'.)

Check for
Updates

Mirage: Towards Low-interruption Services on Batch GPU
Clusters with Reinforcement Learning

Qiyang Ding”
The University of Texas at Austin

Shivaram Venkataraman
University of Wisconsin, Madison

ABSTRACT

Accommodating long-running deep learning (DL) training and in-
ference jobs is challenging on GPU clusters that use traditional
batch schedulers, such as Slurm. Given fixed wall clock time lim-
its, DL researchers usually need to run a sequence of batch jobs
and experience long interruptions on overloaded machines. Such
interruptions significantly lower the research productivity and QoS
for services that are deployed in production. To mitigate the is-
sues from interruption, we propose the design of a proactive provi-
sioner and investigate a set of statistical learning and reinforcement
learning (RL) techniques, including random forest, xgboost, Deep
Q-Network, and policy gradient. Using production job traces from
three GPU clusters, we train each model using a subset of the trace
and then evaluate their generality using the remaining validation
subset. We introduce Mirage, a Slurm-compatible resource provi-
sioner that integrates the candidate ML methods. Our experiments
show that the Mirage can reduce interruption by 17-100% and safe-
guard 23%-76% of jobs with zero interruption across varying load
levels on the three clusters.

ACM Reference Format:

Qiyang Ding*, Pengfei Zheng*, Shreyas Kudari, Shivaram Venkataraman,
and Zhao Zhang. 2023. Mirage: Towards Low-interruption Services on Batch
GPU Clusters with Reinforcement Learning. In The International Conference
for High Performance Computing, Networking, Storage and Analysis (SC °23),
November 12-17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3581784.3607042

1 INTRODUCTION

DL practitioners and researchers are increasingly leverage large-
scale GPU clusters to train large ML models. For example, some sci-
entists are training the 345 million parameter BERT [12] or the 175
billion parameter GPT-3 [8] models for various DL tasks and these
large networks can take O(103) GPUs for days and even months
to train [40, 52]. Others deploy ML models to perform inference
for classifying celestial objects and detect Type Ia supernovae on
streaming data in real-time [18]. These jobs are long-running as
they continuously process incoming data. As a result, computing

"Equal contribution to this work

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC °23, November 12-17, 2023, Denver, CO, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0109-2/23/11.

https://doi.org/lO.l145/358178443607042

Pengfei Zheng*

University of Wisconsin, Madison

Shreyas Kudari
The University of Texas at Austin
Zhao Zhang
Rutgers University
A0 4
100
_ RTX
[t}
£ ¥
g
£ 0 I
;20' I I
_rE I
=
- IiIII I Ii
SEIREITTIINLIFILL P
L s B B o R T S T Y= B - = -y B B T B B - T LY < - =
o s R e e I i R R
EEREEEEEREEEEEEEE R
[i - - - o - L, i, o o - e o o
O T e e e e T e e e i e e e
o™ [B o B)
‘ar-Month

Figure 1: Average Queue Wait Time on the V100 (TACC
Longhorn) and RTX (TACC Frontera) GPU Cluster.

centers are experiencing large increases in execution time and wait
time, a trend that is expected to continue.

In an effort to ensure responsiveness and fairness, computing
centers enforce a fixed wall clock time limit for jobs running on
GPU clusters. For example, TACC Longhorn has a 48 hour limit,
while the NERSC Perlmutter supercomputer has a 12 hour limit.
Since the runtime of DL training is much longer than these limits
(e.g.,pre-training the 20 billion GPT-NeoX models takes 96 Nvidia
A100 GPUs for 30 days [5]), scientists resort to running consecutive
jobs. That is, just before the time limit expires, they checkpoint
model training and then resume training by submitting a second job.
Specifically, this is usually done in an automatic way by submitting
an array of jobs to the scheduler, e.g., SLURM, which does not start
accumulating the priority of a dependent job until the previous one
completes [39]. We find that users can experience long wait time by
submitting consecutive jobs reactively (e.g., up to 40 hour wait time
on a V100 cluster in February 2021, as shown in Figure 1). Thus,
the existing reactive approach inevitably introduces interruptions,
limits the quality of service (QoS) and hurts responsiveness.

A straightforward way to facilitate long-running services is to
dedicate a group of compute nodes and relax the wall clock time,
such as the real-time queue on NERSC Perlmutter [29]. This ap-
proach requires policy and scheduler changes system-wise and
it is prune to low machine utilization, responsiveness, and un-
fairness [17]; thus the use of such queues is limited to special re-
quests. A second way is to predict the queue wait time, as in classic
works [30, 31, 45], and then to submit subsequent jobs proactively
as advised by the prediction. However, an empirical study showed

https://doi.org/10.1145/3581784.3607042
https://doi.org/10.1145/3581784.3607042
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607042&domain=pdf&date_stamp=2023-11-11

that prior approaches only have an average accuracy of 20-72%,
and at least 91% of predictions are incorrect [46]. The inaccurate
queue wait time prediction can be attributed to the randomness in
job arrival and completion time (a detailed study is in §3). In this
work, we take a different approach to reducing the interruption by
designing a proactive job provisioner that learns the queue state
changes using historical job traces via reinforcement learning tech-
niques. Researchers have examined RL methods for job scheduling
in High-performance Computing [24, 33, 51] to maximize global
performance metrics such as machine-wise utilization or fairness
among all users. In contrast, the scope of this work is to minimize
the overall time-to-solution for an individual user.

Specifically, we formulate the proactive resource provisioning
problem using the reinforcement learning (RL) paradigm. The proac-
tive resource provisioner functions as the agent and our environ-
ment includes the cluster and jobs. The machine states and queue
states form the environment at a specific time and the provisioner
can extract these states from the scheduler (e.g., Slurm). The action
that the resource provisioner (agent) takes is to either submit the
job or do nothing. Our reward can be determined by the result-
ing interruption or overlap for a series of actions taken during job
execution.

In particular, we investigate Deep Q-Network (DQN) and pol-
icy gradient methods using two network architectures, transform-
ers [48] and Mixture-of-Experts, as the state-action value function
and the policy function, respectively. We design Mirage, a flexi-
ble RL framework with pluggable network architecture and RL
methods. Mirage interacts with a low overhead Slurm simulator
which we have validated to be sufficiently close to production Slurm
deployments.

To examine the effectiveness and generality of the candidate
methods, we evaluate Mirage using traces from three production
GPU clusters. This includes 20-month long traces from TACC
Longhorn (a 88-node V100 cluster) and Frontera (a 84-node RTX
cluster) and a five-month long trace from Lonestar6 (a 76-node
A100 cluster). We refer to these three clusters as V100, RTX, and
A100. Following standard ML practice, we partition the job traces
of each cluster into training and validation sets with a ratio of 80:20.
For each cluster, the RL method is trained on the training partition
and then evaluated on the validation range to examine generality.
Our results show that, for HPC workloads, under a medium to high
level of cluster load, Mirage safeguards 23%-72%, 35%-72%, and 40%-
60% jobs to have zero interruption on the V100, RTX, A100 cluster,
respectively. We also observe that Mirage significantly outperforms
the reactive and average baseline strategies in reducing the aver-
age interruption by 25-53%, 21-44%, 77-100%, when machines are
heavily loaded across the three job traces.

By comparing across all eight methods (see §6), the MoE+DQN
(Mixture-of-Experts with Deep Q-Learning) and transformer+PG
(policy gradient agent with transformer) methods outperform oth-
ers. When the machine is heavily loaded, transformer+PG has a
16.9-55.9% lower interruption compared to MoE. Its aggressiveness
also pays a 1.8-2.6x higher overlap when the machines are lightly
loaded. Given the balanced performance, Mirage uses MoE+DQN
as its default model. We also provide an option for users to use
transformer+PG if they work on a heavily loaded machine.

We would like to note that one should not misunderstand the
effectiveness scope of the examined RL methods. These methods are
trained with a specific cluster job trace, and they are only effective
on that cluster. Our generality lies in the methods used but not in
the models, in the sense that one need to train the models with
the particular job trace of the machine that one wants to run the
proactive provisioner on.

The applicability of Mirage is beyond DL training and inference
service. Scientists can also use this tool for long-running simula-
tions or data analysis workflows for shorter experiment turnaround.
Mirage, the trained models, Slurm simulator, and model training
code are all available at https://github.com/zhaozhang/Mirage. The
main contributions of this paper include:

o The design and evaluation of DQN and policy gradient meth-
ods with transformer and MoE network architecture that
significantly reduces interruptions caused by heavy machine
load.

o The flexible Mirage framework with pluggable RL methods
and network architectures.

e Slurm simulator that can support job trace sampling and
replaying with low overhead.

o Evaluating the generality of the proposed method on three
distinct GPU clusters.

e An open source implementation of the simulator and RL-
based provisioner.

The rest of the paper is organized as following: We discuss the
trend of DL jobs and basics of RL in §2. We analyze the job traces and
present the results in §3. The formalization of resource provisioning
as RL is discussed in §4 and the implementation details are in §5.
We present and discuss the experiment design and results in §6. A
review of related RL research and its application in HPC is presented
in §7. Finally, we conclude in §8.

2 PRELIMINARIES

Deep learning applications have been increasingly popular on GPU
clusters. In this section, we discuss the long-running training and
inference service demanded by scientists in supercomputers and
present the preliminaries for deep Q-learning [25], policy gradi-
ent [43] and mixture of experts [50].

2.1 Long Running Deep Learning Applications

As scientists and DL practitioners investigate more complex prob-
lems, they often utilize larger models and datasets. For example, the
345 million parameter BERT [12] model takes 5 days to train with 8
NVIDIA A100 GPUs on the English Wikipedia dataset [37]. The 175
billion parameter GPT-3 model is estimated to take 34 days to train
with 1,024 NVIDIA A100 GPUs [28]. Scientists are also deploying
trained models for real-time data processing or object detection.
Some examples include transient celestial object detection [18],
point-scanning electromagnetic imaging super-resolution [13], and
disease detection in digital agriculture [26]. These applications re-
quire running long inference jobs as a service, which is problematic
since modern GPU clusters frequently impose 48- or 72-hour limits
to ensure responsiveness.

https://github.com/zhaozhang/Mirage

2.2 Deep Q-Learning

Reinforcement learning (RL) is a machine learning method based
on trial and error. At a time step ¢, an RL agent takes an action A; to
react to the current system state S;, and thereby, shifts the system
to the next state S;.1. The agent receives an immediate reward R;
for triggering the transition, and this process of making decisions
and collecting rewards repeats to until a terminal step T. The RL
agent is trained to learn an optimal that maximizes the accrued
rewards within the time horizon (¢t = 1,...,T). When the learned
policy is non-deterministic and the state transition is stochastic,
the trajectory of produced states, actions and rewards is uncertain
and we denote it with sequence of random variables S1, A1, R1, ...,
St,Ar, Rt

At time step t, we use function Q(S, A) to indicate the the ex-
pected return (cumulative reward) starting from t. r itself is func-
tion that maps an encountered state to its decided action, and the
discounting factor 0 < y < 1 translates future rewards to present
values.

T
Qr(5,0) = Ex[> Y*Rysks11St = 5, Ar = a] 1)
k=1

with Monte Carlo simulations, one can rollout different trajectories
from a policy, and then, compute an average return for each visited
state as a sample estimate of Q(S, A). This would converge if every
state and action is visited infinite times. Learning can also happen
online by bootstrapping with the Q values of the next state in the
sequence,, which is referred to as Q-learning [25]:

Qr+1(s, @) Qls. @) + a(R + y max Qk(s",a) = Ors.@)) (2

s’ is the next state transitioned from s, and k represents the iteration
of learning that updates Q. The Q-values are captured in a tabu-
lar manner but this could get cumbersome for large state-spaces.
Recent studies [42, 43] use a deep neural network with weights
0, namely a deep Q network (DQN), to represent Q and its loss
function and gradients for the k-th iteration are defined as below.
Rather than computing the full expectation, the loss function can
be optimized with mini-batch Stochastic Gradient Descent (SGD).

L(Bk+1) = E[(R + ymaxa Q(s", @' 6¢) — Q(s,4: 1)1 (3)

Vo, LOk+1) = E[R + ymaxa Qi(s”. a’; 6k)

—Q(s,a;61)V 9, Q(s, a5 O11)] @

2.3 Policy Gradient

Deep Q-Networks (DQN) is a value-based RL method that is known
for a few limitations. First, DQN lacks a direct representation of
the policy, and policy inference requires solving an optimization
problem argmax,Q(s, a) and this challenges when the action space
is high-dimensional. Second, DQN does not automatically trade off
exploit and exploration, and usually relies on human-crafted strate-
gies such as the e-greedy strategy [25] to guarantee exploration.
However, manually tuning the € threshold is difficult. To overcome
these limitations, policy gradient [42, 43] is widely used; it parame-
terizes a policy with a deep neural network and directly outputs

the probability of the action to take. Moreover, policy gradient can
autonomously arbitrate exploit and exploration.

We briefly formulate policy gradient as below. First, let 7 denote
arandom trajectory that comprises of a sequence of state, action, re-
ward triples, i.e., s7, af, rf, .. .,s%, a?, rIT., to until the terminal time
step T; let my(r) denote the probability distribution of 7 when it is
realized with a stochastic policy 7. 7 is implemented using a deep
neural network with parameters 6; let r(7) represent the cumulative
reward Zthl r; and let J(0) represent the expectation of r(z), i.e.,
J (9)=E[Z{=1 r7]. Note that, unlike value based methods, policy gra-
dient directly maps a state s; to its decided action a; with (softmax)
probability mg(a;|s). The policy gradient theorem states that

VoJ(0) = Erry(r) [Vologmo(r)r(r)] (5)

, which can be approximated with Monte Carlo rollout,

T T
VoJ(0) = (3 Vologmo(af s 7f ©
t=1 t=1

, and the policy network can be update with gradient ascent and
learning rate a, i.e., 0 < 6 +aVyJ(0), which iteratively converge to
a (local) maximum. Note that although policy gradient solves some
of the issues of deep Q-learning, it also incur some other issues;
its learned policy may converge to a local optimum [38], and in
real-world applications, it is found to suffer from high-variances
[35]. As there arguably is no clear winner, we adopt both the DQON
and the policy gradient method.

2.4 Mixture of Experts (MoE)

Scaling up model capacity is one of the key success of deep learning,
as increased model capacity usually renders higher predictive power.
There are three learning strategies to enhance model capacity, i.e.,
scaling up a monolithic model [21], ensemble learning [10] and MoE
(Mixture of Experts) [50]. We try all these three different strategies
to build and train RL provisioners, and evaluate them in Section
4. Note that we increase model capacity but cautiously prevent
over-fitting using cross-validation.

Scaling up a monolithic model. One strategy to increase model
capacity is to train a huge, monolithic deep neural network that may
include hundreds to thousands of layers and billions of parameters
[21]. However, training a huge monolithic model is a herculean
task. First, training efficacy deteriorates as gradient vanishes when
back-propagated through a deep architecture. Residual bypasses
and advanced activation functions mitigate this issue but with no
complete solution. Second, a huge, complex model has a higher
degree of curvature and contains more saddle points and local
minima, and gradient descent is more prone to stuck. Third, training
a huge neural network is computationally prohibitive.

Ensemble learning. The other strategy to level up model capacity
is ensemble learning such as Random Forest (RF) [7] and Gradient
Boosting Decision Trees (GBDT) [14], which average the outputs
of multiple learners, each trained on a sub-datasest. However, ag-
gregating a large (infinite) number of weak learners (each underfits
the complex data and incurs high biases), increases model complex-
ity but does not effectively increase model capacity. Thus, RF or
GBDT usually have difficulties in modeling complex supervised
learning tasks such as language modeling. Moreover, classic ensem-
ble learning adopts a static mixture weights for its member learners.

Table 1: Stats of the Job Traces of V100 and RTX.

| | Vvioo [RIX A100
node count 88 84 76
Start Time 11/04/2019 | 12/04/2019 | 11/01/2022
End Time 08/20/2021 | 08/19/2021 | 03/31/2023
Orig. Job Count 189,899 375,095 49,997
Filtered Job Count 65,017 175,090 24,779

However, learners usually perform differently for varied input re-
gions, and the mixture weights should be adaptively different for
different input samples.

Mixture of Experts (MoE). We believe the philosophy that
instead of training a complex, monolithic model or an ensemble of
many weak models, one should train and combine several models
of intermediate complexity [15]. Following this philosophy, the
MOoE deep neural networks [50] has achieved remarkable success.
An MoE neural network contains many experts that share the
same network architecture, each of which is trained on a partition
of the training samples. There is a mixture (or gating) layer that
adaptively routes inputs to their best-fit experts, and the best-fit
experts’ out are aggregated (averaged) as the final output. This
MoE scheme scales up model capacity with no significant increase
of computation overhead. We adopt the softmax gating layer [41],
which computes the weighted average of the Q-values across E
different DQN experts.

E
Q(s.a) = > Go(e)Qe(s.a) ,Go() = softmax(x - Wp) (7)
e=1

3 TRACE ANALYSIS AND DATA CLEANING

We collected job traces from three production GPU clusters in a
national computing center. V100 has 88 compute nodes, each with
four Nvidia V100 GPUs. RTX has 84 compute nodes, each with
four Nvidia RTX 5000 GPUs. A100 has 76 compute nodes, each
with three Nvidia A100 GPUs. Specifically, we collect the fields of
JobID, JobName, UserID, SubmitTime, StartTime, EndTime, Timelimit,
NumNodes. The time span of the job traces are 21, 20, and 4 months,
respectively. These job traces reflect significantly different types
of workloads in job arrival time, execution time, node count, node
hour consumption, and job queue wait time. We first analyze the
differences quantitatively and then discuss how the job trace data
is cleaned before training.

3.1 Difference in Job Traces

As shown in Table 1, the V100, RTX, and A100 traces have 65,017,
175,090, and 17,570 jobs respectively. Figure 2 depicts the job count
distribution over time. The average job count is 2,955 =+ 1, 289,
8,378 + 20177, and 4, 377 + 659 per month for the V100, RTX, A100
cluster respectively. As we can see from the figure, there is no clear
pattern of job arrival at a month granularity. It is also worth noting
that there are 96,780 short jobs (less than 30 secs) on RTX. We do
not remove such short jobs from our job traces, as they reflect the
real machine usage at that time.

10000 10000
. V100

RTX

8000 8000

6000 6000

Job Count

4000 4000

2000 A 2000

2019-12 jye—

2020-1 -

2020-2 -{m—

2020-3 {m—

2020-4 —|————

2020-5 -|——

2020-6 -|——

2020-7 -|——.

2020-8 ———
2020-11 -|—
2020-12 -j———

2021-1 —{—

2021-2

2021-3 (———

2021-4 |e——

2021-5 {m——

2021-6 ————

2021-7

2021-8 |m—
o

2019-11 ==

a I m
0 m M
o o o
o =} =}
~ ~ ~

Year-Month

2022-11
2022-12

T 2020-9 |m——

£ 2020-10 Jmmm—

&
g8
3
2
3

Figure 2: Job Arrival Distribution on the V100, RTX, and A100
Clusters.

For the node count distribution, the average nodes per job is
2.5, 1.3, and 1.6 on V100, RTX, and A100, respectively. Although
multi-node jobs take only a small portion of total job count, their
share in node hour consumption is more significant as shown in
Figures 3(a), 3(b), and 3(c). For example, in 2021-2 on V100, the
percentage of multi-node jobs is 23.4%, but they take 76.9% of the
total node hours. Similarly in 2017-11, 12.0% of jobs are multi-node
but take 82.5% of total node hours. This observation aligns with the
trend of the time-consuming multi-node DL training.

100% 100%

100%

- 02211
- 02212
- 0231
- 0232
- 0233

- 20202
20206
= 202010
80% - 0213 80%

60% -I
) I

60%

s HII

Percentage
Percentage
percentage

one multi one It one multi
Node Count Node Count

(a) V100 (c) A100

Figure 3: Distribution of Node Hour Consumption with Node
Count on the V100, RTX, and A100 Cluster.

Finally, the statistic most directly relevant to this research, the
queue wait time, is depicted in Figure 4. The average queue wait
time on the V100 and RTX clusters is shown in Figure 1. The distribu-
tion from individual months are presented in Figure 4(a), Figure 4(b),
and Figure 4(c). In 2020-10 and 2021-2, ~ 30 — 41% of the jobs on
V100 have to wait for longer than 24 hours. On RTX, the percentage
of jobs waiting for longer than 24 hours is ~ 12 — 24%. On A100,
92-98% of jobs experienced a wait time less than 12 hours across
the five-month period except 2023-2, where 26% of the jobs are
waiting for more than 12 hours, and 3% are waiting for longer than
36 hours. Long wait time significantly limits the service provided
by batch GPU clusters for long running DL training and inference
jobs.

3.2 Data Cleaning

We manually filter out jobs that 1) request more nodes than the
available and 2) sub-jobs that are submitted within one Slurm job.
In the early-production phase of these clusters, all nodes are in

100% 100% 100%
2020-2 2020-2
2020-6 2020-6
2020-10 80% 2020-10 80%
2021-2 2021-2
2021-6 2021-6

2022-11
2022-12
2023-1
2023-2
2023-3

@
3
2
————

60% 60%

Percentage

—

Percentage
Percentage

40%

20% I 20% I 20%
0% l,_h_l._L o% Lf-hf‘, 0% U
0 12 24 36 48 0 12 24 36 48 0 12 24 36 48

Wait Time (hrs) Wait Time (hrs) Wait Time (hrs)

(b) RTX

40%

(a) V100 (c) A100

Figure 4: Distribution of Queue Wait Time on the V100, RTX,
and A100 Cluster.

the same partition, then they are split into multiple partitions to
address the needs of development and test and production run.
Since our job traces are collected in the production partition, there
are early jobs that request more nodes than that are available in the
partition. So we remove those jobs from the job traces. There are
also jobs, though recorded in the Slurm database, that are sub-jobs
within one Slurm job. These jobs have an identical prefix followed
by the sub-job id. So we combine them as one single job with the
starting time of the first sub-job as the start time, and the end time
of the last sub-job as the overall end time. Table 1 summarizes the
statistics of the job traces.

The machine downtime, e.g., maintenance, leaves blank time
ranges in job traces. We take the blank time ranges as no users sub-
mit any jobs during that time. Since the scheduled maintenance is
one day every one or two months, it does not impact model training
significantly. Slurm allows users to submit jobs with dependencies,
and it releases the next job to the queue upon the finish of the
previous job. This dependency is not reflected in the job traces, so
we take jobs with dependencies as independent jobs submitted at
different time. This approach does not change the queue wait time
of the subsequent jobs.

4 REINFORCEMENT LEARNING FOR
PROACTIVE PROVISIONING

Following the advances in deep supervised and unsupervised learn-
ing, reinforcement learning (RL) has embraced deep architectures
and has achieved success in solving complicated, human-level con-
trol problems such as playing Atari and Go. These recent innova-
tions motivate us to design a smart resource provisioner using RL
techniques, and particularly in our framework, deep Q network [34]
(DON) and policy gradient (PG) [43], which we show can help HPC
practitioners perform adaptive, proactive resource provisioning.
We discuss the advantages and disadvantages of DQN and PG
in Section 2.3, and implement an RL framework with both DQN
and PG policies (cf., Figure 7). Similar to the policy framework in
[1], instead of building independent value and policy networks,
we build the framework with a dual-head architecture, i.e., the V-
head or the Q-value head and the P-head or policy gradient head.
The two heads share the same foundation model (a transformer
or an MoE-transformer model) while have different embedding
and output layers. For the Q-head, the embedding layer encodes
state-action pairs and the output layer maps their Q-values. For the

P-head, the embedding layer encodes only states and the output
layer maps to a the probability of different actions, followed by a
sampling layer that accordingly samples actions.

To distill high-level features from the cluster state variables
and the state transitions, we propose using transformer, which is
validated to be effective for a wide-spectrum of ML application
including both language modeling and generation (GPT-3 trans-
former [32]), and computer vision (ViT, i.e., vision transformer [16]).
Particularly, we leverage transformer’s multi-head attention mech-
anism to model long-range dependence, predict how cluster states
(e.g., queue length and cluster business) transition over time, and
thereby, manage interruption (or overlap) proactively.

Note that in addition to RL-based implementations, we also
build Mirage with classical statistical models including random
forest and gradient boosting decision tree, though results in the
experiment section declares a significant gain for the RL models
over the statistical model.

4.1 Encoding Queue, Server and Job States.

We represent the system state at each instant ¢ with an m-dimensional
vector v;. By default, m is 40 and the vector comprises the following
variables to encode queue, server and job information.

(a) Queue State: First, queue state includes the number of queued
jobs currently waiting for scheduling (var1). Second, it includes
summary statistics (i.e., Oth, 25th, 50th, 75th, and 100th percentiles)
of the sizes (number of requested nodes) of the queued jobs (var2 —
var6). Third, queue state includes summary statistics of the ages
(time since submission) of the queued jobs (var7 — var11). Fourth,
it includes summary statistics of the runtime limit (maximum du-
ration that each job is allowed to run in the cluster) of the queued
jobs (var12 — var16).

(b) Server State: First, server state includes the number of ac-
tively running jobs across all servers in the cluster (var17). Second,
it includes summary statistics of the sizes (var18 — var24), elapsed
runtime (var25 — var29) and runtime limit (var30 — var34) of all
running jobs.

The model only considers submission time prediction for a sin-
gle successor job, after the submission of its predecessor job. For
example, suppose a user job] is partitioned as four 48 hour long
sub-jobs J1, J2, J3 and J4. The model only considers optimizing the
submission time of the successor sub-job J2 after the predecessor
sub-job J1 is submitted. When J2 is submitted per model’s decision,
J2 becomes the predecessor and J3 becomes the successor, and so
on, until J4 is submitted. Therefore, the model maintains a current
Predecessor-Successor pair for each group of chained sub-jobs, and
at each instant, the state representation also includes the status
quo.

(c) Predecessor job state and (d) Successor job information:
The predecessor states includes the size (var35), time limit (var36),
queue time (var37), and elapsed runtime (var38). The successor
information includes its size (var39), and time limit (var40). The
successor job has not entered the cluster yet and thus only static
information is included. It should be noted that we consider jobs’
internal state, such as say an ML job’s epoch progress to be pri-
vate to the user. That is, the agent does not know or require users

to annotate or expose any job-specific internal information for
training.

4.2 Encoding Workload and Cluster History

The state matrix. The 40-dimensional vector v; is an abstraction of
the queue, cluster and job states at an instant ¢, while k consecutive
vectors vy, Us—1, ..., Us_j encode both workload (job arrival and
completion) and cluster (the queue and server) history of length
k. Existing RL work, such as playing Altari games [25], adopts a
similar approach in constructing model input, within each the last
four video frames (last four snapshots of video game) are taken as
model input. In parallel, our model input is a k X m-dimensional
state matrix Sy at each instant ¢. By default, we set k as 144, and
periodically record v; at a default interval of 10 minutes which
corresponds to the workload and cluster history of the last 24 hours
back-traced from ¢.

4.3 The State Space and the Action Space

Unifying the state and action space for DQN and PG network.
The action space for our RL provisioner consists of only two differ-
ent actions: submit (submission) and no-submit (no-submission).
The DQN network takes as input both the state matrix and the
action to query, while the PG network takes as input only the state
matrix. To render a unified model input, we add an ordinal variable
that represents the action to query. For the ordinal action variable,
1 represents submission, -1 represents no-submission, for which
the DON network realizes it as an essential input, while the ac-
tion is only a placeholder and is always 0 when inputted to the
PG network. When training the foundation transformer model, we
flatten the state matrix to a long vector and concatenate with the
additional ordinal action variable. The flattened states (by default)
contains 5761 (144x40+1) variables (cf., Figure 5).

4.4 Policy Serving

Deterministic Policy. For a learned DQN policy, the neural net-
work is a value function Q(S;, a;) that predicts, at the current instant
t, the expected future gains of submitting versus not submitting the
successor sub-job, given the current state and the history encoded
in the state matrix S;. For each targeted predecessor-successor pair,
after the predecessor is submitted, the DQN model is periodically
invoked at an interval of 10 minutes, and will submit the successor
sub-job only when the Q-value of submission is larger than that of
no-submission. Non-deterministic policy. For a learned PG policy,
the network outputs directly the probability of submission versus
no-submission, and the action to take is randomly sampled from
this output binomial distribution (cf., 5).

4.5 Shaping the Reward

Different HPC practitioners can have their own views of the penalty
of overlap and (or) interruption between the predecessor and suc-
cessor sub-jobs. Performance-sensitive users may consider inter-
ruption to have a much larger penalty than overlap, while resource-
waste-aversion users may consider overlap to have a larger penalty
than interruption. We set two user-configurable penalty coefficients,
er and eq , for users to configure their penalty for interruption and
overlap, respectively. Given this, we first set the time horizon of

actions. Suppose the current instant is ¢/, at which the predecessor
sub-job is submitted, and after that, the agent’s trained DQN or
PG policy produces a sequence of actions a1, ..., ay.7. We can
see thata; = O forallt’ +1 <t <t/ + T, and ap,7 = 1 as the
terminal action for the successor sub-job is submission, while any
other actions prior to a;, 7 are all non-submission actions.

After the successor job is submitted at instant ¢’ + T, the agent
closely monitors the state of the successor job and when it is de-
queued for running at some future instant ¢’ + T’, the outcome of
how much the overlap or interrupt is revealed. We use r to denote
an outcome interruption and rp to denote an outcome overlap.

With the settings above, we shape the reward R; for actions a;
as below. Note that we use negative penalty to equally represent
reward, which means a reward of zero is the best possible reward,
and the larger the interruption or overlap penalty is, the smaller
the reward.

N ol G ER IR G

If the observed interruption is small, the previous actions are
rewarded to making the right decisions. That is, the previous no-
submission decisions are credited for not causing overlap, and the
final submission decision is credited for being proactive and timely.
A similar argument applies when the observed overlap is small.

4.6 Network Architecture

The foundation model - transformer. We build the foundation
model with a transformer (Figure 5)) model. Transformers are the
state-of-the-art method for sequence modeling and prediction. For
example, in NLP tasks like language modeling, a transformer model
takes as input a sequence of previous words to predict the sequence
of words that follow. This resembles our proactive scheduling task
where we parse a history of system (e.g., queue and node) snapshots
and forecast the change in system states. The difference lies in that,
for language models, the transformer decoder deciphers the inter-
mediate representation into predicted words, while for proactive
scheduling, the decoder translates the intermediate representation
of future system states into queuing delay, which can be used to
compute the resulting interruption (or overlap). Furthermore, sys-
tem state has both long-range dependencies (e.g., periodic, weekly
jobs) and short-range dependencies (e.g., bursty arrival of jobs)
over the time horizon. Thus, not all system snapshots in a history
window provide dependent, relevant features to forecast the status
quo and future. The multi-head self-attention module filters out
irrelevant snapshots in history and identifies ones that contribute
to prediction. Self-attention is the key technique in Transformer or
BERT to improve upon traditional sequence modeling and achieve
state-of-the-art results for classification tasks, including language
modeling, machine translation and sentiment classification. Thus
we propose using self-attention as the key enabler to accurately
predict future system states and reinforcement learning rewards.
The V-head and the P-head output layers. The deep founda-
tion model learns intermediate representation of the policy internal
values and the it is either followed by a single linear map to re-
duce to a scalar output (i.e., the Q-value) of the V-head, or followed

Transformer Network

* State: St, Action: At

Embedding (Linear) Layer
in_dim: 5761, out_dims:512, bias: True

Multi-head A ion - NonDy ically i Linear
in_dim: 512, out_dim: 512, bias: True

(Linear - in_dim: 583168, out_dim: 128, bias: True)
[Dropout - probability:0.5]
y
(Linear - in_dim: 128, olit_dim: 512, bias: True)
y

LayerNorm - (512,), eps: 1e-5, elem_affine: True

LayerNorm - (512,), eps: 1e-5, elem_affine: True

Dropout - probability:0.5]

| \ 2

[Dropout - probability:0.5]

\\ Encode LayeJ
Y

[_— -QQ . » ENCOde Layer2]

Flatten

| Flatten)

Linear - in_dim: 73728,
out_dim: 1, bias: True

V-Head Decoder

Linear - in_dim: 73728,
out_dim: 32, bias: True

P-Head Decoder

Q(St, Ay

Probability: A=SUBMIT

Figure 5: Dual-head Network Architecture - Transformer

* State: St, Action: At

Embeddin% !Linear) Layer
y
/ TopK or Mixture of Expert Gating (Routing) Network] \

Mixture Weights

Routing

signal Transformer M

Transformer 1

Encode Layer1

Encozi:-:.Layerz

Encode Layer1

Encode Layer2

—_—e—

—

Expert (Weighted) Average Layer]

[V-Head Decoder] [P-Head Decoder]

Q(Sy, Ay Probability: A=SUBMIT

Figure 6: Architecture with the MoE Foundation Model

by a linear decision layer plus a softmax layer, which output the

distribution of action sampling for the P-head (cf., Figure 5).
Hyperparmeter tuning. The hyperparameters that define the

model structure, such as the number of multi-attention heads per

transformer encoder layer, are tuned with RayTune [23], an auto-
ML engine for hyper-parameter tuning. Figure 5 shows the tuned
hyperparameters for all network layers. This set of tuned hyperpa-
rameters is repeatedly used as the default throughout this study.

4.7 The MoE foundation model

As discussed in Section 2.4, we further augment the capacity of
the transformer foundation model with the MoE scheme. Figure 6
shows the MoE architecture and the workflow to combine experts.
We implement and evaluate both the Top-1 sparse MoE [41] and
the weighted average dense MoE [41] and found that the Top-1
scheme exhibit inferior provisioning performance in comparison
to the weighted average MoE, though it enjoys less computational
overhead due to sparse activation. Throughout this study, we omit
the results of the Top-1 scheme for brevity.

The intuition behind MoE is similar to that of piecewise poly-
nomial fitting such that individual polynomials focus to fit a small
region (partition) of the input space (samples), and all the poly-
nomials integrate to fit a complex function over the entire input
space (complete set of samples). As cluster workloads and machine
busyness change from weeks to weeks and months to months, we
temporally split the cluster log records (training samples) to M (10
by default) fractions to train different expert transformers. Differ-
ent experts focus on optimizing provision policy for different load
levels and different workload mixes.

4.8 Experience Replay

Online RL usually fails for complicated control tasks if there exists
correlation between consecutive training samples, which explodes
the variance of gradient updates and distorts the a policy’s value
estimates. We also employ experience replay [4] to break data corre-
lations. Experience instances, each of which includes the submission
or no-submission action taken by the trained policy, as well as its
resulting reward (interruption or overlap), are stored in a memory
pool. The memory pool is random as the experience instances are
collected from different time points for each simulation trial, and
are randomly shuffled across different simulation trials. Experience
instances are then grouped into random mini-batches to perform
training of the value (or policy) networks.

4.9 Training DOQN and PG

The training procedure consists of two phases. For the first phase,
we train the foundation model offline while for the second phase, we
train the V-head and the P-head decision layers online by running
Slurm simulation experiments.

4.9.1 Offline training. a) Sample collection. We first collects a
series of training samples; each episode instantiates an (simulated)
experimentation episode that first submits a predecessor sub-job to
the cluster at the current instant, and then, submit the successor
sub-job at 7 averagely split sample points in a time range between
start time (2 days warm-up after the simulation start time) and the
end time of predecessor job. The episode lasts until the successor’s
delayed reward (i.e., interruption or overlap) can be observed. A
single sample, i.e., a (state, action, reward) triple, is collected at the
end of the episode and stored into the experience memory pools.
When a job is partitioned into k sub-jobs, it can maximally generate

k — 1 training samples (predecessor-successor pairs) for training.
b) Foundation model training,. In the offline phase, we pre-train
the transformer or MoE-transformer foundation model with su-
pervised learning; using training samples randomly sampled from
the memory pool. Each sample includes a state and an observed
reward. The input to the foundation model is the flattened state (cf.,
Section 4.3 and Figure 5), while the output is the observed reward.
We use the Adam optimizer [6].

4.9.2 Online training. a) Online DON training.: Online DQN
training executes on-policy RL training [25] using the gradient
formula in Equation 4. Training samples are collected with actions
decided by the learned Q-value function. The DQN policy may
never submit the successor and this leads to an infinite episode. To
prevent such an extreme case, we add a small probability € > 0,
with which, the DQN leaner randomly chooses actions regardless of
the Q-values (i.e., e-greedy strategy [25]). a) Online PG training,:
Online PG training executes on-policy RL trainig using the gradient
formulate in Equation 6. Note that though the V-head and P-head
share the same foundation model, these two heads are trained
independently.

((Aeent 1. Sample T
2. State Node State

ID | Node WallT StartT State
Model 1301 8 48 03:50 R
Network a6 24 0860

1404 4 28 n/a PD

/\ D Node ...
4. Queue Wait Time T 6

o
W

Reward
Processor

-(r

Figure 7: Architecture Overview.

5 SYSTEM DESIGN AND IMPLEMENTATION

In this section, we discuss the overall Mirage design and its imple-
mentation details.

5.1 System Architecture

The overall system architecture of Mirage consists of two major
components: the agent and the simulator, as shown in Figure 7.
It is designed to be generic for both model-free and model-based
learning and handles value function approximation and model
training.

At a high level, the agent trains the proactive provisioner and
the simulator simulates the Slurm scheduler using the provided
job traces. The simulator implements the priority-based schedul-
ing algorithm with back-filling [49]. and mimics the behavior of
the production Slurm deployments used in our GPU clusters. The
simulator loads the jobs trace that we collected over a 20-month
period and exposes an interface of sample(), step(), and submit().

For each episode, the agent and the simulator will be initialized
and run up to the time when the first job should be submitted. Then
the agent submits the first job by calling submit(), calls sample() to
acquire the cluster state. After that, the agent calls step() to instruct
the simulator to move forward for a period of time, then collects

the cluster state again. With sufficient states, the agent evaluates
the rewards of submitting the second job, and makes a decision.
Once a decision has been made, the agent calls submit() to submit
the second job. Then the simulator runs till the second job starts
and returns its final queue wait time that can be used to compute
the reward.

The agent has a reward processor that receives the queue wait
time from the simulator and converts it to the reward as required
by the RL algorithm.

5.2 The Slurm Simulator

In order to train the agent, and validate the results, we develop a low-
overhead Slurm simulator that supports Slurm’s core scheduling
logic, i.e., backfilling and priority scheduling. There are two main
roles fulfilled by our simulator. One is to simulate the workload to
create a virtual cluster environment, and the other is to provide
support for offline learning and online learning of agents. Since the
time taken for each iteration of learning depends on the simulation
speed, it is crucial that we have a low-overhead, yet high-fidelity
simulator design. Our current build simulates a one month workload
within one minute.

Our simulator includes three components, a cluster abstraction,
a scheduler abstraction, and a simulator module that interacts with
the agent. The cluster abstraction is used to consume the workload,
while the scheduler determines which jobs will be submitted to
the cluster based on its policy. The simulator module exposes a
rich API for running workloads and allows controlling a number
of factors such as running the simulator a specific length of time
or running until all the jobs have been finished etc. The ability for
users to customize such factors makes our simulator design general
enough to support both offline and online learning.

We evaluate simulation fidelity using an identical workload trace,
and compare our simulator with the standard Slurm simulator
[3, 44], which implements the exact Slurm scheduling logic that
is used in real-word HPC clusters. We use 5 randomly sampled
weeks as input and find that the difference in makespan across
the five runs is less than 2.5%. We also compute the differences
in job completion time (JCT) and find that the geometric mean
of the difference is no more than 15% across all runs. Further, our
simulator has a 3-26x lower overhead than the standard Slurm
simulator.

6 EXPERIMENTS AND RESULTS

To validate the effectiveness and generality of Mirage, we conduct
experiments using the job traces of the V100, RTX, and A100 GPU
clusters. We partition each trace in 80:20 ratio for training and
validation. Specifically, the training split is 11/2019-02/2021 and
the validation split is 03/2021-07/2021 on both V100 and RTX. For
the A100 GPU cluster, the training split is 11/2022-02/2023 and the
validation split is 03/2023.
Our evaluation considers the following scenarios:

e For each trace, training Mirage with the training data for sin-
gle node jobs, then using on the validation subset to examine
the generality of the proposed method.

M vi00 RTX M A100 W vio0 RTX Il A100

. 40 = 8
£ £
= 30
5 2 30 - 6 2
2 20 23 24 22 g 4 5
2 2 4
§ F 18 & 4
£ 10 I i I £ 2
3 [N
g, 1" A g, Avd ok mo m_ ‘B 1 B
8 3 g -0 I |
© 0 © 2

reactive avg r_forest xgboost trans Moe trans+PG MoE+PG reactive avg r_forest xgboost tran. MoE tran+PG MoE+PG

(a) Heavy Load

(b) Medium Load

Figure 8: Average Interruption of a Pair of 48-hour Single-node Jobs on the V100, RTX, and A100 GPU Clusters.

o For each trace, training and validating Mirage with 8-node
jobs to study the effectiveness of our proposed method on
multi-node jobs.

o Comparing the RL-based techniques with the statistical meth-
ods and the heuristic baselines of reactive provisioning.

We implement Mirage using PyTorch 1.11 [36] and use Ray [27]
to enable distributed data preprocessing. The training is executed
on the Lonestar6 supercomputer at Texas Advanced Computing
Center.

We use two heuristic baselines: first is reactive, which submits
the subsequent job upon the completion of the current one. It is
worth noting that, the reactive baseline is what researchers
usually use as a common practice [39]. The second baseline is
avg, which is derived by monitoring the average queue wait time
Tavg and submitting the second job Ty time units before the first
job finishes. The second group of methods are ensemble methods, i.e.
XGBoost [9] and Random Forest [7]. XGBoost combines multiple
decision trees and leverages gradient boosting to make predictions.
Random Forest also combines multiple decision trees to output a
single output via averaging or voting. The third group of methods
are RL-based methods. We treat transformer and MoE as foundation
models, and examine both the DQN and policy gradient learning
methods. So there are four combinations in total: {transformer,
MokE} x {DON, PG}.

For all experiments, we present the evaluation results under
different cluster loads. We characterize cluster busyness with the
reactive queue wait time measured in the baseline and define three
categories: longer than 12 hours (high load), between two and 12
hours (medium load), and within two hours (light load).

6.1 Single-node Evaluation

In this experiment, we train each model by uniformly sampling the
training time range and ran a pair of consecutive single-node jobs
for 48 hours. Then we use the same sampling method in the valida-
tion range to examine generality. Single-node jobs are commonly for
DL inference service. Figure 8 shows the average interruption/over-
lap of all techniques on the three GPU clusters.

As shown in Figure 8(a), when the cluster is heavily loaded,
i.e., the reactive queue time exceeding 12 hours, random forest,
XGboost, transformer, MoE, MoE+DQN and transformer+PG all
show improved interruption with an average reduction of 44.1%,
33.7%, and 84.7% on the V100, RTX, and A100 cluster compared
to the reactive baseline, respectively. MoE+PG is not as effective

as other ensemble learning and RL methods. By comparing the
training loss of MoE+PG with transformer+PG, MoE+PG overfits
with equally low training loss with transformer+PG but a much
lower validation performance.

We see a similar pattern when the clusters are with medium
load in Figure 8(b). The ensemble learning techniques, DQN tech-
niques, and transformer+PG show sigfinicant interruption reduc-
tion. Across the three clusters, Transformer+PG has the lowest
interruption followed by MoE.

6.2 Multi-node Evaluation

In this experiment, we examine the effectiveness of candidate meth-
ods using a pair of eight-node jobs, which is a representative scale
across the three clusters. Figure 9 illustrates comparison with heavy
and medium loads.

With heavy load as shown in Figure 9(a), the XGBoost and Ran-
dom Forest methods show promising reduction of interruption by
37.5%, 40.0%, and 82.5% across the three clusters. MOE+DQN re-
duces the interruption by 32.2%, 28.2%, and 77.5%, which is slightly
behind the ensemble learning methods. Transformer+PG has an
improvement by 43.9%, 34.9%, and 90.1%, which shows the best
results if we compare with an average.

With medium load as shown in Figure 9(b), We observe that en-
semble learning methods almost completely eliminate the interrup-
tion. Transformer+PG shows a similar result. All these interruption
elimination is at a cost of overlap when the machines are lightly
loaded. We will discuss this in next section.

Now, comparing the effectiveness of MoE+DQN and transformer+PG

methods across clusters, we see that they are more effective on the
A100 cluster than on the V100 and RTX clusters. This is because
the A100 job trace has less noisy jobs (those request hours of wall
clock time but run for only 30 seconds), as we discussed in §3.1. The
experiments in §6.1 and §6.2 with the A100 cluster clearly show
the effectiveness of the RL-based methods, especially with a clean
job trace.

6.3 Overlap with Low Machine Load

Although the ensemble learning and RL-based methods can effi-
ciently reduce the interruption when the machine is heavily or
medium loaded. They inevitably introduce overlap between jobs
when the machine is lightly loaded, where jobs can easily get com-
pute nodes without a significant long wait time. Figure 10 shows the
overlap of all methods with 1-node and 8-node jobs across the three

M vio00 RTX Il A100

40

Overlap/Interruption (hrs)

tran. MoE tran+PG MoE+PG

reactive

avg r_forest xgboost

(a) Heavy Load

Overlap/Interruption (hrs)

W vioo RTX M A100
8
6 6 5 6
4
2 3 D)
o LU QORI 0 0 gy 4 gk
H =

reactive r_forest xgboost tran. MoE tran+PG MoE+PG

(b) Medium Load

avg

Figure 9: Average Interruption of a Pair of 48-hour Eight-node Jobs on the V100, RTX, and A100 GPU Clusters.

W vioo RTX B A100 W vio0 RTX B A100

. 2 — 2
[4 [4
£, 00 0 <, 000] 0
5 I-1I I-1 I1l Bo & -1 18 BB 0
EE: 2 g2 -
E -3 -4 E
< < -4 -4
E 4 E 4
g g
§ -6 § -6
S 4 S

reactive avg r_forest xgboost tran. MoE tran+PG MoE+PG reactive avg r_forest xgboost tran. MoE tran+PG MoE+PG

(a) One Node

(b) Eight Nodes

Figure 10: Average Overlap of a Pair of 48-hour Eight-node Jobs on the V100, RTX, and A100 GPU Clusters with Light Load.

clusters. Given the 48-hour wall clock time, a few hour overlap is
not a big problem for the proactive provisioner, as the subsequent
job needs to load data, checkpoints, and libraries. Once it is ready,
the current job can be released, and the subsequent job will resume
from the latest checkpoint, so there is no redundant computation
or wasted node hours. However, we want the proactive provisioner
to be intelligent to avoid overlap if possible. With this standard,
we observe that the ensemble methods and the transformer+PG
method introduce a ~2X long overlap as the MoE+DQN method.

To balance the interruption reduction and overlap across ma-
chine load level, Mirage uses the MoE+DQN as its default model.
We leave transformer+PG as a option for users as an aggressive
provisioner, which will be more effective when the machine load is
high.

7 RELATED WORKS

Facilitating long-running services on batch GPU clusters is rela-
tively new in the area, due to the recently rising adoption of ma-
chine learning and deep learning in scientific research. National
computing centers are deploying several large scale GPU dense
supercomputers, such as Perlmutter at NERSC, Polaris at ALCF,
and Frontier at OLCF. Similarly, industry leaders such as Microsoft,
Meta, and Tesla deploy their own GPU supercomputers for internal
DL-driven research [2, 20, 47]. All these machines have O(10% - 10°)
high end GPUs. Most of these machines use batch schedulers such
as Slurm and Cobalt to manage compute resources. Several NSF
(National Science Foundation) funded Al institutes are devoted to
enabling AI/ML/DL in application domains such as agriculture and
ecology. Supporting inference as long-running services is as impor-
tant as model training, and it is challenging for existing schedulers
to support such services with low interruption.

On the other hand, reinforcement learning has made break-
throughs that match or exceed human capability in many areas
such as game playing [43], Tokamak reactor control [11], and pro-
tein folding [19]. In one way or another, researchers formulate
these problems as stochastic control problems then use the classic
agent-environment paradigm and evaluate a set of RL techniques
of SARSA, deep Q networks, online/offline policy, actor-critic and
many more. In the field of high performance computing and dis-
tributed computing, researchers have explored the feasibility of
RL in scheduling problems [24, 33, 51] to maximize certain perfor-
mance metrics and file system configuration [22] to adapt to online
1/0 workloads. In this paper, we view the resource provisioning
problem as a control problem and train a transformer-based neural
network that predicts the expected interruption/overlap, then we
use the deep Q network and policy gradient methods to make job
submission decisions.

8 CONCLUSION AND FUTURE WORK

We examine a suite of ensemble learning and reinforcement learn-
ing methods to build Mirage, a proactive resource provisioner to-
wards facilitating long-running DL training and inference services
on batch GPU clusters with low interruption/overlap. Mirage is
trained and validated with months-long job traces on three produc-
tive GPU clusters. Our experiment shows that Mirage can enable
23%-76% more jobs with zero interruptions, especially when the
queue wait time is long. Mirage effectively reduces the interrup-
tion by 17-100% across the three clusters compared to the reactive
baseline. In future, we will examine the generality of the proposed
methods on GPU cluster with a much larger size.

9 ACKNOWLEDGEMENT

Work of Pengfei Zheng was supported by Computing Research
Association. Qiyang Ding and Zhao Zhang are supported by the
NSF ICICLE AI Institute (OAC-2112606).

REFERENCES

[1] [n.d.]. Clipped Proximal Policy Optimization. https://intellabs.github.io/coach/

[10

[11

[12

[13

[14

[15

[16

[17

(18

[19

[20

[21

[22

[23

]

]

]

]

]

]

]

]

components/agents/policy_optimization/cppo.html.

[n.d.]. Introducing the AI Research SuperCluster — Meta’s cutting-edge Al
supercomputer for Al research.

2022. Slurm Simulator. https://github.com/ubccr-slurm-simulator/slurm_
simulator.

Sander Adam, Lucian Busoniu, and Robert Babuska. 2011. Experience replay for
real-time reinforcement learning control. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 42, 2 (2011), 201-212.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence
Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler,
USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben
Wang, and Samuel Weinbach. 2022. GPT-NeoX-20B: An Open-Source Autore-
gressive Language Model. (2022).

Sebastian Bock and Martin Weif3. 2019. A proof of local convergence for the
Adam optimizer. In 2019 international joint conference on neural networks (IJCNN).
IEEE, 1-8.

Leo Breiman. 2001. Random forests. Machine learning 45 (2001), 5-32.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785-794.

Noel Codella, Quoc-Bao Nguyen, Sharath Pankanti, David Gutman, Brian Helba,
Allan Halpern, and John R Smith. 2016. Deep Learning Ensembles for Melanoma
Recognition in Dermoscopy Images. arXiv preprint arXiv:1610.04662 (2016).
Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,
Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego
de Las Casas, et al. 2022. Magnetic control of tokamak plasmas through deep
reinforcement learning. Nature 602, 7897 (2022), 414-419.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Linjing Fang, Fred Monroe, Sammy Weiser Novak, Lyndsey Kirk, Cara R Schiavon,
B Yu Seungyoon, Tong Zhang, Melissa Wu, Kyle Kastner, Alaa Abdel Latif, et al.
2021. Deep learning-based point-scanning super-resolution imaging. Nature
Methods 18, 4 (2021), 406-416.

Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189-1232.
Geoffrey Hinton. [n.d.]. Mixture of Experts.
~hinton/csc321/notes/lec15.pdf.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua
Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. 2022. A survey on vision
transformer. IEEE transactions on pattern analysis and machine intelligence 45, 1
(2022), 87-110.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A platform for
fine-grained resource sharing in the data center. In NSDIL

Zeljko Ivezi¢, Steven M Kahn, J Anthony Tyson, Bob Abel, Emily Acosta, Robyn
Allsman, David Alonso, Yusra AlSayyad, Scott F Anderson, John Andrew, et al.
2019. LSST: from science drivers to reference design and anticipated data products.
The Astrophysical Journal 873, 2 (2019), 111.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna
Potapenko, et al. 2021. Highly accurate protein structure prediction with Al-
phaFold. Nature 596, 7873 (2021), 583-589.

Jennifer Langston. 2020. Microsoft announces new supercomputer, lays out vision
for future Al work. https://blogs.microsoft.com/ai/openai-azure-supercomputer/
Guohao Li, Matthias Miiller, Bernard Ghanem, and Vladlen Koltun. 2021. Training
graph neural networks with 1000 layers. In International conference on machine
learning. PMLR, 6437-6449.

Yan Li, Kenneth Chang, Oceane Bel, Ethan L Miller, and Darrell DE Long. 2017.
CAPES: Unsupervised storage performance tuning using neural network-based
deep reinforcement learning. In Proceedings of the international conference for
high performance computing, networking, storage and analysis. 1-14.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,
and Ion Stoica. 2018. Tune: A research platform for distributed model selection

https://www.cs.toronto.edu/

[24

[25

[26

~
=

[28

[29

[30

)
=

[32

[33

[34

[35

[37

[39

[40

[41]

[42

=
&

[44

and training. arXiv preprint arXiv:1807.05118 (2018).

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. 2019. Learning scheduling algorithms for data pro-
cessing clusters. In Proceedings of the ACM special interest group on data commu-
nication. 270-288.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529-533.

Sharada P Mohanty, David P Hughes, and Marcel Salathé. 2016. Using deep
learning for image-based plant disease detection. Frontiers in plant science 7
(2016), 1419.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. 2018. Ray: A distributed framework for emerging {AI} applications. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({ OSDI}
18). 561-577.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Anand Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale
language model training on gpu clusters. arXiv preprint arXiv:2104.04473 (2021).
NERSC. [n. d.]. NERSC Queues and Charges. https://docs.nersc.gov/jobs/policy/#-
limits-and- charges.

Daniel Nurmi, John Brevik, and Rich Wolski. 2007. QBETS: Queue bounds
estimation from time series. In Workshop on Job Scheduling Strategies for Parallel
Processing. Springer, 76-101.

Daniel Nurmi, Anirban Mandal, John Brevik, Chuck Koelbel, Rich Wolski, and Ken
Kennedy. 2006. Evaluation of a workflow scheduler using integrated performance
modelling and batch queue wait time prediction. In SC’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing. IEEE, 29-29.

OpenAl 2020. GPT-3: Language Models are Few-Shot Learners. https://github.
com/openai/gpt-3.

Alexandru Iulian Orhean, Florin Pop, and Ioan Raicu. 2018. New scheduling
approach using reinforcement learning for heterogeneous distributed systems. 7.
Parallel and Distrib. Comput. 117 (2018), 292-302.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. 2016.
Deep exploration via bootstrapped DQN. Advances in neural information process-
ing systems 29 (2016).

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Mar-
cello Restelli. 2018. Stochastic variance-reduced policy gradient. In International
conference on machine learning. PMLR, 4026—-4035.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

J Gregory Pauloski, Qi Huang, Lei Huang, Shivaram Venkataraman, Kyle Chard,
Tan Foster, and Zhao Zhang. 2021. KAISA: an adaptive second-order optimizer
framework for deep neural networks. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. 1-14.
Thomas Pierrot, Valentin Macé, Felix Chalumeau, Arthur Flajolet, Geoffrey
Cideron, Karim Beguir, Antoine Cully, Olivier Sigaud, and Nicolas Perrin-Gilbert.
2022. Diversity policy gradient for sample efficient quality-diversity optimiza-
tion. In Proceedings of the Genetic and Evolutionary Computation Conference.
1075-1083.

SchedMD. [n.d.]. Multifactor Priority Plugin.
priority_multifactor.html#age.

Or Sharir, Barak Peleg, and Yoav Shoham. 2020. The cost of training nlp models:
A concise overview. arXiv preprint arXiv:2004.08900 (2020).

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).
David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. Nature 529, 7587 (2016), 484-489.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. 2018. A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 362, 6419 (2018), 1140-1144.

Nikolay A. Simakov, Martins D. Innus, Matthew D. Jones, Robert L. DeLeon,
Joseph P. White, Steven M. Gallo, Abani K. Patra, and Thomas R. Furlani. 2018.
A Slurm Simulator: Implementation and Parametric Analysis. In High Perfor-
mance Computing Systems. Performance Modeling, Benchmarking, and Simulation,

https://slurm.schedmd.com/

https://intellabs.github.io/coach/components/agents/policy_optimization/cppo.html
https://intellabs.github.io/coach/components/agents/policy_optimization/cppo.html
https://github.com/ubccr-slurm-simulator/slurm_simulator
https://github.com/ubccr-slurm-simulator/slurm_simulator
https://www.cs.toronto.edu/~hinton/csc321/notes/lec15.pdf
https://www.cs.toronto.edu/~hinton/csc321/notes/lec15.pdf
https://blogs.microsoft.com/ai/openai-azure-supercomputer/
https://docs.nersc.gov/jobs/policy/#-limits-and-charges
https://docs.nersc.gov/jobs/policy/#-limits-and-charges
https://github.com/openai/gpt-3
https://github.com/openai/gpt-3
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://slurm.schedmd.com/priority_multifactor.html#age
https://slurm.schedmd.com/priority_multifactor.html#age

[45]

[46]

Stephen Jarvis, Steven Wright, and Simon Hammond (Eds.). Springer Interna-
tional Publishing, 197-217.

Warren Smith, Valerie Taylor, and Ian Foster. 1999. Using run-time predictions
to estimate queue wait times and improve scheduler performance. In Workshop
on Job scheduling strategies for Parallel Processing. Springer, 202-219.

Ozan Sonmez, Nezih Yigitbasi, Alexandru Iosup, and Dick Epema. 2009. Trace-
based evaluation of job runtime and queue wait time predictions in grids. In
Proceedings of the 18th ACM international symposium on High performance dis-
tributed computing. 111-120.

Tesla. 2021. Ahead of ‘Dojo,” Tesla Reveals Its Massive Precursor Supercom-
puter. https://www.hpcwire.com/2021/06/22/ahead-of-dojo-//tesla-reveals-its-
massive-precursor-supercomputer/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NeurIPS). Curran Associates

[49

[50

[51

]

Inc., Red Hook, NY, USA, 6000-6010.

Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux
utility for resource management. In Workshop on job scheduling strategies for
parallel processing. Springer, 44-60.

Seniha Esen Yuksel, Joseph N Wilson, and Paul D Gader. 2012. Twenty years of
mixture of experts. IEEE transactions on neural networks and learning systems 23,
8(2012), 1177-1193.

Di Zhang, Dong Dai, Youbiao He, Forrest Sheng Bao, and Bing Xie. 2020. RLSched-
uler: an automated HPC batch job scheduler using reinforcement learning. In
SC20: International Conference for High Performance Computing, Networking, Stor-
age and Analysis. IEEE, 1-15.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. Opt:
Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068
(2022).

https://www.hpcwire.com/2021/06/22/ahead-of-dojo-// tesla-reveals-its-massive-precursor-supercomputer/
https://www.hpcwire.com/2021/06/22/ahead-of-dojo-// tesla-reveals-its-massive-precursor-supercomputer/

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
https://doi.org/10.5281/zenodo.8084694

ARTIFACT IDENTIFICATION

The artifact of this paper includes 1) the code repo, 2) three GPU
cluster job traces, and 3) the trained models.

The proactive provisioner has the components of a SLURM sim-
ulator and an RL agent. The RL agent learns to submit a pair of
48-hours jobs to minimize the interruption between them. Depend-
ing on the state-action value function and policy function selection,
the training procedure produces neural networks that functions as
the value function and policy function, respectively.

With the cod and data, we expect any experienced HPC prac-
titioner can reproduce our experiment results and to extend our
solutions.

REPRODUCIBILITY OF EXPERIMENTS

The experiment workflow includes the case of RTX as described in
the paper. Reviewers can replace the job traces by switching the
input job trace.

The total estimation of the training may take an A100 GPUs 8
days.

The expected results are in text form, which is different than the
result section in the paper. We would like to do an update once the
paper is accepted.

Please contact zzhang@tacc.utexas.edu to ob-
tain a copy of the job traces. Then follow
https://github.com/zhaozhang/Mirage/blob/master/README.md
to reproduce the results.

ARTIFACT DEPENDENCIES REQUIREMENTS

i) The comprehensive workflow comprises three integral compo-
nents: the generation of training data, the training of the model, and
the validation of the model. These components necessitate distinct
hardware resources. The process of training data generation and
model validation predominantly rely on CPU resources, with the
potential requirement for expansive DRAM resources if there is
a need to generate or validate a larger number of sample points
concurrently. On the other hand, the training of the model necessi-
tates GPU resources, though it currently supports utilization of a
single GPU exclusively. For instance, we employ the Epyc 7763 for
tasks necessitating CPU resources and the Nvidia A100 for tasks
demanding GPU resources. The highest attainable DRAM size is
256GB of DDR4 Memory.

ii) The empirical investigations presented in this manuscript
were conducted on Rocky Linux 8.6, underpinned by the Linux
kernel version 4.18.0.

iii) The experimental environments were established and scruti-
nized using Python versions 3.9.7 and 3.10.8. Additional software li-
braries that are requisite for these environments encompass numpy,
ray, torch, matplotlib, pandas, sklearn, and xgboost. Any further

imported modules derive exclusively from Python’s built-in module
set.

iv) The core idea of Mirage is to train the resource provisioner
using RL methods. The job traces of the three GPU clusters are
essential to this work. Unfortunately, the job trace data is pro-
prietary, so it is not going be public. However, we made it tem-
porarily available for AD/AE evaluation. The job trace data is at
https://utexas.box.com/s/pme8jt5110k7te7cydexdu98991d4néy.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS

i) It is necessary for the user to install Python version 3.9.7 or
later, as well as all dependent modules. The codebase, developed in
Python, does not require any compilation.

ii) Instructions to run the experiments can be found in the
README.md file. The process begins with offline data generation
or baseline creation, continues with model training, and ends with
validation. Here we will include two examples for getting reac-
tive baseline and MoE model. {MIRAGE_ROOT} is the local Mirage
path and we use cluster Lonestar6 as the following examples of
reproducing the experiment results.

Before running examples, the following operations are
necessary: 1. Create directory {MIRAGE_ROOT}/src/data
and {MIRAGE_ROOT}/src/experiment 2. Copy {MI-
RAGE_ROOT}/src/model/moe to {MIRAGE_ROOT]}/src/moe

MoE training example:

cd {MIRAGE_ROOT}/src/top/ && python3 offline_data_gen.py
-parallel -num_samples 684 -num_probe 7 -interval
4 -od {MIRAGE_ROOT}/src/data/ls6/train_data_684 -
workload filtered-1s6.log -start_time 2022-11-01T00:00:00
-warmup_len 2 -workload_len 5 -node 1 -baseline de-
fault python3 {MIRAGE_ROOT}/script/pickle_merge.py
-wd {MIRAGE_ROOT}/src/data/ls6/train_data_684 -out
batch_ls6_684_7.pickle

cd {MIRAGE_ROOT}/src/model/moe/ && python3 train.py -wd
../../data/ls6/ -n moe_ls6 -parallel -nd 1s6_684_7 -mix_epoch 300
-sample_window 144

cp {MIRAGE_ROOT}/src/data/model/ {MI-
RAGE_ROOT}/experiment/Is6_train_moe/model/

cd {MIRAGE_ROOT}/src/top && python3 online_validate.py
-num_validate 156 -interval 4 -workload filtered-ls6.log -
workload_len 5 -start_time 2023-03-01T00:00:00 -od {MI-
RAGE_ROOT}/experiment/ls6_validate_moe/result -m {MI-
RAGE_ROOT}/experiment/ls6_train_moe/model/moe_moe_ls6.pt
-warmup_len 2 -sample_window 144 -parallel -mt moe -node 1

Reactive baseline generation example:

cd {MIRAGE_ROOTY}/src/top/ && python3 offline_data_gen.py
-parallel -num_samples 156 -num_probe 7 -interval 4 -od {MI-

RAGE_ROOT}/experiment/ls6_offline_gen_baseline_reactive/baseline_reactive

-workload filtered-ls6.log -start_time 2023-03-01T00:00:00
-warmup_len 2 -workload_len 5 -node 1 -baseline baseline_reactive

Ding, et al.

python3 {MIRAGE_ROOT}/script/pickle_merge.py -wd {MI-
RAGE_ROOT} experiment/ls6_offline_gen_baseline_reactive/baseline_reactive
-out baseline_reactive_ls6_merge.pickle

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Long Running Deep Learning Applications
	2.2 Deep Q-Learning
	2.3 Policy Gradient
	2.4 Mixture of Experts (MoE)

	3 Trace Analysis and Data Cleaning
	3.1 Difference in Job Traces
	3.2 Data Cleaning

	4 Reinforcement Learning for Proactive Provisioning
	4.1 Encoding Queue, Server and Job States.
	4.2 Encoding Workload and Cluster History
	4.3 The State Space and the Action Space
	4.4 Policy Serving
	4.5 Shaping the Reward
	4.6 Network Architecture
	4.7 The MoE foundation model
	4.8 Experience Replay
	4.9 Training DQN and PG

	5 System Design and Implementation
	5.1 System Architecture
	5.2 The Slurm Simulator

	6 Experiments and Results
	6.1 Single-node Evaluation
	6.2 Multi-node Evaluation
	6.3 Overlap with Low Machine Load

	7 Related Works
	8 Conclusion and Future Work
	9 Acknowledgement
	References

