correction only when an error is detected in the initial parse so that unnecessary interactions for
correct parses are avoided. MISP [Yao et al., 2019, 2020] initiates interactions by setting a confidence
threshold for prediction probability. While this approach is intuitive, it requires the base parser to
be well-calibrated when decoding, which does not hold for most modern parsers using deep neural
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networks. In addition, this design can hardly accommodate some recent parsers, such as SmBop
[Rubin and Berant, 2021], whose bottom-up decoding mechanism does not model the distribution
over the output space. Several other interactive frameworks [Gur et al., 2018, Li et al., 2020, Zeng
et al., 2020] trigger interactions when an incorrect or uncertain span is detected in the input question
or predicted SQL query. While these mechanisms have high coverage for parsing errors, they tend to
trigger unnecessary interactions for correct base parses. For example, PIIA [Li et al., 2020] triggers
interactions on 98% of the questions on Spider dev when its base parser has an accuracy of 49%.

To sum up, a parser-independent interaction trigger that could reliably detect errors in base parser
predictions and avoid unnecessary interactions is needed for building effective and efficient interactive
text-to-SQL systems. We approach this problem by training parser-independent error detection
models on realistic parser errors. To simulate mistakes the parsers might make in real cross-domain
environments, we collect errors from weak parsers on out-of-domain data. We show that RoOBERTa
[Liu et al., 2019] fine-tuned on the collected data could already perform competitively compared
to parser-dependent uncertainty metrics. Switching to CodeBERT [Feng et al., 2020], a language
model pre-trained on various programming languages, brings significant gain in performance. On
top of that, we explore modeling syntactic and semantic features of natural language questions and
SQL queries with graph neural networks, which further improves performance. Our proposed models
could outperform existing parser-dependent error detection methods without assuming intrusive
access to the base parser.

2 Parser-independent Error Detection

Problem Formulation Given a question X = {x1,23, --,2,,} and a SQL query § =
{91,92, ", Un} predicted by a text-to-SQL parser, the error detector model estimates the prob-
ability of ¢ being correct p = (§ = y*| X, §).

Data collection Training data is collected from weak base parsers. We first train the base parser
using 10%, 30%, and 50% of the Spider training set split by database and collect their beam predictions
on respective complement portions of the Spider training set. Then we keep the top-ranked erroneous
and correct (if any) SQL predictions according to execution accuracy. The collected samples are
further divided into training and development sets by an 80%:20% ratio. In this way, we get training
data for the error detection model in a setting that approximates the zero-shot testing environment.
From SmBop, we collect 9309 negative samples and 4017 positive samples in the training set as well
as 2389 negative samples and 1150 positive samples in the development set. From Bridge v2, we
collect 6018 negative samples and 4017 positive samples in the training set as well as 1028 positive
samples and 1571 negative samples in the development set.
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Figure 1: Architecture of our error detection models.

Model Architecture Figure 1 illustrates the architecture of our proposed models. We
use pre-trained transformer encoders as our base encoder to obtain contextualized represen-



tations for input question and SQL query. Following CodeBERT’s input construction dur-
ing pre-training, we concatenate questions and SQL queries with special tokens, namely
[CLS),z1,22,, Tm, [SEP], 1,02, -+, Un, [FOS] as input and obtain their representations h x
and hg. We only use question and SQL as input since we found through preliminary experiments that
directly adding database schema information (table and column names) in the input hurts performance.

In light of the compositional nature of questions and SQL queries, we propose to model their
syntactic features via graph neural networks. For questions, we obtain their dependency parse trees
and constituency parse trees from Stanza [Qi et al., 2020] and merge them together. For SQL queries,
we extract their abstract syntax trees via Antlr4!. A global node that is connected to all other nodes
is added to each input graph to capture global features. We initialize the representations of nodes
corresponding to input tokens with CodeBERT’s output and randomly initialize representations of
other nodes according to their types in the parse tree. These two graphs are encoded by two separate
3-layer graph attention networks [Brody et al., 2022]. Then we concatenate the representation of the
global nodes and obtain an aggregated representation:

global __ 13,9lobal 3 global
potobal — [pglebal; patobal)

When simply fine-tuning ROBERTa or CodeBERT, the representation for the [C'LS] token is used as
the aggregated representation, i.e. h9'°*! = hycpg).

Finally, a 2-layer feed forward neural network with tanh activation is used to score the aggregated
representation v. The score s for each input question-SQL pair is:

s =p(§ = y*|X,9) = o (FEN(h""*"))

where y* is the gold SQL query and o represents the sigmoid function. We train our model by
minimizing a binary cross entropy loss:

L=1g—y-logs+ (1 —1y—y-)-log(l—s)

3 Experiments

3.1 Experiment Setup

Dataset To evaluate error detection methods in a realistic setting, we use grammatically correct
predictions made by SmBop and Bridge v2 on Spider Dev as test datasets. SmBop has an accuracy of
75.0%, and we collect 1021 samples in total, including 779 correct SQL parses and 242 incorrect
ones. Bridge v2 has an accuracy of 65.5%, and we collect 1028 samples in total, including 705
correct SQL parses and 323 incorrect ones.

Baseline Methods We compare our parser-independent error detectors with parser-dependent
uncertainty metrics, including prediction probability and dropout based uncertainty. Since SmBop
[Rubin and Berant, 2021] uses bottom-up decoding which separately scores and ranks each candidate
prediction, we deduplicate SmBop’s beam predictions by keep the maximum score and perform
softmax on the deduplicated beam to get a probability distribution over candidate predictions, which
can be seen as a reasonable approximation to its confidence. Bridge v2 [Lin et al., 2020] uses
autoregressive decoding, and we directly use the log probability of its prediction as its confidence
score. Probability-based methods are denoted by superscript p. In terms of dropout-based uncertainty,
we follow MISP [Yao et al., 2019] and measure the standard deviation of the scores (SmBop) or
log probability (Bridge v2) of the top-ranked prediction in 10 passes. Dropout-based uncertainty is
denoted by superscript s.

Evaluation Metrics We report precision, recall, and F1 scores for each method. As we are targeting
at error detection, we also report these metrics on negative samples. However, these metrics depend
on the threshold used. To evaluate the overall discriminative ability of each method, we also present
the area under receiver operating characteristic curve (AUC), which is not affected by the choice
of threshold. We apply 5-fold cross validation and report performance using the threshold that
maximizes the accuracy of each method. Test samples are partitioned by databases. All results of our
models are averages over 5 runs.

'Antlr:  https://www.antlr.org/, we use a publicly available context-free grammar for SQLite
https://github.com/antlr/grammars-v4/tree/master/sql/sqlite



Implementation Our models are trained with a batch size of 32 and are optimized by the AdamW
[Loshchilov and Hutter, 2019] optimizer with default parameters. Training lasts 10 epochs with a
learning rate of 3e-5 following a linear decay schedule with 10% warm up steps. All models are
trained on an NVIDIA RTX A6000 GPU.

3.2 Results
3.2.1 Error Detection

As shown in Table 1, the dropout based uncertainty measure SmBop?® significantly outperforms the
approximate confidence measure SmBop?”. However, Table 2 shows the opposite for Bridge v2,
which is consistent with the observation of [Yao et al., 2019] that is also based on an autoregressive
parser as well. On SmBop, the RoBERTa baseline model already performs competitively compared
to parser-dependent metrics. CodeBERT shows a noticeable improvement over ROBERTa despite
not pre-trained on SQL. With the added structural features, CodeBERT+GAT further improves in
precision and recall on error cases. On Bridge v2, all our models could outperform parser-dependent
methods on all metrics. We notice that the improvement brought by using CodeBERT and adding
structural features is more evident on SmBop, possibly due to that SmBop is stronger than Bridge v2
and thus its errors are harder to detect.

Table 1: Performance of error detection models on Spider Dev - SmBop.

Model Precision Recall Fl1 - Precision -Recall -F1 Acc AUC
SmBop” 80.9 924 85.6 42.9 15.5 189 176.1 755
SmBop?® 84.3 90.5 864 35.5 40.8 371 779 78.6
RoBERTa 82.0 954 87.7 53.9 19.8 26.1 79.5 74.6
CodeBERT 83.3 954 88.3 61.6 27.4 33,5 80.8 789
CodeBERT+GAT 83.9 95.0 88.6 62.6 29.7 36.7 81.5 80.7

Table 2: Performance of error detection models on Spider Dev - Bridge v2.

Model Precision Recall Fl1 - Precision -Recall -F1 Acc AUC
Bridge v2? 78.5 86.5 81.8 55.1 41.6 453 732 716
Bridge v2° 76.2 88.7 814 53.5 30.5 369 71.7 76.7
RoBERTa 80.2 90.5 84.7 65.3 43.0 50.2 776 80.6
CodeBERT 83.9 81.5 824 55.0 57.9 557 763 80.2
CodeBERT+GAT 83.5 853 84.1 60.2 54.9 56.2 779 829

3.2.2 Cross-parser Generalization

We evaluate the cross-parser generalization ability of our error detectors by training the model on
data collected from one parser and test it on the other following the same 5-fold cross-validation
setting. Table 3 summarizes cross-parser transfer performance. Overall our models generalize well
on unseen parsers. Adding structural features noticeably improves generalization performance.

Notably, CodeBERT? and CodeBERT+GAT? trained with data collected from SmBop could outper-
form Bridge v2P and Bridge v2° in a zero-shot setting. This does not hold on the opposite direction.
We hypothesize that errors made by stronger parsers might be more diverse and thus are of higher
quality for training error detection models.

3.2.3 Application in Interactive Semantic Parsing Systems

We simulate the performance of our error detectors in interactive semantic parsing systems when
used as answer trigger and interaction trigger at different thresholds. The base parser is SmBop.

Answer triggering Figure 2(a) demonstrates the change of precision when varying the decision
threshold. A high p (or low s) reduces the number of question answered for a higher precision.



Table 3: Cross-parser Generalization Performance.

Model Precision Recall F1  -Precision -Recall -Fl1 Acc AUC
Bridge v2 — SmBop
RoBERTa 82.2 946 873 54.9 23.6 29.1 79.1 769
CodeBERT 81.2 95.1 86.8 55.0 15.1 169 78.1 76.5
CodeBERT+GAT 82.0 93.9 86.9 46.5 19.8 228 785 1779
SmBop — Bridge v2
RoBERTa 77.0 924 83.7 62.4 30.0 389 75.1 754
CodeBERT 79.7 89.7 84.2 65.3 433 51.1 769 79.6
CodeBERT+GAT 81.1 89.2 84.8 65.8 48.0 547 78.1 81.5
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Figure 2: Performance in simulated interactive semantic parsing using SmBop.

Conversely, a lower p (or higher s) encourages the system to answer more questions at the cost of
making more mistakes. In this scenario, SmBop® does significantly better than SmBop?. Our error
detectors could outperform both baseline methods and enable the system to answer more questions at
higher precision.

Interaction triggering We simulate the potential gain of more accurate interaction triggers by
assuming oracle error correction interactions, where any detected error would be fixed. Ideally, we
would want to get higher accuracy with fewer interactions. As shown in Figure 2(b), S Bop® again
outperforms SmBop? by a large margin. Our parser-independent models consistently improves upon
them, leading to a more efficient interactive semantic parsing system.

4 Conclusion

In this work, we explore building parser-independent error detection models for adapting text-to-SQL
parsers to interactive frameworks. Through a case study with state-of-the-art parsers, we demonstrate
the effectiveness of our approach when used in interactive semantic parsing systems. Compared to
parser-dependent uncertainty metrics, our parser-independent method shows superior performance
while doesn’t assume any intrusive access to the base parser. Fur future work, we would try to
improve performance through different modeling techniques and work on more fine-grained error
detection.
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