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Abstract—The increasing pace in genomic research has
brought a high demand for genomic datasets in recent years, yet
few studies have released their datasets due to privacy concerns.
This poses a problem while validating and reproducing the pub-
lished results. In this work, in order to promote reproducibility of
genome-related research, we propose a novel scheme for sharing
genomic datasets under differential privacy. Our scheme shows
great performance in terms of genome-wide association studies
(GWAS) reproducibility, other data utility metrics, resistance
against membership inference attacks, and running time. By
constraining the privacy leakage, our mechanism is able to
encourage the sharing of a genomic dataset along with the
research results on it.

I. INTRODUCTION

Development in genome sequencing has brought tremen-
dous research opportunities in the genomic field in recent
years. However, a major concern is that genomic research
outcomes are hardly reproducible because other researchers
can barely access the GWAS datasets that are used to produce
the research outcomes due to privacy concerns. This prevents
their peers from assessing the quality and correctness of the
discoveries, and eventually impedes the development in the
genomic area.

In this work, we target reproducibility of genomic research
outcomes and propose a novel scheme that shares genomic
datasets of point mutations on the DNA (i.e., Single Nu-
cleotides Polymorphism - SNPs) under differential privacy.
We focus on sharing SNP datasets, because such datasets are
the most popular in biomedical research and GWAS. In the
first step, the scheme generates a noisy copy of the genomic
dataset by encoding the data entries as binary values and then
XORing them with binary noise, that is calibrated and sampled
with optimized time complexity, while considering the biology
properties of the datasets. In the second step, the scheme alters
the value distribution of each column in the generated copy
to align with the privacy-preserving version (protected by the
Laplace mechanism) of the distribution in the original dataset
using optimal transport.

We implement our proposed scheme on two real genomic
datasets from the OpenSNP project [2] and evaluate the scheme
with regard to GWAS reproducibility. For comparison, we
implemented two existing differentially private dataset sharing
methods, i.e., DPSyn [6] and PrivBayes [7], which are both
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winning algorithms in the NIST Differential Privacy Synthetic
Data Challenge [1] in 2018. The results prove that our scheme
significantly outperforms the two existing methods in GWAS
reproducibility and also other utility metrics. In addition,
our scheme achieves better resistance against membership
inference attacks, i.e., the Hamming distance attack [4] and
machine-learning-based attacks,

II. SYSTEM AND THREAT MODEL

We consider two parties involved in our system: a re-
searcher and a verifier. The researcher has some research
findings on a genomic dataset and wants to share the dataset for
reproducibility, while a verifier wants to reproduce the research
findings. The verifier can be the reviewers in a peer review
publication or any other researcher who wants to reproduce
the results for validation or comparison.

We assume the researcher is trusted. The researcher holds
the original genomic dataset and will not expose it. While
implementing the privacy mechanism, the researcher will not
leak any information other than the shared genomic dataset,
where such information includes the original dataset and all
the intermediate data generated during privacy enhancement.
We assume the verifier can be malicious and is curious about
the original dataset. The malicious verifier, i.e., the attacker,
may perform membership inference attacks (MIAs) to learn
whether a target victim is a member of the noisy genomic
dataset that is shared by the researcher.

We assume the attacker has access to the following knowl-
edge from the researcher: (i) the shared dataset from the
researcher and (ii) the trait/disease that the individuals in the
dataset share. We consider two types of MIAs: the Hamming
distance test and machine learning (ML)-based methods. The
Hamming distance test (HDT) utilizes the Hamming distance
between genomic records to measure the membership informa-
tion of a given target. ML-based attacks are popular approaches
used for membership inference tasks, and we consider two
machine learning-based MIAs: random forest (RF) and support
vector machine (SVM).

III. METHODOLOGY

The workflow of the proposed scheme is shown in Figure 1.
There are two stages: data perturbation and utility restoration.
In the data perturbation stage, we encode the genomic data
into binary values, perturb the encoded dataset using the XOR
mechanism [5], which is a state-of-the-art algorithm that re-
leases binary data in matrix format while satisfying differential
privacy, and then decode it back to the genomic domain. The
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Fig. 1: The system workflow. 1) Encode the genomic dataset D to binary form DP. 2) Divide the binary matrix into sub-matrices
and record the shapes with their counts. 3) Generate noise matrices of the shapes using Exact Hamiltonian Monte Carlo (EHMC)-
based sampling. 4) Construct the whole noise matrix by randomly assigning the sub-noise matrices. 5) Produce the private matrix
Db using the XOR mechanism. 6) Decode Db to D. 6) Calculate the query results C' of 7. and apply Laplacian noise to each
result as C. 7) Perform optimal transport on D based on C' and generate D’ as the shared dataset.

considered encoding approach captures the biological property
of SNP. The XOR mechanism outputs matrix- and binary-
valued noise matrices by XORing the encoded dataset with
the generated noise matrices. During noise generation, we
calibrate the noise distribution parameter using a publicly
available datasets of the same nature to preserve the inherent
correlation among SNPs. Observing high time complexity
of the XOR mechanism, we improve its noise generation
process. In particular, after dividing the entire matrix into
same-sized sub-matrices, we generate limited noise matrices
and XOR each sub-matrix with a randomly chosen noise
matrix among them. This optimization decreases the time cost
of the XOR mechanism and becomes an essential building
block for genomic data generation in practice.

The XOR mechanism is designed to protect the privacy of
single binary entry in a dataset, so the privacy is guaranteed at
the entry level (which means it is vulnerable to membership
inference attacks, a more common attack in genomic dataset
sharing). To make the XOR mechanism be robust against
membership inference, it will introduce significant amount of
noise. Thus, we devise a novel scheme to restore data utility.
In the utility restoration stage, we first issue a count query at
each SNP position in the dataset that counts the SNP value
distribution and apply the Laplace mechanism [3] to ensure
differential privacy. Then, for each SNP, we calculate the
minimal SNP modifications needed to align the distribution
with the differentially private count results. We calculate the
modification plan by performing optimal transport on two
distributions and modify the SNPs according to the plan.

1V. EVALUATION

We implement our scheme on two realistic genomic
datasets, which contain lactose-intolerant and brown-eye indi-
viduals, respectively, that are extracted from the OpenSNP [2]
project. We evaluate its performance compared to two existing
methods (i.e., DPSyn [6] and PrivBayes [7]) regarding GWAS

reproducibility, other data utility metrics, resistance against
membership inference attacks, and running time. Through the
experiments, our scheme outperforms the two methods in both
utility and privacy while achieving lower time complexity.

V. CONCLUSION

In this paper, we have proposed a novel scheme that
shares genomic datasets in a privacy-preserving manner for
reproducibility of genomic research outcomes. In future work,
we will work on increasing reproducibility for genomic studies
apart from GWAS, such as transcriptome-wide association
study, genetic epidemiology, and gene—environment interac-
tion.
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I Motivation

+ Development in genome sequencing has brought
tremendous research opportunities in the genomic
field.

However, genomic research outcomes are hardly
reproducible due to absence of the genomic
datasets, i.e., Single Nucleotides Polymorphism
(SNP) datasets.

Existing methods under differential privacy either
suffer from utility loss or high time cost, thus
impractical for use.
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alleles at a position, and it can be 0, 1, or 2.

Genome-wide association studies (GWAS) are a
popular method to analyze the correlations
between genetic variations and a specific
trait/phenotype.

I Challenges

+ Sharing genomic datasets instead of sharing
statistics.

+ Unique utility requirement: x2 test and odds ratio
test in Genome-wide association studies (GWAS).

« Offering high data utility in other utility metrics.

+ High privacy guarantee against membership
inference attacks, i.e., machine learning (ML)-
based attacks.

+ Low computational complexity.
I System and Threat Model

+ Two parties: the researcher and the verifier.

* The researcher shares the dataset that is used in
their genomic research using a differentially
private scheme

* The verifier validate the research outcomes by
tolerating some loss due to usage of privacy-
preserving schemes.

* The attack can perform membership inference
attacks:
+ Hamming distance attacks
+ Machine learning-based attacks using support
vector machine and random forest.

I Datasets

2 genomic datasets extracted from the OpenSNP project:

* LACTOSE: contains 60 lactose-intolerant individuals with 9091 SNPs

« EYE: contains 401 brown-eye individuals with 28396 SNPs
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