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1. Abstract

Over the last few years, precision agriculture has greatly benefited from ad-
vancements in Unmanned Aerial Vehicles (UAVs). UAVs used in crop map-
ping allow farmers and researchers to tailor farming practices to the specific
needs of individual management zones. Yet despite their benefits, tradi-
tional exhaustive approaches to UAV remote sensing are constrained by the
low battery capacities of UAVs. To optimize battery usage, we present our
work across 3 papers on alternative reinforcement learning (RL) and multi-
agent reinforcement learning (MARL) approaches to UAV remote sensing,
namely: SoftwarePilot 2.0, heterogeneous swarms, and the Zoom maneuver.
Starting with SoftwarePilto 2.0., we introduce a software package that sup-
ports scalable autonomous UAV swarms through microservice model design,
container deployment technologies, and specialized MARL policies. These
improvements to SoftwarePilot 2.0. reduced energy costs by 50% and im-
proved swarm decision-making by 2.1 times from base SoftwarePilot. More-
over, we further explored multi-agent strategies through the extrapolation
of multiple health metrics with heterogeneous UAV swarms. Heterogeneous
swarms can capture data from multiple types of sensors, e.g. RGB, ther-
mal, multi-spectral, and hyper-spectral cameras, and then extrapolate for
various distinct health metrics across the whole field. Our preliminary re-
sults showed 90% accuracy from extrapolation from sampling only 40% of
the field. Lastly, we proposed a study on the battery and accuracy tradeoffs
of Zoom maneuvers. Moreover, Zoom maneuvers or changes in altitude trade
battery for increased local accuracy. Our study considers the computational
battery cost and flight battery cost tradeoffs of autonomous vs. RL imple-
mentations of Zoom maneuvers. Ultimately, this paper provides new insights
into the execution and performance of various autonomous and multi-agent
UAV remote search strategies
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2. Scalable Distributed
Microservices for Autonomous
UAV Swarms

2.1 Introduction

Unmanned Aerial Vehicles (UAVs) are inexpensive and maneuverable IoT
devices which are quickly changing key industries. UAV can sense over wide
areas quickly in 3D space, access areas too dangerous for humans, and can act
in groups as swarms to distribute tasks and learn from one another. Recent
work has shown that UAV contribute broadly to agriculture, construction,
infrastructure inspection, search and rescue, and more [65,74].

While UAV are conventionally piloted by humans, improvements in on-
board hardware and control software have led to automated and autonomous
UAV flights. Open source and manufacturer-provided software development
kits (SDKs) [30,62], support libraries [53], and research middlewares [13,33,
75, 98] provide features for UAV flight control via waypoint missions, data
capture, computer vision, and even complex decision-making. Autonomous
UAV flight, where UAV make complex decisions in-mission, has been shown
to speed up some mission types and allow for new more complex UAV mis-
sions [7].

Despite their benefits, UAV suffer from critical bottlenecks. UAVs have
short flight times due to small batteries, and limited onboard compute ca-
pacity. To cover wide areas, distribute intelligence, and elongate missions,
UAV are often flown in swarms. Swarms of UAV can be dispatched across
wide areas, learn from each other’s observations, and work together to solve
complex problems. Swarms of autonomous UAV can accomplish complex
tasks quickly and benefit from each other’s observations.

Few software packages provide even baseline UAV swarm capabilities [31].
Similarly, few packages and SDKs provide capabilities for autonomy [13,75].
Some provide simple computer vision routines and automated flight, but
none provide support for custom autonomy policies, computer vision, inter-
UAV communication, or swarm control. Even complex research middlewares
for UAV rarely provide native swarm support or combine it with autonomy.
This is because autonomous swarms are hard to manage and scale. Single
autonomous UAV already necessitate complex edge hardware and resource



management practices [7]. Scaling up from a single UAV to a swarm includes
not only considering resource impacts of additional swarm members, but how
those impacts compound as members share information and learn.

In this paper, we present our adaptations to an autonomous UAV mid-
dleware, SoftwarePilot, which provides mechanisms for creating autonomous
UAV. We modified SoftwarePilot to work with cloud-native and edge-appropriate
scalable deployment technologies. SoftwarePilot 2.0 leverages these capabili-
ties to deploy, distribute, and manage autonomous UAV swarms across edge
clusters.

2.2 Design

SoftwarePilot [13] is a UAV middleware that allows users to implement au-
tonomous missions. As shown in Figure 1, SoftwarePilot decouples mission
code into loadable microservices called routines and drivers linked by the Soft-
warePilot API. Drivers are application specific APIs that control UAV from
different manufacturers, supply pathfinding and AI algorithms, and manage
data. Routines are user-code that access drivers via the SoftwarePilot COaP
APL

This design already includes scalable elements. By decoupling APIs from
user code, users can load and unload drivers dynamically based on their
needs. SoftwarePilot’s original design did not, however, consider a number
of important management concerns relating to UAV swarms. First, Soft-
warePilot 1.0 UAVs are controlled by a single central virtual machine on
which all microservices run, making it portable but difficult to distribute.
Second, while SoftwarePilot was made to build autonomous UAV, it was
not made to operate swarms. It includes no deployment mechanisms for
swarms across edge clusters, network overlay features, or distributed systems
management software. Third, it does not include any services for leveraging
swarm intelligence.

We addressed these three shortfalls in SoftwarePilot 2.0. First, we con-
verted all SoftwarePilot microservices from independent applications to Docker
containers. This change is significant in that it allows for increased porta-
bility without virtual machine overhead, it decentralizes microservices from
inside the virtual machines where they previously ran, and allows SoftwarePi-
lot to benefit from existing container deployment technologies. SoftwarePilot
uses Kubernetes to deploy its containers across clusters of edge devices. Ku-
bernetes features allow SoftwarePilot containers to communicate via overlay
networks, set resource limitations, deploy to specific cluster nodes, and man-
age the experiment lifecycle in ways that our prior virtualization technique
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Fig. 2.1: SoftwarePilot 2.0 adds new swarm intelligence APIs and deployment
management.

did not.

SoftwarePilot has also added support for UAV swarms and multi-agent
reinforcement learning (MARL). SoftwarePilot 1.0 had no inherent way to
instantiate multiple UAV and allow them to communicate. Using the new
SoftwarePilot Swarm Intelligence API, users can instantiate and control mul-
tiple UAV, link them to microservices, and control them via centralized or
distributed programming logic. This new API and Python package can lever-
age the kubernetes overlay network to communicate with UAV control and
autonomy microservices across the cluster.

Additional swarm intelligence APIs can use this inter-UAV communica-
tion to implement global multi-agent reinforcement learning policies. Soft-
warePilot 1.0 implemented autonomy policies on a drone by drone basis.
SoftwarePilot 2.0 now allows users to implement MARL policies on top of
single-UAV autonomy policies. MARL policies can track reward and mission
progress at a global level. They combine observations from multiple agents
to make better decisions and retrain models over time.

2.3 Early Experiences

SoftwarePilot 2.0 has been used to implement UAV swarm applications in
agriculture. In Autumn 2021, we flew over 150 UAV Swarm missions using



SoftwarePilot 2.0’s MARL and swarm features over crop fields in Ohio [9]. We
used a swarm of autonomous UAVs to sample a crop field to assess soybean
leaf defoliation, an important crop health indicator. We used SoftwarePilot
drivers for the DJI Mavic UAV combined with custom drivers for defoliation
detection using DefoNet [112]. To build an intelligent UAV swarm, we de-
veloped SoftwarePilot’s swarm intelligence APIs. We implemented APIs for
multi-agent Q-learning and online model updating which were containerized
and distributed across our edge hardware using Docker and Kubernetes.

SoftwarePilot 2.0’s new swarm mechanisms are efficient. For our deploy-
ment configuration, we found that SoftwarePilot 2.0 used 2X less energy than
a swarm created using SoftwarePilot 1.0. This was due entirely to the use
of our Kubernetes management platform which automatically duty-cycles
cluster resources during resource troughs. We also found that the addition
of MARL as sped up missions by up to 2.1X via better decision-making.
In the near future, we plan to release SoftwarePilot 2.0 as an open source
project to help facilitate the building and deployment of fully autonomous
UAV swarms.



3. Multi-Agent Reinforcement

Learning for Heterogeneous
UAV Swarm Enabling Detailed
Crop Health Assessment

3.1 Introduction

The rapid growth of the global population and the increasing demand for food
necessitates swift advancements in agricultural practices to meet the pressing
needs of humanity. Projections indicate that the combination of population
expansion and heightened per capita food consumption will require a substan-
tial 70% increase in agricultural yields by the year 2050 [34,36]. However,
the looming challenge of climate change is exacerbating the complexity of
farming, as it contributes to stressors on crop health, such as drought, dis-
eases, and pest infestations [50]. These adverse effects are projected to lead
to a considerable reduction in crop yields by up to 11% by 2050 [58].
Precision agriculture occupies a pivotal role in meeting the escalating
global food demand, as it centers upon the optimized utilization of resources
and the maximization of yields through the strategic integration of technol-
ogy. This, in turn, contributes significantly to the stabilization and reliabil-
ity of the global food supply chain. Precision agriculture is a promising step
toward improving efficiency and reducing adverse impacts of agriculture pro-
duction [107]. Tt assesses the variation across the crop fields and divides the
field into multiple management zones. So they can be treated efficiently and
effectively [32,64]. The advent of digital agriculture, or data-driven precision
agriculture, employs a suite of tools including remote sensors (e.g., satellites
and UAVs), in-field sensors (such as embedded soil sensors), and data pro-
cessing techniques (e.g., machine learning) [48]. This combination informs
decisions related to planting, harvesting, and crop treatment, all aimed at
maximizing yield and minimizing the environmental impact of agricultural
activities. Frequent sensing using these technologies enables the detection
of crop health stress due to factors like drought and heat, the identification
of diseases, pests, and other harmful phenomena [20,95,109,113]. A pivotal
task in digital agriculture involves transforming the collected data into health



maps, providing valuable geospatial insights into crop health, and guiding ef-
fective crop treatment strategies, commonly referred to as crop scouting.

Traditionally, data acquisition is approached through two main meth-
ods: human piloting of UAVs to capture high-resolution images or UAVs
autonomously scouting the entire fields. Human pilots, while capable of cap-
turing accurate data, tend to escalate operating costs due to the need for
frequent field mapping. Conversely, the autonomous UAV scouting method
is cost-effective, but it often leads to redundant data due to a 60-70% side
overlap in captured images. Moreover, both approaches necessitate frequent
battery replacements due to limited flight times [35], which subsequently
extend execution times and have an impact on profit margins.

The UAVs are equipped with various imaging sensors, including RGB,
multi-spectral, thermal, and hyper-spectral. RGB cameras are well-suited
for tasks such as growth prediction, biomass estimation, and canopy height
measurement. On the other hand, multi-spectral cameras excel in early de-
tection of drought stress, identification of pests, yield prediction, and their
combination with thermal and hyper-spectral data enables estimation of nu-
trient status, pathogen presence, and weed detection [51]. Unlike RGB cam-
eras, multi-spectral cameras capture both visible and invisible light spectra,
enhancing the assessment of crop conditions and thereby enabling more in-
formed agricultural decisions [69,106]. Hyper-spectral and thermal cameras
capture distinct bands of the invisible light spectrum. Hyper-spectral sen-
sors are particularly effective in the early detection of pathogens and dis-
eases [H4], while thermal cameras are effective in identifying drought stress
in crops [114]. RGB and multi-spectral cameras are commonly used whereas
hyper-spectral and thermal are less common due to relatively higher costs [1].

Given the limited payload capacity of UAVs, they are constrained to
carrying only one imaging sensor at a time [96]. Consequently, achieving a
comprehensive analysis of a crop field necessitates the deployment of multiple
drones. However, employing multiple drones for scouting an entire field intro-
duces additional operational and maintenance expenses that may outweigh
the potential gains. The increased costs associated with utilizing multiple
drones can present a challenge in terms of maintaining profitability.

Contributions: In this paper, we present an efficient method for de-
tailed analysis of whole-field without exhaustively scouting entire field. We
employ a swarm of heterogeneous UAVs with distinct capabilities. We utilize
multi-agent reinforcement learning to scout crucial areas through competing
rewards, as a result battery replacements and payload requirements are min-
imized. The collected data is combined and extrapolated to provide deeper
insights on crop health eliminating the need of exhaustive scouting of the

whole field.



3.2 Methodology

This approach can be divided into two major alternating components: 1) RL
algorithm for exploration and sensing, 2) extrapolation algorithm for creating
a health map from sensed data. Each UAV will continually cycle between
selecting their next location based on the estimated health map and updating
the estimated health map by extrapolating from sensed data. Together all
agents will pool their results into a combined extrapolated health map.

3.2.1 Reinforcement Learning Algorithm

We use a modified version of Q-learning and a MARDbLE architecture to
select the path to be sensed through multi-agent reinforcement learning [10].
As shown in figure 3.1 the UAVs explore during the initial phase and then
try to maximize the utility of visiting a particular management zone. The
states are the x and y coordinates of the management zones and the utility
or reward of each action is the error between the predicted values from the
CNN and the observed values. Ultimately, the Q-table is updated with the
reward from the combined goal and budget preferences from the MARbLE
algorithm. These rewards are updated using Bellman’s Equation, as shown
below.

Q(si,a;) = (1 —a) *x Q(s;,a;)+ (3.1)
a * [R(S;, a;y Siv1) * ymax(Q(Sit1, air1))]

Equation 3.1 calculates the maximum reward with learning rate o and a
discount factor ~ taking into account the immediate and long-term rewards.

To create a generalized and transferable model we use filters while pop-
ulating the Q-table. The observed rewards are quantified based on their
variance such that the observed pattern can be transferred to different fields
as well.

3.2.2 Extrapolation

While the UAV explores the field, the health map is continuously extrap-
olated using the newly gathered data at each step. This extrapolation is
crucial, as it provides an accurate foundation for decision-making within the
RL algorithm. The RL algorithm aims to maximize the percentage error
gain between predicted and ground truth values, thereby systematically re-
ducing the error associated with the projected health map. To extrapolate
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Fig. 3.1: An illustration of crop scouting using 4 UAVs with distinct capa-
bilities through CNN extrapolation and Reinforcement learning

the health maps, we employ Convolutional Neural Networks (CNN). This ex-
trapolation is built on the premise that distinct sensor readings correspond
to various aspects of plant health. This concept is akin to human health
diagnostics, where different tests reveal diverse health issues that may also
be interconnected. For instance, in humans the identification of calcium de-
ficiency through the Total Calcium Test (TCT) can potentially indicate the
presence of osteoporosis [59].

We quantify comprehensive crop health by combining data from different
health indicators such as NDVI, NDWI, and GLI. This combination allows us
to present an overarching picture of the crop field’s health. Moreover, the ex-
trapolated individual health maps associated with these indicators offer more
intricate insights, aiding in the identification of precise measures necessary
to enhance the crop’s well-being. The quantification of overall health based
on different health indicators (NDVI, NDWI, GLI). Furthermore, the overall
health map complements the decision making in multi-agent reinforcement
learning.

The design of the CNN is based on U-net Architecture [73]. The input to
the CNN is observed health maps, and the output is fully predicted health
maps.



3.3 Preliminary Results

Our previous work using RL for crop scouting and CNN for extrapolation
with single agent employing RGB camera provide promising results [110]. A
health map is predicted with 90% accuracy by scouting only 40% field and
hence reducing labor costs 4.8 times and boosting profit by 36%.



4. Profiling Edge Resource
Demands of Zoom Maneuvers
for Autonomous Unmanned

Aerial Vehicles

4.1 Introduction

Autonomous unmanned aerial vehicles (AUAVs) conduct complex missions
without human piloting [6,7,11,60,63,75]. Services like Percepto employ
AUAVSs to inspect large industrial facilities for gas leaks, overheating equip-
ment, and degraded structures, allowing companies to take early actions to
address these problems [63].Similarly, AUAVs in digital agriculture capture
high-resolution images of crop fields and convert them into maps that charac-
terize crop health [7,10,21]. Additionally, AUAVs have further applications
in smart cities, forestry, wildlife conservation, and military. Like unmanned
aerial vehicles, AUAVs can conduct missions that are too risky for manned
aircraft. As a type of unmanned aerial vehicle, AUAVs are not piloted re-
motely by human operators. Instead, they use data captured by onboard
sensors (e.g., cameras and GPS) to decide where to fly next and when to
land. AUAVSs rely on platforms that allow software to issue commands dur-
ing flight. Such platforms are provided aircraft manufacturers (e.g., DJI and
Parrot), open-source flight-control systems (e.g., Pixhawk and Ardupilot),
and Al-driven platforms for navigation (e.g., SoftwarePilot and Aerostack).

Most traditional flight-control platforms only support UAVs through au-
tomated waypoint missions or predetermined flight paths. This approach uti-
lized by automated UAVs usually relies on exhaustively scouting all states
(e.g. GPS locations) for an entire region. However, if adjacent or similar
states convey the same or correlated information, exhaustive automated ap-
proaches waste limited battery resources without contributing compensatory
benefits. By contrast, reinforcement learning (RL) AUAVs approaches ex-
ploit the correlation of adjacent states to maximize the data map accuracy
while minimizing the number of states required to be visited. These RL ap-
proaches conserve battery by requiring a lower number of states. For this
reason, it is worth researching the possible benefits of the RL approach, but
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its implementation would require novel resources to support it. To address
this lack of resources, our group previously developed SoftwarePilot 2.0. This
is a middleware designed for rapid implementation of both explicit UAV and
UAV swarm autonomy [37].The utility of SoftwarePilot 2.0 is in providing
a general RL solution to multiple competing goals and budgets in an au-
tonomous UAV context. SoftwarePilot 2.0’s crop health mapping balances
crop stressors and health metrics that are competing for budgets, maximizing
mapping accuracy within the given budget.

This paper proposes improvements to AUAV RL mapping approaches
through an exploration into the zoom maneuver [105]. AUAVs can adjust
their altitude during flight to sense their surroundings in greater detail. For
example, using a 4K HD camera, an AUAV flying 5 meters will capture im-
ages where each pixel represents a 2-millimeter area and the picture spans 2-3
meters. Conversely, flying at 100 meters yields coarse images that can cover
a hectare. Incorporating zoom maneuvers can significantly improve the exe-
cution of missions by (1) unveiling previously obscured data or (2) reducing
the number of visited waypoints and saving crucial battery resources.

4.2 Proposed Study

The zoom maneuver includes any policies that adjust the altitude of UAVs
or improve data accuracy while localizing data recollection. This paper aims
to perform a study on the impacts of combinations of exploration and zoom
policies on crop health map accuracy. We will outline a procedure to mea-
sure algorithm efficiency in terms of accuracy and resource management.
Improvements in health map accuracy from zoom maneuvers will be trans-
ferable to other models for autonomous health mapping and will improve
the efficiency of UAV use in precision agriculture. The results of the study
will inform the utility and implementation of the zoom maneuver into Soft-
warePilot 2.0 [37,47]. In total we defined four key implementations across
our study: Auto Exploration (1)Auto Zoom, (2)Auto Exploration RL Zoom,
(3)RL Exploration Auto Zoom, and (4)RL Exploration RL Zoom. We define
Auto as automated, i.e. a preset route, and RL as a reinforcement learn-
ing policy, making live informed decisions. These four implementations were
chosen to compare and contrast the improvements of RL strategies for explo-
ration and zoom independently over autonomy, and the improvements of RL
strategies for joint exploration and zoom over other methods. Each of the
methodologies above must compete for the highest accuracy within the same
constraints for battery, time, and number of states. These arrangements al-
low us to compare different reinforcement learning strategies against a set
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Fig. 4.1: The four methods being studied: Auto Exploration Auto Zoom,
Auto Exploration RL Zoom, RL Exploration Auto Zoom, and RL Explo-
ration RL Zoom

baseline. We now define the different strategies:

1.

Automated Exploration + Automated Zoom uses an automated
lawnmower pattern to represent exhaustive search for both exploration
and zoom. It employs a random policy to decide when to employ the
zoom maneuver. This method suffers from the highest flight costs as it
must visit at least one state per management zone and all lower states
on a zoom. However, as this model does not employ RL, it suffers no
hovering costs waiting on the next action from the edge device.

Automated Exploration + RL Zoom uses an automated lawnmower
pattern for exploration and an RL model for zoom. Its RL indicates when
to zoom and what lower states to explore. This method must explore at
least each state from every management zone; however, it may choose how
many states to explore during zoom.

RL Exploration + Automated Zoom uses RL for exploration and an
automated lawnmower pattern for zoom. Its RL strategically decides its
next action for exploration while it employs a random policy to decide
when to zoom. This method may reduce its total flight costs through
strategic location, however it cannot control when to zoom and must ex-
plore all four lower states.

RL Exploration + RL Zoom uses RL for both exploration and zoom.
It lumps lower and higher states into as possible waypoints for a single
model to learn from, the model may freely choose actions to move to
lower states as if they were adjacent states. This method may reduce its
total flight cost through strategic locations, however it incurs the highest



decision hovering costs as it must wait for a response from the edge for
each action.

Experimental Plan: These experiments will allow us to profile the per-
formances of different combinations of exploration and zoom strategies. For
each we method we will track the battery consumption and computational
costs. Automated searches from method 1 serve as the baseline and repre-
sent the traditional exhaustive approaches. By comparing methods 2 and 3
to method 1 we can measure the improvements in mapping accuracy from
RL Zoom and RL Exploration respectively. Additionally comparing method
4 to method 1 demonstrates the total improvements from the baseline. This
methodology may be then repeated with multiple versions of RL algorithms,
different automated strategies to measure the impacts of the Zoom maneu-
ver across different conditions and develop the most optimal solution for the
given task. The results of this study will then inform future implementation
of the Zoom maneuver into SoftwarePilot 2.0 and other AUAV RL strategies.
Acknowledgments: This work was funded by NSF Grant OAC-2112606 and the
Ohio Soybean Council.



5. Conclusion

Throughout this paper, we discuss our advancements in autonomous and
multi-agent UAV remote sensing strategies. Starting with SoftwarePilot 2.0,
we introduced a framework for scalable autonomous UAV swarms. Moreover,
SoftwarePilot 2.0 leverages Docker and Kubernetes to manage and optimize
resources for scalable UAV control and autonomy microservices. Addition-
ally, SoftwarePilot 2.0. improves on swarm decision-making through global
MARL policies. Through these improvements, SoftwarePilot 2.0 reduced en-
ergy consumption by 50% and improved swarm decision-making by 2.1 times
when compared to base SoftwarePilot.

Further enhancements were realized by introducing heterogeneous swarms.
Heterogeneous UAV swarms allow users to capture and combine various dis-
tinct sources of data, e.g. RGB, thermal, multi-spectral, and hyper-spectral
cameras, to develop more robust and comprehensive health metrics. We de-
veloped strategies for whole-field extrapolation of distinct health metrics from
partial sampling using heterogeneous swarms. Preliminary testing showed a
90% accuracy by sampling only 40% of the field. Although promising, addi-
tional testing is required to further optimize the complex MARL policies of
heterogeneous swarms.

Lastly, we proposed a study on the implementation of Zoom maneuvers.
Zoom maneuvers or changes in altitude, trade battery for increased local
accuracy. Moreover, many key features, like leaf defoliation, greatly benefit
from Zoom maneuvers. Our proposed study maps the battery and accuracy
tradeoffs from different implementations of the Zoom maneuver, namely au-
tonomous vs. reinforcement learning approaches. Moreover, autonomous or
predefined patterns minimize computational costs on battery meanwhile re-
inforcement learning strategies minimize flight costs on battery. The results
of this study will greatly inform how the Zoom maneuver will be implemented
and will further optimize resources.

Acknowledgments: This work was funded by NSF Grant OAC-2112606 and the
Ohio Soybean Council. The research presented in this thesis was conducted in
the ReRout Lab at The Ohio State University under the supervision of Professor
Christopher Stewart. The ideas and concepts studied here build upon years of re-
search by prior lab members. I have cited many of those papers in the bibliographic
references to acknowledge their impact.
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