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Abstract

Automatic web navigation aims to build a web agent that
can follow language instructions to execute complex and di-
verse tasks on real-world websites. Existing work primarily
takes HTML documents as input, which define the contents
and action spaces (i.e., actionable elements and operations)
of webpages. Nevertheless, HTML documents may not pro-
vide a clear task-related context for each element, making it
hard to select the right (sequence of) actions. In this paper,
we propose to contextualize HTML elements through their
“dual views” in webpage screenshots: each HTML element
has its corresponding bounding box and visual content in
the screenshot. We build upon the insight—web developers
tend to arrange task-related elements nearby on webpages
to enhance user experiences—and propose to contextualize
each element with its neighbor elements, using both tex-
tual and visual features. The resulting representations of
HTML elements are more informative for the agent to take
action. We validate our method on the recently released
Mind2Web dataset, which features diverse navigation do-
mains and tasks on real-world websites. Our method con-
sistently outperforms the baseline in all the scenarios, in-
cluding cross-task, cross-website, and cross-domain ones.

1. Introduction

We study automatic web navigation with natural language
instructions [&, 36]. This problem is crucial as it can poten-
tially streamline and automate a wide range of tasks in our
increasingly web-centric world, from online shopping to ac-
cessing information. Successfully solving this problem can
also broadly advance artificial intelligence as it requires un-
derstanding and executing various tasks by interacting with
dynamic and complex real-world (web) environments.
Existing work primarily takes HTML documents as the
web agent’s input [8, 10, 31], which define the meaning and
layout of webpage content. Written partially in natural lan-
guage, HTML documents enable the use of large language
models (LLMs) [1, 4-6, 15, 29, 33, 34] to ground language
instructions (e.g., “Find one-way flights from New York to
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Figure 1. Overview of our proposed Dual-View Contextualized
Representation (DUAL-VCR). HTML elements (e.g., “[com-
bobox]”) may not have clear contexts for solving web navigation
tasks (e.g., “Find the lowest rent truck with a pick-up time at 11
am on March 27.”). DUAL-VCR contextualizes each element with
its neighbors in the screenshot (e.g., “[button] Pick-up Mar22") to
obtain more informative representations for decision-making.

Toronto.”) in web environments. Moreover, elements in
HTML documents directly define the space of actions (e.g.,
element “[button] Search” with operation “click™), prevent-
ing the agent from hallucinating infeasible actions.

With that being said, HTML documents may lack a clear
task-related context for each element, impeding the agent
from selecting the right (sequence of) actions to complete a
task. HTML is quite flexible for web developers to arrange
their code. Even semantically related elements, such as an
actionable element (e.g., “drop-down box™) and its label el-
ement (e.g., “Number of Passengers™), may not be located
nearby in the document or the DOM tree. This problem also
applies to elements relevant to solving a task. While LLMs
may learn to capture the context, a raw HTML document
of real-world webpages is often quite huge, consisting of
tens of thousands of tokens, making it either infeasible or
cost-prohibitive to be directly fed into LLMs [8, 10, 31].



In this paper, we propose to enhance the context of each
HTML element by leveraging its “dual view” in the screen-
shot of the rendered webpage: many of the HTML elements
(including the actionable ones) are visible in the screenshot
and have their corresponding bounding boxes'. Taking the
insight—semantically related and task-related HTML ele-
ments are often located nearby on the webpage to facilitate
user experiences—we propose to contextualize each HTML
element with its neighbors in the screenshot. Concretely,
when encoding each HTML element, we 1) append its spa-
tially adjacent elements with positional embeddings and 2)
incorporate both the visual and textual features (Figure 1).

While simple, our method, which we name Dual-View
Contextualized Representation (DUAL-VCR), has sev-
eral compelling properties that benefit web navigation fun-
damentally. First, DUAL-VCR uses the built-in feature
of HTML documents to align textual and visual content,
making it robust to complex and diverse websites. Second,
DUAL-VCR effectively leverages visual cues on the web-
pages, which are designed to ease users’ efforts in under-
standing and completing tasks. Specifically, DUAL-VCR
connects visually proximate elements that are often seman-
tically related and task-related, providing the agent with
more explicit contexts to take not only individual actions
but also the sequence of actions. Last but not least, DUAL-
VCR can potentially be integrated into any web navigation
algorithms that take HTML documents as input.

We validate DUAL-VCR on the Mind2Web dataset [8],
the largest web navigation benchmark with over 2,000 tasks
curated from 137 real-world websites across 31 domains,
including restaurants, airlines, public services, etc. Con-
cretely, we implement DUAL-V CR on top of the MindAct
algorithm [8], which was proposed to tackle huge HTML
documents. In short, at each action, MindAct first applies
a small LM to rank each HTML element to shrink the doc-
ument; it then uses an LLM to predict the action. We in-
tegrate DUAL-VCR into both steps to enhance the con-
text for element ranking and decision-making. DUAL-VCR
consistently improves MindAct across all three scenarios
(cross-task, cross-website, and cross-domain), leading to a
3.7% absolute gain on average over nine evaluation metrics.
Moreover, DUAL-VCR notably outperforms baselines that
use entire HTML documents or screenshots as input, offer-
ing significant advantages in computation and accuracy.

Our contributions are three-folded:

We propose DUAL-VCR, a simple and effective dual-view
representation of HTML elements for web navigation.

DUAL-VCR consistently outperforms baselines on the real-
world web navigation benchmark Mind2Web [8].

We conduct comprehensive analyses to understand the ef-
fect of our design choices on web navigation performance.

IThese bounding boxes can be directly inferred from the HTML docu-
ment without the need to detect them.

2. Related Work

Web navigation datasets. Several prior studies [2, 16, 23,
32, 36] have introduced promising benchmarks for assess-
ing agents in web navigation tasks. However, these bench-
marks are often limited to a narrow range of website do-
mains or confined to simplified simulated environments.
For instance, MiniWob++ [16] and WebShop [36] collected
a set of websites including daily tasks (e.g., shopping), but
each website only has fewer than fifty HTML elements on
average. Some other studies [2, 23, 32] instead explored
other domains, including mobile applications, but their ac-
tion spaces are often simpler than web navigation. Recently,
Mind2Web [8] released the first large-scale web navigation
benchmark consisting of over 2K tasks from various real-
world websites. This enables a comprehensive understand-
ing of web agent’s behaviors in “real-world” scenarios.

The use of HTML documents. Most earlier work [16, 18,
26, 36] focused on simple navigation scenarios like Mini-
Wob++ [16]. Due to the brevity of its HTML documents,
they input whole HTML documents into LLMs to complete
the web navigation tasks. A few studies represented HTML
documents in a more dense format. For instance, ASH [31]
summarized the HTML document using LLMs with hier-
archical prompting. DOM-Q-NET [18] leveraged a graph
neural network to represent a document as a graph. For
real-world web navigation (e.g., Mind2Web), HTML docu-
ments are often overly lengthy and complex. Thus, recent
studies [8—10] applied text-based filtering to first identify
key HTML elements within the document and only used the
selected elements to complete the task. While all these prior
methods are promising, the HTML document alone may not
provide a clear task-related context for each element, mak-
ing it challenging to select the right actions. Our approach
instead enhances the context of each HTML element based
on their dual view in the screenshot.

The use of webpage screenshots. Beyond using HTML
documents, several studies [9, 11, 14, 16, 17, 21, 30, 36, 37]
have explored the incorporation of screenshots for web nav-
igation. Some of them [9, 11, 14, 16, 17, 37] utilized both
screenshots and HTML documents to learn their joint repre-
sentations during decision-making. Some others [3, 21, 30]
solely relied on screenshots, bypassing the use of HTML
documents. We note that all prior methods primarily fo-
cused on utilizing “whole” screenshots. In contrast, we shift
the focus to neighboring elements within the screenshot,
providing significant benefits in computation and accuracy.

3. Approach: DUAL-VCR

We introduce Dual-View Contextualized Representation
(DuAL-VCR) for enhanced web navigation. To begin with,
we provide a brief background about web navigation.



[ Web Navigation Task |

Find the lowest rent truck for 4 people, pick up from JFK airport at 11 am on March 27 and return at noon on March 30.
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Figure 2. Example of real-world web navigation. Top: the web navigation task described in natural language. Left: the sequence of
HTML elements (visualized on webpages, not HTML documents) to interact with to complete the task. We superimpose bounding boxes
and arrows to locate the target elements and indicate their order. Right: the detail at each time step (we showed ¢t = {3, 4, 8, 9} for brevity).

GT: ground-truth action (Element with

). We compare the predicted actions by MindAct [8] and our DUAL-V CR. The bounding

box and bounding box indicate the target element and one of its neighbors encoded by DUAL-VCR. As shown, DUAL-VCR correctly
predicts the elements and operations at “all” time steps, taking advantage of the much richer task-related dual-view context it encodes.

3.1. Background: web navigation

A web navigation task consists of a website S (e.g., an air-
line website) and an instruction ¢ (“Find one-way flights
from New York to Toronto.”). Given (S, ¢q), a web agent
f needs to decide and perform a sequence of actions a =
{aj,a2,--- ,as, -} on the website to complete the task.
Figure 2 (left) gives an illustration.

At time step t, the website has an HTML document H,
composed of a list of elements H;, = {e; 1,€e:2, - , €N}
These HTML elements jointly define 1) the layout and con-
tent on the rendered webpage I;, and 2) the action space at
time ¢: each candidate action is a pair of an actionable el-
ement (e.g., “[textbox] To”) and an operation (e.g., “Type
Toronto”). After taking action a;, both the HTML docu-
ment and webpage will be updated into (Hyy1, It41). For
example, clicking the “[checkbox] One way” on the air-
line webpage removes the “[textbox] Return date” from the
webpage. Namely, the web environment is dynamic, and
the agent must take this into account to decide its actions.

Because of the rich content in the HTML document H;,
existing work primarily takes it, together with the instruc-
tion ¢ and the action history (e.g., Type New York in the

From box), as the agent’s input at time ¢ to decide the next
action (e.g., Type Toronto in the To box),

;ai}). 6]

One excellent candidate for f is LLMs [I, 4-6, 15, 29,
33, 34], which have shown straggering sucesses in ques-
tion answering [35] and logical reasoning [7]. For example,
[16, 19] applied LLMs to simplified web navigation.
However, for real-world webpages that easily contain
thousands of HTML elements (amounting to tens of thou-
sands of tokens), directly applying LLMs is neither efficient
nor effective. As such, recent work [8, 10, 31] employed a
two-stage framework: first summarizing the HTML docu-
ment and then predicting the action. For instance, given the
instruction g and the action history at time ¢, the MindAct
algorithm [8] first ranks each HTML element using a small
LM. Only the top-K HTML elements are fed into an LLM
to predict the next action. (See Figure 3 for an illustration.)

at4+1 = f(Q7Ht7 {alaQQa e

3.2. Context enhancement

We identify one critical pitfall in the two-stage framework.
Since HTML documents may not provide a clear context for
each element, the element ranker and the subsequent action
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Figure 3. The web navigation pipeline with DUAL-V CR, built
on top of the MindAct algorithm [8]. MindAct uses a small rank-
ing LM to select candidate HTML elements and a prediction LLM
to decide actions. Blocks and arrows in NavyBlue indicate the in-
sertion of DUAL-VCR for enhanced element representations.

Operation

predictor may not perform as effectively as expected. Fig-
ure 1 illustrates one such issue: the element “[combobox|”
should be paired with “[button] Pick-up Mar22” to fully de-
scribe its role, i.e., time for pick-up. However, these two el-
ements are not necessarily nearby in the HTML document.

To resolve this issue, we propose to leverage the “dual
view” of each HTML element ¢;,, € H; in the rendered
webpage I; to enhance its context. In essence, many HTML
elements (including the actionable ones) are visible in ;.
Further, their visual location (e.g., bounding boxes) can be
inferred from HTML documents. Since a webpage (specif-
ically, its screenshot) is designed for users to interact with
the website visually, we hypothesize that incorporating the
visual cues into HTML element representations would ben-
efit the web agent in understanding and completing tasks.

To this end, we propose Dual-View Contextualized
Representation (DUAL-V CR). In the screenshot view, we
identify the bounding box of each HTML element using
a web automation testing tool’. Taking the insight—web
developers tend to arrange semantically relevant and task-
related elements in proximity to each other on the screen-
shot to enhance user experiences—we contextualize each
element with its “visual” neighbors. Concretely, we calcu-
late the center points of all elements using their bounding
boxes and measure their pairwise distances. For each can-
didate element to be ranked by MindAct, we search for the
closest M elements to form its context jointly.

We consider both the visual and textual information to
encode the candidate element and its visual neighbors. We
extract each element’s visual feature using the Pix2Struct
Vision Transformer (ViT) [20], which is pre-trained on
webpage screenshots.  Specifically, we input the whole
screenshot I; into the ViT and apply ROI Align [12, 24]
on top of the output embeddings to obtain the feature vec-
tor corresponding to each element’s bounding box. In the
HTML document view, we extract each element’s corre-
sponding “HTML text” following MindAct [8].
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Figure 4. DUAL-VCR-enhanced element ranker.. We contex-
tualize the candidate element (denoted by ) with its neighbors in
the screenshot, using both the visual features (by [20]) and textual
features (extracted from the HTML document). Positional embed-
dings are added to specify neighbor elements, learning their spatial
relationships and pairing the textual features with visual features.
This dual-view contextualized representation is used to rank the
candidate element, measuring its relevance to the current task.

3.3. DuAL-VCR-enhanced element ranker

In MindAct, a small ranking LM is built to predict each
element’s importance for action prediction. At each time
step, the ranking LM takes the element’s HTML text tokens,
the task description g, and the previous actions as input.

We propose to expand the ranking LM to integrate 1)
both visual features and textual features and 2) both the can-
didate element and its neighbor elements. (See Figure 4 for
an illustration.) We make the following design choices. To
align the visual embedding and textual embedding, we fol-
low the recent practice of vision-and-language models (e.g.,
BLIP-2 [22], LLaVA [28], LLaVA-1.5 [27]) to learn a linear
projection layer to project ViT visual features into the same
dimensionality as the token embeddings in the ranking LM.
To pair each of the projected visual vectors with its corre-
sponding text tokens and specify each neighbor element in
the context, we add positional encoding. Concretely, we
sort the neighbors based on their spatial distances from the
candidate element and add a learnable positional embed-
ding (unique for each rank) to the neighbor element’s visual
and text token embeddings. These positionally encoded vi-
sual and text token embeddings (of the candidate and the
neighbor elements) are fed into the ranking LM; the pro-
jected visual features are prepended to the text embeddings,
serving as soft visual prompts. In training, we only learn
the linear projection layer, the positional embeddings, and
the LM while keeping the ViT frozen. This training scheme
has been shown to effectively enhance the alignment be-
tween vision and language components and improve the
pre-trained LM’s adaptability to downstream tasks. Please
see more details in the supplementary materials.

3.4. DuAL-VCR-enhanced action predictor

After obtaining the top-K elements from the ranker (§3.3),
MindAct combines them into an HTML snippet as the input
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Figure 5. DUAL-VCR-enhanced action predictor. Given the
top-K candidate elements (three in the figure, marked with %),
DUAL-VCR appends each with its neighbor elements. The result-
ing HTML snippet, together with the task description and previous
actions, is then fed into an LLM for predicting the next action.

to LLMs. The objective is to predict the action for the cur-
rent time step, including the target element (e.g., “[textbox]
To”) and its associated operation (e.g., “Type Toronto™).
Specifically, MindAct converts the target element predic-
tion problem into multiple-choice question-answering.

We apply DUAL-VCR to contextualize each of the an-
swer candidates. Similarly to §3.3, we find the M closest
neighbors for each candidate element on the screenshot. We
then append the HTML text tokens of these M neighbors to
the candidate element; we add specific tokens to separate
between elements. Figure 5 gives an illustration. Please see
the supplementary material for more details.

3.5. Why DuAL-VCR?

DUAL-VCR leverages and encodes visual cues on the web-
page, offering valuable contexts for the HTML elements in
element ranking and action prediction. We show two cases.

First, as shown in Figure 1, some HTML elements (e.g.,
“[combobox]”) are quite generic and must be paired with
spatially nearby elements (e.g., “[button] Pick-up Mar22”)
to specify their meanings (i.e., time for pick-up). Similar
examples can be found in Figure 2. At ¢ = 8, there are two
seemingly similar candidates “[checkbox] 4+ and “[but-
ton] Extra 4”. Nevertheless, the former is spatially closer
to the element “Number of passengers”, indicating its relat-
edness to the task “... truck for 4 people ...” (see the top
of Figure 2). Att = 9, two identical “[button] Select” ele-
ments exist. The only way to differentiate them is through
their visual neighbors: one is associated with a lower price
than the other. Our DUAL-VCR offers an explicit way to
enforce these spatial contexts in the screenshots.

Second, as shown in the left panel of Figure 2, consec-
utive steps to solve a task often involve spatially nearby el-
ements. Completing one step thus introduces a prior that
its nearby elements may be the next to take action upon.
As both the ranking LM and prediction LLM take the task
description ¢, past actions, and our DUAL-VCR represen-
tation as input, the models could potentially capture such
prior information to increase the success rate for the follow-
ing action. For example, at ¢ = 4, DUAL-VCR successfully
takes the action “Select 11:30 am”, likely attributing to its
capability to recognize that the previously completed task

was the spatially nearby “Select 03/27/2023.
4. Experimental Results

Dataset. We validate DUAL-VCR on Mind2Web [§], a
comprehensive benchmark for real-world web navigation.
Unlike other benchmarks based on simulated websites with
only a few HTML elements, Mind2Web uses over 100 real-
world websites with thousands of HTML elements. Con-
cretely, they provide over 2K open-ended tasks collected
from 137 real-world websites across 31 different domains,
including travel, shopping, public service, etc (Table 1).
Please see more details in the supplementary material.

Evaluation Tasks. Followed by Mind2Web [8], we evalu-
ate models at three different test splits. In Cross-Domain,
we evaluate the model’s generalizability to a new domain
where it has not seen any websites or tasks associated with
that domain during training. This split contains 912 tasks
in total. In Cross-Website (177 tasks), while the model is
not exposed to test websites, it is trained on websites from
the same domain and potentially with similar tasks. This
configuration enables us to evaluate the model’s capacity to
adapt to entirely new websites within familiar domains and
tasks. Similar to the conventional training/test split, Cross-
Task (252 tasks) randomly splits 20% of the data as a test
set, regardless of the domains and the websites. Please see
the supplementary material for more details.

Evaluation Metrics. We use the Mind2Web’s official met-
rics. The ranker performance is measured by Recall@ K,
where K is the number of top HTML candidate elements.
Element Accuracy (Ele. Acc) compares the selected el-
ement with the ground-truth elements. Operation F1
(Op. F1) calculates the token-level F1 score for the pre-
dicted operation. Step Success Rate (Step SR) measures
the success of each step; A step is considered successful
only if both the selected element and the predicted operation
are correct. For each step, they provide previous “ground-
truth” actions with the assumption that the model success-
fully completes all previous steps.

Baselines. DUAL-VCR is based on MindAct [8], which
has a ranking LM and a prediction LLM. Our main base-
lines are thus its ranker and action predictor, denoted by
MINDACTRAnk and MINDACTpgrrp. MINDACTR ANk USES
DeBERTap,s [13], a small encoder-only LM to rank el-
ements. For action prediction, MINDACTpggp uses Flan-
T5pase [6], an instruction fine-tuned LLM.

Our Models. Aligned with MindAct, we use the same
DeBERTay,s. [13] / Flan-T5y, [6] for our ranker / action
predictor, repsectively. For visual features extraction, we
utilize Pix2Struct [20]’s ViT (pre-trained on screenshots) as
the visual backbone and apply ROI Align [12] on the ele-
ment’s region. We use two linear layers to project visual



# Websites Website # Tasksw

Type Elements Tokens

Dataset

MiniWoB++[16] 100
Mind2Web [8] 137

Simplified 100 28 500
Real-world 2,350 1,135 44,402

Table 1. Statistics of Mind2Web [8]. Min2Web, the largest web
navigation benchmark, collects real-world websites across various
domains. The significant volume of content on the webpage (e.g.,
an average of 1K/44K HTML elements/tokens) poses challenges
for LLMs in both computational and learning aspects.

Ranker Recall

@1 @5 @10 @50
MINDACTRANk 254 61.0 73.5 88.9
DUAL-VCR yxgr1xT 37.3 70.8 79.3 89.2
DUAL-VCRys 37.1 70.2 79.2 89.1

DUAL-VCRyxgpi-rxr4vis 38.4 71.6 79.7 90.1

Table 2. Ranking performance. Visual neighbors’ HTML text
(DUAL-VCRyngrirxr) consistently outperforms MINDACTRank-
Moreover, DUAL-VCRyxgrrxr+vis, Using both visual neighbors’
HTML text and visual features, performs best, showing the
strength of dual-view contextualization in element ranking.

features into textual embedding space. Please see the sup-
plementary materials for details on the model training.

Notation of DUAL-VCR. DUAL-VCR has several varia-
tions to understand the effect of each of its components in
detail. We denote them as follows:

DUAL-VCRy;s: Ranker w/ candidate’s visual features.

DUAL-V CRyxgr-rxr: Ranker w/ neighbors® HTML text.

DUAL-VCRynerxt+vis: Ranker w/ candidate’s visual features
and its neighbors’ visual features and HTML text.

DUAL-VCRprep: Action predictor w/ neighbors’” HTML text.

4.1. Effectinvess of DUAL-VCR

The main goal of our experiments is to show that our dual-
view contexutalization is beneficial in (i) finding promising
top-K candidates from entire HTML documents (i.e., rank-
ing peformance), and (ii) predicting the action, including
both element selection and operation prediction.

Ranking performance. Table 2 summarizes the ranking
results across different top-K candidate elements. First,
we see that incorporating the visual neighbor elements’
HTML text (DUAL-VCRyygrxr) consistently and signifi-
cantly outperforms MINDACTRank On all Recall@ K's (e.g.,
37.3% vs. 25.4% on Recall@1, 79.3% vs. 73.5% on Re-
call@10), suggesting that contextualizing the element with
its neighbors indeed helps find the target element. Second,
the candidate element’s visual features (DUAL-VCRys)
lead to notable improvements over MINDACTRrnk (€.4,
70.2% vs. 61.0% on Recall@5). This implies that the visual
features offer additional context in differentiating HTML

elements, compared to using only its HTML text. Lastly,
DUAL-VCRyxe1x+vis achieves a further boost by lever-
aging both visual neighbors’ HTML text and visual features
(e.g., 38.4%/90.1% on Recall@1/@50).

Action prediction performance. Table 3 shows the re-
sults of action prediction. Compared to the baseline (the
combination of MINDACTgank and MINDACTpggp), US-
ing the visual neighbors’ HTML texts (DUAL-VCRyxgr1xT
— DUAL-VCRyggp) notably improves across all metrics.
For instance, we achieve gains of 3.4% on Step SR in Cross-
Task, 1.3% on Ele. Acc in Cross-Webiste, and 6.3% on
Op. F1 in Cross-Domain. These consistent improvements
demonstrate the advantages of incorporating visual neigh-
bor information during the model’s decision-making pro-
cess. Moreover, aligning with the ranking result, integrating
the visual neighbors’ visual features into the ranker (DUAL-
VCRyner-rtxr+vis) shows its effectiveness in action predic-
tion as well. Concretely, it achieves the best performance
on all nine metrics, along with a 5% maximum gain on each
type of metric against the baseline (e.g., Ele. Acc: 47.0%
vs. 42.0% on Cross-Task, Op. Fl1: 72.0% vs. 67.0% on
Cross-Website, Step SR: 46.0% vs. 41.1% on Cross-Task).

4.2. Analysis

We aim to understand DUAL-VCR in detail. We show a) a
more in-depth analysis of the main table, b) the interaction
between the ranker and the action predictor, c) its effective-
ness compared to whole input data and random elements,
and d) the effect of different sizes of visual neighbors.

Detailed ablation. Table 4 provides more details about the
main table to better understand the impact of each compo-
nent in DUAL-VCR. First, we keep the action predictor as
MINDACTpggp and focus on the pure effects of our rankers
on the action prediction task (i.e., 1st to 4th rows). We see
that incorporating the candidate element’s visual features
(DUAL-VCRys) achieves a slight but significant improve-
ment over MINDACTRrank across all metrics (e.g., 42.5%
vs. 42.0% on Ele. Acc). Furthermore, our ranker with
the visual neighbors’ HTML text (DUAL-VCRyxgr1xr)
outperforms MINDACTgrank by a notable margin of
+2.6%/+0.8%/+2.1% on Ele. Acc/Op. F1/Step SR, respec-
tively. Besides, DUAL-VCRyygrrxr+vis, Which encodes
the visual neighbors’ visual features, further improves the
model’s decision-making ability (e.g., 46.0% vs. 44.6% on
Ele. Acc). In short, we consistently demonstrate the effec-
tiveness of each component in our ranker.

Second, conversely, we fix the ranker and examine the
benefit of encoding visual neighbors® HTML text features
into the action predictor (DUAL-VCRpgep). Compared to
MINDACTpgep, DUAL-VCRygep, achieves consistent gains
across all rankers. For instance, MINDACTg nk — DUAL-
VCRpgep outperforms MINDACTRang — MINDACTpgep



Cross-Task

Cross-Website Cross-Domain

Ranker Action

Predictor Ele. Acc Op. F1 Step SR Ele. Acc Op. F1 Step SR Ele. Acc Op. F1 Step SR
MINDACTRANK MINDACTpgep 42.0 74.9 41.1 30.7 67.0 30.0 31.5 66.6 31.0
DUAL-VCRyxgL1xT DUAL-VCR 45.3 78.4 44.5 32.0 71.5 31.5 324 72.9 32.0
DUAL-VCRyxprrxrivis FRED 47,0 787  46.0 32.7 720 325 33.2 733 325

Table 3. Results of action prediction. Our DUAL-V CRyng-rxr — DUAL-VCRygep, leveraging visual neighbors” HTML text information,
notably improves over the baseline (MINDACTrank —MINDACTprep) On all nine metrics. Adding visual neighbors’ visual features
(DUAL-VCRyner-rxr+vis) leads to further improvements, highlighting the benefit of dual-view context on real-world web navigation.

Ranker Action Cross-Task
Predictor Ele. Acc Op. F1 Step SR

MINDACTRANk 42.0 749 41.1
DUAL-VCRys 42.5 75.1 41.5
DUAL-VCRuenxr  MINPACTZRED o 957 435
DUAL-VCRyxgr-txTvIS 46.0 78.6 44.8
MINDACTRANK 44 .4 752  43.1
DUAL-VCRy 44.6 76.8 43.8
DUAL-VCRygpngr  DUALTVORmun 453 g4 445
DUAL-VCRyngrtxT+VIS 47.0 78.7 46.0

Table 4. Ablation studies for validating the importance of each
component in DUAL-VCR. See §4.2 for a detailed discussion.

(e.g.,44.4% vs. 42.0% on Ele. Acc). Similarly, when fixing
the ranker with DUAL-VCRyxgrtxt+vis, DUAL-VCRprep
improves over MINDACTpgg, (e.g., 46.0% vs. 44.8% on
Step SR). This shows directly encoding the visual neigh-
bor’s HTML text into the action predictor is beneficial.

Finally, DUAL-VCRyxgrrxr+vis and DUAL-VCRpgep
are complementary; we achieve the best performance across
all metrics when leveraging both (e.g., 47.0%/78.7%/46.0%
on Ele. Acc/Op. F1/Step SR). Please see more ablation stud-
ies in the supplementary materials.

Ranker-action predictor relationship. We analyze the re-
lationship between the ranker and the action predictor in
Table 5. We observe a linear connection between the two.
Concertely, improving the ranker (e.g., 25.4% vs. 37.3% on
Recall@1) correlates with improved action prediction re-
sults (e.g., 24.0% vs. 35.5% on Ele. Acc). Aligned with
results in §4.2, this again highlights the importance of im-
proving the model’s ranking ability in web navigation.

Comparison to whole input data. Since HTML docu-
ments contain a significant amount of content, such as thou-
sands of HTML elements, conducting experiments with
whole data is computationally challenging. Nevertheless,
we do our best to report the associated results on Ta-
ble 6 to give more context on the effect of DUAL-VCR.
First, instead of asking the ranker to prune HTML docu-
ments, we directly pass the whole HTML documents into
the action predictor (WHOLEHTMLpgep). We see that
WHOLEHTML ;g performs notably less against the base-

line (MINDACTpggp) (i.e., 38.6% vs. 42.0% on Ele. Acc).
We attribute this to the difficulty of finding the target el-
ement among all thousands of elements. In contrast, our
DUAL-VCRgep achieves a much better result (i.e., 44.4%)
with significantly less amount of input elements.

Second, DUAL-VCR outperforms the utilization of
whole images. We first use the entire image for the ranker
(WHOLEIMAGEg Nk ). To extract the image features, we use
the same procedure mentioned in §3.2, except for providing
the region of the whole image instead of that of specific ele-
ments. We then use these whole image features, along with
the same HTML text input used in MINDACTpggp, t0 train
WHOLEIMAGEg vk Although the entire image features are
shown effective over the baseline (i.e., 43.9% vs. 42.0%),
it performs notably less than our approach using the vi-
sual neigbhor’s visual information (i.e., 46.0% of DUAL-
VCRynerrxr+vis)- In addition, we conducted a study apply-
ing the whole image to the action predictor. Specifically,
similar to recent vision-and-language models [22, 27, 28],
we extract whole image features using fine-tuned ViT [20]
and prepend them to the top-50 candidate elements ex-
tracted from MINDACTRnk as the input to the LLM (Flan-
T5pase [0]). Similar to the result of WHOLEIMAGER onk, this
action predictor (WHOLEIMAGEpggp) performs worse than
DUAL-V CRpgep, Which only uses visual neighbors’ HTML
text. Overall, this highlights the advantages of our approach
in terms of computational efficiency and performance. See
additional results in the supplementary materials.

Visual neighbors offer meaningful contexts. We exam-
ine whether visual neighbors provide meaningful context
for element ranking and action prediction. To assess this,
we compare visual neighboring elements with random el-
ements (Table 7). Specifically, We randomly select (five)
elements from HTML documents and use them to train ei-
ther the ranker or the action predictor. While our ranker
(e.g., DUAL-VCRyngrxr) Dotably improves the ranking
performance over MINDACTRank (e.8., 89.2% vs. 88.9%),
the “random” ranker performs less than MINDACTR Nk
(e.g., 86.7% vs. 88.9%). This, in turn, leads to a sig-
nificant performance drop in the action prediction (e.g.,
42.0% vs. 40.6% on Ele. Acc). Similarly, compared to
the MINDACTpggp, including random elements in the ac-



Ranker Action Top-1 Top-5 Top-10 Top-50
Predictor Recall Ele. Acc Op. F1 Recall Ele. Acc Op. F1 Recall Ele. Acc Op. F1 Recall Ele. Acc Op. F1
MINDACTRAnk MINDACTpres 254 240 237 610 392 521 735 414 628 889 420 749

DUAL-VCRyngr1xT 373 355

33.5 708

431 541 793 439 63.0 892 446 757

Table 5. Relationship between ranker and action predictor on Cross-Task. The ranker has a linear correlation with the action predictor,
suggesting the importance of improving its ranking capabilities for decision-making.

Ranker Action Cross-Task
Predictor Ele. Acc
MINDACTprep 42.0
MINDACTRANK WHOLEIMAGEpgrgp 43.6
DUAL-VCRpgep 44.4
WHOLEIMAGERrank 43.9
DUAL-VCRyygr1xT MINDACTprep 44.6
DUAL-VCRyner-txt+vIs 46.0

- WHOLEHTMUL pren 38.6

Table 6. Visual neighbor vs. whole input data. Using visual
neighbors notably outperforms the use of whole data, offering ad-
vantages regarding computational efficiency and performance.

Ranker Recall Action m
@50 Predictor Ele. Acc Op. F1

MINDACTpreD 42.0 74.9

MINDACTRANk 88.9 RANDOMpgep 41.5 73.6
DUAL-VCRprep 444 75.2

RANDOMgank 86.7 40.6 72.0
DUAL-VCRynerxr 89.2 MINPACTRRD — yq o 954

Table 7. Visual neighbors vs. random elements. Visual neigh-
bors provide meaningful contexts for web navigation, notably out-
performing elements randomly extracted from HTML documents.

Ranker Cross-Task
Method # neighbors Recall@50 Ele. Acc Op. F1
DUAL-VCRys 0 89.1 425 751
3 89.7 455 773
DUAL-VCRyygi-rxr+vis 5 90.1 46.0 78.6
10 89.5 452 770

Table 8. Effects of the number of neighbors on ranker. Choos-
ing the right size of visual neighbors is important for element
ranking, and the size of five is found to be most effective for
Mind2Web [8]. We fix the action predictor with MINDACTpgep.

tion predictor hurts the action prediction performance (e.g.,
74.9% vs. 73.6 on Op. F1) while visual neighbors are bene-
ficial (e.g., 75.2%). In sum, we empirically demonstrate the
benefits of context in visual neighbors for web navigation.

Effects of the number of visual neighbors. We ablate
the impact of varying sizes of visual neighbors, starting
with Table 8, which shows its effect on the ranker while

Action Predictor Cross-Task
Method #neighbors  Ele. Acc  Op. F1
MINDACTpgep 0 46.0 78.6

3 46.4 78.7
DUAL-VCRprep 5 47.0 78.7
10 46.2 78.6

Table 9. Effects of the number of neighbors on action predictor.
Similar to Table 8, the size of five is most appropriate for the action
prediction. We use DUAL-V CRyngi-rxr+vis for the ranker.

maintaining the same action predictor (MINDACTpggp)-
We observe a linear correlation between the size of vi-
sual neighbors and their ranking/action prediction perfor-
mance. For instance, increasing the size of neighbors up to
five shows consistent improvements (e.g., 89.1%—90.1%
on Recall@50 and 75.1%—78.6% on Op. F1). However,
considering too many neighbors (e.g., the size of ten) hurts
the performance. For example, increasing the size from
five to ten decreases the element accuracy from 46.0% to
45.2%. We also see a similar pattern when ablating the
effect of the visual neighbor size on the action predic-
tor (Table 9). Concretely, while keeping the same ranker
(DUAL-VCRyygr.txr+vis), the action performance increases
up to the size of five (e.g., 46.0%—47.0% on Ele. Acc)
but decreases when the size becomes ten (e.g., 46.2% on
Ele. Acc). Overall, this suggests that choosing an appro-
priate number of neighbors is necessary for both element
ranking and action prediction.

5. Conclusion

We introduce DUAL-VCR to effectively represent HTML
elements for web navigation. DUAL-VCR contextualizes
each element with its visual neighbor elements, leveraging
both textual and visual features. DUAL-VCR consistently
improves real-world web navigation in the Mind2Web
benchmark, supported by comprehensive analyses.
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Appendices

In this supplementary material, we provide details omitted
in the main text.

* Appendix A: Model implementation & training details
(cf. §3.3, §3.4, and §4 of the main text).

* Appendix B: Dataset details (cf. §4 of the main text).

* Appendix C: Additional experiments (cf. §4.2 of the main
text).

A. Model implementation & training details

As mentioned in §1 of the main text, we implement DUAL-
VCR on top of MindAct algorithm [8]. We exactly follow
its implementation® but provide the details for reference.

A.l. DUAL-VCR-enhanced element ranker

MindAct utilizes a small ranking LM to measure the im-
portance of each element e; for action prediction. Con-

3https://github.com/0OSU-NLP-Group/Mind2Web
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cretely, at each time step ¢, the ranking LM takes the ele-
ment’s HTML text tokens h.,, the task description ¢, and
the previous actions {a1,as, - ,a;—1} as input and out-
puts its importance,

7at—1})

DUAL-VCR aims to expand this ranking LM to integrate
(i) each element’s visual features and textual features and
(i1) both the candidate element and its neighbor elements.
(See Figure 4 of the main text for an illustration.)

Sey :f(q7 h€t7{a1aa2a"' (2)

Integrating visual and textual features. We first extract
each element’s visual features from the Pix2Struct Vision
Transformer (ViT) [20], pre-trained on webpage screen-
shots. Concretely, Pix2Struct learns rich representations of
webpages by asking to predict an HTML-based parse from
a masked screenshot. We input the whole screenshot I; to
Pix2Structy,s. and apply RolAlign [12] on its output embed-
dings to obtain the element’s visual features v., based on its
bounding box. On the HTML document side, we extract the
element’s HTML text k., , using the triplet of its ID, HTML
text, and bounding box provided in the HTML document.

Intergrating visual neighbor elements. Based on our
key insight on webpages—web developers tend to arrange
semantically relevant and task-related elements in prox-
imity to each other on the screenshot to enhance user
experiences—we contextualize each element e, with its “vi-
sual” neighboring elements M.,. We measure the center
points of all elements in the screenshot using their bound-
ing boxes and calculate their pairwise Euclidean distances®*.
For each candidate element to be ranked by MindAct, we

search for the closest M elements to form its context jointly.

Aligning visual and textual embedding spaces. After ob-
taining each element’s visual features v., and textual fea-
tures h.,, we align them in the same embedding space. Fol-
lowing the recent practice of vision-and-language models
(e.g., BLIP-2 [22], LLaVA-1.5 [27]), we apply two linear
projection layers W to map visual features into the tex-
tual embedding space. We then introduce a learnable po-
sitional embedding to (i) pair each projected visual feature
ue, With its associated text tokens h., and (ii) encode the
relative distance between the candidate element e; and its
neighboring elements M,,. Concretely, we add the same
positional embedding p., to the candidate element’s (pro-
jected) visual feature u., and textual feature h.,. Besides,
we sort the neighbors M., based on their spatial distances
from the candidate element e¢;. We then encode the relative
positional embedding Pk, (based on the spatial distance
from the candidate) to each neighbor element’s visual fea-
tures wp, . and corresponding text tokens hm;;f . We denote
the set of the neighbors’ visual features by Uy, . Similarly,

4https://scikit-learn.org
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H M., and PMet represent the set of their textual features
and that of their positional embeddings, respectively. These
positionally encoded visual and textual token embeddings
(of the candidate and the neighbor elements) are passed into
the ranking LM f; the visual features are prepended to the
textual embeddings, serving as soft visual prompts,

Se, = f(qv Retv {ah @, - 7at71})7
Re, = [ue, +pe,;Unm,, + P, s he, + pe,s Hu,, + P, ]
(3)

Training Details. In training, we only learn the projection
layer W, the positional embeddings P, and the ranking LM
f while keeping the ViT frozen. For the ranking LM, we use
DeBERTap,s [13], a small encoder-only LM. We exactly
follow the configuration of MindAct. Specifically, we train
the LM (together with a linear classifier) with a batch size
of 32 and a learning rate of 3e-5 for 5 epochs. The LM
outputs the element’s importance score through a sigmoid
activation function. The score is optimized with a binary
cross-entropy loss, where the ground-truth element serves
as a positive example, and elements randomly sampled from
the webpage are considered negative examples. The LM
is trained on a single Nvidia A6000 48GB GPU. During
inference, we score all candidate elements in the webpage
and select top-K elements for the action predictor.

A.2. DUAL-VCR-enhanced action predictor

Due to the high computational cost of directly passing an
entire HTML document into LLMs, MindAct [8] restricts
its input to only the top-K candidate elements selected from
the ranking LM. Concretely, MindAct combines the se-
lected elements into an HTML snippet H; and feeds it into
an LLM g, along with the task description ¢ (“Find one-
way flights from New York to Toronto.”) and the previous
actions {a1,as, -+ ,a;—1} (“Type New York in the From
box”). At each time step ¢, the objective is to predict an ac-
tion a;, composing of the target element e; (e.g., “[textbox]
To”) and its associated operation o; (e.g., “Type Toronto”),

7at71})7

ay = g(qutv {a17a27 e

ag {et, Ot}

“4)

We note that MindAct converts the target element prediction
problem into multiple-choice question-answering. Instead
of directly generating the target element, they split top-K
candidates into multiple clusters of five element options (in-
cluding the “None” option) and ask the LLM to pick one
element from each cluster. If more than one element is se-
lected, they form a new group with the chosen ones and
iterate this process until a single element is selected.

The action predictor of DUAL-VCR takes the same in-
put as MindAct, except for appending each candidate ele-
ment with its neighboring elements. We generate an HTML

11

snippet S; based on the top- K candidate elements and their
adjacent elements, and input the snippet (with the task de-
scription and the previous actions) to the LLM g and predict
the action ay,

,at—1})

at:g(qast7{a17a27"' (5)

Training Details. We again adopt the configuration from
MindAct. We train Flan-T5y,¢ [6], an instruction fine-tuned
encoder-decoder LLM, with a batch size of 32 and a learn-
ing rate of 5e-5 for 5 epochs. We optimize its parameters
with the language modeling loss on a single Nvidia A6000
48GB GPU.

B. Dataset Details

Mind2Web [8] recently proposed the first real-world web
navigation benchmark, consisting of over 2,000 open-ended
tasks from more than 100 real-world websites. They collect
the websites across 31 diverse domains, including travel,
shopping, entertainment, public service, etc. Unlike other
existing benchmarks [16, 36] limited to simulated environ-
ments, Mind2Web instead focuses on real-world environ-
ments (Table 10). For instance, Mind2Web provides real-
world websites with rich content, including thousands of
HTML elements, tens of thousands of HTML tokens, and
7.3 web-related actions per task on average.

Data Collection. Given a real-world website (e.g., an air-
line website), Mind2Web first asks annotators to write open-
ended realistic tasks (e.g., “Find one-way flights from New
York to Toronto.”) relevant to the website. The workers are
then required to complete the defined task with a sequence
of actions. Specifically, each action is composed of element
selection and operation selection. The annotators should
first find an element (e.g., “[textbox] From”) relevant to the
task on the webpage and perform an operation (e.g., “Type
New York™) on the element.

Dataset Split. The Mind2Web dataset provides a training
split with 1,009 real-world tasks collected from 73 web-
sites. Each task consists of a sequence of action sam-
ples. In total, there exist 7,775 samples in the training split.
Mind2Web evaluates a web agent on three different test
splits. Testcross-Domain Measures the agent’s generalizabil-
ity to a new domain where it has not seen any websites or
tasks associated with that domain during training. The split
contains 912 tasks with 5,911 samples from 73 real-world
websites. In TeStcross-website; While the agent is not exposed
to test websites, it is trained on websites from the same do-
main and potentially with similar tasks. This configuration
enables us to evaluate the agent’s capacity to adapt to en-
tirely new websites within familiar domains and tasks. This
split consists of 177 tasks, along with 1,373 samples ob-
tained from 10 websites. Cross-Task is a conventional test



Avg # HTML

Dataset # Domains # Websites Website # Tasks Avg #
Type Actions Elements Tokens
MiniWoB++ [16] - 100 Simplified 100 3.6 28 500
Mind2Web [8] 31 137 Real-world 2,350 7.3 1,135 44,402

Table 10. Detailed Statistics of Mind2Web [8]. Min2Web is the first real-world web navigation benchmark, collecting over
100 real-world websites across various domains. Unlike previous benchmarks [16, 36], Mind2Web provides an extensive

amount of real-world webpage content, including over 1K/44K HTML elements/tokens on average.

Ranker Action Cross-Task Ranker gct:j(.)nt Cé?SS:aSk
Predictor Ele. Acc Op. F1 Step SR redictor ¢ Ace
MINDACTpRen 42.0
MINDACTprep- 514 75.6 48.7
MINDACTRnk oy CPRRF‘D ARer 542 795 500 MINDACTRaxk WHOLEIMAGEpgen 43.6
EpTARCE : : : HTMLTREENELe, — 43.8
Table 11. DUAL-VCR with a larger predictor. We increase the DUAL-VCRyren 44.4
size of the predictor from Flan-T5pue to Flan-TSj. Even with WHOLEIMAGEg an 43.9
the larger predictor, DUAL-VCR notably outperforms the base- WHOLEVISTOKgank MINDAC Tpren 44.1
line, showing the complementarity of DUAL-VCR and LLMs. DUAL-VCRyxgr1xr 44.6
DUAL-VCRyngr1xT4VIS 46.0
split, which is the random 20% of the dataset. The split has WHOLEHTML 38.6
- PRED .

252 tasks with 2,094 samples from 69 websites.

Task Details. The Mind2Web task consists of a sequence
of actions, each comprising a pair of an actionable HTML
element (e.g., “[textbox] To””) and an operation (e.g., “Type
Toronto”). Mind2Web provides three common operations:
Click, Type, and Select. For Type and Select operations, an
additional argument (e.g., “Toronto”) is required.

C. Additional Experiments

More powerful action predictor. We scale up the predic-
tor from Flan-T5pas to Flan-TSyue to check whether our
visual neighbors are still beneficial with the larger model.
As shown in Table 11, DUAL-VCR still achieves notable
gains, suggesting the complementary capabilities of LLMs
and our visual neighbors.

Neighbors from an HTML tree. An HTML document
can be represented as a DOM tree, a hierarchical tree of
HTML objects (e.g., Element: <head>). Thus, we can also
extract each element’s neighbors from the HTML tree. We
compare the tree-based neighbors with our neighbors ob-
tained from the screenshot (Table 12). Our visual neigh-
bors (DUAL-VCRpggp) significantly outperform those de-
fined by the HTML tree (HTMLTREENEIzgp), suggesting
that visual-spatial context is more beneficial.

Ranker with whole visual tokens. In §4.2 of the
main text, we show that DUAL-VCR (i.e., the use
of visual neighbors) is more effective than the use
of the entire image for web navigation (e.g., DUAL-
VCRprep VS. WHOLEIMAGEprgp, DUAL-VCR g txT+vIS
vS. WHOLEIMAGEg,nk). To further substantiate the effi-
cacy of DUAL-VCR over using the whole image, we con-
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Table 12. Additional results for Table 6 in the main text.
Our neighbors defined by a screenshot (DUAL-VCRpgep) no-
tably outperform the neighbors defined by an HTML tree
(HTMLTREENEIpkep). Moreover, DUAL-V CRyngi-rxr+vis 1S sig-
nificantly better than WHOLEVISTOKgrank, Which uses all visual
tokens of the entire image. This again highlights the benefit of
DUAL-VCR in both computational efficiency and performance.

duct additional experiments (Table 12). Specifically, we
train a ranker (WHOLEVISTOKg vk ) using all visual tokens
extracted from the whole image based on the Pix2Struct
ViT [20]. Like the previous results in the main text,
WHOLEVISTOKgnk Outperforms the baseline (e.g., 44.1%
vs. 42.0%), suggesting the benefit of utilizing the entire im-
age. However, WHOLEVISTOKgnk falls short of DUAL-
VCRyneLrxr+vis (46.0%), which uses significantly fewer
inputs (i.e., only neighboring elements). This again sup-
ports the advantages of DUAL-VCR over the whole image
regarding computational efficiency and performance.

Type of pre-trained visual features. Table 13 summa-
rizes the importance of the type of pre-trained visual fea-
tures on web navigation. As discussed in §3.2 of the main
text, to train the ranker, we extract the element’s visual fea-
tures using Pix2Struct [20]’s VIT, pre-trained on webpage
screenshots. We investigate if these pre-trained “screen-
shot” visual features (DUAL-VCRyngrrxr+vis-wes) indeed
contain meaningful HTML context for downstream web
navigation tasks. Concretely, we compare them with fea-
tures extracted from ViT pre-trained on COCO [25], an ob-
ject recognition benchmark containing common objects in
“natural images”. We denote a ranker using the COCO vi-
sual features by DUAL-VCRyygrrxt+vis-coco. We first ob-



Cross-Task

Ranker

Ele. Acc Op.Fl1 Step SR
DUAL-VCRyxgrrxr 44.6 75.7 43.2
DUAL-VCRyngrtxT+vIS-coco 45.2 76.3 434
DUAL-VCRyygi-rxr+vis-weB 46.0 78.6 44.8

Table 13. Effects of different types of pre-trained visual fea-
tures. The pre-trained screenshot visual features [20] are more
beneficial on the downstream web navigation than those extracted
from ViT pre-trained on natural images of COCO [25].

serve that DUAL-V CRyxgrrxr4vis-coco outperforms DUAL-
VCRynerxr that only leverages elements” HTML text fea-
tures to train the ranker (e.g., 45.2% vs. 44.6% on Ele. Acc).
This implies that even if visual features are from a dif-
ferent domain (i.e., natural images), incorporating them is
still helpful in web navigation tasks. However, compared to
DUAL-VCRyngrrxT+vis-wes, Which uses both HTML visual
and textual features, DUAL-V CRyngr.txr+vis-coco performs
less (e.g., 46.0% vs. 45.2% on Ele. Acc). This highlights
that the pre-trained “screenshot” visual features indeed con-
tain HTML-related context, which benefits more in com-
pleting the downstream web navigation tasks.

Existing/Concurrent Works. A number of previous stud-
ies [2, 16, 18, 23, 26, 30-32, 36] have explored web nav-
igation but mainly worked on simplified websites [16, 36],
which deviate from the focus of our study. Our attention
is instead directed towards real-world scenarios involving
various real-world websites with extensive raw HTML doc-
uments (e.g., Mind2Web). We have identified a few con-
current works [3, 9—11, 14, 37] exploring Mind2Web, but
they mostly focus on (i) large-scale pre-training, requiring
substantial amounts of pre-training HTML data, or (ii) eval-
uating the potential of recent vision-and-language models
(e.g., GPT4-V [29]) as a web agent. As their codes or pre-
training datasets have not been released yet, replicating their
work would be prohibitively costly. We thus do not consider
them in our studies.
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