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Abstract

A recent focus of large language model (LLM)
development, as exemplified by generative
search engines, is to incorporate external refer-
ences to generate and support its claims. How-
ever, evaluating the attribution, i.e., verifying
whether the generated statement is fully sup-
ported by the cited reference, remains an open
problem. Although human evaluation is com-
mon practice, it is costly and time-consuming.
In this paper, we investigate automatic evalu-
ation of attribution given by LLMs. We be-
gin by defining different types of attribution
errors, and then explore two approaches for
automatic evaluation: prompting LL.Ms and
fine-tuning smaller LMs. The fine-tuning data
is repurposed from related tasks such as ques-
tion answering, fact-checking, natural language
inference, and summarization. We manually cu-
rate a set of test examples covering 12 domains
from a generative search engine, New Bing.
Our results on this curated test set and simu-
lated examples from existing benchmarks high-
light both promising signals and challenges.
We hope our problem formulation, testbeds,
and findings will help lay the foundation for
future studies on this important problem.!

1 Introduction

Generative large language models (LLMs) (Brown
et al., 2020; Ouyang et al., 2022; Chowdhery et al.,
2022; OpenAl, 2023a,b, inter alia) often struggle
with producing factually accurate statements, re-
sulting in hallucinations (Ji et al., 2023). Recent
efforts aim to alleviate this issue by augmenting
LLMs with external tools (Schick et al., 2023) such
as retrievers (Shuster et al., 2021; Borgeaud et al.,
2022) and search engines (Nakano et al., 2021;
Thoppilan et al., 2022; Shuster et al., 2022).
Incorporating external references for generation
inherently implies that the generated statement is

'Our code and dataset are available at: https://github.
com/0SU-NLP-Group/AttrScore

backed by these references. However, the valid-
ity of such attribution, i.e., whether the generated
statement is fully supported by the cited reference,
remains questionable.> According to Liu et al.
(2023), only 52% of the statements generated by
state-of-the-art generative search engines such as
New Bing and PerplexityAl are fully supported by
their respective cited references.’

Inaccurate attribution compromises the trustwor-
thiness of LLMs, introducing significant safety
risks and potential harm. For instance, in health-
care, an LLM might attribute incorrect medical ad-
vice to a credible source, potentially leading users
to make harmful health decisions. Similarly, in
finance, faulty investment advice attributed to a re-
liable source may cause substantial financial losses.

To identify attribution errors, existing attributed
LLMs (Nakano et al., 2021; Thoppilan et al., 2022)
rely heavily on human evaluation, which is both
expensive and time-consuming. For instance, the
average cost of annotating a single (query, answer,
reference) example is about $1 in Liu et al. (2023).
In the actual use of attributed LLMs, it is the user
who needs to be wary of the attribution and manu-
ally verify it, which puts a tremendous burden on
their side. Therefore, effective and reliable meth-
ods to automatically evaluate attribution and iden-
tify potential attribution errors are highly desired.

Towards this goal, we take the first step by intro-
ducing AttrScore (Figure 1), a framework designed
for automatic evaluation of attribution and identi-
fication of specific types of attribution errors. We
propose a new problem formulation that catego-
rizes attribution into three types: 1) attributable:
the reference fully supports the generated state-
ment; 2) extrapolatory: the reference lacks suffi-
cient information to support the generated state-

2Attribution primarily refers to “the act of attributing some-
thing” in this paper, which is similar to “verifiability” as de-
fined in Liu et al. (2023).

Swww . bing.com/new, www.perplexity.ai
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Q: What is the temperature range on
the moon?

Q: What is the highest price of a gallon
of regular gas in the US in 20227

Q: What was the unemployment
rate in Germany in 2020?

A: The average temperature on the
moon can range from -298 degrees F
(-183 degrees C) at night to 224 degrees
F (106 degrees C) during the day [1].

A: According to a news article by NPR,
as of June 2022, the highest average
price of a gallon of regular gas in the
US was $6.34 in California [1].

A: According to [1], the unemployment
rate in Germany for 2020 was 4.31%,
which was a 1.17% increase from 2019.
It's important to note that the COVID...
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[1] coolcosmos.ipac.caltech.edu

The temperature on the Moon

The average temperature on the Moon (at
the equator and mid latitudes) varies from
-298 degrees Fahrenheit (-183 degrees
Celsius), at night, to 224 degrees
Fahrenheit (106 degrees Celsius) during

[1] npr.org/states-highest-gas-prices

In 10 states, a gallon of gas now
costs more than $5

...U.S. gas prices hit a new record on
Monday, with a gallon of regular gas costing
an average of $4.865 (not adjusting for
inflation), according to the most recent data
from American Automobile Association...

[1] macrotrends.net/unemployment-rate

Germany Unemployment Rate
1991-2023

Unemployment refers to the share of the
labor force that is without work but
available for and seeking...Germany
unemployment rate for 2020 was 3.81%,
a 0.67% increase from 2019.

the day. Because the Moon has no...

(1) Prompt LLMs with a clear
evaluation instruction

(2) Fine-tune LMs on a set of
diverse repurposed datasets
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Figure 1: We make the first step towards automatically evaluating attribution and identifying specific types of
errors with AttrScore. We explore two approaches in AttrScore: (1) prompting LLMs, and (2) fine-tuning LMs on

simulated and repurposed datasets from related tasks.

ment, and 3) contradictory: the generated state-
ment directly contradicts the cited reference. Un-
like existing work (Bohnet et al., 2022) that uses
binary categorization (i.e., attributable or not) and
Liu et al. (2023) that defines the degree of refer-
ence support for the generated statement as “full”,
“partial”, or “no support”, our fine-grained error
categorization aids humans in better understanding
the type of an attribution error made by an LLM.
This not only enhances safe system usage but also
provides valuable insights for future development
of mechanisms tailored to correct specific errors.

We explore two approaches in AttrScore: 1)
prompting LLMs and 2) fine-tuning LMs on simu-
lated and repurposed data from related tasks such
as question answering (QA), fact-checking, natural
language inference (NLI), and summarization. For
evaluation, unlike existing work (Liu et al., 2023;
Gao et al., 2023) that only uses queries from exist-
ing benchmarks, we curate a set of test examples
covering 12 different domains from a generative
search engine, New Bing. This is the first eval-
uation set for measuring the attribution of LLMs
with queries created based on real-life interactions,

hence avoiding the data contamination issue.

Our results indicate that both approaches show
reasonable performance on our curated and simu-
lated test sets; yet there is still substantial room for
further improvement. Major sources of evaluation
failures include insensitivity to fine-grained infor-
mation comparisons, such as overlooking contex-
tual cues in the reference, disregard for numerical
values, and failure in performing symbolic opera-
tions. In light of these findings, we discuss poten-
tial directions for improving AttrScore, including
training models to be more strongly conditioned on
the reference, and augmenting them with external
tools for numerical and logical operations.

With the new formulation of attribution errors,
the development of AttrScore, the introduction of
new test sets, and the insights into challenges and
potential directions for future work, we hope our
work can help lay the foundation for the important
task of automatically evaluating LLLM attributions.

2 Problem Formulation

The primary task in this paper is to evaluate attribu-
tion, which involves verifying whether a reference



provides sufficient support for a generated answer
to a user’s query. Our task setting prioritizes one
reference per statement, a unit task that more com-
plex scenarios can be decomposed to. We study
such a setting as it forms the basis for dealing with
multiple references or distinct segments (Liu et al.,
2023; Gao et al., 2023).

Prior work, such as Rashkin et al. (2021); Gao
et al. (2022); Bohnet et al. (2022), mainly focuses
on binary verification, i.e., determining if a refer-
ence supports the generated answer or not. We
propose advancing this task by introducing a more
fine-grained categorization. Specifically, we clas-
sify attributions into three distinct categories:*

 Attributable: The reference fully supports the
generated answer.

» Extrapolatory: The reference lacks sufficient
information to validate the generated answer.

* Contradictory: The generated answer contra-
dicts the information presented in the reference.

To illustrate, consider a contradictory example
(Figure 1). The query is “What was the unemploy-
ment rate in Germany in 2020?”, and the generated
answer is “4.31%”. However, the reference states
that the rate was “3.81%”, contradicting the gen-
erated answer. An extrapolatory instance, on the
other hand, would be a query about the “gas price
in California”. While the reference is relevant, it
does not contain specific information to verify the
correctness of the generated answer.

Following these examples, we see the impor-
tance of granularity in error classification. A fine-
grained classification allows us to pinpoint the na-
ture of the errors, be it contradiction or extrapo-
lation. Users can better understand the type of
errors an LLM might make, enabling them to use
the model more safely. Additionally, such an er-
ror identification system can guide future training
processes of attributed LLMs, leading to specific
mechanisms’ development to correct such errors.

Our categorization also offers a departure from
the existing approach (Liu et al., 2023), which em-
phasizes on degree of support (“full”, “partial”,
or “none’) rather than attribution error types. Our
approach highlights specific issues in attribution

“We acknowledge that while these categories are generally
mutually exclusive, complex scenarios might blur the bound-
aries between them. However, such cases are very rare. For

the purpose of this study, we maintain their exclusivity to
enable clear and focused error analysis.

evaluation for more effective error management
and system improvement.

Formally, the task of attribution evaluation in-
volves a natural language query ¢, a generated an-
swer a, and a reference x from an attributed LLM.
The goal is to develop a function, denoted as f, that
inputs (g, a, x) and outputs a class label indicating
whether “according to z, the answer a to the query
q is attributable, extrapolatory or contradictory.”

3 Automatic Evaluation of Attribution

Following our problem definition, we introduce
two approaches for automatic evaluation of attri-
bution: prompting LLLMs and fine-tuning LMs on
simulated and repurposed data from related tasks.

3.1 Prompting LLMs

Recent research (Fu et al., 2023) has demonstrated
the possibility of prompting LLMs to evaluate the
quality of generated text using their emergent ca-
pabilities (Wei et al., 2022b), such as zero-shot in-
struction (Wei et al., 2022a) and in-context learning
(Brown et al., 2020). Following this approach, we
prompt LLMs, such as ChatGPT (OpenAl, 2023a),
using a clear instruction that includes definitions of
the two types of errors (as shown in Figure 1) and
an input triple of the query, answer, and reference
for evaluation. The complete prompt used in our
study can be found in Appendix Table 6.

3.2 Fine-tuning LMs on Repurposed Data

The primary challenge in fine-tuning LMs for auto-
matic attribution evaluation is the lack of training
data. One potential approach is to hire annotators to
collect real samples, but the cost can be prohibitive.
Here, we first repurpose datasets from three re-
lated tasks (fact-checking, NLI, and summariza-
tion). We then propose to further simulate more
realistic samples from existing QA benchmarks.
Repurpose data from fact-checking, NLI, and
summarization tasks. Given the connections be-
tween our attribution evaluation task and the tasks
of fact-checking, NLI, and summarization, we pro-
pose to utilize datasets from these fields to enrich
our training examples. Fact-checking data and NLI
data, with their emphasis on assessing the consis-
tency and logical relationship between claims (hy-
pothesis) and evidence (premise), mirrors our task’s

51t is important to note that this evaluation focuses on the
“verifiability” of the answer based on the reference. It does not
measure the “relevance”, i.e., whether the answer correctly
responds to the query (Liu et al., 2023).



Query: Which apostle had a
thorn in his side?

Query: Which apostle had a
thorn in his side?

Query: Which apostle had a
thorn in his side?

Query: Which apostle had a
thorn in his side?

Short Ans: Paul [1]

who had a thorn in his side [1].

Long Ans: Paul was an apostle

Short Ans: Phillip [1]

Long Ans: Phillip had a thorn
in his side [1].

Short Ans: Paul [1]

Long Ans: Paul was an apostle

who had a thorn in his side [1].

Short Ans: Paul [1]

Long Ans: The apostle who had
a thorn in his side is Paul [1].
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Thorn in the flesh

Thorn in the flesh is a phrase of
New Testament origin used to
describe a chronic infirmity,
annoyance, or trouble in one's
life, drawn from Paul the
Apostle's use of the phrase in
his Second Epistle to the
Corinthians 12:7 --9
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Thorn in the flesh

Thorn in the flesh is a phrase of
New Testament origin used to
describe a chronic infirmity,
annoyance, or trouble in one's
life, drawn from John the
Apostle's use of the phrase in
his Second Epistle to the
Corinthians 12:7 --9

[1] https://en.wikipedia.org/
wiki/Thorn_(letter)

Thorn (letter)

Thorn or porn (P, p) is a letter
in the Old English, Old Norse,
Old Swedish and modern
Icelandic alphabets, as well as
modern transliterations of the
Gothic alphabet, Middle Scots,
and some dialects of Middle
English. It was also used ...

(A): Attributable

(B): Contradictory

(C): Contradictory

(D): Extrapolatory

Figure 2: Examples simulated from open-domain QA. We 1) use the original (question, answer, context) pair as an
attributable instance (A), 2) substitute the answer or the answer span in the context to simulate a contradictory error
example (B, C), and 3) replace the context with alternatives to simulate an extrapolatory error example (D). In order
for models trained the simulated data to generalize well to the long answer setting in real-life search engines like
New Bing, we convert the short answer to a long one (using ChatGPT).

objective of checking the supporting relationship
between reference documents and generated state-
ments. Summarization datasets, especially those
involving the detection of hallucinations (including
both intrinsic and extrinsic (Maynez et al., 2020),
could provide a useful starting point for identify-
ing attribution inconsistencies. Nevertheless, these
datasets would require suitable adaptation. We
keep their original data sequences and modify their
data label space to suit the specific needs of the
attribution evaluation definition. Additional infor-
mation on this can be found in Appendix A.

Simulate data from open-domain QA. QA bench-
marks provide an ideal platform for data simula-
tion, as they comprise questions, their correspond-
ing ground truth answers, and reference contexts.
These elements can be directly employed as at-
tributable examples (Figure 2, A). In open-domain
QA datasets, answers are typically brief text spans.
To cater to the long answer setting in most at-
tributed LL.Ms, we convert these short answers
into longer sentences using ChatGPT. For simulat-
ing contradictory errors, we propose two methods:
(1) The first involves modifying the correct answer
with an alternative candidate from an off-the-shelf
QA model, an answer substitution model, or a ran-
dom span generator (Figure 2, B). (2) The second
retains the original answer but replaces the answer
span in the reference context with a comparable
candidate (Figure 2, C). To emulate extrapolatory
errors, we employ a BM25 retriever on the ques-

tion, retrieving relevant external documents from
resources such as Wikipedia, which do not contain
the ground truth answers (Figure 2, D). More de-
tails regarding the simulation of these errors from
QA datasets can be found in Appendix A.

4 Experimental Setup

4.1 Datasets

This section presents the datasets utilized for train-
ing and testing methods for automatic attribu-
tion evaluation. In particular, we develop two
evaluation sets, AttrEval-Simulation and AttrEval-
GenSearch, derived from existing QA datasets
and a generative search engine, respectively. The
dataset statistics are presented in Table 1.

Training data. To repurpose and simulate train-
ing examples, we follow the method in Section
3.2 based on four similar tasks’ datasets. For
QA, we consider NaturalQuestions (Kwiatkowski
etal., 2019). For fact-checking, we include FEVER
(Thorne et al., 2018), Adversarial FEVER (Thorne
et al., 2019), FEVEROUS (Aly et al., 2021), VI-
TAMINC (Schuster et al., 2021), MultiFC (Augen-
stein et al., 2019), PubHealth (Kotonya and Toni,
2020), and SciFact (Wadden et al., 2020). For NLI,
we include SNLI (Bowman et al., 2015), MultiNLI
(Williams et al., 2018), ANLI (Nie et al., 2020)
and SciTail (Khot et al., 2018). For summarization,
we include XSum-Halluc. (Maynez et al., 2020),
XENT (Cao et al., 2022), and FactCC (Kryscinski



Data Sources

Split  Related Tasks #Samples Daily Life -
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QA HotpotQA, TriviaQA, 4K Figure 3: Domain distribution of our annotated AttrEval-
Test WebQuestions, TREC GenSearch test set (covering 12 domains in total).

Annotated samples from a 242
generative search engine

Table 1: Statistics of the training and test datasets for
attribution evaluation. We include the distributions of
the labels and data sources in Appendix B.

etal., 2020). We use all examples in the summariza-
tion task datasets, and sample 20K examples from
QA, fact-checking, and NLI task datasets. We com-
bine all the simulated datasets to create the training
set for our main experiment.
AttrEval-Simulation. For testing, we first simu-
late examples from six out-of-domain QA datasets:
HotpotQA (Yang et al., 2018), EntityQuestions
(Sciavolino et al., 2021), PopQA (Mallen et al.,
2022), TREC (Baudis and Sedivy, 2015), Trivi-
aQA (Joshi et al., 2017), and WebQuestions (Be-
rant et al., 2013). Note that we intend to use dif-
ferent QA datasets for training and testing, as to
test the model’s generalization ability, and evalu-
ate its performance across a diverse set of domains
and question formats. Our manual examination
indicates that 84% of 50 randomly sampled exam-
ples accurately align with their category, and the
labeling errors are primarily due to incorrect an-
notations in the original QA datasets or heuristics
used to formulate comparable answer candidates
for contradictory errors and to retrieve negative
passages for extrapolatory errors.
AttrEval-GenSearch. To examine the real-life ap-
plication of automatic attribution evaluation, ap-
proximately 250 examples from the New Bing
search engine are annotated carefully by the au-
thors. This process comprises two subtasks: creat-
ing queries and verifying attributions. To avoid the
issue of training data contamination, new queries
are manually created across 12 domains (Figure
3).% To facilitate and motivate query annotation,

The “AI/NLP Research” domain is inspired by recent
discussions on social media about testing LLMs’ knowledge
on researchers, e.g., “Is XX a co-author of the paper XX?”

keywords from a specific domain are randomly
generated using ChatGPT, and relevant facts within
that domain are compiled from the Web.’

In the verification process, queries are sent to the
New Bing search engine under a balanced mode fol-
lowing Liu et al. (2023), which balances accuracy
and creativity. The validity of the output generated
by New Bing is evaluated, where we consider only
the first sentence that answers the question along
with its reference. As we state in Section 2, our
evaluation emphasizes the error type in a single
reference per statement. In the case of a sentence
having multiple references or distinct segments (for
example, “XXX [1][2]” or “XXX [1] and YYY
[2]”), each reference or segment is treated as a
separate sample, and the attributions are verified
individually. Finally, the samples are categorized
by the annotators as attributable, contradictory, or
extrapolatory. Detailed annotation guidelines can
be found in Appendix D.

4.2 Implementation Details

In the configuration of “prompting LLMs”, we
test Alpaca (Taori et al., 2023), Vicuna (Chiang
et al., 2023), ChatGPT (OpenAl, 2023a) and GPT-
4 (OpenAl, 2023b), where we use OpenAl’s offi-
cial APIs (gpt-3.5-turbo, gpt-4-0314)%, and
weights from Alpaca and Vicuna from the official
repository”. For Alpaca and Vicuna inference, doc-
uments are tokenized and truncated at a maximum
of 2048 tokens. We generate text with a temper-
ature of 0. The prompts for the task of evaluat-
ing attribution are provided in Appendix Table 6,

"We make an effort to collect new facts post-2021 to test
about “knowledge confliction” (Zhou et al., 2023; Xie et al.,
2023) between parametric and external knowledge.

8platform.openai .com/docs/api-reference/chat.
Given GPT-4’s high cost and slow inference speed, we
evaluate it on 500 random samples from AttrEval-Simulation.

9https: //github.com/tatsu-1lab/stanford_alpaca,
https://github.com/1m-sys/FastChat
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Model (Size) ‘

AttrEval-Simulation

AttrEval-GenSearch

Setting
| Attri.  Contra. Extra. Overall | Attr. Contra. Extra. Overall

Alpaca (7B) 50.0 4.0 1.4 33.6 50.7 8.6 3.6 34.3

Alpaca (13B) 48.3 5.6 2.2 33.5 50.6 6.1 19.3 34.7

Zero-shot Vicuna (13B) 46.3 8.3 21.6 34.6 54.4 13.3 26.1 414
ChatGPT 45.7 17.9 52.7 43.2 61.2 20.6 53.3 55.0

GPT-4 58.7 23.2 61.5 55.6 87.3 45.0 89.6 85.1

Alpaca (7B) 45.4 8.2 9.6 31.9 49.6 52 13.5 37.2

Alpaca (13B) 38.9 20.1 2.2 33.1 50.5 10.3 5.6 34.8

Few-shot Vicuna (13B) 354 37.2 0.3 32.6 50.6 9.1 8.4 34.1
ChatGPT 46.6 27.6 35.8 39.2 62.6 26.8 49.5 53.3

GPT-4 61.1 31.3 68.8 60.0 85.2 53.3 88.9 84.3

Roberta (330M) ‘ 62.5 54.6 74.7 65.0 ‘ 47.2 25.2 62.3 49.8

GPT2 (1.5B) ‘ 63.6 54.6 719 63.5 ‘ 51.1 18.6 60.7 47.4

TS5 (770M) 459 571 71.6 59.1 58.5 24.3 72.5 61.6

Flan-T5 (770M) 57.3 50.1 70.5 59.3 64.3 27.6 72.9 64.5

Flan-T5 (3B) 48.1 48.7 67.1 55.7 77.7 44.4 80.0 75.2

Fine-tuned Flan-T5 (11B) 48.4 499 66.5 55.4 81.6 38.9 76.9 72.7
LLaMA (7B) 62.2 50.7 74.6 62.8 779 41.1 78.3 72.5

Alpaca (7B) 66.8 41.1 76.8 64.5 73.0 30.2 80.0 72.5

Alpaca (13B) 63.6 48.9 75.8 63.6 77.5 34.5 79.4 73.3

Vicuna (13B) 66.2 49.1 78.6 66.0 69.4 37.7 79.9 72.1

Table 2: The performance (F1 score) of AttrScore with different models on AttrEval-Simulation and AttrEval-
GenSearch sets. The best-performing result in each setting is in bold. The results show both promising signals and
challenges (e.g., all models struggle with contradictory errors) in automatic evaluation of attribution.

and our main results are averaged over 4 different
prompts. For the few-shot prompting setting, we
manually write 3 examples as demonstrations for
both test sets as shown in Table 7. If LLMs yield
an attribution label with an explanation, we extract
the predicted label with regular expression.

In the “fine-tuning LMs” setting, we fine-tune
four types of LMs of various scales: Roberta
(340M) (Liu et al., 2019), (FLAN-)T5 (770M, 3B,
11B) (Raffel et al., 2020; Chung et al., 2022), GPT2
(1.5B) (Radford et al., 2019), LLaMA (7B), Alpaca
(7B, 11B) (Taori et al., 2023), and Vicuna (7B, 11B)
(Chiang et al., 2023). Our implementation utilizes
the Huggingface library (Wolf et al., 2019) and
Alpaca examples. The training is performed on 4
A100 80GB GPUs with a maximum of 512 tokens.
For the LLaMA family of models, we use a batch
size of 32 and train for 1 epoch. For the other mod-
els, we use a batch size of 64 and 3 epochs. We set
the learning rate as 2e-5 and use a cosine learning
rate decay with 0.03 warm-up steps.

Metrics. For evaluation, we present the F1 score
for each individual class as well as the micro-F1
score, which is equivalent to the overall accuracy.

5 Results

5.1 Overall Performance

Table 2 presents an evaluation of different models
on both the simulated dataset (AttrEval-Simulation)
and the annotated dataset on New Bing (AttrEval-
GenSearch). Our primary findings are as follows:
GPT-4 achieves promising results, reaching an
overall accuracy of 81-83% on AttrEval-GenSearch
and significantly outperforming other models. This
suggests a promising potential for employing GPT-
4 for automatic attribution evaluation to alleviate
human annotation workloads, aligning with the
emerging trend that uses GPT-4 for different evalu-
ation tasks (Chiang et al., 2023; Zheng et al., 2023).
However, it may still not be sufficiently accurate for
practical use. We also note some potential concerns
of bias (see Limitations Section 8).

Automatic attribution evaluation presents sub-
stantial challenges. This complex task requires
not only understanding the reference information
but also comparing it with the information in the
statement, all of which can significantly vary across
different datasets and test conditions. Against these
challenges, models other than GPT-4 exhibit sub-
optimal performance in zero-shot and few-shot set-
tings. Fine-tuning LMs on the simulated datasets
from related tasks significantly improves the per-



Error Type
(percentage)

Example

Fine-grained in-
formation insen-
sitivity

(30.6%)

Query: Was ketchup a medicine before?

Answer:: In the early 1800s , it was believed that ketchup could be used to treat indigestion, jaundice, and diarrhea

Reference: According to John Cook Bennett, tomatoes could be used to treat diarrhea, ... Soon, Bennett was publishing tomato ketchup
recipes in pill form ... According to Dr. Bennett, this tomato blend can help people with diarrhea, indigestion, rheumatism, and jaundice.
> Ground Truth: Extrapolatory

> GPT-4: Attributable. The reference supports the claim that in the early 1800s , ketchup was believed to be used as a medicine to treat
indigestion, jaundice, and diarrhea. It mentions John Cook Bennett’s belief in the medicinal properties of tomatoes and his publication of

tomato ketchup recipes in pill form, which were sold as patent medicines in supermarkets and pharmacies.

Misunderstanding Query: When GTA6 will be published?
the task defini-
tion and logical
relation implied
by labels
(22.2%)

> Ground Truth: Attributable

Answer: Rockstar Games has not officially announced the release date for GTA 6 yet.
Reference: The most likely GTA 6 release date is holiday 2024, and although there is no official confirmation, this estimate is confirmed
by Microsoft’s stating that it “is expected” in 2024 in a legal filing and assorted insider leaks.

> GPT-4: Extrapolatory. The reference provides an estimated release date for GTA 6 based on a legal filing from Microsoft and insider

leaks, but it does not confirm an official announcement from Rockstar Games regarding the release date.

Failing on sym-
bolic operators
(13.9%) year.

Query: What’s the average salary for a software engineer working at Amazon in 20227
Answer: According to Indeed.com, the average salary for a software engineer working at Amazon in the United States is $131,930 per

Reference: Average salary $132,147 Salary estimated from 3,612 employees, users, and past and present job advertisements on Indeed

in the past 12 months. Last updated: April 18, 2023.
> Ground Truth: Contradictory

> GPT-4: Attributable. The reference does provide an average salary of $132,147 for a software engineer working at Amazon, which is

very close to the claim’s figure of $131,930.

Table 3: Qualitative analysis on misclassified examples from prompting GPT-4 in AttrScore.

formance. For instance, the Vicuna (13B) model
sees the overall accuracy on the two test sets rise
from 34.6% and 41.4% in the zero-shot setting to
66.0% and 71.3%, respectively. And the fine-tuned
FLAN-TS5 (770M) model can even surpass Chat-
GPT on both test sets. Despite this, there is still a
large room for further improvement. Some models
that yielded better results on the simulated test set
may be less effective on the annotated test set, indi-
cating a lack of consistency across diverse testing
settings, signaling generalizability challenges.
Models struggle most notably with contradic-
tory errors. Detecting contradictions is partic-
ularly complex because it requires the model to
weigh one piece of information in the statement
against another in the reference, a process that ne-
cessitates advanced fine-grained information com-
parison and reasoning capabilities. Consequently,
even the best-performing model GPT-4 and the fine-
tuned models often fail when faced with contradic-
tory inputs, most often treating them as attributable
(see qualitative analysis in Section 5.2).

5.2 Qualitative Analysis

To shed light on the space for future improvements
in attribution evaluation, we qualitatively examine
all the error examples of GPT-4 in the zero-shot
setting. Representative examples are in Table 3.
Our first observation is that a significant portion
(30.6%) of errors happen due to fine-grained in-
formation insensitivity: failure in comparing very
fine-grained information such as numerical values,

numbers, dates, and time. Besides, the model mis-
understands task definition and misinterprets logi-
cal relations implied by labels (22.2%). The model
also struggles with symbolic operators (13.9%).
For example, it fails to distinguish ‘equal to’ (=)
and ‘approximately equal to’ (/) in numeric com-
parisons. In the left cases, the model tends to over-
look the context clues and does not make judgments
by conditioning on the reference (e.g., potentially
relying on its own parametric knowledge).

Our observations point to two potential direc-
tions for improvement: 1) training or prompting
models to be more faithful and strongly conditioned
on the reference (Zhou et al., 2023), especially pay-
ing attention to fine-grained information; and 2)
augmenting an LM-based evaluation method with
external tools for different types of numerical and
logical operations that are hard to be accurately
performed only by the LM itself (Chen et al., 2020;
Mialon et al., 2023). Similarly, we do qualitative
analysis for ChatGPT in Appendix Section E.

5.3 Ablation Study

In this section, we perform an ablation study to
test how each task influences the fine-tuned LMs’
results and analyze the prompt sensitivity in zero-
shot and few-shot settings for prompting LLMs.

Contribution of individual task. We show the per-
formance of models fine-tuned on individual task
datasets and their combinations in Figure 4. We se-
lect a representative from each group of the models
under the fine-tuned setting in Table 2. Our findings
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Figure 4: The influence of individual task data. Com-
bining datasets generally improves model performance.

suggest that examples from our simulated QA and
fact-checking task most significantly improve per-
formance for the attribution evaluation task, hinting
at a strong link between these tasks. Furthermore,
integrating various related task datasets generally
leads to better performance, particularly on out-of-
domain test instances in AttrEval-GenSearch.
Sensitivity of prompts. The choice of prompts
used to evaluate language models can have an im-
pact on their performance. We evaluate the sensitiv-
ity of prompts for AttrScore under both zero-shot
and few-shot settings of Alpaca (7B) and ChatGPT.
We show four types of prompts as mentioned ear-
lier: a prompt designed specifically for our evalua-
tion setting (Attri.), an NLI prompt, a fact-checking
prompt (Fact.), and a summarization hallucination
detection prompt (Sum.). These prompts are pre-
sented in Appendix Table 6. As shown in Table 4,
fact-checking and NLI prompts generally perform
better, as similar tasks may have been seen during
their instruction tuning phase.

6 Related Work

Attributed LMs. Generative LMs often produce
hallucinations (Maynez et al., 2020; Dziri et al.,
2021; Lee et al., 2018; Shuster et al., 2021; Wang
and Sennrich, 2020; Xiao and Wang, 2021; Ji et al.,
2023). To alleviate the issue, recent work proposes
to augment LLMs (Mialon et al., 2023) with exter-
nal tools (Schick et al., 2023; Li et al., 2023; Qin
et al., 2023) such as retrievers (Guu et al., 2020;
Lewis et al., 2020; Shuster et al., 2021; Izacard
and Grave, 2021; Izacard et al., 2022; Borgeaud
et al., 2022; Trivedi et al., 2022; Qian et al., 2023)
and search engines (Nakano et al., 2021; Komeili
etal., 2022; Thoppilan et al., 2022; Yao et al., 2022;
Glaese et al., 2022; Shuster et al., 2022; Peng et al.,
2023). Incorporating external references for gen-
eration inherently implies that the generated state-
ment is backed by these references. However, the

Task Zero-shot Few-shot
Models Prombts
P Sim. Gen. Sim. Gen.
Attr. 348 344 313 335
NLI 32.1 355 321 336
Alpaca Fact. 340 339 327 467
Sum. 33.6 335 316 348
Average 33.6 343 319 372
Attr. 372 451 376 514
NLI 450 61.7 358 56.1
ChatGPT  Fact. 448 549 432 549
Sum. 456 58.1 402 50.6
Average 432 550 392 533

Table 4: Sensitivity of prompts for prompting LLMs
on AttrEval-Simulation (Sim.) and -GenSearch (Gen.).
The prompts include a prompt for attribution (Attri.),
a NLI prompt, a fact-checking prompt (Fact.), and a
summarization hallucination detection prompt (Sum.).

validity of such attribution remains questionable.

Evaluation of attribution. To evaluate attribu-
tion, Liu et al. (2023) conduct a human evaluation
to audit the verifiability of responses from genera-
tive search engines. They find that these engines
frequently contain unsupported statements and in-
accurate citations, which strengthen the need to
carefully examine the attribution of generations
(Rashkin et al., 2021). However, human evalua-
tions are very expensive and time-consuming. Gao
et al. (2022); Bohnet et al. (2022); Gao et al. (2023)
propose to automatically evaluate attribution by lev-
ering NLI models (Honovich et al., 2022; Kamoi
et al., 2023; Gekhman et al., 2023). We study
this problem in a more comprehensive and realistic
manner: 1) we explore how helpful other relevant
tasks besides NLI are to attribution evaluation; 2)
our evaluation setting is based on both benchmark
examples and real examples.

7 Conclusion

In this paper, we investigate the important prob-
lem of automatically evaluating attribution given
by LLMs. We begin by defining different types of
attribution errors and then explore two approaches
for automatic evaluation: prompting LLMs and
fine-tuning smaller LMs. We experiment with both
simulated test examples and manually curated test
examples from a real-life generative search engine.
The results highlight both promising signals and re-
maining challenges for the automatic evaluation of
attribution. We hope our work could lay the foun-
dation for future studies on this important problem.



8 Limitations

Currently, smaller models in AttrScore are fine-
tuned on the combination of simulated or repur-
posed datasets from related tasks. However, this
dataset still has gaps from the real scenario. More-
over, the error patterns in these simulated datasets
might be overly simplistic and lack diversity, which
can limit the models’ ability to effectively handle
more complex and varied real-world errors. It is
also worth noting that these simulated datasets may
contain noise and erroneous labels, which could fur-
ther impede the models’ learning and subsequent
performance. How to obtain higher-quality train-
ing data for attribution evaluation at scale can be a
major focus for future development.

Our annotated evaluation set, AttrEval-
GenSearch, is derived from New Bing, which uses
GPT+4 as its backbone. It is crucial to note that
we also use GPT-4 for evaluating attribution on
AttrEval-GenSearch, which achieves the best per-
formance with around 85% overall accuracy. Some
bias might come from GPT-4 both generating the
test examples and evaluating the attribution, which
could potentially skew our understanding of the
model’s true performance. We therefore caution
against over-optimism. We also acknowledge that
the size of AttrEval-GenSearch is moderate, which
may not fully represent the real use setting of
attributed LLMs.

While acknowledging current limitations, sev-
eral promising directions emerge for future re-
search and enhancement. For example, one can
diversify data sources to include examples from a
variety of generative search engines, not just New
Bing. In addition, it may be beneficial to annotate
larger-scale queries that cover a broad spectrum of
topics, styles, and perspectives.

9 Ethics Statement

This research project involves evaluating attribu-
tion given by attributed LLMs. We collect and
annotate data for evaluation using publicly avail-
able information on the web, with the assistance
of a generative search engine, New Bing. We ac-
knowledge that LL.Ms have the potential to repro-
duce and amplify harmful information present in
the data. We made an effort to mitigate this risk by
carefully selecting our evaluation data and by con-
ducting analyses to identify and mitigate potential
risks in the process.

References

Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull,
James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit
Mittal. 2021. FEVEROUS: fact extraction and verifi-
cation over unstructured and structured information.
In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1,
NeurIPS Datasets and Benchmarks 2021, December
2021, virtual.

Isabelle Augenstein, Christina Lioma, Dongsheng
Wang, Lucas Chaves Lima, Casper Hansen, Chris-
tian Hansen, and Jakob Grue Simonsen. 2019. Mul-
tiFC: A real-world multi-domain dataset for evidence-
based fact checking of claims. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 4685—4697, Hong Kong,
China.

Petr Baudis and Jan Sedivy. 2015. Modeling of the
question answering task in the yodaqa system. In Ex-
perimental IR Meets Multilinguality, Multimodality,
and Interaction - 6th International Conference of the
CLEF Association, CLEF 2015, Toulouse, France,
September 8-11, 2015, Proceedings, volume 9283 of
Lecture Notes in Computer Science, pages 222-228.
Springer.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533—1544, Seattle, Wash-
ington, USA.

Bernd Bohnet, Vinh Q Tran, Pat Verga, Roee Aharoni,
Daniel Andor, Livio Baldini Soares, Jacob Eisenstein,
Kuzman Gancheyv, Jonathan Herzig, Kai Hui, et al.
2022. Attributed question answering: Evaluation and
modeling for attributed large language models. ArXiv
preprint, abs/2212.08037.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,
Trevor Cai, Eliza Rutherford, Katie Millican, George
van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, Diego de Las Casas, Aurelia
Guy, Jacob Menick, Roman Ring, Tom Hennigan,
Saffron Huang, Loren Maggiore, Chris Jones, Albin
Cassirer, Andy Brock, Michela Paganini, Geoffrey
Irving, Oriol Vinyals, Simon Osindero, Karen Si-
monyan, Jack W. Rae, Erich Elsen, and Laurent Sifre.
2022. Improving language models by retrieving from
trillions of tokens. In International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Bal-
timore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 2206-2240.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.


https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/68d30a9594728bc39aa24be94b319d21-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/68d30a9594728bc39aa24be94b319d21-Abstract-round1.html
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.1007/978-3-319-24027-5_20
https://doi.org/10.1007/978-3-319-24027-5_20
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://arxiv.org/abs/2212.08037
https://arxiv.org/abs/2212.08037
https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.mlr.press/v162/borgeaud22a.html
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075

In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632-642, Lisbon, Portugal.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Meng Cao, Yue Dong, and Jackie Cheung. 2022. Hal-
lucinated but factual! inspecting the factuality of
hallucinations in abstractive summarization. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 3340-3354, Dublin, Ireland.

Xinyun Chen, Chen Liang, Adams Wei Yu, Denny Zhou,
Dawn Song, and Quoc V. Le. 2020. Neural symbolic
reader: Scalable integration of distributed and sym-
bolic representations for reading comprehension. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. ArXiv preprint,
abs/2204.02311.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
ArXiv preprint, abs/2210.11416.

Nouha Dziri, Andrea Madotto, Osmar Zaiane, and
Avishek Joey Bose. 2021. Neural path hunter: Re-
ducing hallucination in dialogue systems via path
grounding. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2197-2214, Online and Punta Cana, Do-
minican Republic.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. Gptscore: Evaluate as you desire. ArXiv
preprint, abs/2302.04166.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony
Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vin-
cent Y Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan,
et al. 2022. Rarr: Researching and revising what
language models say, using language models. ArXiv
preprint, abs/2210.08726.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen.
2023. Enabling large language models to generate
text with citations. ArXiv preprint, abs/2305.14627.

Zorik Gekhman, Jonathan Herzig, Roee Aharoni, Chen
Elkind, and Idan Szpektor. 2023. Trueteacher: Learn-
ing factual consistency evaluation with large lan-
guage models. ArXiv preprint, abs/2305.11171.

Amelia Glaese, Nat McAleese, Maja Trgbacz, John
Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh,
Laura Weidinger, Martin Chadwick, Phoebe Thacker,
et al. 2022. Improving alignment of dialogue agents
via targeted human judgements. ArXiv preprint,
abs/2209.14375.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Ming-Wei Chang. 2020. Retrieval augmented
language model pre-training. In Proceedings of the
37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research,
pages 3929-3938.

Or Honovich, Roee Aharoni, Jonathan Herzig, Hagai
Taitelbaum, Doron Kukliansy, Vered Cohen, Thomas
Scialom, Idan Szpektor, Avinatan Hassidim, and
Yossi Matias. 2022. TRUE: re-evaluating factual
consistency evaluation. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL 2022, Seattle, WA,
United States, July 10-15, 2022, pages 3905-3920.
Association for Computational Linguistics.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874-880, Online.

Gautier Izacard, Patrick S. H. Lewis, Maria Lomeli,
Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and
Edouard Grave. 2022. Few-shot learning with re-
trieval augmented language models. ArXiv preprint,
abs/2208.03299.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1-38.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of


https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2022.acl-long.236
https://doi.org/10.18653/v1/2022.acl-long.236
https://doi.org/10.18653/v1/2022.acl-long.236
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2210.11416
https://doi.org/10.18653/v1/2021.emnlp-main.168
https://doi.org/10.18653/v1/2021.emnlp-main.168
https://doi.org/10.18653/v1/2021.emnlp-main.168
https://arxiv.org/abs/2302.04166
https://arxiv.org/abs/2210.08726
https://arxiv.org/abs/2210.08726
https://arxiv.org/abs/2305.14627
https://arxiv.org/abs/2305.14627
https://doi.org/10.48550/arXiv.2305.11171
https://doi.org/10.48550/arXiv.2305.11171
https://doi.org/10.48550/arXiv.2305.11171
https://arxiv.org/abs/2209.14375
https://arxiv.org/abs/2209.14375
http://proceedings.mlr.press/v119/guu20a.html
http://proceedings.mlr.press/v119/guu20a.html
https://doi.org/10.18653/v1/2022.naacl-main.287
https://doi.org/10.18653/v1/2022.naacl-main.287
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.48550/arXiv.2208.03299
https://doi.org/10.48550/arXiv.2208.03299
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147

the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611, Vancouver,
Canada.

Ryo Kamoi, Tanya Goyal, Juan Diego Rodriguez, and
Greg Durrett. 2023. Wice: Real-world entailment for
claims in wikipedia. ArXiv preprint, abs/2303.01432.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781,
Online.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 5189-5197.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. 2022.
Internet-augmented dialogue generation. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8460-8478, Dublin, Ireland.

Neema Kotonya and Francesca Toni. 2020. Explainable
automated fact-checking for public health claims. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7740-7754, Online.

Wojciech Kryscinski, Bryan McCann, Caiming Xiong,
and Richard Socher. 2020. Evaluating the factual
consistency of abstractive text summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9332-9346, Online.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452-466.

Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fan-
njiang, and David Sussillo. 2018. Hallucinations in
neural machine translation. In Interpretability and
Robustness in Audio, Speech, and Language Work-
shop, Conference on Neural Information Processing
Systems (NeurIPS 2018), Montreal, Canada.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih,

Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu,
Zhoujun Li, Fei Huang, and Yongbin Li. 2023. Api-
bank: A benchmark for tool-augmented llms. ArXiv
preprint, abs/2304.08244.

Nelson F. Liu, Tianyi Zhang, and Percy Liang. 2023.
Evaluating verifiability in generative search engines.
ArXiv preprint, abs/2304.09848.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv preprint, abs/1907.11692.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi
Das, Hannaneh Hajishirzi, and Daniel Khashabi.
2022. When not to trust language models: Inves-
tigating effectiveness and limitations of paramet-
ric and non-parametric memories. ArXiv preprint,
abs/2212.10511.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factual-
ity in abstractive summarization. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 1906-1919, Online.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ramakanth Pasunuru, Roberta
Raileanu, Baptiste Roziere, Timo Schick, Jane
Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave,
Yann LeCun, and Thomas Scialom. 2023. Aug-
mented language models: a survey. ArXiv preprint,
abs/2302.07842.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. ArXiv preprint,
abs/2112.09332.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885-4901, Online.

OpenAl. 2023a. Chatgpt (mar 14 version) [large lan-
guage model]. https://chat.openai.com/chat.

OpenAl 2023b. GPT-4 technical report. ArXiv preprint,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,


https://doi.org/10.48550/arXiv.2303.01432
https://doi.org/10.48550/arXiv.2303.01432
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368
https://doi.org/10.18653/v1/2022.acl-long.579
https://doi.org/10.18653/v1/2020.emnlp-main.623
https://doi.org/10.18653/v1/2020.emnlp-main.623
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://openreview.net/pdf?id=SJxTk3vB3m
https://openreview.net/pdf?id=SJxTk3vB3m
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://arxiv.org/abs/2304.08244
https://arxiv.org/abs/2304.08244
https://arxiv.org/abs/2304.09848
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2212.10511
https://arxiv.org/abs/2212.10511
https://arxiv.org/abs/2212.10511
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.48550/arXiv.2302.07842
https://doi.org/10.48550/arXiv.2302.07842
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://chat.openai.com/chat
https://chat.openai.com/chat
https://arxiv.org/abs/2303.08774

John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, et al. 2023. Check your facts and
try again: Improving large language models with
external knowledge and automated feedback. ArXiv
preprint, abs/2302.12813.

Hongjing Qian, Yutao Zhu, Zhicheng Dou, Haoqi Gu,
Xinyu Zhang, Zheng Liu, Ruofei Lai, Zhao Cao,
Jian-Yun Nie, and Ji-Rong Wen. 2023. Webbrain:
Learning to generate factually correct articles for
queries by grounding on large web corpus. ArXiv
preprint, abs/2304.04358.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023. Tool learning with foundation
models. ArXiv preprint, abs/2304.08354.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm,
Lora Aroyo, Michael Collins, Dipanjan Das, Slav
Petrov, Gaurav Singh Tomar, Iulia Turc, and David
Reitter. 2021.  Measuring attribution in natu-
ral language generation models. ArXiv preprint,
abs/2112.12870.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
ArXiv preprint, abs/2302.04761.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin C! robust fact verification with
contrastive evidence. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 624—-643, Online.

Christopher Sciavolino, Zexuan Zhong, Jinhyuk Lee,
and Dangi Chen. 2021. Simple entity-centric ques-
tions challenge dense retrievers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6138—6148, Online
and Punta Cana, Dominican Republic.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation
reduces hallucination in conversation. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 3784-3803, Punta Cana, Do-
minican Republic.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju,
Eric Michael Smith, Stephen Roller, Megan Ung,
Moya Chen, Kushal Arora, Joshua Lane, et al. 2022.
Blenderbot 3: a deployed conversational agent that
continually learns to responsibly engage. ArXiv
preprint, abs/2208.03188.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. ArXiv preprint, abs/2201.08239.

James Thorne, Andreas  Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 809-819, New Orleans, Louisiana.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal. 2019.
The FEVER2.0 shared task. In Proceedings of the
Second Workshop on Fact Extraction and VERIifica-
tion (FEVER), pages 1-6, Hong Kong, China.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Interleaving retrieval
with chain-of-thought reasoning for knowledge-
intensive multi-step questions.  ArXiv preprint,
abs/2212.10509.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or fiction: Verifying
scientific claims. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7534—7550, Online.

Chaojun Wang and Rico Sennrich. 2020. On exposure
bias, hallucination and domain shift in neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3544-3552, Online.


http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2304.04358
https://arxiv.org/abs/2304.04358
https://arxiv.org/abs/2304.04358
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2112.12870
https://arxiv.org/abs/2112.12870
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://arxiv.org/abs/2208.03188
https://arxiv.org/abs/2208.03188
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/D19-6601
https://arxiv.org/abs/2212.10509
https://arxiv.org/abs/2212.10509
https://arxiv.org/abs/2212.10509
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022a. Finetuned
language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022b. Emergent abilities of large language models.
ArXiv preprint, abs/2206.07682.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112-1122, New Orleans,
Louisiana.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. ArXiv preprint,
abs/1910.03771.

Yijun Xiao and William Yang Wang. 2021. On hal-
lucination and predictive uncertainty in conditional
language generation. In Proceedings of the 16th Con-
ference of the European Chapter of the Association

for Computational Linguistics: Main Volume, pages
2734-2744, Online.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and
Yu Su. 2023. Adaptive chameleon or stubborn
sloth: Unraveling the behavior of large language
models in knowledge conflicts. ArXiv preprint,
abs/2305.13300.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369-2380, Brussels, Belgium.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. ArXiv preprint, abs/2210.03629.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
ArXiv preprint, abs/2306.05685.

Wenxuan Zhou, Sheng Zhang, Hoifung Poon, and
Muhao Chen. 2023.  Context-faithful prompt-
ing for large language models. ArXiv preprint,
abs/2303.11315.


https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://arxiv.org/abs/2206.07682
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/2021.eacl-main.236
https://doi.org/10.18653/v1/2021.eacl-main.236
https://doi.org/10.18653/v1/2021.eacl-main.236
https://arxiv.org/abs/2305.13300
https://arxiv.org/abs/2305.13300
https://arxiv.org/abs/2305.13300
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.48550/arXiv.2210.03629
https://doi.org/10.48550/arXiv.2210.03629
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2303.11315
https://doi.org/10.48550/arXiv.2303.11315

A Data Simulation

A.1 Simulation - QA

Attributable. Since we have questions, and their
ground truth answers and reference contexts, we
can directly treat them as “Attributable” examples.

Contradictory. To simulate contradictory errors,
we consider two methods. The first method in-
volves modifying the correct answer by replacing
it with a different candidate generated from an off-
the-shelf QA model, an answer substitution model,
or a random span generator. The second method
involves keeping the original answer and replacing
the answer span in the reference context with a sim-
ilar candidate. The QA model, the answer substitu-
tion model, and the random span generator are all
implemented by prompting a FLAN-T5-XL (3B)
(Chung et al., 2022) with different task prompts in
Appendix Table 5.

Extrapolatory. To simulate extrapolatory errors,
we employ a BM25 retriever to retrieve external
documents that do not contain ground truth answers
from knowledge sources like Wikipedia or the Web.
And then we replace the original paragraph with
one of the retrieved documents. For the answer,
we either keep the original ground truth answer or
leverage a QA model to generate an answer. Here
are more details for constructing negative retrieved
documents in each dataset.

Following previous work (Karpukhin et al.,
2020), we utilize the passages from Wikipedia
dumps for constructing evidence for NaturalQues-
tions (Kwiatkowski et al., 2019), WebQues-
tions (Berant et al., 2013), and TREC (Baudis and
Sedivy, 2015) datasets. In particular, we regard
the highest-ranked passage including answers from
BM25 as positive evidence and the top passage
without answers as negative evidence.

For TriviaQA (Joshi et al., 2017), we select the
passage with the highest overlap with answers from
web texts as positive evidence and the top-ranked
wiki passage without answers from BM25 as neg-
ative evidence. We exclude examples where the
positive evidence has an overlap ratio of less than
0.5 with answers. For HotpotQA (Yang et al.,
2018), we combine the ground truth passages pro-
vided as positive evidence and randomly select
two out of eight passages provided as negative evi-
dence. Similarly, in PopQA (Mallen et al., 2022),
we find positive evidence from Wikipedia content

through the provided link and retrieve negative evi-
dence from Wikipedia dumps using BM25. In En-
tityQuestions (Sciavolino et al., 2021), we match
positive evidence in Wikipedia texts searched by
the question entity and retrieve negative evidence
via BM25.

Converting short answers to long sentences.
Since many of the attributed LLMs generate long
sentences to the query, to make it our simulated
data more realistic, we convert short answers to
long answers using ChatGPT. Specifically, we
prompt ChatGPT with the instruction “Convert
a given question and answer pair into plain sen-
tences. [Question] [Answer]”.

A.2 Simulation - Fact Checking

With provided Wiki content as evidence in
FEVER (Thorne et al., 2018) and Adversarial
FEVER datasets (Thorne et al., 2019), we repur-
pose ‘SUPPORTS’ examples as attributable, ‘RE-
FUTES’ as contradictory, and ‘NOT ENOUGH
INFO’ as extrapolatory. Using the same label
mapping, we apply this approach to the claim
and evidence provided in VITAMINC (Schuster
et al., 2021), after removing duplicated examples
as shown in FEVER. For FEVEROUS (Aly et al.,
2021), we concatenate all pieces of evidence, in-
cluding tables and texts, and prepend an increasing
index as the final evidence. We then ground the
label into our three categories using the same label
mapping. Regarding natural claim datasets with
various label spaces, we keep the top 6 classes
out of 117 in MultiFC (Augenstein et al., 2019)
and map them to our defined three categories. In
PUBHEALTH (Kotonya and Toni, 2020), we con-
sider both ‘unproven’ and ‘mixture’ classes as ex-
traplanetary. We also regard the abstract of the
article as evidence. For SciFact (Wadden et al.,
2020), we repurpose ‘SUPPORT” as attributable
and ‘CONTRADICT’ as contradictory. Addition-
ally, we randomly select one sentence from the
abstract of other articles as evidence for the ‘Not
enough information’ class to construct extrapola-
tory examples.

A.3 Simulation - NLI

Natural language inference (NLI) aims to de-
termine whether a hypothesis is true given a
premise. In NLI datasets such as SNLI (Bow-
man et al., 2015), MultiNLI (Williams et al., 2018),
ANLI (Nie et al., 2020), and SciTail (Khot et al.,



2018), the hypothesis is considered the claim and
the premise is regarded as the evidence. The orig-
inal labels in NLI datasets, namely ‘Entailment’,
‘Contradictory’, and ‘Neutral’, are mapped to ‘At-
tributable’, ‘Contradictory’, and ‘Extrapolatory’.

A.4 Simulation - Summarization

Summarization involves condensing a given pas-
sage or article into brief sentences while preserving
its original meaning. To simulate contradictory ex-
amples, we use datasets with annotations of halluci-
nations. In terms of XSum-Hallucination (Maynez
et al., 2020), we merge examples with the same
ID and consider those with the most intrinsic hallu-
cination as contradictory and those with the most
extrinsic hallucination as extrapolatory. Paired full
articles and ground truth summaries are treated as
attributable examples. For XENT (Cao et al., 2022),
‘Non-factual Hallucination’ and ‘Intrinsic Halluci-
nation’ are seen as contradictory, ‘Factual Halluci-
nation’ as extrapolatory, and ‘Non-hallucinated’ as
attributable. Each article and reference are paired
as attributable examples. Finally, we resplit the
manually annotated dev and test sets for training
and evaluation in FactCC (Kryscinski et al., 2020),
with ‘INCORRECT"’ labeled as extrapolatory and
‘CORRECT” as attributable.

B Label and Subset Distributions of
Training and Test Sets

We show the label and data sources’ distributions
of training and AttrEval-Simulation sets in Figure
5 and Figure 6.

C Prompts for LLMs as AttrScore

We show different kinds of prompts for using
LLMs as AttrScore in Table 6. And we show the
few-shot demonstrations in Table 7.

D Generative Search Engine Examples
Annotation Protocol

We show the detailed annotation guidelines in the
following.



Annotation Guidelines

Overview

Thank you for participating in this annotation task. The goal of this task is to create a query and verify whether
a given reference document fully supports the generation of the query.

There are two sub-annotation tasks:
1. Create a query based on a few given keywords under a topic.
2. Verify whether a given answer to a query is fully supported by its references.

Task 1: Create a query for a specific domain.

You will be shown a list of keywords (e.g., inflation rate, CPI, GDP, unemployment rate, etc.) from a specific
domain or topic (e.g., economics) and a demo question (e.g., What was the unemployment rate in Germany in
20207?) as an inspiration. Then you will be asked to create a new query based on these keywords.

Task 1: Query Creation Submit

Inflation rate CPI GDP Oil price Unemployment rate More...

Sample fact: Unemployment refers to the share of the labor force that is without work but available for
and seeking employment. Germany unemployment rate for 2021 was 3.54%, a 0.28% decline from 2020.
Germany unemployment rate for 2020 was 3.81%, a 0.67% increase from 2019. Germany unemployment
rate for 2019 was 3.14%, a 0.24% decline from 2018. Germany unemployment rate for 2018 was 3.38%,
a 0.37% decline from 2017.

Enter your query here..

Task 2: Verify whether the generated statement is supported by its reference.

You will be shown a user query, a generative search engine’s response, and associated references. You will
need to read the query, response, and reference carefully and verify whether the cited evidence fully supports
the generation of the query.

You will be given three options:
a. “Attributable”: The reference fully supports the generation of the query.
b. “Extrapolatory”: The generation contradicts the reference.
c. “Contradictory”: The reference does not contain sufficient information to infer the correctness of the
generation.



Consider the following examples:

(1) “Attributable”

Query: What is the temperature range on the moon?

Response: The average temperature on the moon can range from -298 degrees F (-183 degrees C) at night to
224 degrees F (106 degrees C) during the day [1].

Reference: The average temperature on the Moon (at the equator and mid latitudes) varies from -298 degrees
Fahrenheit (-183 degrees Celsius), at night, to 224 degrees Fahrenheit (106 degrees Celsius) during the day.
Because the Moon has no...

Annotation: Attributable

(2) “Extrapolatory”

Query: What is the highest price of a gallon of regular gas in the US in 20227

Response: According to a news article by NPR, as of June 2022, the highest average price of a gallon of
regular gas in the US was $6.34 in California [1].

Reference: U.S. gas prices hit a new record on Monday, with a gallon of regular gas costing an average of
$4.865 (not adjusting for inflation), according to the most recent data from the American Automobile
Association...

Annotation: Extrapolatory

(3) “Contradictory”

Query: What was the unemployment rate in Germany in 20207

Response: According to [1], the unemployment rate in Germany for 2020 was 4.31%, which was a 1.17%
increase from 2019. However, it is important to note that the COVID-19 pandemic had a significant impact on
unemployment rates in Germany and around the world.

Reference: Germany unemployment rate for 2020 was 3.81%.

Annotation: Contradictory

Task 2: Verification Submit

Query: What was the unemployment rate in Germany in 2020?

Response: According to [1], the unemployment rate in Germany for 2020 was 4.31%, which was a
1.17% increase from 2019. However, it is important to note that the COVID-19 pandemic had a
significant impact on unemployment rates in Germany and around the world.

Reference: [1] htips://www.macrotrends.net/countries/DEU/germany/unemployment-rate
Germany unemployment rate for 2020 was 3.81%.

Does the evidence fully supports the response? -

Attributable

Extrapolatory

Contradictory



Tasks Prompts

Context: [Context]\n

QA Based on Context, [Question]
Please provide a related term or substitution for the given input, which should be different from the input.\n
"Input: Biden; Output: Obama\n"

Answer "Input: 1949; Output: 1358\n"

Substitution Input: University of Maryland; Output: University of Cambridge\n

"Input: 09/12/2014; Output: 03/30/2008\n"

"Input: $431; Output: $769;\n"

"Input: [Ground Truth Answer]; Output: ",

Random Span
Generation

Extract a phrase from the given passage. \n Passage: [Context]

Table 5: Prompts for QA, answer substitution, and random span generation when simulating contradictory errors
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Figure 5: Label distribution of training and test sets.
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Figure 6: Data source distribution of combined training and AttrEval-Simulation sets.

E Additional Qualitative Analysis

The qualitative results of ChatGPT are shown in
Table 8. Our first observation is that a significant
portion (79.4%) of errors happen due to ChatGPT
overlooking the context clues and does not make
judgments by conditioning on the reference (e.g.,
potentially relying on its own parametric knowl-
edge). For the remaining error cases, they are:
1) fine-grained information insensitivity (13.8%):
failure in comparing very fine-grained informa-
tion such as numerical values, numbers, dates, and

time; 2) failure in performing symbolic operations
(6.8%): the model fails to verify the claim which
requires performing symbolic operations over the
reference, such as verifying set relationships.



Prompt Types

Prompts

Attribution

### Instruction:

As an Attribution Validator, your task is to verify whether a given context can support the claim.
A claim can be either a plain sentence or a question followed by its answer. Specifically, your
response should clearly indicate the relationship: Attributable, Contradictory or Extrapolatory.
A contradictory error occurs when you can infer that the answer contradicts the fact presented
in the context, while an extrapolatory error means that you cannot infer the correctness of the
answer based on the information provided in the context.

### Input:
Claim: [Question Answer] or [Plain Sentence] \n\n
Context: [Context]

### Response:

Fact-Checking

### Instruction:
Fact-check a claim based on the given evidence.
Options: Supported, Refuted or Not Enough Information

### Input:
Claim: <Claim>\n\n

Evidence: <Evidence>

### Response:

NLI

### Instruction:
Read the following and determine if the hypothesis can be inferred from the premise.
Options: Entailment, Contradiction, or Neutral

### Input:
Hypothesis: <Hypothesis>\n\n
Premise: <Premise>

### Response:

Summarization
Hallucination
Detection

### Instruction:
Read the following and determine whether the source text can support the summary.
Options: Support, Contradicts, or Not Enough Information

### Input:
Summary: <Summary>\n\n

Source: <Source>

### Response:

Table 6: Prompt variations for test the sensitivity of different prompts on the results. We use the “Attribution”
prompt for our main experiments as default as it achieves the best performance overall.



Few-shot demonstrations

Here are some demonstration examples for you.

### Input:
Claim: In what year was the writer of the opera "Mazeppa" born? The writer of the opera "Mazeppa" was born in 1840.

Reference: Mazeppa, properly Mazepa, is an opera in three acts (six scenes) by Pyotr Ilyich Tchaikovsky. The libretto
was written by Victor Burenin and is based on Pushkin\’s poem "Poltava". Pyotr Ilyich Tchaikovsky (25 April/7 May
1840 — 25 October/6 November 1893), often anglicized as Peter Ilich Tchaikovsky, was a Russian composer of the
romantic period, some of whose works are among the most popular music in the classical repertoire. He was the first
Russian composer whose music made a lasting impression internationally, bolstered by his appearances as a guest
conductor in Europe and the United States. Tchaikovsky was honored in 1884, by Emperor Alexander III, and awarded
a lifetime pension.

### Response:
Attributable. From the given reference, Pyotr Ilyich Tchaikovsky was the writer of "Mazeppa", who was born in 1840
as stated in the given claim.

### Input:
Claim: In what part of Buenos Aires Province is the city that has The Juan Carlos Castagnino Municipal Museum
of Art located? It is located in the southeast part.

Reference: The Juan Carlos Castagnino Municipal Museum of Art is a museum of fine arts in Mar del Plata, Argentina.
Mar del Plata is an Argentine city in the east part of Buenos Aires Province located on the coast of the Atlantic Ocean.

It is the head of General Pueyrred6n Partido. Mar del Plata is the second largest city in Buenos Aires Province. The name
"Mar del Plata" has the meaning of "sea of the Silver region" or "adjoining sea to the (River) Silver region". Mar del Plata
is one of the major fishing ports and the biggest seaside beach resort in Argentina.

### Response:
Contradictory. The reference says that Mar del Plata is in the east part of Buenos Aires, so The Juan Carlos Castagnino
Municipal Museum of Art is also in the east part of Buenos Aires, not southeast.

### Input:
Claim: In what year was Louis Joseph de Frances\’s mother born? Louis Joseph de Frances’s mother was born in 1755.

Reference: Lakshman Joseph de Saram is a film composer and classical musician. Born in Colombo, Sri Lanka and
educated at the Royal College, Colombo, the High School of Performing Arts, Manhattan School of Music and Juilliard
Pre-College in New York City, Joseph de Saram is influential in the music of South Asian art cinema, having scored many
international award-winning films like \’Between Two Worlds\’ and \’Akasa Kusum.\’ His best-known score is to the 2012
film "Bel Ami". Joseph de Saram is also artistic director of The Chamber Music Society of Colombo. Louis Joseph de
Lorraine "Duke of Guise" and Duke of Angouléme, (7 August 1650 — 30 July 1671) was the only son of Louis, Duke of
Joyeuse and Marie Frangoise de Valois, the only daughter of Louis-Emmanuel d\’ Angouléme, Count of Ales, Governor of
Provence and son of Charles de Valois Duke of Angouléme, a bastard of Charles IX of France.

### Response:

Extrapolatory. The answer to the question cannot be inferred from the given reference since the person "Louis Joseph de
Frances" is not mentioned. We also cannot find any evidence in the Reference which contradicts with the provided answer.

Now here is the example that needs your response:

Table 7: Few-shot demonstrations for prompting LLMs as AttrScore.



Error Type Example

(percentage)

Overlooking  Query: Was ketchup a medicine before?

contextual Answer:: Yes, that’s true! Ketchup was sold as a remedy for indigestion, diarrhea, jaundice and rheumatism in the 1830s

cues Reference: Decades later, in the 1870s, American entrepreneur Henry Heinz created a modern version of ketchup with ripe tomatoes,
(79.4%) distilled vinegar, brown sugar, salt and a variety of spices. By 1905, the company had sold five million bottles of ketchup, cementing its

place as the condiment we know and love today.
Ground Truth: Extrapolatory
ChatGPT: Attributable. The reference supports the claim that ketchup was sold asa remedy for various ailments in the 1830s,

indicating that it was used as a medicine before.

Fine-grained

Query: How many total miles of coastline does Norway have?

information ~ Answer: The official length was recalculated in 2011 as 100,915 km , including fjords and islands.
insensitivity ~ Reference: A straight line along Norway’s sea borders (the coastal perimeter) is 2,650 kilometers (1,650 mi) long. Along the coast there
(13.8%) are many fjords, islands, and bays, resulting in a low-resolution coastline of over 25,000 kilometers (16,000 mi).
Ground Truth: Contradictory
ChatGPT: Attributable. The reference provides information that the official length of Norway’s coastline, including fjords and islands, is
100,915 km. Therefore, the claim that Norway has a total of 100,915 km of coastline is supported by the Reference.
Failing on Query: Is Andrew Ng an author of the recent paper “generative agents: interactive simulacra of human behavior”?
symbolic Answer: Yes, Andrew Ng is one of the authors of the paper “Generative agents: Interactive simulacra of human behavior”.
operators Reference: Computer Science > Human-Computer Interaction [Submitted on 7 Apr 2023] Generative Agents: Interactive Simulacra of
(6.8%) Human Behavior Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, Michael S. Bernstein .

Ground Truth: Contradictory
ChatGPT: Attributable. The reference clearly states that Andrew Ng is one of the authors of the paper "Generative Agents: Interactive
Simulacra of Human Behavior", which supports the claim that he is an author of the paper.

Table 8: Qualitative analysis on misclassified examples from prompting ChatGPT in AttrScore.



