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Abstract

A common network inference problem, arising

from real-world data constraints, is how to infer

a dynamic network from its time-aggregated ad-

jacency matrix and time-varying marginals (i.e.,

row and column sums). Prior approaches to this

problem have repurposed the classic iterative pro-

portional fitting (IPF) procedure, also known as

Sinkhorn’s algorithm, with promising empirical

results. However, the statistical foundation for us-

ing IPF has not been well understood: under what

settings does IPF provide principled estimation of

a dynamic network from its marginals, and how

well does it estimate the network? In this work,

we establish such a setting, by identifying a gener-

ative network model whose maximum likelihood

estimates are recovered by IPF. Our model both

reveals implicit assumptions on the use of IPF

in such settings and enables new analyses, such

as structure-dependent error bounds on IPF’s pa-

rameter estimates. When IPF fails to converge

on sparse network data, we introduce a principled

algorithm that guarantees IPF converges under

minimal changes to the network structure. Finally,

we conduct experiments with synthetic and real-

world data, which demonstrate the practical value

of our theoretical and algorithmic contributions.

1. Introduction

Dynamic networks of human movements are integral to

important societal problems, such as epidemic response

and transportation planning, but they are rarely fully ob-

*Equal contribution 1Department of Computer Science,
Stanford University 2Department of Statistics and Data Sci-
ence Institute, University of Chicago 3Department of Eco-
nomics, Stanford University 4Department of Management
Science & Engineering, Stanford University. Correspon-
dence to: Serina Chang <serinac@stanford.edu>, Fred-
eric Koehler <fkoehler@uchicago.edu>, Zhaonan Qu <zhao-
nanq@stanford.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

served. Instead, it is often easier to observe the time-varying

marginals of the network, i.e., the row sums and column

sums of its adjacency matrix. In transportation networks,

it is easier to observe passengers embarking or disembark-

ing, e.g., at bus stops (Navick & Furth, 1994), but harder

to uncover routes between stops. In migration networks, it

is easier to observe the number of individuals leaving from

and arriving at a region but harder to estimate the network of

their movements (Plane, 1982; Pham & Komiyama, 2022).

In these settings, we observe the time-varying marginals reg-

ularly, but only have occasional access to a time-aggregated

network (e.g., from surveys). Thus, a natural dynamic net-

work inference problem arises from such data: given a net-

work with adjacency matrices X(t) per time step t, can we

reasonably infer X(t) from its time-varying marginals and a

time-aggregated version,
∑

tX
(t), of the network?

One approach to solving this problem is to repurpose the

classic iterative proportional fitting (IPF) procedure (Dem-

ing & Stephan, 1940), also widely known as Sinkhorn’s

algorithm (Sinkhorn, 1974). Given a matrix X , target row

marginals p, and target column marginals q, IPF tries to find

a biproportional scaling of X to match the target marginals.

IPF poses an attractive solution for the network inference

problem: it matches the marginal constraints of the problem,

is computationally lightweight and space efficient, and is

supported by decades of literature devoted to its analysis

(Bregman, 1967; Fienberg, 1970; CsiszÂar, 1975; Pukelsheim

& Simeone, 2009; Marino & Gerolin, 2020; LÂeger, 2021;

Carlier, 2022; Qu et al., 2023). Furthermore, prior works

have shown empirical success with using IPF to infer net-

works (Liang et al., 2006; McCord et al., 2010; Chang

et al., 2021a), enabling important applications such as mod-

eling epidemic spread on mobility networks (Li et al., 2023;

Chaudhuri et al., 2022; Alimohammadi et al., 2023) and

supporting policymakers (Chang et al., 2021b).

However, despite the appeal and empirical success of using

IPF for network inference, what is missing is a firm statis-

tical grounding for when and why IPF is justified in this

setting. While it is well-known that IPF solves a Kullback-

Leibler (KL) divergence minimization problem (Ireland &

Kullback, 1968), a formal connection to statistical theory is

limited, especially in network settings. Moreover, IPF oc-

casionally fails to converge on sparse network data. While

tests exist for whether IPF will converge, there is no clear
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answer to how to interpret failed convergence, or how to re-

pair it. Thus, to rigorously employ IPF to infer networks, we

ask: under what model is IPF a principled estimator of a dy-

namic network from its marginals? Under this model, how

well does IPF estimate these networks? What are principled

strategies to ensure that IPF converges?

In this work, we first identify a generative network model,

which we term the biproportional Poisson model, whose

maximum likelihood estimates (MLEs) are recovered by

IPF, thus establishing a statistical framework under which

IPF is a principled estimation procedure of a dynamic net-

work from its marginals (Theorem 3.1). Our model clarifies

implicit network assumptions when using IPF and enables

the analysis of IPF estimates using statistical theory of max-

imum likelihood estimation. Next, we provide expectation

and tail bounds on estimation errors of the MLEs, and show

that finite MLEs exist with high probability under the bipro-

portional Poison model (Theorems 4.1-4.2). To address the

issue of IPF non-convergence, we introduce a principled

and polynomial time algorithm, ConvIPF, that guarantees

IPF convergence while making minimal changes to the net-

work structure (Section 5). Finally, we conduct extensive

experiments with synthetic data and two real-world datasets:

mobility data from SafeGraph and bikeshare data from New

York City’s CitiBike (Section 6).1 Our experiments demon-

strate IPF’s ability to infer ground-truth hourly networks,

outperforming several baselines, and tie our theoretical and

algorithmic contributions to practical insights.

Our results provide much-needed theoretical foundation to

justify recent high-impact applications of IPF to infer dy-

namic networks and to rigorously motivate future uses of

IPF for this and related problems. Given the vast literature

on IPF (Sinkhorn’s algorithm) and matrix balancing, con-

necting this network inference problem to IPF also opens up

future avenues of research, creating a bridge from modern

data-driven problems to decades of statistical theory.

2. Related Work

Iterative proportional fitting. IPF (Deming & Stephan,

1940), also known as Sinkhorn’s algorithm, biproportional

fitting, raking, and the RAS algorithm, has a long history

across disciplines. IPF offers many empirical advantages:

it is straightforward to implement (see Algorithm 1 in Ap-

pendix A), transparent, reproducible, space efficient, and

computationally lightweight (Liang et al., 2006; Lomax &

Norman, 2015; Lovelace et al., 2015). The algorithmic prop-

erties of IPF have also been extensively studied (Sinkhorn,

1964; Fienberg, 1970; Franklin & Lorenz, 1989; Pukelsheim

1Our code is available at https://github.com/

snap-stanford/ipf-network-inference. Citibike
data (CitiBike, 2023) and SafeGraph mobility data (Dewey, 2023)
are available online.

& Simeone, 2009; Qu et al., 2023). Notably, IPF solves a KL

divergence minimization problem (Bregman, 1967; Ireland

& Kullback, 1968; CsiszÂar, 1975; Ruschendorf, 1995), and

is a coordinate descent type algorithm for its dual problem

(Luo & Tseng, 1992). Recently, Qu et al. (2023) further

established connections between IPF and ML estimation

of choice models. We leverage these observations to iden-

tify a Poisson network model whose MLEs are recovered

by IPF (Section 3). In Appendix B.3, we discuss other

settings where IPF is known to recover MLEs of distinct

models, such as contingency tables (Bishop & Fienberg,

1969; Bishop et al., 1974; Little & Wu, 1991; Little, 1993).

The connections of IPF to Poisson-type models also have

precedence in economics, such as trade (Silva & Tenreyro,

2006) and matching (Galichon & SalaniÂe, 2022a;b). IPF

(or Sinkhorn’s algorithm) is also closely connected to (dis-

crete) entropy regularized optimal transport and SchrÈodinger

bridges, which can be reformulated as matrix balancing

problems with a kernel/reference matrix and fixed marginals,

and solved using the IPF procedure (Cuturi, 2013; Marino

& Gerolin, 2020; De Bortoli et al., 2021).

Despite extensive literature on IPF’s convergence behav-

ior, few works have discussed principled solutions when

IPF does not converge, which may occur when there are

many zeros in the initial matrix or marginals (Bishop et al.,

1974; Wong, 1992). The typical solution is to replace all

zeros with small positive values (Lomax & Norman, 2015;

Lovelace et al., 2015). However, this approach may result in

unrealistic positive entries or, in our setting, vastly alter the

structure of the network. To address this gap in literature,

we propose a principled algorithm that guarantees IPF con-

vergence while minimally changing the network (Section 5).

Network inference. The problem of inferring dynamic

networks from marginals has been central to the impactful

guidance of COVID-19 policy from mobility data (Chang

et al., 2021a;b; Chaudhuri et al., 2022; Li et al., 2023; Al-

imohammadi et al., 2023), and also appears across many do-

mains, including transportation (Carey et al., 1981), commu-

nication (Kruithof, 1937), and migration (Plane, 1982; Pham

& Komiyama, 2022). Prior works have also explored related

but distinct network inference problems. When node-level

signals are observed but the network is not known at all, tem-

poral or spatial relationships are often used to infer which

nodes are likely to be connected (Gomez-Rodriguez et al.,

2012; Hallac et al., 2017; Akagi et al., 2018; Chen et al.,

2021; Rossi et al., 2022). A closer setting to ours is where

the structure of the graph and the node-level marginals are

known (Kumar et al., 2015; Maystre & Grossglauser, 2017).

Our setting is distinct since we study dynamic networks and

have access to the time-aggregated network, not just the

binary structure. Nevertheless, we note similarities, as both

settings solve matrix balancing problems, with the ChoiceR-

ank algorithm of Maystre & Grossglauser (2017) closely
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connected to IPF as well (Qu et al., 2023).

Our network inference problem is also related to collective

graphical models (CGMs), which aim to fit a model of indi-

vidual behavior from aggregate data (Sheldon & Dietterich,

2011). Like CGMs, we also seek to estimate finer-grained

information based on coarser data, but our setting differs in

a number of ways: CGMs are typically applied in settings

where only the time-varying marginals are known, such as

to estimate population flows from counts per region over

time (Iwata et al., 2017; Akagi et al., 2018; Iwata & Shimizu,

2019); CGMs try to learn a model of individual behavior,

which is not our goal; and their mathematical formulations

and estimation procedure are distinct from IPF. We compare

our work to CGMs in greater detail in Appendix B.3.

3. Biproportional Poisson Model: A Statistical

Framework of IPF for Inferring Networks

In this section, we provide background on IPF and define

our dynamic network inference problem, then propose a

statistical frameworkÐvia our generative network modelÐ

that establishes IPF as a principled solution to this problem.

Matrix balancing and IPF. IPF is an iterative algorithm

that seeks to solve the following matrix balancing problem:

Given positive vectors p ∈ R
m
++, q ∈ R

n
++ with

∑

i pi =
∑

j qj = c and an initial non-negative

matrix X ∈ R
m×n
+ , find positive diagonal ma-

trices D0, D1 satisfying the marginal conditions

D0XD1 · 1n = p and D1XTD0 · 1m = q.

IPF learns the scaling factors d0 and d1, which are diagonals

ofD0, D1, by alternating between scaling the rows to match

p, then scaling the columns to match q:

d0i (k + 1) =
pi

∑

j Xijd1j (k)
, d1j (k + 1) = d1j (k), (1)

d1j (k + 2) =
qj

∑

iXijd0i (k + 1)
, d0i (k + 2) = d0i (k + 1).

We denote by M IPF(k) the scaled matrix after the k-th

iteration: M IPF(k) := D0(k)XD1(k). The convergence

behavior depends on the problem structure: if the matrix bal-

ancing problem has a finite solution, (D0(k), D1(k)) will

converge to it; (D0(k), D1(k)) can diverge but M IPF(k)
converges; or M IPF(k) does not converge and instead oscil-

lates between accumulation points (Pukelsheim & Simeone,

2009). It is well-known that IPF solves the following KL

divergence minimization problem, and IPF converges as

long as the KL problem is feasible and bounded (Bregman,

1967; Ireland & Kullback, 1968; LÂeger, 2021):

min
Ŷ

DKL(Ŷ ∥X)⇔ min
Ŷ

∑

ij

Ŷij log
Ŷij
Xij

, (2)

subject to Ŷij ≥ 0, Ŷ 1n = p, and Ŷ T1m = q.2 (2) is

feasible and bounded if and only if there exists Ŷ with the

desired marginals p and q and Ŷij = 0 whenever Xij =
0. Furthermore, the dual problem of (2) minimizes the

potential function

g(u, v) :=
∑

ij

Xije
ui−vj −

∑

i

piui +
∑

j

qjvj , (3)

which is jointly convex in the dual variables u ∈ R
m, v ∈

R
n. IPF is a coordinate descent type algorithm for (3) and

(d0, d1) is a solution to the matrix balancing problem if and

only if u = log d0, v = − log d1 is a minimizer of (3) (Luo

& Tseng, 1992). For completeness, we provide details of the

duality result in Appendix B.1. The KL minimization prob-

lem (2) is also closely related to entropy regularized optimal

transport, which we discuss in more detail in Appendix B.2.

Dynamic network inference problem. In our setting, we

have a dynamic network with discrete time steps, where

X(t) ∈ R
m×n
+ represents the weighted adjacency matrix at

time t. We do not have access to X(t) due to privacy or

sampling constraints, but we observe its row sums p(t) :=
X(t)

1n and column sums q(t) := (X(t))T1m, as well as a

time-aggregated network, X̄ :=
∑T
t=1X

(t), for some large

T . The goal of the dynamic network inference problem is

to provide a reasonable estimate of X(t), given p(t), q(t),
and X̄ . The correspondence between this problem and

the matrix balancing problem is natural: we can treat X̄
as the initial matrix, p(t) as the target row marginals, and

q(t) as the target column marginals. IPF’s solution to this

matrix balancing problem then serves as an estimate of the

hourly network X(t). However, how should we interpret

this estimate and why is IPF a justified approach here?

Our proposed network model. We provide a statistical

justification of IPF as a solution to the network inference

problem by identifying a generative network model under

which IPF in fact recovers the MLEs of the network parame-

ters. Our model, which we term the biproportional Poisson

model, is defined as follows with parameters u, v:

X
(t)
ij ∼

{

Poisson(euiX̄ije
−vj ), if X̄ij > 0,

0, otherwise.
(4)

p
(t)
i =

∑

j

X
(t)
ij , q

(t)
j =

∑

i

X
(t)
ij .

Model (4) posits independent Poisson samples X
(t)
ij with

expected value λij = euiX̄ije
−vj wherever X̄ij > 0 (we

2Technically, the KL divergence DKL(P∥Q) is well-defined
only on probability distributions P,Q. Without loss of generality,
we may rescale X so that

∑
ij
Xij =

∑
i
pi =

∑
j
qj = c. Then

normalizing Ŷ , X by the common constant c yields valid discrete
probability distributions. The resulting KL minimization problem
is equivalent to (2).
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suppress time-indexing on u and v to simplify notation).

Note that the model is unique up to normalization, e.g.,

(u, v)T1m+n = 0, since adding a constant c to (u, v) yields

the same model. Since X(t) is not observed, it is a priori

not obvious if the model parameters can be recovered by

maximum likelihood estimation. Our first result reveals

that although only X̄ , p(t), and q(t) are observed, MLEs of

u, v are well-defined, since p(t) and q(t) form the sufficient

statistics of model (4). More importantly, our result connects

IPF to (4), by showing that its MLEs are exactly the IPF

solution to the matrix balancing problem, with (3) equivalent

to the negative log-likelihood. This connection also partially

inspired the name ªbiproportional Poissonº, as an alternative

name of IPF is ªbiproportional fittingº (Bacharach, 1965).

Theorem 3.1. Assume that the matrix balancing problem

with X̄ , p(t), and q(t) has a finite solution (D0, D1). Then

d0 and d1 are limits of the IPF iterations if and only if

û = log d0 and v̂ = − log d1 are solutions to the maximum

likelihood estimation problem of (4) given X̄ , p(t), and q(t),
with log-likelihood ℓ ≡ −g(u, v) in (3) modulo constants:

ℓ(u, v) =
∑

i

p
(t)
i ui −

∑

j

q
(t)
j vj −

∑

ij

X̄ije
ui−vj . (5)

Moreover, maximizing ℓ(u, v) is equivalent to the maximum

likelihood estimation of a Poisson regression model, with

p(t), q(t) as the sufficient statistics.

We prove Theorem 3.1 in Appendix B.3. The core of our

result lies in identifying a model whose log-likelihood is

equivalent to −g(u, v), since IPF minimizes g(u, v) in (3).

Our result is closely related to Qu et al. (2023), who recently

established connections between IPF and choice modeling,

and observed that (3) reduces to the maximum likelihood

objective of a general class of choice models.

Notably, our theorem does not require assumptions about

how the network evolves over time, since our model includes

scaling factors u and v per time step, which IPF directly

estimates. However, performing network inference in this

decoupled fashion potentially leaves out additional informa-

tion, which is that X̄ =
∑T
t=1X

(t). We show in Appendix

B.4 that performing network inference with this constraint

reduces to the decoupled problems under the following mild

stationarity assumption for some constant c:

T
∑

t=1

eui(t)−vj(t) ≈ c, (6)

for all i, j where X̄ij > 0. We also verify that the station-

arity assumption approximately holds on real-world data

(Appendix E.3.3), thus justifying the decoupled approach.

As two additional results, in Appendix B.5, we prove nec-

essary and sufficient conditions for IPF to recover X(t)

exactly, and in Appendix B.6, we prove that among a larger

class of generalized linear models, the Poisson model is the

unique one where the MLE is the IPF solution Ð so from

the perspective of IPF, our generative model is canonical.

Implications of our result. Our model allows us to in-

terpret IPF through the lens of a generative network model.

Since, in relevant applications, X
(t)
ij is often the number

of visits from node i to j, (4) is consistent with queuing

theory where rare events are modeled with a Poisson pro-

cess due to the memory-less property. In addition, in the

Poisson parameters euiX̄ije
−vj , ui can be interpreted as

the emission intensity of node i, and −vj as the absorption

intensity of node j. For example, in mobility networks be-

tween residential neighborhoods and public places (Chang

et al., 2021a), u captures when each neighborhood is likelier

to go out (e.g., younger populations more at night) and −v
captures each place’s visit propensity (e.g., schools visited

more during the day while bars visited more at night). No-

tably, the biproportional form of the model assumes that

there are not time-varying interactions between rows and

columns (e.g., if a place offers special discounts for seniors

at this time, attracting neighborhoods with large senior pop-

ulations), making explicit one of the key assumptions of

using IPF in this network inference setting. Moreover, since

d0i X̄ijd
1
j from IPF corresponds to euiX̄ije

−vj , we can in-

terpret the matrix inferred by IPF as estimating the expected

values of the network-generating process.

We also note connections of our model to (pseudo-)Poisson

maximum likelihood regression in economics (Gourieroux

et al., 1984), including for models of trade (Silva & Ten-

reyro, 2006) and matching (Galichon & SalaniÂe, 2022a;b).

In particular, Theorem 3.1 implies that estimating the bipro-

portional model is equivalent to solving a pseudo-Poisson

maximum likelihood problem. Consequently, the results of

Gourieroux et al. (1984) guarantee that the minimizers of

Equation (3) are consistent estimators of u, v even under

misspecifications of the distribution and homoskedasticity of

X
(t)
ij given λij = euiX̄ije

−vj , highlighting the robustness

of our biproportional Poisson model.

Defining an explicit model also yields several advantages.

First, the equivalence between the IPF solution and this

model’s MLE enables us to analyze IPF estimates using

tools from statistical theory. In Section 4, we develop

bounds on the MLE’s estimation error and establish that

finite MLEs exist with high probability. Second, our model

clarifies previously implicit assumptions when using IPF

to infer dynamic networks, such as the stationarity assump-

tion (6) or the lack of time-varying interactions. Making

such assumptions explicit allows practitioners to evaluate

how reasonable the assumptions are given their domain and

data; for example, we test several model assumptions on

real-world bikeshare data (Appendix E.3.3). Third, defining

an explicit model reveals natural ways to extend the model,
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such as non-Poisson distributions or interaction terms be-

tween rows and columns. These extensions allow us to test

IPF under model misspecification (Appendix E.1.3) and

create future opportunities for studying how changes in the

model map back to changes in IPF. Finally, the model en-

ables new empirical analyses of IPF (Section 6), such as

quantifying uncertainty in the parameter estimates and eval-

uating IPF’s estimation of the network parameters, instead

of only evaluating IPF’s error on the marginals, which is

how IPF tends to be evaluated (Lovelace et al., 2015).

4. Statistical Theory of Biproportional Poisson

We have shown in Theorem 3.1 that when the matrix bal-

ancing problem has finite solutions, IPF recovers them as

MLEs of our biproportional Poisson model. Two important

questions remain: how ªgoodº are these MLEs, in terms of

their estimation error relative to the true model parameters,

and how often can we guarantee that the MLEs, solutions to

the matrix balancing problem, are finite? In this section, we

develop statistical theory to answer these questions.

4.1. Structure-dependent MLE Error Bounds

Intuitively, the more ªwell-connectedº a biproportional Pois-

son network, the better quality its MLEs. We quantify net-

work connectivity through the Fiedler eigenvalue (Fiedler,

1973), which is the second-smallest eigenvalue λ−2(L) of

the graph Laplacian L := D(A1) − A, where A is the

(weighted) adjacency matrix and D(·) denotes the diago-

nalization of a vector. In this paper, L is the graph Lapla-

cian of the weighted bipartite graph Gb induced by X̄ with

A :=

[

0 X̄
X̄T 0

]

. The Fiedler eigenvalue is frequently used

in graph theory and distributed optimization to measure

graph connectivity (Spielman, 2012). In recent years, its

importance for the algorithmic and statistical efficiencies

of Luce choice model estimation vis-à-vis the topology of

comparison structures has been extensively studied (Shah

et al., 2015; Vojnovic & Yun, 2016; Seshadri et al., 2020; Vo-

jnovic et al., 2020; Hendrickx et al., 2020; Bong & Rinaldo,

2022). It is important to note that the Fiedler eigenvalue

used in our paper is based on a different graph than in the

choice literature, which are constructed from choice data

and are not bipartite. An exception is Qu et al. (2023), who

provided linear convergence analyses of IPF quantified by

the same λ−2(L) as in this paper.

We now provide error bounds for normalized MLEs of

the biproportional Poisson model quantified by the Fiedler

eigenvalue, whenever the true parameters and MLEs are

bounded by some constant B.

Theorem 4.1. Suppose that the biproportional Poisson

model (4) holds with ground truth parameters u∗, v∗. Sup-

pose (û, v̂) is a maximizer of the log-likelihood (5) and

that we have the normalization condition (û − u∗, v̂ −
v∗) ∈ 1

⊥
m+n and ∥(û, v̂, u∗, v∗)∥∞ ≤ B. Then with

κ =
∑

ij e
u∗

i X̄ije
−v∗j the total rate, in expectation we have

E
[

∥(û− u∗, v̂ − v∗)∥21B

]

≤ 8e4Bκ

λ−2(L)2
, (7)

where 1B is the event that the MLE is bounded above by B.

A similar tail bound is given and proven in Theorem C.2.

The dependence of the error bounds on the Fiedler eigen-

value λ−2(L) is clear: the more well-connected the bipartite

graph Gb (induced by X̄), the larger λ−2(L), which in turn

improves the estimation quality. Since λ−2(L) > 0 if and

only if Gb is connected, the bounds blow up when Gb be-

comes disconnected. Indeed, the biproportional Poisson

model is not identified in this case (see Remark C.3). An-

alytically, λ−2(L) also quantifies the strong concavity of

the log-likelihood function (5), which provides additional

justification for its prominence in the bounds.

Given recently established connections between choice mod-

eling and matrix balancing and the well-known structure-

dependent estimation error bounds in the choice literature

(Shah et al., 2015; Seshadri et al., 2020; Hendrickx et al.,

2020), our error bounds in Theorem 4.1 can be viewed as

natural analogs of such results for the biproportional Pois-

son model. As with those results, the assumption that the

ground truth parameters and the MLEs are bounded by some

B is standard. However, we note that since the dimension of

observations p(t), q(t) is on the same order as the parameter

dimension (both m+ n), the biproportional Poisson model

corresponds to a high-dimensional setting by design. Con-

sequently, unlike bounds in the choice literature, there is no

explicit dependence on the ªsample sizeº in our bounds. We

provide a simple example to illustrate this point.

Example with accurate recovery: complete graph. Sup-

pose that X̄ is the m×n all-ones matrix. Then κ = Θ(nm)
and λ−2(L) = min(n,m) so the right hand side of (7) is

of order Θ(max(n/m,m/n)). So if e.g. n = m, then the

total error for recovering the entire vector (u∗, v∗) is O(1).
Equivalently, the average error per coordinate of u∗, v∗ is
1
2n∥(û− u∗, v̂ − v∗)∥2 = O(1/n).
Bound improves with growing SNR. A key feature of the

error bound is that it improves by a factor of 1/c when the

base matrix X̄ is scaled up by a constant c > 1, since both κ
and λ−2(L) are scaled by c. This feature can be understood

as a result of improved ªsignal-to-noiseº ratio (SNR), since

the Poisson rate eu
∗

i X̄ije
−v∗j scales with X̄ .

Impact of sparsity. As graph connectivity is related to the

sparsity of the graph, our results can inform us on how the

sparsity of the network impacts estimation quality of IPF.

In Appendix E.1.2, we evaluate the quality of MLEs with

synthetic data under different sparsity rates r ∈ [0, 1). One
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implication of Theorem 4.1 is that, with high probability,

∥(eû − eu∗

, e−v̂ − e−v∗)∥2 = O
(

1√
1− r

)

,

which matches the observed deterioration of estimation qual-

ity in Figure 2 as sparsity r increases from 0 to 1.

In Remark C.3, we provide more discussion on the error

bounds in Theorem 4.1, including optimality of the depen-

dence on κ and necessity of λ−2(L) and eΘ(B). Despite the

usefulness of the error bounds we develop in Theorem 4.1,

an important technical question remains on the existence of

finite MLEs. Even under correct specification, a (random)

dataset may not yield a well-defined maximum likelihood

problem, i.e., no finite maximizer of (5) exists. We next

address this issue and identify a sufficient condition that

guarantees that finite MLEs exist with high probability.

4.2. Well-posedness of Maximum Likelihood Estimation

Under the biproportional Poisson model (4), the maximum

likelihood estimation problem on X̄, p(t), q(t) may not have

a finite solution. As is well-known and discussed in Qu et al.

(2023), the corresponding matrix balancing problem has a fi-

nite solution if and only if there exists a matrix with exactly

the same zero patterns as X̄ and has marginals p(t), q(t).
Under correct specification of the biproportional Poisson

model, the matrix X(t) has the right marginals p(t), q(t). If

all Poisson entries X
(t)
ij > 0, X(t) provides a certificate

for the existence of a finite solution to the matrix balancing

problem hence finite MLEs. However, as soon as any X
(t)
ij

equals 0, X(t) will have additional zero entries than X̄ , and

the bipartite network induced by X(t) could become discon-

nected. However, there could still exist another matrix that

solves the matrix balancing problem, yielding a finite MLE.

Our task is to show that this happens often.

A similar challenge exists in the choice setting. When some

subset of items are always preferred over its complement,

no positive MLE exists in the Luce choice modeling frame-

work. Recently, Bong & Rinaldo (2022) provided a simple

sufficient condition on the Fisher information matrix in the

Bradley±Terry±Luce model which guarantees that this event

rarely happens. Our next theorem can be viewed as an

analog of their result for the biproportional Poisson model.

Theorem 4.2. Let L∗ := −∇2ℓ(u∗, v∗) be the Hessian

of the negative log-likelihood in (5) evaluated at the true

parameters (u∗, v∗), and suppose its second smallest eigen-

value satisfies

λ−2(L∗) ≥ 2log(m+ n). (8)

Then with probability at least 1−2/
√
m+ n, the maximum

likelihood estimation of the model (4) has a unique normal-

ized finite solution, and IPF converges to this solution.

Note that the sufficient condition (8) is stated in terms of the

Hessian evaluated at the true parameters (u∗, v∗), which is

essentially the Fisher information matrix modulo a constant

factor. When is (8) satisfied? As discussed before, for com-

plete graphs λ−2(L∗) = O(min{m,n}), so (8) is satisfied.

As another example, an ErdÈos-RÂenyi graph with parameter p

of order Ω( log(m+n)
m+n ) also satisfies (8) with high probability.

See for example Bong & Rinaldo (2022).

Our results in this section provide useful insights about the

MLEs of our biproportional Poisson model. However, IPF

convergence is a prerequisite for IPF to recover these MLEs.

Now, we move onto the next natural and important question:

what should one do in practice if IPF does not converge?

5. Guaranteeing IPF Convergence

IPF non-convergence tends to occur when there are many

zeros in the inputs (Wong, 1992), and such sparsity is very

common in real-world network data, partially due to miss-

ing values. In fact, we show that, when trying to infer X(t)

from p(t), q(t), and X̄ , for some aggregated time period that

includes t, IPF will not converge only if there are missing

entries in the inputs (Corollary D.1). For example, in mobil-

ity data, true visits may be missed due to noisy GPS signals,

populations not carrying cell phones (Coston et al., 2021),

or data ªclippingº where low values are replaced with zeros

to preserve privacy (SafeGraph, 2020a). We discuss these

mechanisms in depth in Appendix E.2.

Thus, we approach IPF non-convergence from the perspec-

tive of missing data: specifically, in initial matrix X , and we

resolve non-convergence by adding edges to X . This is a

similar view to the typical solution for IPF non-convergence,

which is to replace all zeros in X with very small amounts

(Lomax & Norman, 2015). However, the typical approach

may result in unrealistic positive entries, such as drivers

under the age of 16 when inferring joint demographics

(Lovelace et al., 2015) or nonexistent routes in transporta-

tion networks. Furthermore, in our setting, replacing all ze-

ros with positive entries completely alters the sparsity struc-

ture of the inferred network, which can greatly affect down-

stream results, such as modeling epidemics (Wang et al.,

2003). Instead, we introduce a new algorithm, ConvIPF,

that guarantees IPF convergence by adding edges while min-

imizing changes to the network structure, where we explore

two different definitions of network change below. Even

though we focus on network inference, ConvIPF can be

used in any application of IPF where non-convergence may

be caused by missing values in the initial matrix X .

Overview of ConvIPF. Two equivalent conditions that

define when IPF converges are (Pukelsheim, 2014):

1. There exists a matrix Y with row sums p and column

6
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sums q such that Yij = 0 wherever Xij = 0.

2. For all row subsets S ⊆ [m],
∑

i∈S pi ≤
∑

j∈NX(S) qj , where NX(S) represents the set of

columns connected to S in X .

Condition (1) yields an efficient algorithm, which we call

MAX-FLOW, for testing whether IPF will converge. The

algorithm, as described in Idel (2016) and Appendix D.1,

requires one round of max-flow on a graph constructed from

the IPF inputs. If the resulting flow is equal to
∑

i pi, then

IPF converges. Condition (2) is useful because it allows

us to diagnose why IPF is not converging: if IPF does not

converge, there must be at least one ªblocking setº of rows

for which the condition is violated.

The key idea of ConvIPF is that we can unblock a blocking

set of rows by adding new edges in X for those rows, but

we seek edge additions that modify X as little as possible.

After we unblock one blocking set, there may be more. So,

ConvIPF iteratively identifies a blocking set and modifies

X to unblock it, until there are no blocking sets remaining.

Our algorithm thus repeats three subroutines, MAX-FLOW,

BLOCKING-SET, and MODIFY-X, until IPF converges:

1. Run MAX-FLOW to test for convergence. If IPF con-

verges, then the algorithm is finished. If IPF does not

converge, move on to Step 2.

2. Since IPF does not converge, run BLOCKING-SET to

identify a blocking set of rows, S.

3. Run MODIFY-X to unblock S by minimally adding

edges to X .

ConvIPF must terminate since (i) it is always possible to

unblock a row set (by connecting it to all columns) and

(ii) an unblocked row set cannot become blocked through

subsequent edge additions. Furthermore, even though there

are 2m possible row subsets, the algorithm will terminate

within mn iterations, since IPF converges when all entries

in X are positive (Pukelsheim, 2014) and each MODIFY-X

adds at least one positive entry to X . Thus, as long as

each subroutine runs in polytime, the entire algorithm runs

in polytime. However, BLOCKING-SET and MODIFY-X

both try to solve combinatorial problems, so the challenge is

how to efficiently solve each one. We provide brief sketches

of each in this section, with details in Appendix D.

BLOCKING-SET: identifying a blocking set. Given in-

putsX , p, and q, where we know IPF does not converge, this

subroutine identifies a blocking set of rows S for which Con-

dition (2) is violated. The naive approach to iterate through

all subsets until a violation is found, but this approach is

extremely inefficient, as there are 2m possible subsets. In-

stead, our subroutine imports ideas from constricted sets in

bipartite matching (Hall, 1935; Easley & Kleinberg, 2010)

to design a much more efficient algorithm. First, construct a

bipartite graph B where the nodes are the rows and columns

of X and they are connected wherever Xij > 0. From

running MAX-FLOW to test for convergence, we have flow

values for each row/column. Since IPF does not converge,

there must be at least one row i whose flow is less than

its capacity, pi. Run the following variant of breadth-first

search (BFS) on B starting from node ni. When progress-

ing from a column node nC to its neighboring row node

nR, only include row nodes where nR → nC has non-zero

flow in MAX-FLOW. When progressing from row nodes to

column nodes, include all (unvisited) neighbors. When BFS

terminates, the set of row nodes visited forms a blocking

set, which we prove in Appendix D.2.

MODIFY-X: unblocking a blocking set. Given a block-

ing set S, this subroutine minimally adds edges to X to

unblock S. Let XK represent the modified X after adding

new edges K and let f(X,XK) represent the change in X
that we are trying to minimize. Then, our goal is to find K∗

that minimizes f(X,XK∗

), subject to S being unblocked

under XK∗

, i.e.,
∑

i∈S pi ≤
∑

j∈N
XK∗ (S) qj . We consider

two natural definitions of f(X,XK).

1. Number of new edges. Let N̄X(S) represent the set of

columns not connected to S inX , and let δ represent the gap

in marginals, δ :=
∑

j∈NX(S) qj−
∑

i∈S pi. Take the top-k

columns in N̄X(S), ordered by qj in descending order, that

satisfy
∑k
j=1 qj ≥ δ. Then, any set of edges between a row

in S and these k columns will unblock S, while minimizing

the number of new edges added.

2. Change in λ1. A more nuanced objective minimizes

the change in the relevant spectral properties of X . Moti-

vated by the application of epidemic spread, recall that the

epidemic threshold of a network is closely related to the

largest eigenvalue λ1 of its adjacency matrix (Wang et al.,

2003) and attempts to reduce spreading aim to minimize λ1
through edge removals (Saha et al., 2015; Li et al., 2023). So,

to preserve a ªsimilarº network from a spreading standpoint,

we seek to minimize change in λ1. We show in Appendix

D.3 that, with reasonable approximations of change in λ1
(Tong et al., 2012), unblocking S while minimizing change

in λ1 reduces to the following: first, find the row i∗ in S
with the smallest u⃗1(i), where u⃗1 and v⃗1 are the left and

right eigenvectors of λ1(X), respectively. Then, solve an in-

teger linear program to find the set of columns J ⊆ N̄X(S)
that minimize

∑

j∈J v⃗1(j), subject to
∑

j∈J qj ≥ δ. The

set of new edges is {(i∗, j)|j ∈ J}, which unblocks S and

approximately minimizes change in λ1.

6. Experiments with Data

We now summarize our experiments with synthetic and

real-world data. Our experiments reveal the utility of our

theoretical and algorithmic contributions, and demonstrate
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No sparsity in X (N=10000) 50% sparsity in X (N=5000)
(a) (b)

Figure 1. Comparing inferred parameters from IPF (x-axis) against

inferred parameters from Poisson regression (left y-axis, blue) and

true parameters from Poisson model (right y-axis, orange). Grey

bars indicate 95% CIs from Poisson regression. N represents the

number of nonzero entries in X , so N is halved with 50% sparsity.

Under both networks, estimated parameters from IPF and Poisson

regression are perfectly aligned (Theorem 3.1), but their estimation

quality worsens with greater sparsity (Theorem 4.1).

IPF’s capability to infer networks in practice.

Testing IPF with synthetic data. In our first set of exper-

iments, we use synthetic data generated from our network

model (4) to confirm the correspondence between IPF and

Poisson regression. In Figure 1, we show that the parame-

ters inferred by IPF and Poisson regression align perfectly,

validating Theorem 3.1. Furthermore, our Poisson model

enables us to quantify uncertainty in the parameter estimates

under the model, adding valuable interpretability missing

from IPF output alone. We display 95% confidence intervals

(CIs) in Figure 1; while these CIs are only asymptotically

valid, they provide useful measures of uncertainty.

We also test IPF in more difficult settings, such as with in-

creased sparsity in X̄ . We generate X̄ with a given sparsity

rate r by randomly selecting r ·mn entries and setting them

to 0, and test IPF on varying sparsity rates. As expected, we

find that the widths of the CIs increase with greater sparsity

(Figure 1b), since greater sparsity results in fewer Poisson

observations to fit our model (4). We also find that, despite

matching the target marginals in all cases, the ℓ2 distance

between IPF’s inferred parameters and the true parameters

increases quickly as we increase the sparsity in X̄ (Figure

2, right). These findings align with Theorem 4.1, where we

showed that the bound on the MLEs’ expected estimation

error (7) improves as X̄ becomes more well-connected.

We also use synthetic data to test IPF under model misspec-

ification and find that IPF is reasonably robust to model

modifications in this network inference setting (Appendix

E.1.3). When the model is correctly specified (i.e., data

is generated from our biproportional Poisson model), the

cosine similarity between the true network X(t) and IPF es-

timate of the network X̂(t) = D0X̄D1 is, on average, 0.911

(Table E.1). If we replace the Poisson with an exponential

distribution, the cosine similarity only decreases to 0.855; if

we replace it with a negative binomial distribution (γ = 0.5),

it decreases to 0.843. IPF is similarly robust when we test

it on data from an ªinteraction modelº (42), which allows

X
(t)
ij to additionally depend on interaction terms between

rows and columns, such as distance (Figure E.5).

IPF convergence on mobility data. To test IPF conver-

gence, we use mobility data from SafeGraph (SafeGraph,

2020a). Here, we seek to infer the hourly visit network from

neighborhoods to points-of-interest (POIs), so the marginals

represent hourly total visits from neighborhoods and to POIs,

and X̄ represents the time-aggregated network. SafeGraph

data provides a real-world example where only the hourly

marginals and time-aggregated network are provided, with

missing data in the time-aggregated network due to under-

reporting and data clipping (see Appendix E.2). We use

mobility data from the Richmond metro area in Virginia,

which has 9917 POIs and 1098 neighborhoods (Chang et al.,

2021b). Despite aggregating over 10 months (January to

October 2020), X̄ remains sparse: only 8% of its entries are

non-zero. From running IPF on two days (48 hours), we

find that IPF does not converge for three nighttime hours

when POI marginals are particularly sparse.

Using one of these hoursÐ2AM on March 2, 2020Ðas an

example, we apply our algorithm ConvIPF and evaluate

the change in X̄ . We compare our solutions to the typical

solution for IPF non-convergence, which is to replace all

zeros with a very small value ϵ (Lomax & Norman, 2015;

Lovelace et al., 2015). If minimizing the number of new

edges added, ConvIPF only adds 2 edges, while the typical

solution results in 10012193 new edges. If minimizing the

change in λ1, ConvIPF only changes it by 5.60 · 10−9,

while the typical solution changes λ1 by 30.04. The magni-

tude of reduction achieved by ConvIPF is similar for the

other two hours (Table E.2). Furthermore, we find that the

choice of objective in ConvIPF makes a difference: choos-

ing to minimize the number of edges always results in the

fewest number of edges added and choosing to minimize

the change in λ1 always results in the smallest change in λ1,

by an order of magnitude compared to the other ConvIPF

variants. Finally, ConvIPF terminates quickly in practice,

typically requiring 5 or fewer iterations.

Ground-truth networks from bikeshare data. Using

data from New York City’s Citibike system, we can con-

struct ground-truth hourly networks that record the number

of bike trips between stations. Acquiring ground-truth net-

works enables us to test IPF’s ability to infer these networks,

compared to baselines, which assesses the downstream util-

ity of our work in bridging IPF to this network inference

problem. We test IPF’s inferred networks, given hourly

8



Inferring Dynamic Networks from Marginals with Iterative Proportional Fitting

0.0 0.2 0.4 0.6 0.8
Sparsity rate in X

10

20

30

40

50

60

70

80

Nu
m

 it
er

s u
nt

il 
IP

F 
co

nv
er

ge
nc

e

0.0 0.2 0.4 0.6 0.8
Sparsity rate in X

0

500

1000

1500

2000

Bo
un

d 
on

 M
LE

's 
ex

pe
ct

ed
 e

rro
r

0.0 0.2 0.4 0.6 0.8
Sparsity rate in X

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2 e
rro

r o
n 

IP
F 

pa
ra

m
et

er
s
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Figure 3. Cosine similarity between ground-truth hourly networks

from bikeshare data and inferred networks from IPF and baselines.

marginals and time-aggregated networks at the month-,

week-, and day-level. As a baseline, we try the classic

gravity model, which assumes that the amount of travel be-

tween two regions is proportional to their inverse distance

(Zipf, 1946; Erlander & Stewart, 1990). We fit the ªdoubly

constrained gravity modelº (Navick & Furth, 1994), which

is equivalent to running IPF on a distance matrix, instead

of the time-aggregated network, and the hourly marginals

(Appendix E.3.1). This baseline enables us to test how

much additional information the time-aggregated network

provides, beyond what is captured by common geographical

assumptions. We also test other baselines:

• An ablation that removes X̄ and distributes
∑

i p
(t)
i

proportional to p
(t)
i q

(t)
j ;

• An ablation that removes q(t) and distributes p
(t)
i

within each row proportional to X̄ij/
∑

j X̄ij ;

• An ablation that removes p(t) and distributes q
(t)
j

within each column proportional to X̄ij/
∑

i X̄ij .

We present main results in Figure 3. First, we find that IPF

strongly outperforms the gravity model, with a 78% im-

provement in cosine similarity even when using the month-

aggregated network. Second, IPF also outperforms the abla-

tion baselines: when X̄ is the month-aggregated network,

IPF outperforms the ablation without X̄ by 214% and the

ablations without p(t) or q(t) by around 31%. Third, finer

temporal granularity in the time-aggregated network im-

proves IPF’s performance, but the relative improvement is

much larger from week to day than from month to week.

This suggests that bike trips vary more at a daily scale within

the week (e.g., weekday vs. weekend) than a weekly scale

within the month. Overall, these results demonstrate the

effectiveness of IPF on this difficult network inference prob-

lem as well as the benefits of more granular data.

7. Conclusion

In this work, we have established a statistical framework for

using IPF to infer a dynamic network from its marginals.

Our primary contribution is the biproportional Poisson

model. We show that IPF uniquely recovers the MLEs

of this model and derive statistical results on the MLEs.

Our model not only provides justification for using IPF to

infer dynamic networks, but also enables new analyses of

IPF, clarifies implicit network assumptions, and creates nat-

ural paths for testing alternate models and misspecification.

We also introduce ConvIPF, a principled algorithm that

guarantees IPF convergence on sparse data, which can be

broadly applied wherever IPF is used. Our empirics confirm

our theoretical results, demonstrate the value of our model-

ing and algorithmic contributions, and reveal IPF’s ability to

infer networks in practice. Given the long history of IPF and

richness of the network inference problem, connecting them

generates many avenues for future research. Some future

directions include characterizing how IPF’s ability to infer

networks varies based on the network’s temporal dynamics

(e.g., periodicity), designing variants of IPF that outper-

form traditional IPF on this network inference problem, and

providing a statistical interpretation of our convergence al-

gorithm. Lastly, we note that the biproportional Poisson

model is applicable more generally to other instances of the

matrix balancing problem beyond network settings.
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Impact Statement

The primary goal of our work is to advance understanding

of IPF and dynamic network inference, with contributions

to machine learning and applied statistics. However, our

work is deeply motivated by problems of societal impor-

tance, such as epidemic response and transportation plan-

ning. Prior work has required inferring dynamic networks

from their marginals in order to model COVID-19 spread

over detailed mobility networks, inform pandemic interven-

tions, and analyze socioeconomic disparities in infection

rates (Chang et al., 2021a;b; Chaudhuri et al., 2022; Li et al.,

2023; Alimohammadi et al., 2023). This dynamic network

inference problem also appears in transportation (Carey

et al., 1981), communication (Kruithof, 1937), and human

migration (Plane, 1982; Pham & Komiyama, 2022). Our

work provides broadly applicable insights for practitioners

in all of these domains, allowing them to fully leverage the

empirical advantages of IPF with a deeper understanding

of its assumptions and behavior (e.g., when it is justified,

how to interpret its estimates, how to ensure convergence).

Another advantage of IPF is privacy: it enables practition-

ers to estimate detailed networks while data providers only

need to release aggregated data, i.e., only the time-varying

marginals and the time-aggregated network. Due to such

limited information, IPF will only reconstruct the true net-

work under very restrictive assumptions (Theorem B.1), but

otherwise, it will infer a realistic network that is correlated

with the real network, enabling analyses that require time-

varying networks without revealing private information.
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Appendix

A. Details on IPF Implementation

In this section, we provide details on our implementation of IPF, along with pseudocode in Algorithm 1. As discussed in the

main text, IPF aims to solve the matrix balancing problem (Deming & Stephan, 1940; Schneider & Zenios, 1990):

Given positive vectors p ∈ R
m
++, q ∈ R

n
++ with

∑

pi =
∑

qj and non-negative matrix X ∈ R
m×n
+ , find positive

diagonal matrices D0, D1 satisfying the conditions D0XD1 · 1n = p and D1XTD0 · 1m = q.

IPF learns the scaling factors d0 and d1, which are diagonals of D0, D1, by alternating between scaling the rows to match p,

then scaling the columns to match q:

d0i (k + 1) =
pi

∑

j Xijd1j (k)
, d1j (k + 2) =

qj
∑

iXijd0i (k + 1)
.

We denote by M IPF(k) := D0(k)XD1(k) the scaled matrix after the k-th iteration. The convergence behavior depends

on the problem structure: (D0(k), D1(k)) can converge to a solution of the matrix balancing problem; (D0(k), D1(k))
can diverge but M IPF(k) converges; or M IPF(k) oscillates between accumulation points (Pukelsheim & Simeone, 2009).

Furthermore, it is known that there are at most two accumulation points, so if IPF does not converge, it oscillates between

two solutions, one that matches the target row marginals p and one that matches the target column marginals q (CsiszÂar

& TusnÂady, 1984; Aas, 2014). Thus, in our implementation of IPF (Algorithm 1), we check for two stopping conditions,

one of which must be met eventually: either IPF converges, such that M IPF(k) ≈M IPF(k + 1), or IPF exhibits period-2

oscillation, such that M IPF(k) ≈M IPF(k − 2) and M IPF(k − 1) ≈M IPF(k − 3).

IPF with zeros in marginals. IPF returns a matrix of the form D0XD1, where D0 and D1 are positive diagonal matrices.

So, unless the entire row or column of X is 0, IPF solutions cannot naturally match zeros in the target row marginals p or

target column marginals q. However, zero marginals are common in real-world data: for example, in mobility data (Section

E.2), many points-of-interest have zero visits at night, and in bikeshare data (Section E.3), some bike stations have zero trips

at night. So, our implementation of IPF modifies it slightly to allow for non-negative, instead of strictly positive, marginals.

Our version sets d0i = 0, for all pi = 0, and d1j = 0, for all qj = 0, then updates all other entries in d0 and d1 as usual, as

described in (1). We show below that this is still a valid IPF procedure and all guarantees of IPF hold, because this procedure

is equivalent to running the original IPF procedure on X̃ , p̃, and q̃, where X̃ is a submatrix of X that leaves out the rows

and columns with zero marginals, p̃ contains the nonzero entries in p, and q̃ contains the nonzero entries in q.

For some row i where pi > 0, let d0i represent IPF’s inferred parameter under our modified IPF procedure on X , p, q, and let

d̃0i represent IPF’s inferred parameter under the original IPF procedure on X̃ , p̃, and q̃. Let d1j and d̃1j be defined analogously.

We will prove by induction that, for all iterations k, d0i (k) = d̃0i (k), ∀i s.t. pi > 0, and d1j (k) = d̃1j (k), ∀j s.t. qj > 0. First,

in the base case, d0i (0), d̃
0
i (0), d

1
j (0), and d̃1j (0) are all initialized to 1. Now, assuming the statement holds up to iteration k,

the next IPF update is

d0i (k + 1) =
pi

∑

j Xijd1j (k)
=

pi
∑

j;qj>0Xij d̃1j (k)
= d̃0i (k + 1). (9)

In the denominator, we can drop all the terms where qj = 0, since in our modified algorithm, we set d1j = 0 if qj = 0.

Furthermore, since we are only considering j where qj > 0, then we can replace d1j (k) with d̃1j (k), based on the inductive

hypothesis. A similar proof follows to show the inductive step for d1j and d̃1j .

Recall that in the connection between IPF and our network model (4), the number of nonzero entries in X̄ is our number of

Poisson observations. One implication of this equivalence between modified IPF for non-negative marginals and original

IPF on the submatrix is that zero marginals substantially reduce our number of observations, since the submatrix drops entire

rows and columns. Thus, for a given hour t, our set of observations consists of {(i, j)|i ∈ [m], j ∈ [n], X̄ij > 0, p
(t)
i >

0, q
(t)
j > 0}, which can be much fewer than mn observations, given high levels of sparsity in real-world X̄ , p(t), and q(t).

Fewer observations result in less accurate and more uncertain parameter estimates, making explicit the connection between

data sparsity and quality of IPF estimates, which we also demonstrate empirically in Section E, especially Figure 2.
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Algorithm 1 Our implementation of the iterative proportional fitting procedure.

Input: matrix X , row marginals p, column marginals q, tolerance ϵ
Initialize converged = false, oscillate = false, τ = 1, d0 = 1m, d1 = 1n

repeat

if τ is odd then

for i = 1 to m do

if pi = 0 then

d0i ← 0
else

d0i ← pi∑
j Xijd1j

end if

end for

else

for j = 1 to n do

if qj = 0 then

d1j ← 0
else

d1j ←
qj∑

iXijd0i
end if

end for

end if

M IPF(τ) = diag(d0)Xdiag(d1)
if ||M IPF(τ)−M IPF(τ − 1)||1 < ϵ then

converged← True
else if ||M IPF(τ)−M IPF(τ − 2)||1 < ϵ and ||M IPF(τ − 1)−M IPF(τ − 3)||1 < ϵ then

oscillate← True
end if

τ ← τ + 1
until converged is true or oscillate is true

B. Deriving Our Generative Network Model

In this section, we provide details on our generative network model. In Appendix B.1, we provide details on the known KL

divergence duality result that is key to our following proof. In Appendix B.3, we derive the log-likelihood of our model,

prove that IPF recovers the MLEs of our model (Theorem 3.1), and define the equivalent Poisson regression problem. In

Appendix B.4, we formalize the ªjointº network inference problem, where X̄ =
∑

tX
(t), and characterize when the joint

problem reduces to the decoupled problem solved by our model. In Appendix B.5, we provide necessary and sufficient

conditions for IPF to recover the true network exactly (Theorem B.1). Finally, in Appendix B.6, we prove that among a

larger class of generalized linear models, the Poisson model is the unique one where the MLE is the IPF solution Ð so from

the perspective of IPF, our generative model is canonical (Theorem B.2). In Figure B.1, we also summarize many of the

conditions we discuss in this work (e.g., when IPF converges, when MLEs are finite) and visualize how they fit together.

B.1. Duality result for KL divergence minimization

For completeness, we provide the details for deriving the dual problem (3) of the KL minimization problem (2). Let u and v
be the multipliers of the constraints Ŷ 1n = p, Ŷ T1m = q, respectively. Applying Sion’s minimax theorem (Sion, 1958),

the problem is equivalent to

min
Ŷ

max
u,v

∑

ij

Ŷij log
Ŷij
Xij
−
∑

i

ui(Ŷ 1n − p)i +
∑

j

vj(Ŷ
T
1m − q)j =

max
u,v

min
Ŷ

∑

ij

Ŷij log
Ŷij
Xij
−
∑

i

ui(Ŷ 1n − p)i +
∑

j

vj(Ŷ
T
1m − q)j
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where strong duality holds because both problems are feasible and bounded. Taking the first order condition with respect to

Ŷij , we obtain

log Ŷij = logXij − 1 + ui − vj ,

and substituting this back into the objective, we obtain

max
u,v

∑

ij

Xije
−1+ui−vj (−1 + ui − vj)−

∑

i

ui(
∑

j

Xije
−1+ui−vj − pi) +

∑

j

vj(
∑

i

Xije
−1+ui−vj − qj)

= max
u,v
−
∑

ij

Xije
−1+ui−vj +

∑

i

uipi −
∑

j

vjqj .

Finally, using the change of variable ui = ui − 1
2 and vj = vj +

1
2 , we obtain

max
u,v
−
∑

ij

Xije
ui−vj +

∑

i

piui −
∑

j

qjvj −
∑

i pi +
∑

j qj

2
⇔

min
u,v

∑

ij

Xije
ui−vj −

∑

i

piui +
∑

j

qjvj ,

which we recognize as g(u, v).

B.2. Connections to Entropy Regularized Optimal Transport

In many applications of IPF, the initial matrix X arises from some transportation cost function C of the entropic-regularized

optimal transport problem associated with (2). More precisely, with the transformation X = exp(−C/ε), the KL minimiza-

tion problem

min
Ŷ ∈Rn×m

+

DKL(Ŷ ∥X)

Ŷ 1m = p, Ŷ T1n = q

is equivalent to the following regularized optimal transport problem

min
Ŷ ∈Rn×m

+

⟨Ŷ , C⟩+εDKL(Ŷ ∥p⊗ q)

Ŷ 1m = p, Ŷ T1n = q.

For example, C could be the distance between the origin and the destination or total travel time. In our setting, X is

given as X̄ , the time-aggregated network (e.g., number of bike trips between stations over time or number of visits from

neighborhoods to places), but we could still interpret it as a surrogate measure for the above mentioned physical quantities.

For example, we can expect that the longer it takes to travel between a particular pair of locations, the fewer people on

average will travel between those nodes. Therefore, when we do not have access to information about distance or travel cost,

X̄ can be used as a reasonable surrogate.

We also prefer to directly use X̄ instead of writing it as exp(−C/ϵ) since in real-world data, X̄ contains many zero elements.

If we want to interpret it in terms of C, we need to allow ªinfinite transportation costº for some origin-destination pairs.

In Appendix E.1.3, we also briefly discuss a possible extension of our biproportional Poisson model based on the gravity

model of Navick & Furth (1994), which uses the distance between origin-destination pairs as the cost function C, and with

X̄ the aggregate number of trips as a constant multiplier instead. When we have access to additional information (besides

aggregate trips) that can serve as the cost C, such a model could be preferable.
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Conditions

I. IPF converges on inputs !𝑋, 𝑝("), 𝑞(").

II. Matrix balancing problem has a finite solution on !𝑋, 𝑝("), 𝑞(") ↔ IPF recovers the MLEs 

of the biproportional Poisson model, given !𝑋, 𝑝("), 𝑞(") (Thm 3.1).

III. 𝑋(") is truly generated from the biproportional Poisson model (Thm 4.2, Cor D.2).

IV. !𝑋 is the true time-aggregated network over snapshots including 𝑋(") (Cor D.1).

V. 𝑋(") = 𝐴 !𝑋𝐵, for positive diagonal matrices 𝐴, 𝐵 ↔ IPF recovers 𝑋(") perfectly (Thm B.1).

IIII

II

IV

V

w.h.p.

Figure B.1. Summary of how the different conditions we discuss in this work fit together. Arrows indicate that one condition implies (i.e.,

is a sufficient condition for) another. Conditions II-V are all sufficient, but not necessary, conditions for IPF to converge. Prior work has

also defined several necessary and sufficient conditions for IPF to converge (Pukelsheim, 2014); see Section D for details.

B.3. Proof of Theorem 3.1

For convenience, we restate our biproportional Poisson model (4) and Theorem 3.1 below. Our model is

X
(t)
ij ∼

{

Poisson(euiX̄ije
−vj ), if X̄ij > 0,

0, otherwise.

p
(t)
i =

∑

j

X
(t)
ij , q

(t)
j =

∑

i

X
(t)
ij .

where X̄ is the time-aggregated network, X(t) is the time-varying network, u and v are scaling factors, and p(t) and q(t) are

the row and column sums of X(t), respectively. Our theorem states:

Assume that the matrix balancing problem on X̄ , p(t), and q(t) has a finite solution (D0, D1). Then d0 and d1

are limits of the IPF iterations if and only if û = log d0 and v̂ = − log d1 are solutions to the above maximum

likelihood problem given X̄ , p(t), and q(t), with log-likelihood ℓ = −g(u, v) in (3), i.e.,

ℓ(u, v) =
∑

i

p
(t)
i ui −

∑

j

q
(t)
j vj −

∑

ij

X̄ije
ui−vj .

Moreover, this problem is equivalent to the maximum likelihood estimation of a Poisson regression model, and

p(t), q(t) are the sufficient statistics.

Proof. Since we know that IPF minimizes g(u, v) in (3), our goal is to identify a network model whose likelihood is

equivalent to −g(u, v). Several intuitions guide our construction of the model. First, Qu et al. (2023) recently established

connections between IPF and choice modeling, and observed that (3) reduces to the maximum likelihood objective of a

general class of choice models based on the Luce choice axiom, which suggests the same may be true for a network model.

Second, it is well-known that finding maximum likelihood parameters θ̂ is asymptotically equivalent to minimizing the KL

divergence to the data-generating distribution, i.e., minθDKL(pdata||pθ) (Huber, 1967). Since the parameters appear on the

right side of this KL problem and X appears in the right side of the KL problem implied by IPF (2), and KL divergence is

not symmetric, then our intuition is that the time-aggregated network X̄ (which takes the place of X) should appear in the

parameters of our network model. Lastly, the choice of Poisson distribution is natural given its close connections with KL

divergence (HarremoÈes, 2001; Renner & Warton, 2013), similar to the associations between ℓ1 and Laplace, as well as ℓ2
and Gaussian distributions.

With these intuitions, we arrived at our biproportional Poisson model. Now, we derive the log-likelihood of our model

to verify that it matches −g(u, v). To simplify notation, we will employ the notation (Y,X, p, q) as shorthand for
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(X(t), X̄, p(t), q(t)) throughout. The model’s likelihood is given by

L(Y |X,u, v) = Πi,j;Xij>0
(euiXije

−vj )Yij exp(−(euiXije
−vj ))

Yij !
. (10)

When maximizing the likelihood with respect to u and v, we can drop the denominator, which is constant in the parameters.

Maximizing the log-likelihood yields the following problem:

max
u,v

∑

i,j;Xij>0

Yij · (ui + logXij − vj)− euiXije
−vj . (11)

We can also drop Yij log(Xij) since it does not depend on u, v. The resulting problem is

max
u,v

∑

i,j;Xij>0

Yijui − Yijvj − euiXije
−vj (12)

= max
u,v

∑

i

ui(
∑

j;Xij>0

Yij)−
∑

j

vj(
∑

i;Xij>0

Yij)−
∑

i,j;Xij>0

euiXi,je
−vj (13)

= max
u,v

∑

i

uipi −
∑

j

vjqj −
∑

ij

euiXije
−vj , (14)

which is equivalent to maximizing −g(u, v). Since IPF minimizes g(u, v) (when the matrix balancing problem has a finite

solution), it must also maximize the likelihood of our model, so we have proven the first part of our statement. Furthermore,

observe that (14) implies that the marginals of Y are sufficient statistics for our network model, conveniently aligning with

the problem constraints from IPF.

Next, we show that the network inference problem is equivalent to a Poisson regression problem. Although our Poisson

network model and Poisson regression are, not surprisingly, close relatives, it is instructive to precisely illustrate their

connections and distinctions. Poisson regression is a generalized linear model which defines the logarithm of a Poisson

variable’s expected value as a linear model of input features. Generically, let θ ∈ R
d represent the parameters of a Poisson

regression model, x ∈ R
d represent input features, and y represent the observed non-negative count data. Ignoring constants,

the log-likelihood of observing y under the Poisson regression model is

y · θTx− eθTx. (15)

To match this to the log-likelihood of our network model in (11), for each sample indexed by i, j with Xij > 0, we set the

input features x to be [ei, ej , logXij ], where ei ∈ {0, 1}m is a vector of all zeros aside from a 1 in the i-th position and

ej ∈ {0, 1}n is a vector of all zeros aside from a 1 in the j-th position. Observe again that since this construction relies on

logXij , the Poisson regression model only applies to Yij where Xij > 0. We then set the dependent variable to be y = Yij .
Lastly, it is obvious that we should set the parameter θ ∈ R

d with d = m+ n+ 1 as θ = [u,−v, 1]. We can verify that the

log-likelihood of this Poisson regression model is equal to the objective in (11), and that p, q are the sufficient statistics

of the model. To perform Poisson regression, we may need a set of values Yij for Xij > 0 that are consistent with the

marginals. This can be achieved exactly by running the max flow algorithm on the bipartite graph defined by X (Idel, 2016).

For details on the maximum flow algorithm, see Section D.1.

Other settings where IPF recovers MLEs. A popular application of IPF is to estimate contingency tables, where it

is known that IPF can be used to derive MLEs for certain log-linear models of contingency tables (Bishop & Fienberg,

1969; Bishop et al., 1974; Little & Wu, 1991; Little, 1993). For example, a related formulation using λij = euiX̄ije
−vj for

contingency tables is studied by Little & Wu (1991). However, instead of Poisson random variables, X
(t)
ij are treated as

probability parameters of a target population. Data from a two-step sampling procedure fitted using IPF then yields the

MLE. Recently, Qu et al. (2023) revealed interesting connections of IPF to algorithms in the choice modeling literature,

where it is shown that IPF can be used to compute MLEs of a general class of choice models based on Luce’s axiom of

choice (Luce, 1959). Our network model is closely related to such choice models, and our statistical theory results also draw

inspirations from corresponding works in the choice literature (Seshadri et al., 2020; Bong & Rinaldo, 2022).
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Comparison to collective graphical models. Sheldon & Dietterich (2011) introduce the problem of collective graphical

models (CGMs): how to fit a model of individual behavior from aggregate data (e.g., counts). The general problem that

CGM addresses shares strong similarities with the dynamic network inference problem in our work, where we are also trying

to estimate finer-grained information (time-varying networks) based on coarser, aggregate data (time-varying marginals

and time-aggregated network) due to privacy or data collection costs. A common feature is that the available aggregate

data provides the sufficient statistics of the model, which enables valid estimation and inference. An additional algorithmic

connection between our work and CGM is that IPF has also been used in the inference of CGM (Singh et al., 2020).

However, a notable difference is that CGM is typically applied in settings where only the time-varying marginals are known,

without access to the time-aggregated network. For example, several papers use CGMs to estimate population flows given

the number of people in each area over time (Iwata et al., 2017; Akagi et al., 2018; Iwata & Shimizu, 2019). Furthermore,

CGM seeks to relate population-level observations to a model of individual behavior (e.g., a single person’s mobility or a

bird’s migration patterns), while we are not trying to estimate individual models. Instead of disaggregating over populations,

we seek to disaggregate over time, by taking the time-aggregated network and distributing it over smaller time intervals

(e.g., from monthly to hourly). Finally, the specific mathematical formulations of the problems in CGM and in the network

inference problem seem to be distinct. CGM is built on probabilistic graphical models of independent and identically

distributed individuals. It aims to estimate the parameters of random vectors on nodes of a graph given only aggregate

counts of specific states using MAP inference. In contrast, our biproportional Poisson model is used to model the random

population flows between nodes of a graph using maximum likelihood estimation, which is solved via IPF.

B.4. The ªjointº network inference problem

In our biproportional Poisson model (4), we used the time-aggregated network X̄ as the baseline intensity in the Poisson

parameter euiX̄ije
−vj . We then solve many ªdecoupledº problems, where we fit the model separately for every time step

t. However, in doing so we are potentially leaving out additional information implied by the constraint that the Poisson

variables aggregated over time should be equal to the observed time aggregated traffic X̄ . This constraint is only applicable

when we are inferring X(t) for the same set of time steps t over which X̄ is aggregated, so it would not apply, for example,

if X̄ is aggregated from historical data or we are only inferring X(t) for some subset of time steps. In cases where it does

apply, we consider instead the following ªjointº model

Yijt =

{

Poisson(Xije
−vit+ujt) Xij > 0

0 Xij = 0
, (16)

where Yijt describes the traffic between nodes i, j at time t, Xij is an unknown parameter that describes the time-invariant

propensity of traffic between i, j, and vit, ujt are now time-dependent intensity parameters that describe the level of activity

at different nodes.

In the cross-sectional problem, we use the observed X̄ij which aggregates over different times in place of Xij . In (16),

instead of having Xij as an observable, we posit that it is a model parameter that needs to be estimated, and we observe the

three marginals quantities X̄, P,Q:

X̄ij =
∑

t

Yijt,

Qit =
∑

j

Yijt,

Pjt =
∑

i

Yijt.

Importantly, we no longer require that Xij and X̄ij have the same zero patterns, as X̄ij = 0 could result from

Poisson(Xije
−vit+ujt) = 0 for all t. The relevant part of the log-likelihood function of the joint model (16) is given

by
∑

ijt

Yijt log(Xije
−vit+ujt)−

∑

ijt

Xije
−vit+ujt =

∑

ij

X̄ij logXij −
∑

it

Qitvit +
∑

jt

Pjtujt −
∑

ijt

Xije
−vit+ujt ,
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where again the marginal quantities X̄, P,Q are the sufficient statistics of the model. The first order conditions are given by

e−vit ·
∑

j

Xije
ujt = Qit

eujt ·
∑

i

Xije
−vit = Pjt

Xij ·
∑

t

e−vit+ujt = X̄ij .

Compare this system with that of the cross-sectional problem, where for each fixed t, we solve

e−vit ·
∑

j

X̄ije
ujt = Qit

eujt ·
∑

i

X̄ije
−vit = Pjt.

In contrast, for the joint problem we instead solve

e−vit ·
∑

j

Xije
ujt = Qit

eujt ·
∑

i

Xije
−vit = Pjt

where Xij satisfies the additional constraint

Xij ·
∑

t

e−vit+ujt = X̄ij .

Therefore, the implicit assumption used to reduce the joint problem to the cross-sectional problems is that

∑

t

e−vit+ujt ≈ c (17)

for all i, j where X̄ij > 0; otherwise, Xij = 0 or
∑

t e
−vit+ujt = 0. In other words, the aggregated time-dependent

intensities for each pair (i, j) does not depend on i, j. We may justify (17) in several ways. For example, if we assume vit
and ujt are drawn i.i.d. from two distributions with the same mean, then 1

T

∑

t e
−vit+ujt → 1 by the continuous mapping

theorem. Alternatively, if Xij is an accurate description of the long-run traffic propensity between i, j, then the intensity of

the aggregate traffic Poisson variables
∑

t Yijt should largely be captured by Xij , i.e., independent of
∑

t e
−vit+ujt .

B.5. When IPF recovers the true network exactly

If we swap out the Poisson distribution in our biproportional Poisson model (4) for an identity function, we find that this

condition is necessary and sufficient for IPF to exactly recover the true network, X(t), given X̄ , p(t), q(t).

Theorem B.1. IPF returns X(t) if and only if X(t) = AX̄B, for some positive diagonal matrices A and B.

Proof. First, we prove that, if IPF returns X(t), then X(t) = AX̄B. All IPF solutions take the form D0X̄D1, where D0

and D1 are positive diagonal matrices. If IPF returns X(t), then X(t) can be written as AX̄B, with A = D0 and B = D1.

Second, we prove that, if X(t) = AX̄B, then IPF will return X(t). First, if there is a finite solution to the matrix balancing

problem, IPF will converge to a solution (Pukelsheim, 2014). We know that AX̄B is a solution, so IPF will return D0X̄D1,

where (D0X̄D1) · 1n = p(t) and (D1X̄TD0) · 1m = q(t). Furthermore, biproportional scalings are unique with respect

to marginals, meaning if two biproportional scalings M1 and M2 of M0 have the same marginals, then M1 = M2

(Pukelsheim, 2014). Thus, IPF will return X(t), since IPF will converge to D0X̄D1, with marginals p(t) and q(t), and X(t)

is the unique biproportional scaling of X̄ that matches the marginals.
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While this statement about X(t), that X(t) = AX̄B, is rarely true in practice, this result allows us to pin down when IPF

works ªperfectlyº for dynamic network inference. Notably, this result implies that the scaling matrix from X̄ to X(t), i.e.,

X
(t)
ij /X̄ij where X̄ij > 0, must be a rank-1 matrix with entries aibj (the diagonals of A and B). If we interpret X(t) as a

dynamic network and X̄ as its time-aggregated form, then we are essentially constraining the complexity of the network’s

temporal variation.

B.6. Poisson links uniquely recover IPF within a class of generalized linear models

In Theorem 3.1, we showed that IPF recovers the MLEs of the biproportional Poisson model, and then we argued that

spelling out this model clarifies implicit assumptions when using IPF to infer dynamic networks from their marginals.

However, this argument requires some degree of uniqueness in the model we identified, since if IPF recovers the MLEs of

many different models, then using IPF to infer dynamic networks may be justified under the assumptions of many different

models, not only the biproportional Poisson. To analyze uniqueness, in this section we consider a very natural family of

generalized linear models which generalizes the biproportional Poisson model. We prove a rigorous result which shows that

if we want to recover IPF as the solution to maximum likelihood estimation, then we are forced to choose scaled Poisson

distributions for the link3. This shows that in some sense our model is canonical, and it is unique within this general family.

Throughout this section, time superscripts are omitted.

Class of models where row and column statistics are sufficient. Suppose that (pα)α∈A is an exponential family with

canonical parameter4 α and sufficient statistic x. Assuming without loss of generality that 0 ∈ A, this means that

dpα
dp0

(x) = exp(αx− Φ(α)). (18)

We suppose the observations are generated by the following generalized linear model: independently for each i and j we

sample

Yij ∼ pαij
, αij = ui + logXij − vj . (19)

Note that the algebraic form of (18) and the weights αij in (19) is exactly what leads in the derivation of (14) to the row

and column sums being sufficient statistics for the overall model. This is also illustrated below in the computation of the

log-likelihood. In other words, the key desiderata that the row and column statistics are sufficient does not by itself force

us to consider the biproportional Poisson model Ð rather, it is the fundamental property of this larger class of GLMs.

Many important distribution families satisfy (18): for example, the class of unit-variance Gaussians N(µ, 1) or the class of

exponential distributions Exp(λ).

Thus, this is the natural class of models to consider if we want to see if IPF is also the MLE for a variant of our model, or in

other words test how unique the connection between IPF and the biproportional Poisson model is. As we will show, this

connection is unique Ð the only measures pα that will recover IPF are scalings of the Poisson family, and this is true even if

we only require the measure to satisfy a significantly generalized version of the IPF equations.

Log-likelihood under general model. Recall that we use (y,X, p, q) as shorthand for (X(t), X̄, p(t), q(t)). The log-

likelihood of our model, assuming X is known, is

L(u, v; y) =
∑

ij

log pαij (yij) =
∑

ij

(ui + logXij − vj)yij −
∑

ij

Φ(ui + logXij − vj)

=
∑

i

uipi −
∑

j

vjqj −
∑

ij

Φ(ui + logXij − vj) + C(y).

where C(y) =
∑

ij yij logXij does not depend on the model parameters u or v. As promised, we see that the row sums

pi =
∑

j yij and column sums qj =
∑

i yij are sufficient statistics for this model.

3Note that if the inputs to the IPF algorithm are uniformly scaled, the outputs of IPF are scaled in the same way, so the fact that scaling
doesn’t matter is expected. This is a useful property of IPF, because it means it works even when data is scaled/normalized.

4See e.g. (McCullagh, 2019) for a reference on exponential families and generalized linear models. As an example, for a Poisson
distribution with rate λ the canonical parameter is log λ.
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Differentiating, we see that

∂uiL(u, v; y) = pi −
∑

j

Φ′(ui + logXij − vj) = pi −
∑

j

Φ′(ui − wij), (20)

where for convenience we defined

wij = logXij − vj
to be the term in the linear model added to ui. The partial derivative with respect to vj satisfies a symmetrical equation.

Because of this symmetry, it will suffice for us to consider the equation for the row weights in what follows.

(Generalized) IPF is uniquely recovered by a scaled Poisson link. We say that the MLE satisfies a generalized

proportional fitting equation if

∂ui
L(u, v; y) = 0 ⇐⇒ h(ui) =

pi
∑

j f(wij)
(21)

for some smooth functions f, h. This definition captures and generalizes the fact that in IPF, the row weight, parameterized

here by ui, is determined by the ratio of the empirical count pi and the corresponding row sum. In the special case of the

Poisson distribution, we have f = h = exp.

Now we show that if the critical point equation has the generalized form (21), the distribution corresponding to the link must

be a scaled Poisson family Ð in which case, we know that we get exactly the IPF equations discussed in the main body of

the paper. So for this family of generalized linear models, we recover the IPF equations as a characterization of the MLE

exactly when the link corresponds to a scaled Poisson distribution.

Theorem B.2. In the above generalized linear model, the MLE satisfies a generalized proportional fitting equation for all

parameters u, v iff the exponential family {pα}α is the set of Poisson distributions scaled by some factor a ∈ R. In other

words, {pα : Φ(α) <∞} = {aPoisson(λ) : λ ≥ 0} for some a.

Proof. Substituting (20), we see that (21) is equivalent to asking that

h(ui)
∑

j

f(wij) =
∑

j

Φ′(ui + wij). (22)

Taking the partial derivative with respect to vj (equivalently, wij), this implies that

h(ui)f
′(wij) = Φ′′(ui + wj).

This holding for all possible u, v is the same as requiring that

Φ′′(u+ t) = h(u) · f ′(t).

Letting t = 0 gives that h(u) = Φ′′(u)/f ′(0) and letting u = 0 gives that f ′(t) = Φ′′(t)/h(0) = f ′(0)Φ′′(t)/Φ′′(0). So

Φ′′(u+ t) =
Φ′′(u)Φ′′(t)

Φ′′(0)
.

Taking the partial derivative with respect to t on both sides and setting t = 0, we have

Φ′′′(u) = Φ′′(u)
Φ′′′(0)

Φ′′(0)
.

Equivalently, letting a = Φ′′′(0)
Φ′′(0) , we have

d

du
log Φ′′(u) =

Φ′′′(u)

Φ′′(u)
= a

Integrating yields

log Φ′′(u) = au+ b
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so

Φ′′(u) = eau+b.

Integrating twice more yields

Φ(u) = eau+b + cu+ d.

From the definition, we must have Φ(0) = 0 so

Φ(u) = eau+b + cu− eb. (23)

Recalling that f ′(t) = f ′(0)Φ′′(t)/Φ′′(0) and h(u) = Φ′′(u)/f ′(0), returning to (22) yields that

Φ′′(ui)

Φ′′(0)

∑

j

(Φ′(wij) + f(0)) =
∑

j

Φ′(ui + wij),

and plugging in (23) yields

aeaui

∑

j

(eawij+b + f(0)) =
∑

j

(aea(ui+wij)+b + c),

so

c = aeauif(0)

for all ui. Either a = 0, in which case this implies c = 0, or if a ̸= 0 this implies f(0) = 0 and so c = 0 regardless. Hence

Φ(u) = eau+b − eb.

Recall that the cumulant generating function of the Poisson distribution with canonical parameter b (i.e. with rate λ = eb) is

u 7→ eb(eu − 1). So the above Φ is exactly the cumulant generating function of a scaled Poisson distribution aPoisson(eb).
We know that such distributions satisfy the IPF equations, so this is indeed an if-and-only-if statement.

C. Statistical theory of the biproportional Poisson model

In this section, we provide a comprehensive presentation including proofs of our statistical results on the biproportional

Poisson model. In Appendix C.1, we derive bounds on the estimation error of the model’s MLEs (when bounded). In

Appendix C.2, we prove that, under the correct specification of the biproportional Poisson model, the maximum likelihood

estimation problem has a unique bounded normalized solution with high probability.

We begin with a precise definition of the graph Laplacian used in this work. Given the time-aggregated matrix X̄ , we define

the bipartite graph Gb with adjacency matrix A(X̄):

A(X̄) :=

[

0 X̄
X̄T 0

]

,L :=

[

D(X̄1m) −X̄
−X̄T D(X̄T

1n)

]

. (24)

We can verify that L is also the Hessian of the negative log-likelihood of the biproportional Poisson model evaluated at

(u, v) = (0, 0).

C.1. Structure-dependent Bounds on Estimation Error of MLE

We begin with a lemma from Qu et al. (2023), which bounds the Hessian of the negative log-likelihood (3) in a bounded

domain by the Fiedler eigenvalue. Recall that we use X as shorthand for X̄ .

Lemma C.1 (Appendix F.3 of (Qu et al., 2023)). For all (u, v) ∈ 1⊥m+n with ∥(u, v)∥∞ ≤ B,

λ−2(∇2g(u, v)) ≥ e−2Bλ−2(L)

where

L = D
([

0 X
XT 0

] [

1n
1m

])

−
[

0 X
XT 0

]

is the graph Laplacian of the weighted bipartite graph given by X .
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Using the lemma above, we can obtain bounds on the expected squared error for the normalized MLEs quantified by the

Fiedler eigenvalue, as long as the true parameters and MLEs are all bounded by some constant B.

Theorem C.2. Suppose that the Poisson network model holds with ground truth parameters u∗, v∗, X . Suppose (u, v) is a

maximizer of the likelihood (minimizer of g) and that we have the normalization condition (u− u∗, v − v∗) ∈ 1⊥m+n and

∥(u, v, u∗, v∗)∥∞ ≤ B. Then over the randomness of p(t), q(t) we have in expectation

E∥(u− u∗, v − v∗)∥21B ≤
8e4B

λ−2(L)2
κ (25)

where B is the event that the MLE exists and is bounded by B, and

κ =
∑

i,j

euiXije
−vj .

Furthermore, with probability at least 1− δ, we have that whenever the MLE exists and is bounded by B, it satisfies

∥(u− u∗, v − v∗)∥2 ≤ 8e4B

λ−2(L)2
(

λ+
√

6 log(4/δ)λ(1 +M) + C log2(12/δ) log2(1 +m+ n)(1 +M)
)

where C > 0 is an absolute constant, and

M := max{max
i∈[m]

∑

j

eu
∗

iXije
−v∗j ,max

j∈[n]

∑

i

eu
∗

iXije
−v∗j }.

is the maximum of the row and column sums of the matrix (euiXije
−vj )ij .

Remark C.3 (Interpretation of Theorem C.2). We illustrate the bound with some examples, discuss the meaning and tightness

of this bound, and give a simple sufficient condition for the MLE to be bounded.

1. Examples with strong recovery guarantees: complete network. Suppose that X is the n×m all-ones matrix and that

B is a constant (e.g. B = 5). Then κ = Θ(nm) and λ−2(L) = min(n,m) so the right hand side of (25) is of order

Θ(max(n/m,m/n)). So if e.g. n = m, then the total error for recovering the entire vector is O(1). Equivalently, the

average error per coordinate of u, v is 1
2n∥(u− u∗, v − v∗)∥2 = O(1/n).

For a more sophisticated example on a random graph model, see Appendix E.1.2.

2. Meaning of normalization condition. The normalization condition
∑

i ui +
∑

i vi =
∑

i u
∗
i +

∑

i v
∗
i eliminates a

scaling ambiguity in the model: if we add a constant c to u∗ and to v∗, it does not change the distribution of the output

of the model.

3. Dependence on κ is optimal. Consider the special case where X : m× 1 with all-ones entries, and we fix the scaling

convention that v∗1 = 0 (because any value of v∗1 is consistent with some shift of u∗). Then the generative model

reduces to observing m independent Poisson variables with rates eu
∗

i for i = 1 to m, and our estimator u reduces

to solving the equation eui = p
(t)
i . Then κ =

∑

ij e
ui is the total variance of estimating the quantities eu

∗

i . Since

λ−2 = 1 in this example, we see that the bound is optimal up to constants and the dependence on B in this example.

4. Dependence on λ−2 is required; non-identifiability when λ−2 = 0. If λ−2 = 0 no guarantee of this form is possible

for the estimator, because the parameters of the model are not identifiable. The reason is that this corresponds to the

case where the graph is disconnected, in which case the true parameters are not identifiable. To illustrate the reason

why, consider the case where X = I . Then for every i ∈ [n], we can replace u∗i , v
∗
i with u∗i + c, v∗ + c for any c ∈ R

without changing the distribution of observations from the model. Unless n = 1, this results in nonidentifiability in

the model which is not fixed by the normalization condition. More generally, whenever the graph is disconnected,

we can similarly shift the parameters corresponding to one of the components without changing the distribution of

observations.

We briefly remark that some quantitative dependence on λ−2 is required even if we restrict to the case λ−2 > 0. This

is because the above argument can be modified to show that the parameters are statistically indistinguishable if the

graph is not strictly disconnected but effectively so (e.g. if we add ϵ > 0 to all of the entries of X for a very tiny ϵ).
This can be formally proven by a similar KL calculation to the one in the example below.
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5. Example where eΘ(B) term is required. We show that the term with exponential dependence on B in (25) cannot be

removed Ð this is by establishing a lower bound which holds not just for our estimator, but for any possible estimator.

Consider a very special case of the model, where we have a single observation from a Poisson distribution with

parameter eu
∗

1 . Consider two such models: in the first one u∗1 = u′1 = −B/2 and in the second one u∗1 = u′′1 = −B.

The KL divergence between the two Poisson distributions Poi(eu
′

1) and Poi(eu
′′

1 ) is eu
′

1(u′1 − u′′1) + eu
′

1 − eu′

2 =
O(Be−B/2) = O(e−B/4). By Pinsker’s inequality and the Neyman-Pearson Lemma (see e.g. (Rigollet & HÈutter,

2023)), this means that it is impossible to distinguish between these two distributions from a single sample with

probability of success better than 1/2 + e−Ω(B). This means any estimator for the true parameter will have to make

an error of size Ω(B) with probability at least 1/2 − e−Ω(B) in one of these models. Because κ = e−Ω(B) and

λ−2(L) = 1, the right hand side of (25) would be exponentially small in B without the presence of the term e4B ,

which would contradict our lower bound.

6. Generalization of conclusion. From the proof of the theorem, we can see that the final high probability guarantee

doesn’t hold specifically for u, v the MLE, but for any parameters u, v which achieve at least as high log-likelihood

than the ground truth u∗, v∗ on the training data. (So in this form, the theorem could be applied even if the MLE

doesn’t exist.)

7. MLE is bounded with high probability if entries of X large enough. Consider scaling X by β > 1. When β is large

enough, one can actually show that with high probability the MLE must be close to (u∗, v∗) Ð in particular it exists

and it is bounded. From the proof of Theorem 4.1 and Markov, with 99% probability we have

g(u, v) ≥ g(u∗, v∗)−
√

200
∑

ij

eu
∗

iXije
−v∗j + e−2bλ−2(L)(∥u− u∗∥2 + ∥v − v∗∥2)/2.

Suppose that X = βZ and let LZ be the Laplacian for Z. Then this is

g(u, v) ≥ g(u∗, v∗)−
√

β

√

200
∑

ij

eu
∗

iXije
−v∗j ∥(u, v)− (u∗, v∗)∥+ e−2bβλ−2(LZ)(∥(u, v)− (u∗, v∗)∥2)/2.

Define B = ∥(u∗, v∗)∥∞ and observe b ≤ B + ∥(u − u∗, v − v∗)∥ so letting r = ∥(u − u∗, v − v∗)∥ we have the

inequality

g(u, v) ≥ g(u∗, v∗)−
√

β

√

200
∑

ij

eu
∗

iZije
−v∗j r + e−2B−2rβλ−2(LZ)r2/2.

This implies g(u, v) > g(u∗, v∗) if
√

βe−2B−2rrλ−2(LZ) > 40
√
κ

where κ =
∑

ij e
u∗

iXije
−v∗j . In particular, if r = 1 this reduces to the condition

√

βe−2Bλ−2(LZ) > 40e2
√
κ

so taking

β > 4002
e4B

λ−2(LZ)2
κ

suffices. Finally, observe by convexity that this implies the minimum of g is attained within a ball of radius 1 around

(u∗, v∗), since g(u, v) > g(u∗, v∗) for all u, v on the sphere of radius 1 centered at (u∗, v∗).

Proof of Theorem C.2. In this proof, we omit the time superscripts so p = p(t) and q = q(t).

We have by Lemma C.1, Taylor’s theorem, and the Cauchy-Schwarz inequality that

g(u, v) ≥ g(u∗, v∗) + ⟨∇g(u∗, v∗), (u− u∗, v − v∗)⟩+ e−2Bλ−2(L)(∥u− u∗∥2 + ∥v − v∗∥2)/2
≥ g(u∗, v∗)− ∥∇g(u∗, v∗)∥∥(u− u∗, v − v∗)∥+ e−2Bλ−2(L)(∥u− u∗∥2 + ∥v − v∗∥2)/2.

Therefore, using that g(u∗, v∗) ≥ g(u, v) and rearranging, we have that

∥∇g(u∗, v∗)∥∥(u− u∗, v − v∗)∥ ≥ e−2Bλ−2(L)(∥u− u∗∥2 + ∥v − v∗∥2)/2.
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Dividing through by ∥(u− u∗, v − v∗)∥ gives

∥∇g(u∗, v∗)∥ ≥ e−2Bλ−2(L)∥(u− u∗, v − v∗)∥/2. (26)

It remains to control ∥∇g(u∗, v∗)∥. First observe that

∂uig =
∑

j

Xije
−vj+ui − pi = λi − pi

and pi ∼ Poisson(λi) if we define λi =
∑

j e
uiXije

−vj , so E∇ug(u∗, v∗) = 0. Next, note that

∥∇ug(u∗, v∗)∥2 =
∑

i

(∂ui
g(u∗, v∗))2 =

∑

i

(λi − pi)2 .

Since pi ∼ Poisson(λi), we have that

E (λi − pi)2 = λi, E (λi − pi)4 = 3λ2i + λi

so Var
(

(λi − pi)2
)

= 2λ2i + λi. Therefore,

E∥∇ug(u∗, v∗)∥2 =
∑

i

λi =
∑

ij

euiXije
−vj , Var

(

∥∇ug(u∗, v∗)∥2
)

=
∑

j

(2λ2i + λi).

Applying Lemma C.10 and Lemma C.9 yields that
∥

∥

∥max
i

(|λi − pi|2 − λi)
∥

∥

∥

ψ1/2

≤ K log2(1 +m)max
i

(1 + λi)

where K is an absolute constant. Hence, applying Theorem C.6 yields that with probability at least 1− δ/2,

∥∇ug(u∗, v∗)∥2 −
∑

i

λi ≤
√

3 log(4/δ)
∑

i

(2λ2i + λi) +K ′ log2(12/δ) log2(1 +m)max
i

(1 + λi)

≤
√

6 log(4/δ)
∑

i

λimax
i

(1 + λi) +K ′ log2(12/δ) log2(1 +m)max
i

(1 + λi).

By a completely symmetrical argument, an analogous bound holds for ∥∇vg(u∗, v∗)∥2. Summing the two bounds and using

the union bound yields that with total probability at least 1− δ,

∥∇g(u, v)∥2 ≤ 2
∑

ij

euiXije
−vj +

√

24 log(4/δ)
∑

ij

euiXije−vj (1 +M) + 2K ′ log2(12/δ) log2(1 +m+ n)(1 +M)

where we recall that

M = max







∑

j

euiXije
−vj | i ∈ [m]







∪
{

∑

i

euiXije
−vj | j ∈ [n]

}

is the maximum of the row and column sums of the matrix (euiXije
−vj )ij . Finally, recalling (26) we see that

∥(u− u∗, v − v∗)∥2

≤ 4
e4B

λ−2(L)2
∥∇g(u∗, v∗)∥2

≤ 8e4B

λ−2(L)2





∑

ij

euiXije
−vj +

√

6 log(4/δ)
∑

ij

euiXije−vj (1 +M) +K ′ log2(12/δ) log2(1 +m+ n)(1 +M)



 .

A simpler version of this argument proves the in-expectation bound (simply combine (26) with the calculation for

E∥∇g(u∗, v∗)∥2).
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C.1.1. CONCENTRATION INEQUALITIES WITH ORLICZ NORMS

We make use of powerful concentration of measure estimates from the literature in terms of Orlicz norms. These are useful

because we need to give concentration estimates for sums of squares of Poisson random variables, and a standard ªChernoff

boundº argument cannot be applied to these because their tails are too heavy for moment generating functions to exist.

Definition C.4 (Orlicz norm). Given a function ψ : R≥0 → R≥0, we define the corresponding Orlicz norm of a random

variable X by

∥X∥ψ = inf{λ > 0 : Eψ(|X|/λ) ≤ 1}.

The Orlicz norm may not be a norm in the usual sense (in particular, satisfy the triangle inequality) if ψ is not convex, but

this terminology is commonly used anyway.

Definition C.5 (α-exponential Orlicz norm). For α > 0, we define

ψα(x) = exp(xα)− 1 (27)

and refer to ∥ · ∥ψα
as the α-exponential Orlicz norm.

The following result arises by specializing the upper tail bound of Theorem 4 of (Adamczak, 2008) to the case of the identity

function class with δ = 1 and η = 1/2.

Theorem C.6 (Special case of Theorem 4 from (Adamczak, 2008)). Let α > 0. There exists a constant Cα > 0 such that

the following is true. Suppose that X1, . . . , Xn are independent, mean-zero random variables with finite α-exponential

Orlicz norm. Then

Pr

(∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

≥ t
)

≤ exp

(

− t2

3σ2

)

+ 3 exp

(

−
(

t

Cα∥max1≤i≤n |Xi|∥ψα

)α)

where

σ2 =

n
∑

i=1

EX2
i

Remark C.7. The conclusion of the above theorem directly implies the following. With probability at least 1− δ,

∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

≤ σ
√

3 log(2/δ) + Cα∥ max
1≤i≤n

|Xi|∥ψα

α
√

log(6/δ).

While ψα may not be a norm it has similar properties:

Lemma C.8 (Property 4.ii and 4.vi of (Chamakh et al., 2020)). For c ∈ R,

∥c∥ψα = |c|/ α
√

log 2.

For any random variables X,Y and α > 0

∥X + Y ∥ψα
≤ 2(∥X∥ψα

+ ∥Y ∥ψα
).

Lemma C.9 (Property 4.viii of (Chamakh et al., 2020)). For any α > 0 and random variables X1, . . . , Xn,

∥

∥

∥

∥

max
1≤i≤n

|Xi|
∥

∥

∥

∥

ψα

≤
[

log(1 + n)

log(3/2)

]1/α

max
1≤i≤n

∥Xi∥ψα .

We also use the following standard tail bound for Poisson random variables (it can be derived from Bernstein’s inequality

via the Poisson CLT, see (Vershynin, 2018)).

Lemma C.10 (Standard, see e.g. (Vershynin, 2018)). For any λ ≥ 0, if X ∼ Poisson(λ) then

Pr(|X − λ| ≥ t) ≤ 2 exp

( −t2
2(λ+ t/3)

)

.

27



Inferring Dynamic Networks from Marginals with Iterative Proportional Fitting

The tail bound implies an upper bound on the subexponential norm of Poisson variables, which can be reinterpreted as a

bound on 1/2-exponential Orlicz norm of their square.

Lemma C.11. There exists an absolute constant C > 0 such that the following holds. Suppose that X ∼ Poisson(λ) for

some λ ≥ 0. Then

∥(X − λ)2∥ψ1/2
= ∥X − λ∥ψ1

≤ C(1 + λ).

Proof. Recall from Lemma C.10, we have that

Pr(|X − λ| ≥ t) ≤ 2 exp

( −t
2(λ/t+ 1/3)

)

.

For any t ≥ 1, this implies that Pr(|X − λ| ≥ t) ≤ 2 exp
(

−t
2(λ+1/3)

)

< 2 exp
(

−t
6(λ+1/3)

)

and so in fact Pr(|X − λ| ≥

t) ≤ 2 exp
(

−t
6(λ+1/3)

)

for all t ≥ 0, because the right hand side is larger than 1 for t < 1. Therefore the conclusion follows

from an equivalent characterization of subexponential random variables, more preccisely Proposition 2.7.1 of (Vershynin,

2018).

C.2. Well-posedness of maximum likelihood estimation of biproportional Poisson

Given the biproportional Poisson model (4) restated below with (Y,X, p, q) as shorthand for (X(t), X̄, p(t), q(t)):

Yij ∼ Poisson(euiXije
−vj ) for Xij > 0,

pi =
∑

j,Xij>0

Yij

qj =
∑

i,Xij>0

Yij ,

we briefly explained in Section 4 why the maximum likelihood estimation problem

min g(u, v) =
∑

ij

euiXije
−vj −

∑

i

uipi +
∑

j

vjqj

given data X, p, q may not have a finite solution. Here we provide a bit more detail on this matter. The key to the well-

posedness problem is the gap between the strong and the weak existence conditions discussed in Qu et al. (2023). Suppose

all the Poisson random variables Yij happen to be non-zero. Then the strong existence condition is satisfied, i.e., there exists

a matrix (in fact Y ) with the same zero pattern as the base matrix X with marginals p, q, so the ML estimation problem has

a unique (normalized) finite solution. However, as soon as any of the Poisson variables Yij is zero, only the weak condition

is guaranteed, since the matrix Y inherits all zeros of X , but now contains additional zeros. We know that in this case, the

balancing problem with (X, p, q) does not admit a finite solution. Sinkhorn still converges, but the estimated parameters

u, v diverge to ±∞. In practice, we only observe p, q, so there is no easy way to check whether any of the latent individual

Poisson variables Yij is zero, but in principle, it is possible that the generated data (p, q) is not consistent with the base

matrix X . The corresponding case in the choice setting is exactly when some set of items always wins. We need to actually

show that this event happens with small probability. We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Recall that the negative log-likelihood of the biproportional Poisson model is equivalent to

g(u, v) =
∑

ij

euiXije
−vj −

∑

i

uipi +
∑

j

vjqj .

The Hessian is given by

L(u, v) :=
[

D(euXe−v1m) −euXe−v
−(euXe−v)T D((euXe−v)T1n)

]

,
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and the gradient is given by

(
∑

j

euiXije
−vj − Yij ,−

∑

i

euiXije
−vj + Yij).

Note that each Yij is an independent Poisson random variable with mean and variance parameter euiXije
−vj . Now for each

non-empty I ⊆ [m] and J ⊆ [n] with XIJC = 0, i.e., Xij ≡ 0 for any (i, j) satisfying i ∈ IC , j ∈ J , let EIJ be the event

that
∑

j∈J qj =
∑

i∈I pi. The event EIJ corresponds to the case where the realized network of Poisson variables being

disconnected, hence the MLE being unbounded. Our goal is to bound the union of all events EIJ for XIJC = 0. We have

P[EIJ ] = P





∑

i∈I,j∈J

Yij =
∑

i∈I,j∈[n]

Yij





= P





∑

i∈I,j∈JC

Yij = 0





= P





∑

i∈I,j∈JC

Yij − eu
∗

iXije
−v∗j = −

∑

i∈I,j∈JC

eu
∗

iXije
−v∗j





≤ P





∑

i∈I,j∈JC

Yij − eu
∗

iXije
−v∗j ≤ −

∑

i∈I,j∈JC

eu
∗

iXije
−v∗j





≤ exp(−1

2

∑

i∈I,j∈JC

eu
∗

iXije
−v∗j ),

where in the last step we used Bennett’s inequality (Bennett, 1962).

Now we connect the bound above to the Hessian evaluated at the true parameters. Note that for any i ∈ [m] and j ∈ [n],

eu
∗

iXije
−v∗j = −Lij(u∗, v∗),

and letting eI ∈ R
m be the indicator vector of I and eJ ∈ R

n be the indicator vector of J , we have

∑

i∈I,j∈JC

eu
∗

iXije
−v∗j = −

[

eI
eJ

]T

L(u∗, v∗)
[

1m − eI
1n − eJ

]

where we have used the fact that Xij ≡ 0 for any (i, j) satisfying i ∈ IC , j ∈ J . Now using once again that 1m+n spans

the null space of L(u, v), we have

∑

i∈I,j∈JC

euiXije
−vj =

[

eI
eJ

]T

L(u∗, v∗)
[

eI
eJ

]

≥ λ−2(L(u∗, v∗))
(|I|+ |J |)(m+ n− |I| − |J |)

m+ n
.

As a result, we have the following bound on the probability of event EIJ :

P[EIJ ] ≤ exp(−1

2

[

eI
eJ

]T

L(u∗, v∗)
[

eI
eJ

]

)

≤ exp(−1

2
λ−2(L(u∗, v∗))

(|I|+ |J |)(m+ n− |I| − |J |)
m+ n

).
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Now applying a union bound on all I, J with XIJC = 0, we have

P(MLE does not exist) ≤
∑

I⊊[m],J⊊[n],XIJC=0

exp(−1

2
λ−2(L(u∗, v∗))

(|I|+ |J |)(m+ n− |I| − |J |)
m+ n

)

≤ 2

[

(

1 + exp(−1

4
λ−2(L(u∗, v∗)))

)m+n

− 1

]

.

Finally, plugging in λ−2(L(u∗, v∗)) ≥ 2 log(m+ n) gives

P(MLE does not exist) ≤ 2

[

(

1 + exp(−1

2
log(m+ n))

)m+n

− 1

]

= 2

[

(

1 + (m+ n)−1/2
)m+n

− 1

]

≤ 2√
m+ n

.

Intuition on sufficient condition (8). We provide some intuition why a ªlargeº λ−2(L∗) ensures finite solutions exist.

Consider again scaling X̄ by a constant c > 1, which also scales up λ−2(L∗) and the Poisson parameters eu
∗

i X̄ije
−v∗j by c.

As c increases, the probability of the Poisson entries X
(t)
ij drawing zero decreases exponentially. As a result, X(t) is much

more likely to have the same zero patterns as X̄ , which implies bounded MLEs (Qu et al., 2023).

D. Details on our convergence algorithm, ConvIPF

In this section, we provide details on our algorithm, ConvIPF, for achieving IPF convergence. First, we review the

conditions for IPF convergence and discuss two implications: (1) IPF will always converge given a true time-aggregated

network (Corollary D.1), (2) IPF will always converge on data generated from our network model (Corollary D.2). Then,

we discuss our algorithm, ConvIPF, which repeats three subroutines: MAX-FLOW, BLOCKING-SET, and MODIFY-X.

In Appendix D.1, we describe MAX-FLOW, which is also described in Idel (2016). In Appendix D.2, we provide our

algorithm for BLOCKING-SET and prove that it efficiently finds a blocking set of rows. In Appendix D.3, we formalize the

minimization objective in MODIFY-X and present two principled approaches to solving it.

Conditions for IPF convergence. Three equivalent conditions (Pukelsheim, 2014) that define exactly when IPF converges,

given inputs X , p, and q, are:

1. There exists a matrix M with row sums p and column sums q such that Mij = 0 wherever Xij = 0.

2. For all row subsets S ⊆ [m],
∑

i∈S pi ≤
∑

j∈NX(S) qj , where NX(S) represents the set of columns connected to S in

X .

3. There exist positive diagonal matrices D0, D1 such that D0XD1 has row sums p and column sums q.

Condition (1) yields the MAX-FLOW algorithm for testing whether IPF will converge, which we describe in Appendix D.1.

Condition (2) motivates our BLOCKING-SET algorithm (Appendix D.2), which efficiently identifies a ªblocking setº of

rows for which the condition is violated. Conditions (1) and (3) yield the following useful corollaries, which establish two

settings where IPF is guaranteed to converge.

Corollary D.1. Let T = {t1, t2, · · · , tT } represent a set of timesteps and X̄ =
∑

t′∈T X
(t′) represent the time-aggregated

network. Given the time-varying networkX(t), with row marginals p(t) and column marginals q(t), IPF will always converge

on inputs X̄ , p(t), and q(t) if t ∈ T .

Proof. We know that IPF must converge on X(t), p(t), and q(t), since X(t) has marginals p(t) and q(t), so simply setting

d0 = 1m and d1 = 1n solves the matrix balancing problem, satisfying Condition (3). Then, Condition (2) must also be
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satisfied for X(t), p(t), and q(t). Since X̄ sums over a set of matrices including X(t), for any row subset S in [m], its set of

connected columns under X̄ must be a superset of its connected columns under X(t). Thus, if Condition (2) is satisfied for

X(t), p(t), and q(t), then it must be satisfied for X̄ , p(t), and q(t); therefore, IPF converges on X̄ , p(t), and q(t).

Corollary D.2. LetX(t), p(t), q(t) represent data generated from our network model (4), given any X̄ and scaling parameters

u and v. IPF will always converge on X̄ , p(t), and q(t).

Proof. Here, we do not require X̄ to be a sum over some set of matrices that includes X(t). However, a similar logic applies:

first, by the same argument as above, we know that IPF must converge on X(t), p(t), and q(t). Furthermore, under our model

4, X(t) adopts all zeros in X̄ (with potential additional zeros). So, again, for any row subset S in [m], its set of connected

columns under X̄ must be a superset of its connected columns under X(t). Thus, if Condition (2) is satisfied for X(t), p(t),
and q(t), then it must be satisfied for X̄ , p(t), and q(t); therefore, IPF converges on X̄ , p(t), and q(t).

These corollaries establish useful facts relating IPF, our network inference problem, and our model. Note that for Corollary

D.1, we do not require the data to be generated from our model, only that the true time-aggregated network is given. In

contrast, for Corollary D.2, we do not require that the true time-aggregated network is given, only that the data is generated

from the model. These corollaries also serve as ªcertificatesº of data quality and model correctness. If IPF does not converge,

then the statements above cannot be true: we do not observe the true time-aggregated network X̄ (at least one that includes t)
and the data p(t) and q(t) is not generated from the model given X̄ . This motivates our perspective of IPF non-convergence

as an issue of missing data in X̄ , and the need for additional, but minimal, new edges. In Appendix E.2, we also discuss

real-world reasons for missingness in X̄ , with mobility data as an example.

Our algorithm, ConvIPF, achieves IPF convergence by iteratively identifying a blocking set of rows, for which the second

convergence condition is violated, and unblocking those rows by minimally adding edges that connect those rows to new

columns. Since our algorithm can be applied generally to any application of IPF, not only in the network inference setting,

we use generic notation of X , p, and q in the following sections, to represent general IPF inputs. Our algorithm repeats three

subroutines, MAX-FLOW, BLOCKING-SET, and MODIFY-X, until IPF converges:

1. Run MAX-FLOW to test for convergence. If IPF converges, then the algorithm is finished. If IPF does not converge,

move on to Step 2.

2. Since IPF does not converge, run BLOCKING-SET to identify a blocking set of rows, S.

3. Run MODIFY-X to unblock S by minimally adding edges to X .

Our algorithm is similar in structure to the multi-item auction procedure described by Demange et al. (1986) for finding

market-clearing prices. Their procedure iteratively (1) checks if there is a perfect matching of item-buyer based on current

prices, (2) if not, finds the set of constricted buyers S and their neighbors N(S), (3) adjusts prices in N(S) to attempt to fix

the matching. These steps map directly onto our steps 1-3 and step 2 is especially related because of the connection between

blocking row sets in IPF and constricted sets in bipartite matching (Hall, 1935), which we discuss in Appendix D.2. Below,

we describe each of our subroutines in detail.

D.1. MAX-FLOW

For completeness, we describe the algorithm from Idel (2016) for testing whether IPF will converge on inputs X , p, and q.

Condition (1) described that IPF converges if and only if there exists a matrix A with row sums p and column sums q such

that Aij = 0 wherever Xij = 0, i.e., A inherits the zeros of X . Note that this matrix is more general than the set of possible

solutions to the matrix balancing problem, since A does not have to be a biproportional scaling of X . Now, the following

algorithm will check for the existence of A. This algorithm is closely related to the max-flow-based algorithm from Kumar

et al. (2015) to test their concept of graph consistency, further establishing connections between IPF and discrete choice.

MAX-FLOW algorithm. Create a new directed graph Gf that has a source node s connected to one node ni for each row

and set the capacity of the edge s→ ni to pi. Create a sink node t connected to one node nj for each column and set the

capacity of the edge nj → t to qj . Finally, include an edge ni → nj , with capacity∞, wherever Xij > 0. Compute the

maximum flow on Gf . If the maximum flow is equal to
∑

i pi =
∑

j qj , then the desired matrix A exists, meaning IPF

converges for X , p, and q; otherwise, it does not converge.
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Proof. The reasoning is as follows: the matrix A can be constructed from the flow values, where Aij is set to flow(ni, nj)
(i.e., the flow along edge ni → nj) wherever Xij > 0 and 0 otherwise. This satisfies the constraint that A inherits the zeros

of X . Since the total flow is equal to
∑

i pi and the source node s is only connected to the row nodes, with capacity pi
along each edge, then each row node ni must have exactly pi flowing through it. Due to the conservation of flow, it must

be true that pi =
∑

j flow(ni, nj) for all rows i, so the row marginals are satisfied. A similar argument can be made for

the columns: since the sink node t is only connected to the column nodes, with capacity qj along each edge, then each

column node nj must have exactly qj flowing through it, so
∑

i flow(ni, nj) = qj for all columns j. Thus, A is a matrix

that inherits the zeros of X and satisfies the row and column marginals.

D.2. BLOCKING-SET

Given inputs X , p, and q, where we know IPF does not converge, this subroutine identifies a blocking set of rows S for

which Condition (2) is violated, i.e.,
∑

i∈S pi >
∑

j∈NX(S) qj . The naive approach to iterate through all subsets until

a violation is found, but this approach is extremely inefficient, as there are 2m possible subsets. Instead, our subroutine

imports ideas from matching theory and constricted sets to design a much more efficient algorithm.

Connection to constricted sets. The idea of blocking subsets in IPF is closely related to the concept of constricted sets

in bipartite matching problems. Given a bipartite graph G = L ∪ R, a constricted set is a set of nodes S ⊆ L such that

|N(S)| < |S|, where N(S) represents the set of neighbors in R who are connected to S. Then, a perfect matching on G
(where all nodes are matched) exists if and only if no constricted set in G exists (Hall, 1935).

Given a graph without a perfect matching, one can efficiently find a constricted set via an alternating breadth-first search

(BFS) algorithm. First, start with the maximal matching from the graph. Then, run BFS from an unmatched node on the

right side. Since the graph is bipartite, BFS will alternate between nodes on the right side and nodes on the left side. The

key is that we only keep alternating edges during BFS: when we move from the right to the left side, we keep edges that are

unused in the matching; when we move from the left to the right side, we keep edges that are used in the matching. When

alternating BFS terminates, the set of nodes visited on the right side forms a constricted set. This is due to the following

reasons, as explained in Easley & Kleinberg (2010):

1. All of the nodes visited on the left side must be matched. Otherwise, we would have an ªaugmenting pathº, i.e., one

that starts with an unmatched node on the right and ends with an unmatched node on the left, alternating between

unused and used edges. This is called an augmenting path because by flipping the edges from unused to used and used

to unused, we can increase the size of the matching. We can assume that no augmenting paths appear in alternating

BFS, since we already found the maximal matching; thus, all visited nodes on the left must be matched.

2. Each odd layer (left side) has the same number of nodes as the subsequent layer (right side), since we follow used

edges from left to right and each visited node on the left side is matched, so in the subsequent layer, we take each left

node’s partner. So, there are strictly more nodes in even (right) layers than odd (left) layers, since we start with a node

on the right.

3. Every node in an even (right) layer has all of its neighbors in the graph visited during BFS, since it was added by its

match in the previous layer then we add all of its non-match neighbors in the following layer.

Thus, the nodes visited on the right side form a constricted set, since all of their neighbors are included in the odd layers

during BFS, but there are strictly more nodes in the even than odd layers.

BLOCKING-SET algorithm. We propose the following algorithm, inspired by the alternating BFS algorithm for con-

stricted sets, for finding a blocking row set in IPF. First, from running MAX-FLOW on the flow graph Gf to test for

convergence, we have flow values for each row/column. We say that a row i reached its capacity if the flow passing through

it is pi and a column j reached its capacity if the flow passing through it is qj . Since the maximum flow is not equal to
∑

i pi, there must be at least one row i that does not reach its capacity. Construct an undirected bipartite graph G where the

nodes on the left and right are the rows and columns of X , respectively, and they are connected wherever Xij > 0 (this

graph is similar to but distinct from the flow graph Gf , which is directed and only has edges in the direction of rows to

columns). Run the following variant of BFS on G starting from node ni. As in the alternating BFS algorithm, each layer

of BFS here will alternate between nodes on the left (rows) and nodes on the right (columns). When progressing from a
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Figure D.2. Example of how we would modify Gf to increase the overall flow by ϵ, given nodes ni and nj (in green) that have not

reached capacity.

column node nC to its neighboring row node nR, only include row nodes where nR → nC has non-zero flow in Gf . When

progressing from row nodes to column nodes, include all (unvisited) neighbors. When this version of BFS terminates, the

set of row nodes visited forms a blocking subset of rows.

Proof. First, we can use an argument similar to that of augmenting paths from bipartite matching. Here, imagine that we

encountered a column j during BFS that has not reached capacity. Then, there is a path from node ni to node nj in G; for

example, ni − nC1
− nR1

− nC2
− nR2

− nj , where C1, C2 and R1, R2 are other columns and rows, respectively. Then,

we could increase the overall flow in Gf by adding ϵ to s→ ni and ni → nC1
, removing ϵ from nR1

→ nC1
and adding ϵ

to nR1
→ nC2

, removing ϵ from nR2
→ nC2

and adding ϵ to nR2
→ nj , and adding ϵ to nj → t (Figure D.2). In other

words, the flows at nR1
, nR2

, nC1
, and nC2

remain the same, but we increase the overall flow by rerouting additional flow

through ni and nj . Note that this is only possible since ni and nj are under capacity, and we restricted our BFS to paths

where, for consecutive nodes nC and nR, nR → nC has non-zero flow in Gf (so we can remove ϵ from those edges). For

any such path, we can do this rerouting to increase the overall flow. However, since we have found the maximum flow, such

a path cannot exist. Therefore, all of the columns we visited during BFS must have reached capacity.

The remaining arguments are as follows:

1. Due to the conservation of flow in Gf , the flow going through the visited rows must be equal to the flow going through

the visited columns, since our BFS includes all rows that are contributing non-zero flow to these columns.

2. The total capacity of the visited rows must be strictly greater than the total capacity of the visited columns, since we

established above that all visited columns must have reached capacity, but we start with a row node that did not reach

capacity.

3. Furthermore, all of the visited rows’ neighbors are included among the visited columns, since our BFS only restricted

edges from columns to rows, but not from rows to columns.

Since capacity is equivalent to the original IPF marginals, this means we have identified a set of rows whose total marginal

is larger than the total marginal of their connected columns. Thus, the set of rows visited during this version of BFS forms a

blocking subset.

D.3. MODIFY-X

Given a blocking set S, this subroutine minimally adds edges to X to unblock S. Let XK represent the modified X after

adding new edges K and let f(X,XK) represent the change in X that we are trying to minimize. Then, our goal is to find

the set of edges K∗ that minimizes f(X,XK),

K∗ = min
K

f(X,XK), (28)

33



Inferring Dynamic Networks from Marginals with Iterative Proportional Fitting

subject to unblocking S,

∑

i∈S

pi ≤
∑

j∈NXK (S)

qj . (29)

Given a current set of edges, each additional edge (i, j) will only contribute towards satisfying (29) if row i is in S and no

row in S is already connected to column j. Thus, it is clear that we should only consider edge sets K such that each column

in K’s edges are unique and not in the original set of S’s neighbors, NX(S). Furthermore, under such K, the constraint

(29) reduces to

∑

(i,j)∈K

qj ≥ δ, (30)

where δ :=
∑

i∈S pi −
∑

j∈NX(S) qj is the gap in marginals we are trying to make up to unblock S.

Below, we discuss two natural definitions of f(X,XK), along with appropriate algorithms for these objectives. Once we

have a set of selected edges K̂, we add them to X with a small uniform weight. Since we are trying to minimize f(X,XK),
which may be affected by the choice of edge weight, while we are trying to increase

∑

j∈NXK (S) qj , which is not affected

by edge weight (only depends on the structure of the graph), we should keep the weight as small as possible.

D.3.1. MINIMIZING NUMBER OF EDGES ADDED

One simple objective would be to minimize the number of new edges added, so f(X,XK) = |K|. The solution in this case

is straightforward. Let N̄X(S) represent the set of columns not connected to S in X . Take the top-k columns in N̄X(S),

ordered by qj in descending order, that satisfy
∑k
j=1 qj ≥ δ. Then, any set of edges between a row in S and these k columns

will unblock S, while minimizing the number of new edges added. For example, we could arbitrarily choose a row i∗ ∈ S
as the row with the largest pi, then set K∗ = {(i∗, j)}kj=1.

D.3.2. MINIMIZING CHANGE IN λ1

Minimizing the number of edges in K may feel insufficient, since the objective is coarse and leaves many degrees of

freedom, such as the choice of row in S. A more nuanced objective minimizes the spectral change in X . Motivated by the

application of epidemic spread, recall that the epidemic threshold of a network is closely related to the largest eigenvalue

λ1 of its adjacency matrix (Wang et al., 2003). In fact, attempts to reduce spreading on networks often aim to minimize

λ1 through budgeted edge removals (Tong et al., 2012; Saha et al., 2015; Li et al., 2023). So, our goal is to modify X to

unblock S, but otherwise change λ1 as little as possible. This goal is related to spectral sparsification, which aims to sparsify

a graph (i.e., greatly reduce its edges) while approximately preserving the spectrum of the graph (Spielman & Teng, 2011).

In contrast, we aim to add edges to X while minimizing change in its largest eigenvalue. So, we have

f(X,XK) = |λ1(X)− λ1(XK)| = λ1(X
K)− λ1(X). (31)

We are able to make this simplification since, by the Perron-Frobenius Theorem, a connected graph’s largest eigenvalue

strictly increases when an edge is added.

To solve this problem, we use a common approximation:

λ1(X
K)− λ1(X) ≈

∑

(i,j)∈K

u⃗1(i)v⃗1(j), (32)

where u⃗1 and v⃗1 are the left and right eigenvectors of λ1(X), respectively. In the closely related problem of removing k
edges from a graph G to minimize λ1(G), Tong et al. (2012) prove that there is only an O(k) gap between approximate

impact and actual impact on λ1. Let λ1(G) represent the original largest eigenvalue and λ1(G−R) represent the eigenvalue

after removing the edges in R. Then, Tong et al. (2012) show that

λ1(G)− λ1(G−R) = c
∑

(i,j)∈R

u⃗1(i)v⃗1(j) +O(k). (33)
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Since they approximate each edge’s impact as independent, then their solution simply removes the top-k edges with the

largest u⃗1(i)v⃗1(j). In our case, we want to find the opposite, i.e., the edges that minimize u⃗1(i)v⃗1(j), while unblocking S.

Our algorithm first finds the row i∗ in S with the smallest u⃗i(i), which we should use for all edges in K̂ since unblocking S
is agnostic to which row in S is chosen but λ1 approximately increases with larger u⃗i(i). Now, based on our prior analysis,

we want to find a set of columns J ⊆ N̄X(S), where
∑

j∈J qj ≥ δ (30), while minimizing
∑

j∈J v⃗1(j).

We can formulate this objective as an integer linear program (ILP), by using x ∈ R
|N̄X(S)| as an indicator representing

which columns in N̄X(S) should be included:

x∗ =min
x

∑

j∈N̄X(S)

v⃗1(j) · xj , (34)

such that
∑

j∈N̄X(S)

qj · xj ≥ δ and xj ∈ {0, 1}.

Then, we keep the set of columns J where x∗j = 1 and our algorithm returns K̂ = {(i∗, j)|j ∈ J}, which is guaranteed to

unblock S while approximately minimizing the change in the largest eigenvalue of X .

Our ILP in fact reduces to the classic Knapsack Problem, where, given a set of η items, each with a weight wi and value vi,
the goal is to maximize the total value of the items chosen subject to the total weight being under a given capacity W . By

flipping the signs of v1(j) and qj in (34), our ILP becomes identical to the Knapsack Problem. The Knapsack Problem, like

ILPs in general, is NP-hard, but it can be solved in pseudo-polynomial time using dynamic programming, which yields a

time complexity of O(ηW ) (pseudo because W is not the size of input). In our case, η corresponds to |N̄X(S)|, which is

worst-case n if S is not connected to any columns, and W corresponds to δ, which is worst-case
∑

i pi if rp(S) =
∑

i pi
and cX,q(S) = 0. So, we can solve our problem in pseudo-polynomial time too, or, if strictly polynomial time is desired, we

can use the Fully Polynomial-Time Approximation Scheme (FPTAS), which finds a solution in O(n3/ϵ) time that is at least

(1− ϵ) times the optimal value.

Further justification of eigenscore approximation. Here, we further justify the eigenscore approximation in (32) with

a derivative-based approach. We consider minimizing the increase in λ1 in the limit when the added edge weight ϵ→ 0.

In other words, we consider minimizing the infinitesimal change in the largest eigenvalue when adding edges. The first

observation is that for each candidate column j ∈ N̄X(S) that we want to add an edge, it is optimal to select only one row

i ∈ S to add the edge. To see this, consider the derivative

∂λ1
∂Xij

= lim
ϵ→0

λ1(X + ϵeie
T
j )− λ1(X)

ϵ

and for any j ∈ N̄X(S) define

θj := min
i∈S

∂λ1
∂Xij

.

In other words, θj is the minimal infinitesimal increase (cost) in λ1 when adding an edge from S to j, and we only need to

consider the row i ∈ S that achieves θj . We can therefore consider the following problem:

min
x

∑

j∈N̄X(S)

θj · xj

such that
∑

j∈N̄X(S)

qj · xj ≥ δ and xj ∈ {0, 1}.

This is again a canonical knapsack problem. Moreover, Corollary 2.4 of Stewart & Sun (1990) gives

θj = min
i∈S

u⃗T1 eie
T
j v⃗1

u⃗T1 v⃗1
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where u⃗1, v⃗1 are the left and right eigenvectors of λ1, respectively. The problem can be simplified because we just choose i
with minimal u⃗T1 ei for any j ∈ N̄X(S), and the problem reduces to the same knapsack problem as above (34):

min
x

∑

j∈N̄X(S)

v⃗1(j) · xj

such that
∑

j∈N̄X(S)

qj · xj ≥ δ and xj ∈ {0, 1}.

We therefore have a rigorous justification of the above ILP problem in terms of minimizing the instantaneous increase in

largest eigenvalue while unblocking the subset S.

D.4. Toy example

To build intuition, here we provide a toy example of data where IPF does not converge:

X =









1 0 0
1 1 0
0 1 0
0 1 1









(35)

p = [1, 1, 1, 1], q = [1, 1, 2].

IPF will not be able to converge on these inputs, since rows 0, 1, and 2 form a blocking subset: their total row marginal is 3

but their total column marginal (for columns 0 and 1) is 2. Intuitively, the problem is that row 0 is only connected to column

0, so all of its marginal must be used on column 0, leaving no marginal left in column 0. So, even though row 1 is also

connected to column 0, it must use all of its marginal on its remaining connection, column 1, which leaves no room for row

2’s marginal, where row 2 is only connected to column 1.

First, we verify that BLOCKING-SET returns S = {0, 1, 2}. The marginal gap in this case is δ = 1. For MODIFY-X,

there is only one column that S is not connected to, which is column 2. If we use the objective of minimizing number

of new edges, we would add one edge based any row in S and column 2, which unblocks S and allows IPF to converge.

In comparison, if we added ϵ to all zeros, as prior works have done to enable IPF to converge, we would add five edges.

Alternatively, if we use the objective of minimizing change in λ1, our algorithm identifies row 0 as the row in S with the

smallest u⃗1(i).
5 In this case, there is only one column, column 2, that is not connected to S, so the algorithm adds an edge

between row 0 and column 2 with weight ϵ = 0.01. The change in λ1 from this modification is 0.0007. In comparison, if

we connected row 1 to column 2 instead, the change is λ1 is 0.0019 (2.8×), and if we connected row 2 to column 2, the

change is λ1 is 0.0013 (1.8×). If we added ϵ to all zero entries, the change in λ1 is 0.010 (14.3×), which is much larger. So,

this toy example demonstrates how, even on a tiny matrix X with relatively few zero values, the difference between our

algorithm and the naÈıve solution is sizable, and our approximation of change in λ1 still effectively minimizes that change

in practice. On real-world data with much larger X , the differences are far more dramatic: in Section E.2.2, we show on

real-world mobility data that our algorithm reduces change in λ1 by orders of billions.

E. Experiments with data

In this section, we provide details on our experiments with data and describe additional experimental results. In Appendix

E.1, we describe experiments with synthetic data, which enables us to test IPF’s ability to recover true network parameters u
and v. We test IPF under correct model specification and model misspecification, trying alternate models with non-Poisson

distributions or interaction terms. In Appendix E.2, we describe experiments with mobility data from SafeGraph, which

provide a realistic example of our network inference setting, where only the hourly marginals and time-aggregated network

are provided, with missingness in the time-aggregated network. We show that IPF fails to converge several times on this data,

demonstrating the importance of principled solutions for non-convergence, and evaluate our new convergence algorithm

ConvIPF on this data, revealing dramatic improvements over prior solutions. In Appendix E.3, we describe experiments

with bikeshare data from New York City’s Citibike system, where we are able to construct ground-truth hourly networks.

These ground-truth networks allow us to evaluate IPF ability to estimate hourly networks in our network inference setting

5Following Tong et al. (2012), we use −u⃗1(i) when mini u⃗1(i) is negative, and similarly use −v⃗1(j) when minj v⃗1(j) is negative, to
ensure that all eigenscores are non-negative. According to the Perron-Frobenius theorem, such eigenvectors always exist.
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(with hourly marginals and time-aggregated network) and compare it to baseline methods. We also use these networks as an

opportunity to test our model assumptions on real-world data.

E.1. Synthetic data

Generating synthetic data. We generate synthetic data based on our biproportional Poisson model (4). In these

experiments, we set m = n = 100, and generate data in the following order:

1. We sample the row scaling factors eu ∈ R
m and column scaling factors e−v ∈ R

n from Uniform(0, 4).

2. We sample X̄ ∈ R
m×n from Uniform(0, 1).

3. For a given sparsity level r ∈ [0, 1), we randomly select r ·mn entries from X̄ (without replacement) and set them to 0.

4. We sample each X
(t)
ij from Poisson(euiX̄ije

−vj ).

5. We set p(t) and q(t) to the row sums and column sums of X(t), respectively.

E.1.1. COMPARING IPF AND POISSON REGRESSION

First, we run IPF on X̄ , p(t) and q(t), producing parameters d0 ∈ R
m and d1 ∈ R

n. Then, we fit a Poisson regression model

on all observations where X̄ij > 0, following the construction in Section B.3. Poisson regression returns parameters {θi}mi=1

corresponding to rows and parameters {θj}nj=1 corresponding to columns. Based on Theorem 3.1, we expect d0i = exp(θi),

for all i ∈ [m], and d1j = exp(θj), for all j ∈ [n], subject to arbitrary scaling between rows and columns (i.e., scaling row

factors by k and scaling column factors by 1/k). To control for such scaling, we normalize both sets of parameters by

dividing by their means. In Figures 1, we plot the normalized IPF parameters versus the Poisson regression parameters. We

find that they lie perfectly on the y = x line, validating Theorem 3.1. We also plot the 95% confidence intervals, as provided

by Python’s statsmodels package for fitting generalized linear models.6 Finally, we also plot the true parameter values eu

and e−v in Figure 1, which we can only include in our synthetic setting since we know the true network model’s parameters.

E.1.2. EVALUATING IPF OVER VARYING SPARSITY IN X̄

We also evaluate IPF over varying levels of sparsity in the time-aggregated matrix X̄ , since sparsity is common in real-world

data, as we find in our later experiments on real-world mobility data (Section E.2) and bikeshare data (Section E.3). For

each sparsity rate in r ∈ {0, 0.05, · · · , 0.9}, we run 1000 random trials, where in each trial, we repeat steps 2-5 of our

generative process with that sparsity rate in X̄ (i.e., we fix eu and e−v but resample all other variables) and run IPF on the

newly generated X̄ , p, and q. For each trial, we evaluate three metrics:

• The number of iterations that IPF takes to converge, following our implementation in Algorithm 1 (recall that under the

model, IPF will always converge; see Corollary D.2).

• The bound on the MLE’s expected estimation error, E[||(û− u, v̂ − v)||22], from Theorem 4.1, without constants:

∑

ij e
uiX̄ije

−vj

λ2−2(L)
.

• The observed ℓ2 errors between the IPF estimates and the true model parameters:

||(d0 − eu, d1 − e−v||2 =

√

∑

i

(d0i − eui)2 +
∑

j

(d1j − e−vj )2, (36)

where we use the mean-normalized version of all parameters.

6https://www.statsmodels.org/stable/glm.html.
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In Figure 2, we visualize our results, showing the mean and 95% CIs (from 2.5th to 97.5th percentiles over random trials)

per metric over sparsity rates. We find that IPF is negatively affected by sparsity in multiple ways: the number of iterations

until convergence increases, and both the expected bound and observed estimation error on the network parameters worsens.

However, the rate at which these metrics change differ, with the bound growing most quickly at high levels of sparsity. To

better understand why, below we analyze the connection between the bound on the MLE’s expected error, which we derived

in Theorem 4.1, and the observed ℓ2 error that we evaluate in these experiments.

Recall from Theorem 4.1 that in this example, we have an in-expectation bound on the error of the MLE of the form

E∥(û− u, v̂ − v)∥22 = O

(

∑

ij Xij

λ2−2(L)

)

where û = log d0 and v̂ = − log d1. By the mean-value theorem and the fact that the exponential function is Lipschitz on

the interval [−4, 4], this implies an analogous in-expectation bound on the exponentiated version which corresponds to the

plots:

E[∥(d0 − eu, d1 − e−v)∥22 | X] = O

(

∑

ij Xij

λ2−2(L)

)

.

Since

EXij = 2(1− r)

we have that in expectation (over the randomness of X)

EL = 2(1− r)
[

nI −11T
−11T nI

]

and so λ−2(EL) = 2(1− r)n. Using Weyl’s inequality and standard tools from random matrix theory (sketched below, see

e.g. (Gross & Nesme, 2010) or (Anderson et al., 2010)) we know that λ−2(L) = λ−2(EL) + o(n) with high probability for

any fixed sparsity rate r ∈ [0, 1). So with high probability over the randomness of X ,

E[∥(d0 − eu, d1 − e−v)∥22 | X] = O

(

(1− r)n2

(1− r)2n2

)

= O

(

1

1− r

)

. (37)

By Markov’s inequality, this shows that with 99% probability overall,

∥(d0 − eu, d1 − e−v)∥2 = O

(

1√
1− r

)

and the right hand side qualitatively matches the shape observed in Figure 2 (right).

Sketch of concentration argument. We only include a sketch of this argument since it is standard in the random graph/matrix

literature and not part of any of the main results of this work. By standard concentration estimates (i.e. Bernstein’s

inequality), the number of entries of X that are deleted from each row will be rn ± O(
√

rn log(n)). Equivalently, the

number of entries that remain in each row will be (1− r)n±O(
√

rn log(n)). Next we can compute that

VarXij = (1− r)16
3

+ 4r(1− r).

Hence
[

0 X
XT 0

]

= (1− r)11T +W

where W is a symmetric mean-zero matrix, where the variance of each coordinate above the diagonal is O(1 − r). So

by matrix concentration (see e.g. (Gross & Nesme, 2010)) we have that ∥W∥OP = O(
√
1− r

√

n log(n)) with high

probability. Since all of the error terms in this analysis were O(
√
n log(n)), they are certainly o(n) as claimed before.
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E.1.3. TESTING IPF UNDER MODEL MISSPECIFICATION

One advantage of defining an explicit model (the biproportional Poisson) that IPF corresponds to is that we can now

explore related, modified models. First, we show that our model can be written as a multinomial model, as it is well-known

that the distribution of a set of independent Poisson variables can be decomposed as a multinomial distribution over

these variables, conditioned on their sum, multiplied by the distribution of their sum (which is a Poisson variable). Let

λ :=
∑

ij;X̄ij>0 e
uiX̄ije

−vj . Then, our biproportional Poisson model (4) is equivalent to the following model:

N (t) ∼ Poisson(λ)

{X(t)
ij }X̄ij>0 ∼ Mult(N (t), π)

πij =
euiX̄ije

−vj

∑

i′j′;X̄i′j′>0 e
ui′ X̄i′j′e

−vj′
.

Other models are not equivalent to the Poisson, but defining them allows us to test IPF’s performance under model

misspecification. Below, we define three new models, discuss their MLEs, and conduct experiments where we run IPF on

data generated from these models. In all of these models, we redefine how the time-varying network X
(t)
ij is generated, but

p(t) and q(t) remain the row and column sums of X(t), respectively, and X
(t)
ij = 0 wherever X̄ij = 0.

Non-Poisson distributions. In our biproportional Poisson model (4), we assume each X
(t)
ij is drawn from Poisson(λij),

where λij = euX̄ije
−v. Here, we explore other models that keep the same expected value λij , but replace the Poisson

distribution with other distributions for count data. These experiments build on what we proved in Theorem B.2: within a

family of generalized linear models, IPF uniquely recovers the MLEs of the Poisson model. Now we test empirically how

IPF performs under model misspecification, by trying non-Poisson distributions.

Exponential. First, we try an exponential distribution, since Holford (1980) showed that maximum likelihood estimators are

equivalent for Poisson and exponential models when the underlying rate at which events occur has a log-linear relationship

with covariates, and the exponential model is defined by the rate while the Poisson model by the rate multiplied by the

population size. In contrast, we show that replacing the Poisson with an exponential distribution in our model does not yield

the same MLE, since the log-linear relationship is with the Poisson parameter instead of a rate. Since we want the expected

value of X
(t)
ij to be euiX̄ije

−vj , then the exponential rate must be 1
eui X̄ije

−vj
. So, our model is

X
(t)
ij ∼ Exp(

1

euiX̄ije−vj
), for X̄ij > 0. (38)

The likelihood of this model is

L(X(t)|X̄, u, v) =
∏

i,j,X̄ij>0

1

euiX̄ije−vj
exp(−

X
(t)
ij

euiX̄ije−vj
).

Maximizing the log-likelihood yields

max
u,v

∑

i,j,X̄ij>0

−ui − log X̄ij + vj −
X

(t)
ij

euiX̄ije−vj
. (39)

We can see that this log-likelihood (39) clearly does not match our Poisson model’s: the signs on ui and vj are flipped

and, unlike in our derivation of the Poisson model’s log-likelihood (14), we cannot marginalize out X
(t)
ij , meaning that

the marginals p(t) and q(t) do not suffice as sufficient statistics. Thus, it is not possible for IPF to derive the maximum

likelihood estimates of u, v when the distribution is exponential, instead of Poisson.

Negative binomial. We also try a negative binomial distribution, which is a common alternative to the Poisson model for

count data (Gardner et al., 1995), since it allows for overdispersed data while the Poisson assumes equidispersion (equal
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mean and variance). Our random variable here is X
(t)
ij , and the model is defined in terms of parameters s (the number of

successes) and γ (the success probability). To maintain an expected value of euiX̄ije
−vj , we have

s =
γ · euiX̄ije

−vj

1− γ ,

which yields the following model:

X
(t)
ij ∼ NB(

γ · euiX̄ije
−vj

1− γ , γ), for X̄ij > 0. (40)

Each random variable has variance

s(1− γ)
γ2

=
euiX̄ije

−vj

γ
.

The negative binomial model becomes identical to our Poisson model in the limit γ → 1, but otherwise clearly will not

result in equivalent MLEs due to the change in variance and additional parameter γ.

Although our statistical theory is developed for MLE under correct specification, we remark that it applies more generally to

non-Poisson distributions, as long as the conditional mean of Xij is given by euiX̄ije
−vj . This is because pseudo-Poisson

maximum likelihood is known to yield a consistent estimator as long as the logarithm of the conditional mean of the outcome

is linear in the covariates. In our setting, this requirement is satisfied as long as the mean of Xij is of the exponential

form specified in (4), without requiring the distribution to be Poisson. Since we show in Theorem 3.1 that the problem is

equivalent to a Poisson regression, we can conclude that IPF yields a consistent estimate for any model with the specified

log-linear means.

Experiments. We compare IPF’s performance on data generated from our biproportional Poisson model (4) versus data

generated from an exponential distribution (38) and from a negative binomial distribution (40). For the negative binomial, we

try γ ∈ {0.2, 0.5, 0.8}; since the negative binomial is equivalent to the Poisson model when γ → 1, smaller γ corresponds

to greater deviance from our original model. To test IPF on data generated from these models, we run 1000 trials, where

in each trial, we sample X̄ from Uniform(0, 1) (following Step 2 above); sample X(t) based on the model we are using;

set p(t) and q(t) to the row sums and column sums of X(t), respectively; then run IPF on X̄ , p(t), and q(t). As in our

previous experiment, we evaluate IPF using the ℓ2 distance between the true model parameters and IPF estimates (36).

As an additional metric, we also evaluate the cosine similarity between the true network X(t) and IPF-estimated network

X̂(t) = D0X̄D1, where we use cosine similarity as a scale-invariant measure of the similarity:7

sim(X(t), X̂(t)) =

∑

ij X
(t)
ij X̂

(t)
ij

||X(t)||2 · ||X̂(t)||2
. (41)

As shown in Table E.1, we find that IPF performs best when the model is correctly specified (i.e., the data is generated from

our biproportional Poisson model), compared to data generated from exponential or negative binomial models. As expected,

IPF’s performance on data from the negative binomial model also worsens as γ becomes smaller. However, IPF is still

reasonably effective under model misspecification: the cosine similarities between X(t) and X̂(t) remain above 0.8 for the

exponential model and negative binomial models, when γ ≥ 0.5.

As we did in Section E.1.2, we also test IPF over varying levels of sparsity r in X̄ , but this time with X(t) generated from

exponential distribution (38). This experiment allows us to compare the shape of ℓ2 error over varying levels of sparsity,

when the data is correctly specified (generated from Poisson) vs. incorrectly specified (generated from exponential).8 We

visualize the results in Figure E.3: we find that the shape of the ℓ2 curves are highly similar when the data is drawn from

either distribution, and matches the expected shape of 1/
√
1− r (see derivation in Section E.1.2), showing the usefulness of

our derived error bounds even under model misspecification.

7We left out this metric when we were evaluating sparsity, since it could be arbitrarily improved with sparsity due to known 0s.
8We are not able to test the negative binomial model with sparsity greater than 0, since the number of successes s must be strictly

positive, so the model (40) ill-defined for X̄ij = 0.
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Model ℓ2 error on u and v Cosine sim. between X(t) and X̂(t)

Biproportional Poisson (4) 0.995 (0.885-1.114) 0.911 (0.907-0.914)

Negative binomial (40), γ = 0.8 1.117 (0.999-1.260) 0.892 (0.887-0.897)

Negative binomial (40), γ = 0.5 1.410 (1.266-1.572) 0.843 (0.836-0.850)

Exponential (38) 1.734 (1.519-1.976) 0.855 (0.843-0.866)

Negative binomial (40), γ = 0.2 2.226 (1.957-2.479) 0.707 (0.695-0.720)

Table E.1. Evaluating IPF’s performance on synthetic data generated from our biproportional Poisson model vs. models with non-Poisson

distributions. The models are approximately ordered in terms of best-to-worst performance.
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Figure E.3. Comparing sparsity rate in X̄ to observed ℓ2 error of IPF estimates, for data drawn from Poisson (left) vs. exponential (right)

distributions. The subfigure on the left, where the model is correctly specified, exactly matches Figure 2, right. Lines represent mean and

shaded region represents 95% CIs over 1000 trials.

Models with interaction terms. Our original model assumes that the expected hourly values for X
(t)
ij are a scaling of X̄ij

by a row factor eui and a column factor e−vj . However, there could also be interactions between rows and columns that

influence the expected hourly values. To account for interaction, we extend our model as

X
(t)
ij ∼ Poisson(euiX̄ije

−vj · dαije−dijβ), for X̄ij > 0, (42)

where α and β are a new model parameters and dij > 0 represents an observed interaction feature, such as the geographical

distance if the rows and columns correspond to physical places. This new model is inspired by the doubly constrained

gravity model from Navick & Furth (1994), who estimate the number of trips between bus stops i and j as dαije
−dijβAiBj ,

with learned row and column factors Ai and Bj which correspond to eui and e−vj . We discuss their gravity model in

detail in Section E.3.1, where we use it as a baseline against which to compare IPF. We can view this interaction model

(42) as interpolating between using the time-aggregated network as the initial matrix, as a data-driven perspective, and

using a gravity model to form the initial matrix, as a model-based perspective; meanwhile, continuing to learn row- and

column-specific factors to match the observed time-varying marginals. Maximizing the log-likelihood of this model yields

max
u,v,α,β

∑

i,j;X̄ij>0

X
(t)
ij (ui + log X̄ij − vj + α log dij − dijβ)− euiX̄ije

−vj · dαije−dijβ

∝ max
u,v,α,β

∑

i

uip
(t)
i −

∑

j

v
(t)
j qj + α

∑

ij

X
(t)
ij log dij − β

∑

ij

X
(t)
ij dij −

∑

ij

euiX̄ije
−vj · dαije−dijβ .

This new log-likelihood cannot be simplified to the original log-likelihood (14) unless α = β = 0. Furthermore, unlike in

the biproportional Poisson model, the marginals of X(t) (p(t) and q(t)) do not form sufficient statistics here, meaning that it

cannot be used in our dynamic network inference setting where only p(t), q(t), and X̄ are observed (but not X(t)). However,

it is still instructive to define this model, so that we can test IPF on data generated from this model.

Experiments. To generate data from the interaction model (42), first we sample 2-dimensional positions per row i ∈ [m] and

column j ∈ [n] from Uniform(0, 1), then we set the distance dij between row i and column j to be the Euclidean distance
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Figure E.4. IPF’s ℓ2 error on network parameters u and v (36).

0.5 0.0 0.5 1.0 1.5 2.0
 in interaction model (  = 0)

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Co
sin

e 
sim

ila
rit

y

2 1 0 1 2
 in interaction model (  = 0)

Figure E.5. Cosine similarity between true network X(t) and IPF-estimated network X̂(t) (41).

Figure E.6. Evaluating IPF performance on data generated from interaction model (42), over different values of α and β.

between their positions. Then, for each value of α and β, we run 1000 trials, where (as before) in each trial we sample

X̄ from Uniform(0, 1); sample X(t) from the interaction model with the current values of α, β, and dij ; set p(t) and q(t)

to the row sums and column sums of X(t), respectively; then run IPF on X̄ , p(t), and q(t). As before, we evaluate the ℓ2
distance between the true model parameters and IPF estimates (36) as well as the cosine similarity between the true network

X(t) and IPF-estimated network X̂(t) (41). To test the impact of α alone, we fix β to 0 and try α from −0.5 to 2, which is

symmetric in its impact on dij since we have dαij in our model. As expected, we find that performance worsens as α deviates

further from 0, but we find that over this range of α that cosine similarity between the true and estimated network remains

high, at 0.8 or higher, while the ℓ2 distance on parameters u and v is more dramatically worsened (Figure E.6, left). To test

the impact of β alone, we fix α to 0 and try β from −2 to 2, which is also symmetric in its impact on dij since we have

e−dijβ in our model. We also find that performance worsens as β deviates from 0, but the cosine similarity remains high

(above 0.85) and the ℓ2 is less affected by β than α (Figure E.6, right). So, at least under these values of α, β, and dij , we

find that IPF is relatively robust to model modifications and can still effectively infer the true network.

E.2. Experiments with real-world mobility data

We also conduct experiments with real-world mobility data, using the same aggregated location data from SafeGraph as

Chang et al. (2021a;b). Like Chang et al. (2021a;b), our goal is to use the data from SafeGraph to infer hourly mobility

networks that encode visits from home census block groups (CBGs), which are neighborhoods of around 600-3000 people, to

individual points-of-interest (POIs), which are public locations such as restaurants, grocery stores, or gas stations. SafeGraph

data provides a realistic example of where IPF would be necessary to infer a dynamic network from its 3D marginals, since

SafeGraph does not provide the hourly mobility network; instead, they provide hourly total visits to POIs and from CBGs

as well as an estimated, time-aggregated mobility network. Furthermore, SafeGraph’s mobility data is noisy for several

reasons, which creates the possibility of incorrect zeros in the time-aggregated matrix, and thus a need for our convergence
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algorithm in Section 5. We discuss these reasons below.

Noise and missingness in SafeGraph data. First, unlike in the case of bikeshare data (Section E.3), where bikes are

perfectly observed checking into and out of stations, SafeGraph needs to infer assignments to rows (i.e., POIs) and columns

(i.e., CBGs). That is, SafeGraph’s raw data takes the form of individual devices’ GPS signals, and SafeGraph needs to

perform both visit attribution to determine that a device is visiting a particular POI (SafeGraph, 2021) and home attribution to

determine that a device belongs to a person who lives in a given CBG (SafeGraph, 2020b; Huang et al., 2021). Mistakes can

be made at different stages of this process, such as incorrect visit attribution due to GPS drift or incorrect home attribution

due to nighttime activity in a CBG that is not the person’s home (e.g., if they have night shifts for work). Second, since

SafeGraph relies on data from smartphones, they are missing individuals who either do not carry cell phones or opt out of

data collection (SafeGraph, 2019). For example, Coston et al. (2021) showed that SafeGraph disproportionately misses

older and non-white populations in their data. Third, to preserve privacy, SafeGraph documents that they apply ªdifferential

privacy techniquesº to their reported time-aggregated networks (SafeGraph, 2020a). Specifically, for a given POI, when

reporting time-aggregated (weekly or monthly) counts of visits from a home CBG, they add Laplacian noise to the count,

drop CBGs with fewer than two devices visiting that POI, and report all visit counts from 2-4 as 4. All of these reasons lead

to imperfectly observed networks and marginals, motivating the need for our convergence algorithm.

E.2.1. CONSTRUCTING IPF INPUTS FROM MOBILITY DATA

Using this data, our goal is to infer the mobility network at hour t from n CBGs to m POIs. We study the Richmond,

Virginia metropolitan statistical area (MSA), as one of the regions studied by Chang et al. (2021b). Using their inclusion

criteria, we include 9917 POIs in the MSA and 1098 CBGs that frequently visit these POIs. To capture temporal variation,

we compare two daysÐMarch 2 and April 6, 2020, two Mondays just before and after the onset of the COVID-19 pandemic

in the USÐand infer hourly networks over their 48 hours. To infer these networks using IPF, we construct a time-aggregated

network, X̄; hourly total visitors to POIs, p(t); and hourly total visitors from CBGs, q(t). We construct these quantities

from SafeGraph data in the same way as the authors did in Chang et al. (2021a;b). We summarize this procedure below,

highlighting a few important facts, and refer the reader to the original text for details.

Constructing time-aggregated network X̄ . SafeGraph provides summaries of the home CBGs of each POI’s visitors,

per month (before March 2020) or week (after March 2020). To account for non-uniform sampling from different CBGs,

we weight the number of SafeGraph visitors from each CBG by the ratio of the CBG population (from US Census) and

the number of SafeGraph devices with homes in that CBG. Following the original text, let Ŵ (r) represent the reweighted

matrix for period r (we use r instead of t to denote time periods longer than an hour). Since these visit matrices are sparse,

we aggregate over R time periods, from January to October 2020:

W̄ =
1

R

R
∑

r=1

Ŵ (r), Xij =
W̄ij

∑

kWkj
. (43)

So, Xij represents the time-aggregated proportion of visits to POI i that come from CBG j. Note that SafeGraph’s visit

matrices include all possible home CBGs, but when we construct X , we only include the n CBGs for the metropolitan

statistical area. So, the rows of X typically do not sum to 1 and are usually around 0.9-0.97.

Constructing visitors to POIs, p(t). SafeGraph provides the hourly number of visits, not visitors, so first we apply

corrections to the SafeGraph counts based on the POI’s median dwell time to estimate the hourly number of visitors (see

Supplementary Information from Chang et al. (2021a)). To account for SafeGraph undersampling, we also multiply each

POI’s visit count by a uniform correction factor which is the ratio of the US population to the total number of SafeGraph

devices; this factor is around 7. Finally, since not all of the POI’s visits are captured by the n CBGs in X , we multiply the

POI’s visits by its row sum in X , i.e., its total proportion of visits kept. In Figure E.9 (left), we visualize the proportion of

POI marginals that are nonzero, over 24 hours in the day on March 2, 2020 and April 6, 2020. We see that only a small

proportion of POIs have nonzero marginals at nighttime, e.g., less than 10% from 12-5am. For both days, the proportion

peaks from around 6-10pm, likely when people are visiting POIs after work. We also see considerably more sparsity in POI

marginals on April 6, compared to March 2, which reflects the onset of the COVID-19 pandemic in the US.

Constructing visitors from CBGs, q(t). Using SafeGraph Social Distancing Metrics (SafeGraph, 2020b), we estimate

ĥ
(t)
j , the fraction of each CBG that has left their home. Then, we estimate the number of people who left their home by
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Figure E.7. Marginals on Monday, March 2, 2020.
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Figure E.8. Marginals on Monday, April 6, 2020.

Figure E.9. POI and CBG marginals from mobility data for Richmond, Virginia MSA.

multiplying these fractions by the CBG population Nj (from US Census), then we scale these estimates so that q(t) sums

to
∑

i p
(t)
i . We do this since IPF requires the sums of the row and column marginals to match and because the number of

people who are not at home may not exactly match the number of people who are visiting POIs. So, we have

q
(t)
j = ĥ

(t)
j Nj ·

∑

i p
(t)
i

∑

k ĥ
(t)
k Nk

. (44)

In Figure E.9 (right), we also visualize the proportions out of the house per CBG. We only have these quantities at a daily

granularity from SafeGraph, so we plot a histogram over CBGs instead of an hourly measure. We can see that, in this setting,

CBG marginals are always positive, even after the pandemic onset.

E.2.2. CONVERGENCE EXPERIMENTS ON MOBILITY DATA

Non-convergence. We run (modified) IPF (Algorithm 1) for all hours on March 2 and April 6, 2020, and we find that IPF

converges for 45 out of the 48 hours. However, it gets stuck in oscillation for 3 hours during nighttime, when POI marginals

are particularly sparse: 2AM on March 2 and 12AM and 4AM on April 6. In Figure E.10, we plot the ℓ1 error between the

marginals of M IPF and the target marginals, which is known to decrease monotonically with each iteration (Pukelsheim,

2014). This ℓ1 error is computed as:

ℓ1(k) = |M IPF(k) · 1− p|+ |M IPF(k)T · 1− q|. (45)
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Replace all zeros ConvIPF, min #

edges, largest pi

ConvIPF, min #

edges, smallest pi

ConvIPF, min

change in λ1
March 2, 2023, 2AM

# new edges 10012193 2 16 5
Change in λ1 30.04 1.85 · 10−8 2.54 · 10−7

5.60 · 10−9

# ConvIPF iters. ± 2 16 5
April 6, 2023, 12AM

# new edges 10012193 2 3 3
Change in λ1 30.04 2.14 · 10−7 1.02 · 10−8

9.98 · 10−9

# ConvIPF iters. ± 1 2 2
April 6, 2023, 4AM

# new edges 10012193 1 9 5
Change in λ1 30.04 1.63 · 10−8 8.52 · 10−8

5.72 · 10−9

# ConvIPF iters. ± 1 9 5

Table E.2. Comparing different methods for achieving IPF convergence over three hours where the mobility data did not converge. The

bolded entry in each row shows the optimal (in this case, lowest) number.

When IPF converges, we find that the error decreases exponentially, although the convergence sometimes demonstrates a

one-time ªbendº where the exponential rate changes (e.g., for t = 8 on March 2). This intriguing observation is worthy of

further study given that IPF only converges exponentially in certain settings (Pukelsheim & Simeone, 2009). When IPF does

not converge, as in the case of t = 0 and t = 4 on April 6, its ℓ1 error gets stuck at a fixed value, since that fixed value gets

passed back and forth from error on the row marginals to error on the column marginals.

Evaluating our convergence algorithm. Now, we test our convergence algorithm, ConvIPF, on these three hours where

IPF did not converge. Recall that our convergence algorithm enables IPF to converge by making minimal modifications

(edge additions) to the time-aggregated network X̄ . We test our two definitions of MODIFY-X (Section D.3), where we

aim to either minimize the number of new edges added or minimize the change in the largest eigenvalue λ1. For the first

objective, we showed that any row in the blocking set S can be used, so, as two tie-breaking rules, we experiment with taking

the row with the largest pi and the smallest pi. We compare our solutions to the typical solution for IPF non-convergence,

which is to replace all zeros with a very small value ϵ (Lomax & Norman, 2015; Lovelace et al., 2015).

We present results in Table E.2. First, we find that all three versions of ConvIPF massively outperform the typical

solution, for both metrics of minimizing the number of new edges and minimizing change in λ1. Second, we find that in

practice, ConvIPF only runs for a handful of iterations (typically, 5 or below, and at most, 16), so it terminates quickly and

does not need to unblock that many blocking sets. However, each blocking set can be complex: BLOCKING-SET often
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Figure E.11. Distribution of bike trips over start stations (left) and end stations (right).
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Figure E.12. Distribution of bike trips over hours.

Figure E.13. Bike trips from NYC Citibike data, from September 1 12AM to September 30 11PM, 2023.

finds blocking sets containing hundreds of rows, demonstrating the need for our efficient algorithm to find a blocking set,

compared to the simple solution of iterating through row subsets. Third, we find that the choice of objective in ConvIPF

makes a difference: choosing to minimize the number of edges (with largest pi) always results in the fewest number of edges

added and choosing to minimize the change in λ1 always results in the smallest change in λ1, by an order of magnitude

compared to the other ConvIPF variants. This latter result also shows that, even with our approximation of λ1 (Appendix

D.3), the algorithm is still effective. Finally, we find that within the objective of minimizing number of edges added, taking

the row with the largest pi is consistently better than smallest pi for minimizing both the overall number of edges added

and the number of ConvIPF iterations. We hypothesize that this is because, within a blocking row set S, the row with the

largest pi is likely contributing more to the condition violation,
∑

i∈S pi >
∑

j∈NX(S) qj , so modifying its connections

improves the likelihood that there will not be a subset of S that still needs to be unblocked. This theory reveals an open

question for future work, which is analyzing the optimal order of unblocking row sets in order to minimize the number of

ConvIPF iterations.

E.3. Experiments with bikeshare data

In this section, we consider the case where we have ground-truth hourly networks. We use data from New York City’s

CitiBike system9, which contains individual trips, including each trip’s start time, end time, start station, and end station.

For these experiments, we use trips from September 1 to September 30, 2023, which contains around 3.5 million trips. If we

take the union of all start stations and end stations as the set of stations, there are m = n = 2036 stations in total.

The distribution of trips over stations is highly skewed (Figure E.11). To aggregate the individual trips into hourly network,

9We downloaded 202309-citibike-tripdata.csv from https://citibikenyc.com/system-data.
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we need to assign each trip to an hour. In 79% of trips, the trip starts and ends in the same hour, so the assignment is

unambiguous. For the remaining 21% of trips, we assign the trip to the hour of its midway point. So, in our hourly network

X(t), each X
(t)
ij represents the total number of trips from station i to station j with its midpoint falling in hour t. In Figure

E.12, we plot the distribution of trips over hours. We can see clear temporal patterns, e.g., fewer trips at night, two peaks on

weekdays for getting to and getting from work. As usual, p(t) and q(t) are the row sums and column sums, respectively, of

X(t). For the time-aggregated network X̄ , we explore different temporal aggregations (month, week, and day), so that we

can experiment with IPF performance as the input network becomes increasingly time-aggregated.

E.3.1. EVALUATING IPF PERFORMANCE ON GROUND-TRUTH NETWORKS

In these experiments, we evaluate IPF’s performance at estimating the ground-truth hourly bikeshare networks, over 24

hours on September 1, 2023. We try three versions of IPF and seven baseline methods for estimating the hourly network:

1. IPF on the month-aggregated network (September 1 to September 30, 2023) and hourly marginals;

2. IPF on the week-aggregated network (September 1 to September 7, 2023) and hourly marginals;

3. IPF on the day-aggregated network (September 1, 2023) and hourly marginals;

4. IPF on the distance-based matrix and hourly marginals, equivalent to the gravity model (see details below);

5. An ablation that removes X̄ and distributes
∑

ij X
(t) proportional to p

(t)
i q

(t)
j ;

6. An ablation that removes q(t) and distributes p
(t)
i within each row proportional to X̄ij/

∑

j X̄ij ;

7. An ablation that removes p(t) and distributes q
(t)
j within each column proportional to X̄ij/

∑

i X̄ij .

8. A baseline where we use the month-aggregated network, scaled to match
∑

ij X
(t).

9. A baseline where we use the week-aggregated network, scaled to match
∑

ij X
(t).

10. A baseline where we use the day-aggregated network, scaled to match
∑

ij X
(t).

Each method produces an estimate, X̂(t), of the true hourly network, X(t) We use cosine similarity as a scale-invariant

measure of the similarity between the two networks (41).

Details on gravity model. The gravity model (Zipf, 1946) is a classic model of human mobility, inspired by Newton’s law

of gravity, that assumes that the amount of travel between two regions is proportional to their population sizes divided by

their geographical distance. Navick & Furth (1994) show that a ªdoubly constrainedº gravity model of origin-destination

matricesÐwhere the total number of departures and arrivals are observed and must be matchedÐis equivalent to running

IPF, where the initial matrix is replaced with a distance matrix with Dij = f(dij), where f(·) is a function representing

how trip propensities vary with distance. This convenient connection between IPF and the gravity model enables us to use

the latter as a baseline, by running IPF on Dij and hourly marginals p(t) and q(t).

To compute distances between bike stations, we first estimate the latitude/longitude of each station. CitiBike reports the start

latitude/longitude and end latitude/longitude of each trip, so for each station, we take the mean of the start latitude/longitude

where the station is start station and end latitude/longitude where the station is the end station. Then we compute distance

between all pairs of stations using Euclidean distance, which is a reasonable proxy for short distances (all trips are within

New York City). To prevent dij = 0 for trips from and to the same station (which would force f(dij) to be 0), we replace

those distances with ϵ = min({dij |dij > 0})/2; we consider these trips still meaningful, since a rider may want to pick up

and drop off their bike in the same place (e.g., if they live near that station).

Then, following Navick & Furth (1994), we define f(·) as

f(dij) = dαij exp(−dijβ), (46)

where α and β are learnable parameters. First, we estimate the empirical distribution by dividing station pairs into distance

intervals (each one of size 0.001) and calculating the mean number of bike trips in the month-aggregated network X̄ for that
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Figure E.14. Number of station pairs (left) and number of bike trips (right) over

IPF (month) IPF (week) IPF (day) Gravity No X̄
0.363 0.389 0.496 0.204 0.116

No p(t) No q(t) Scale month Scale week Scale day

0.278 0.275 0.201 0.215 0.278

Table E.3. Mean cosine similarity between X(t) and X̂(t), over 24 hours on September 1, 2024, for ten different methods.

interval. Then, we fit (46) to this empirical distribution, obtaining α̂ = −0.5863 and β̂ = 38.52. The much larger magnitude

of β̂ is interesting, suggesting the distribution is much closer to an exponential distribution than a power distribution. In

Figure E.14 (right), we plot the empirical distribution and our fitted function, along with a sample of individual data points

(i.e., individual station pairs). Our fitted function matches the empirical distribution well and, as expected, the number

of bike trips decreases with distance. However, from the individual data points, we can see that there is also substantial

variance in the number of bike trips over station pairs of the same distance, revealing limitations of the gravity model.

Results (Table E.3). In our main text (Figure 3), we visualized results from the first seven methods listed above. First,

we find that IPF strongly outperforms the gravity model, with a 78% improvement in cosine similarity even when using

the month-aggregated network, demonstrating the value of using a time-aggregated network over a distance-based model.

Second, IPF also outperforms the ablation baselines: when X̄ is the month-aggregated network, IPF outperforms the ablation

without X̄ by 214% and the ablations without p(t) or q(t) by around 31%, showing the value of using all three pieces of

information. Notably, removing X̄ is much more detrimental to performance than removing p(t) or q(t), revealing which

piece of information is more informative. Third, finer temporal granularity in the time-aggregated network improves IPF’s

performance, but the relative improvement is much larger from week to day (+27%) than from month to week (+7%). This

suggests that bike trips vary more at a daily scale within the week (e.g., weekday vs. weekend) than a weekly scale within

the month. However, the improvement in IPF performance at the daily level comes with a cost in convergence time, which

we discuss more in Section E.3.2. In Figure E.15, we provide extended results on the scaling baselines. We find that, at all

levels of time aggregation, running IPF on the time-aggregated network and hourly marginals greatly outperforms scaling

the time-aggregated network to the hourly total. We also find that the day-aggregated network is much more similar to the

hourly network than the week-aggregated or month-aggregated networks, further supporting the theory above that bike trips

vary more at a daily than a weekly scale. Interestingly, IPF still outperforms the day-aggregated network, even when it only

has access to the month-aggregated network, with a 31% improvement in cosine similarity. This finding reveals that, while

the day-aggregated network is closer to the hourly network than the month-aggregated network, the relative information gain

from the hourly marginals is still higher. This finding may have interesting implications for data providers, when deciding

how to aggregate their data.

E.3.2. CONVERGENCE BEHAVIOR

We observe a tradeoff between accuracy and convergence time. Using the day-aggregated network for IPF consistently

outperforms the week-aggregated or month-aggregated network at recovering the true hourly network (Table E.3), but
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Figure E.15. Cosine similarity between ground-truth hourly networks X(t) from bikeshare data and inferred networks X̂(t) from IPF and

scaling baselines.
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Figure E.16. IPF performance over iterations: ℓ1 error on marginals p(t) and q(t) (with and without log scaling, left and middle); cosine

similarity between X(t) and IPF’s estimate X̂(t) (right).

running IPF on the day-aggregated network takes substantially more iterations than using the week-aggregated network

or month-aggregated network. Over the 24 hours we tested, the mean and median number of iterations when using the

day-aggregated network were 7643.29 and 10000, respectively, while they were 920.79 and 419 for the week-aggregated

network and 537.83 and 372 for the month-aggregated network.10 This is not surprising, since the day-aggregated network

is far sparser (2.04% nonzero) than the week-aggregated network (7.05% nonzero) or month-aggregated network (13.72%

nonzero), and we know that IPF iterations increase with sparsity, which we also saw with synthetic data (Figure 2, left).

We can also evaluate IPF’s performance over iterations, both in terms of its error on the target marginals as well as the cosine

similarity between its estimated hourly network and the true hourly network. We test IPF on the month-aggregated network

and hourly marginals, for four hours on September 1, 2023 (12 AM, 6 AM, 12 PM, and 6 PM). First, we observe that the

ℓ1 error on the marginals drops exponentially, but exhibits two different rates, one larger for the first few iterations then a

slower rate for the remaining iterations (Figure E.16, left and middle). This is similar to what we found on the SafeGraph

mobility data, where the convergence rate exhibited a one-time bend (Figure E.10). We show the ℓ1 error with and without

log scaling since log scaling helps to see the change in convergence rate but without log scaling emphasizes that most of the

ℓ1 error is reduced in the first few iterations. Second, when we consider the cosine similarity between the true network and

IPF estimated network, we find that all of the improvement occurs in the first few iterations, and after that, the similarity

does not improve (Figure E.16, right). Both of these analyses show that the vast majority of IPF’s estimation capability is

reached in the first few iterations, and running the next hundreds (or even thousands) of iterations will help IPF converge,

but will not effectively improve the estimated network. This is a useful finding if efficiency is desired in network estimation;

for example, if IPF is used in real-time to estimate time-varying networks, e.g., for transportation planning.

10These are actually underestimates, since we used a maximum of 10,000 iterations. Using the month-aggregated network never
reached this maximum, week-aggregated reached it in one hour out of 24, and day-aggregated reached it in most hours.
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Time-aggregation Mean ϕ̂ 25th percentile ϕ̂ 75th percentile ϕ̂
Month 1.093 1.027 1.190

Week 1.086 1.046 1.159

Day 1.066 1.032 1.099

Table E.4. Distribution of dispersion parameter ϕ̂ when running IPF over 24 hours on September 1, 2023, and different time-aggregated

networks.

E.3.3. EXAMINING MODEL ASSUMPTIONS ON BIKESHARE DATA

In this final set of experiments, we leverage our opportunity with ground-truth hourly networks to test how reasonable the

assumptions of the biproportional Poisson model (4) are.

Stationarity assumption. In Appendix B.4, we discussed how our model, which solves the network inference problem

in a decoupled fashion (separately estimating parameters per t), leaves out a potential piece of information, which is that

X̄ =
∑T
t=1X

(t), for some large T . We showed that the joint problem, which incorporates the constraint that the inferred

X(t)’s sum to X̄ , reduces the decoupled problem without the constraint when the following stationarity assumption is true:

T
∑

t=1

euit−vjt ≈ c, (47)

for some constant c, for all i, j where X̄ > 0. We are not able to perfectly verify this on our data, since we do not know the

true parameters u or v (or whether the data comes from this model at all), but we can check the estimates for eui and e−vj ,

which correspond to d0i and d1j in IPF, respectively. So, we want to see whether

T
∑

t=1

d0i (t)d
1
j (t) ≈ c. (48)

To check this, we fit IPF on the month-aggregated bikeshare network for all 720 hours in the month of September 2023.

Then, for all i, j where X̄ij > 0, we compute d0i (t)d
1
j (t) over all hours in the month. It turns out that the sums are quite

close to each other, and close to 1, where the 5th to 95th percentile ranges from 0.88 to 1.19. These results motivate our

stationarity assumption, which allows us to decouple the problem.

Overdispersion. A key assumption of our model is that the values in the hourly network follow Poisson distributions. A

common issue with Poisson distributions is overdispersion, since we often find that real-world data has greater variance than

the Poisson (which assumes variance is equal to the mean). To test for overdispersion, we investigate the Pearson residuals

of our fitted model, which are (yi − exp(xiβ))/
√

exp(xiβ) for a generic Poisson regression model, which is equivalent to

rij =
X

(t)
ij − d0i X̄ijd

1
j

√

d0i X̄ijd1j

(49)

in our IPF setting. Recall that our set of Poisson observations D consist of all (i, j) where X̄ij > 0, p
(t)
i > 0, and q

(t)
j > 0.

Then, we can estimate the dispersion parameter ϕ̂, which is the sum of the squared Pearson residuals divided by the degrees

of freedom (number of observations minus number of model parameters):

ϕ̂ =

∑

(i,j)∈D r
2
ij

|D| −m− n. (50)

In the absence of overdispersion, the dispersion parameter should be close to 1; otherwise, it will be greater than 1. When

we test the IPF estimates on the bikeshare data (24 hours on September 1, 2023), we find that the dispersion parameter is

actually quite close to 1 for all three levels of time aggregations (Table E.4). Day-aggregated is the closest to 1, with a mean

of 1.066, but week-aggregated and month-aggregated are still close, with means of 1.086 and 1.093, respectively. So, the

data appears to be very slightly overdispersed, but not far from the Poisson assumptions.
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Figure E.17. Distance between stations vs. Pearson residual over station pairs i, j. Results are from IPF estimates on month-aggregated

network and hourly marginals for 12 AM on September 1, 2023.

Independence assumptions and model fit. Another assumption of our model is that the values in the hourly network

are independently sampled from their respective Poisson distributions. It is difficult for us to test all possible violations

of this assumption, but we can test one natural dimension of correlation, which is spatial. For spatial relationships, our

model should already capture spatial correlations between similar start stations (e.g., more traffic in certain neighborhoods

at different times of day) and spatial correlations between similar end stations, since it learns a parameter for each row (i.e.,

start station) and column (i.e., end station). The question is whether there are additional interaction effects between start and

end stations. Since we are interested in the interaction, we use the distance between the start and end stations as a dimension

of interest. We described in Section E.3.1 how we compute distances between bike stations, in order to fit the gravity model,

and visualized the relationship between distance and bike trips (Figure E.14).

We compare the Pearson residual rij to the distance between stations i and j for all station pairs i, j in D. Over these

pairs, we find that there is a relationship between distance and residuals. In Figure E.17, we show a representative example

from running IPF on the month-aggregated network and hourly marginals for 12 AM on September 1, 2023. To make the

visualization clearer, we split the data points into two groups: negative residuals and positive residuals. We can see that the

vast majority (over 99%) of data points have negative residuals, which is expected since the true values, X
(t)
ij , are equal to

zero most of the time, so any positive expected value will result in a negative residual. Within both the negative and positive

groups, we observe a positive relationship between distances and residuals. This positive relationship is consistent over

hours and time aggregations, although the correlation is weaker for smaller time aggregations.

The Pearson residuals (49) also allow us to test the Poisson model’s goodness-of-fit. The numerator in (50) is known as

the Pearson statistic, which follows a chi-square distribution with n− k − 1 degrees of freedom (where n is the number

of observations and k is the number of model parameters). We find that the goodness-of-fit test is rejected for our model,

meaning there is a statistically significant lack of fit. This is not entirely surprising, since our model is simple due to the very

limited information we have about the network, but it is worth keeping in mind as a caveat when using IPF to infer networks.

The lack of fit, along with the violation of independence assumptions, motivate the development of future methods that

incorporate additional available information, e.g., interaction terms between features such as distance, while still only relying

on the time-varying marginals and time-aggregated network to estimate the time-varying network.
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