
IsoPredict: Dynamic Predictive Analysis for Detecting
Unserializable Behaviors in Weakly Isolated Data Store
Applications

CHUJUN GENG, Ohio State University, USA

SPYROS BLANAS, Ohio State University, USA

MICHAEL D. BOND, Ohio State University, USA

YANG WANG, Ohio State University, USA

Distributed data stores typically provide weak isolation levels, which are efficient but can lead to unserializable

behaviors, which are hard for programmers to understand and often result in errors. This paper presents the

first dynamic predictive analysis for data store applications under weak isolation levels, called IsoPredict. Given

an observed serializable execution of a data store application, IsoPredict generates and solves SMT constraints

to find an unserializable execution that is a feasible execution of the application. IsoPredict introduces novel

techniques that handle divergent application behavior; solve mutually recursive sets of constraints; and balance

coverage, precision, and performance. An evaluation on four transactional data store benchmarks shows that

IsoPredict often predicts unserializable behaviors, 99% of which are feasible.

CCS Concepts: • Software and its engineering → Software testing and debugging.

Additional Key Words and Phrases: weak isolation levels, dynamic predictive analysis, data stores, transactions

ACM Reference Format:

Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang. 2024. IsoPredict: Dynamic Predictive Analysis

for Detecting Unserializable Behaviors in Weakly Isolated Data Store Applications. Proc. ACM Program. Lang.

8, PLDI, Article 161 (June 2024), 25 pages. https://doi.org/10.1145/3656391

1 INTRODUCTION

Distributed data stores are the foundation of today’s service infrastructure, due to their scalability,
fault tolerance, and ease of use [16, 20, 38, 47]. Many real-world data stores only support weak
isolation levels, such as causal consistency (causal) [3], which is the strongest level that achieves
availability under network partitions [13, 28]. Another weak isolation level is read committed (rc) [5],
which is commonly used by database applications to balance performance and correctness [15,
17, 40, 49]. Under weak isolation, an execution may be unserializable, producing an outcome that
is impossible for any serial execution. Unserializable behaviors are poorly understood by most
programmers, and often lead to errors and failures in real-world systems [15, 49, 51].

Prior work has introduced techniques to find unserializable behaviors in data store applications
under weak isolation, but has scalability or accuracy limitations. Static analysis can find unserial-
izable behaviors, but its precision scales poorly with program complexity, leading to many false

Authors’ addresses: Chujun Geng, Ohio State University, Columbus, USA, geng.195@osu.edu; Spyros Blanas, Ohio State

University, Columbus, USA, blanas.2@osu.edu;Michael D. Bond, Ohio State University, Columbus, USA,mikebond@cse.ohio-

state.edu; Yang Wang, Ohio State University, Columbus, USA, wang.7564@osu.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART161

https://doi.org/10.1145/3656391

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0000-6149-0208
HTTPS://ORCID.ORG/0009-0004-2703-7177
HTTPS://ORCID.ORG/0000-0002-8971-4944
HTTPS://ORCID.ORG/0000-0002-9721-4923
https://doi.org/10.1145/3656391
https://orcid.org/0009-0000-6149-0208
https://orcid.org/0009-0004-2703-7177
https://orcid.org/0000-0002-8971-4944
https://orcid.org/0000-0002-9721-4923
https://doi.org/10.1145/3656391
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656391&domain=pdf&date_stamp=2024-06-20


161:2 Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang

Algorithm 1 A procedure in a data store application that deposits money in an account.

procedure deposit(account, �푎�푚�표�푢�푛�푡 )

balance ← DataStore.get(account) ⊲ Read balance; implicitly starts transaction if not in one

DataStore.put(account, balance + amount) ⊲ Update balance

DataStore.commit() ⊲ Commits transaction

t1: deposit(acct, 50)

read(acct): 0

write(acct, 0 + 50)

commit

initial balance: 0

ending balance: 110

t2: deposit(acct, 60)

read(acct): 50

write(acct, 50 + 60)

commit

(a) The execution in which �푡2 reads from �푡1 is
causal, rc, and serializable.

t1: deposit(acct, 50)

read(acct): 0

write(acct, 0 + 50)

commit

initial balance: 0

ending balance: 60

t2: deposit(acct, 60)

read(acct): 0

write(acct, 0 + 60)

commit

(b) The execution in which �푡1 and �푡2 both read from
the initial state is causal and rc but not serializable.

Fig. 1. Different executions of two sessions (clients) concurrently on the same account.

positives (infeasible unserializable behaviors) [12, 39, 43]. Dynamic analysis can avoid false pos-
itives by analyzing only the observed execution [7, 11], or it can extrapolate from an observed
execution but report numerous false positives [23, 51]. §8 discusses prior work in more detail.

Motivating example. Algorithm 1 shows code of a transactional data store application. TheDataStore
provides a key–value interface. Our execution model requires that every get (read) or put (write)
operation to execute in a transaction, so an operation starts a new transaction if the current session
(i.e., client) is not in a transaction. A commit operation ends the session’s ongoing transaction.

Figure 1 shows two different executions of the application. In each execution, two sessions (i.e.,
clients) call deposit concurrently on the same empty account to deposit 50 and 60, respectively.
Developers would expect that the ending balance will be 110, which is the only serializable outcome.
However, under weak isolation levels causal and rc, the ending balance may be 110, 50, or 60.

Contributions. This paper introduces IsoPredict, the first predictive analysis for transactional data
store applications, and shows that the approach is effective at finding unserializable behaviors.
Given a serializable execution such as Figure 1a as input, IsoPredict finds an unserializable execution
such as Figure 1b. IsoPredict uses dynamic predictive analysis, which analyzes an observed execution
of a program and detects alternative feasible, unserializable executions of the program.
Predictive analysis is powerful because, in essence, it explores many executions at once. To

predict an unserializable execution from an observed serializable execution, IsoPredict generates
SMT constraints that encode execution feasibility, unserializability, and weak isolation level (causal
or rc), and uses an off-the-shelf SMT solver to solve them. We introduce analysis variants that trade
coverage for performance, and precision for coverage. To account for the possibility of predicting
infeasible executions, IsoPredict can optionally validate a predicted unserializable execution. An
evaluation on transactional data store benchmarks shows that IsoPredict is effective at predicting
unserializable executions from observed executions under causal and rc. More than 99% of
predictions are validated as feasible executions.

While prior work introduces predictive analysis for shared-memory programs [30, 33, 44–46, 50],
to our knowledge IsoPredict is the first predictive analysis approach for transactional data store
applications, which present unique challenges (§8). Compared to prior work MonkeyDB [7], IsoPre-
dict is comparably effective at finding unserializable executions of the evaluated programs (§7.3).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Data Store Applications 161:3

However, IsoPredict and MonkeyDB use completely different approaches to find erroneous execu-
tions. While MonkeyDB uses random exploration to produce an erroneous execution, IsoPredict
uses predictive analysis to evaluate an equivalence class of many executions at once. Furthermore,
MonkeyDB requires applications to run on its specialized data store, while IsoPredict’s predictive
analysis approach is in principle suitable for analyzing executions from any data store, although
demonstrating so is outside the scope of this paper.

2 BACKGROUND

This section introduces this paper’s formalisms for weakly isolated executions of transactional data
store applications, which are closely based on the axiomatic framework of Biswas and Enea [6].
We use this framework because it supports a variety of isolation levels, is well suited to encoding
as constraints, and has been employed by recent work [7, 10].

2.1 Weakly Isolated Execution Histories

A transactional data store is modeled as a distributed store of key–value pairs. A data store
application performs read (get) and write (put) operations on keys, all executed in transactions. Non-
transactional applications can be handled by treating each read and write operation as a separate
transaction. An execution consists of events in committed transactions (aborted transactions are
not part of an execution). Each event is either read(�푘), or write(�푘) or commit, where �푘 is a key.
Other operations, such as insertion into and deletion from a set, can be modeled in terms of reads
and writes. Multiple clients may open connections, or sessions, to the data store. If a session is not
in a transaction, its next event implicitly starts a new transaction, ensuring every event is in a
transaction. The commit event ends the current transaction. Within a session, transactions are
ordered by the strict partial order session order (so):

so(�푡1, �푡2) ≔ �푡1 precedes �푡2 in the same session

An important property of an execution is which write each read reads from. The strict partial
order wr: (write–read on key �푘) orders transactions if one reads from the other:

wr: (�푡1, �푡2) ≔ �푡2 reads the write of �푡1 on �푘

If a read reads from a write in the same transaction, the read is not included as an event in the
transaction (and thus this write–read ordering is not included in wr: ). If a transaction writes �푘
multiple times, only the last write is included as an event in the transaction. Thus a read(�푘) event
always reads from a write(�푘) in another transaction, which is the transaction’s last write to �푘 . If a
transaction �푡 reads�푘 from the data store’s initial state, thenwr: (�푡0, �푡 ), where �푡0 is a special transaction
representing the initial state. The union of wr: over all keys is wr , i.e., wr ≔

⋃

: is a key wr: . The
transitive closure of so andwr is happens-before order, i.e., hb ≔ (so∪wr)+. An execution history of a
data store application is the set of all committed transactions (T ), session order (so), and write–read
order (wr), i.e., �퐻�푖�푠�푡�표�푟~ ≔ ⟨�푇, �푠�표,�푤�푟 ⟩. Every history includes the special transaction �푡0 mentioned
above that represents the initial state. �푡0 implicitly writes the initial value to every key, and �푡0 is
so-ordered before all other transactions.

Example. Figures 2a and 3a each show an execution history as a graph. Transactions are boxes
containing read and write events implicitly concluded by a commit event. �푡1 and �푡2 execute in
different sessions, and �푡0 is the initial state transaction. The wr: edges indicate each read’s writer.

2.2 Serializablility

An execution history ⟨�푇, �푠�표,�푤�푟 ⟩ is serializable if and only if it could have been produced by a serial
execution of the transactions in �푇 . (In a serial execution, transactions execute one at a time, and

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



161:4 Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang

t0

write(acct)

so, wracct

wracct

t1

read(acct)

write(acct)

t2

read(acct)

write(acct)

so

(a) Execution history

t0

write(acct)

so, wracct

co

wracct

co

read(acct)

write(acct)

t1

read(acct)

write(acct)

t2

so

(b) A co (dashed arrows) consistent with the serial-
izable axioms.

Fig. 2. A causal, serializable history corresponding to Figure 1a.

write(acct)

t0

so, wracct

t1

read(acct)

write(acct)

so, wracct

t2

read(acct)

write(acct)

(a) Execution history

t0

write(acct)

so, wracct

co

co

t1

read(acct)

write(acct)

so, wracct

ww

read(acct)

write(acct)

t2

(b) A co (dashed arrows) inconsistent with the seri-
alizable axioms (contradiction shown in red).

Fig. 3. A causal, unserializable history corresponding to Figure 1b.

every read to �푘 reads from the most recent write to �푘 .) Equivalently, an execution is serializable if
and only if there exists a commit order, co, with the following constraints: (1) co must be consistent
with happens-before (hb) order. (2) a transaction that writes to �푘 cannot be co-ordered between
two transactions ordered by wr: . The second constraint’s ordering is called arbitration order and
represented by the strict partial order ww, which is defined as follows:

ww(�푡1, �푡2) ≔ ∃�푘, �푡1 and �푡2 write to �푘 ∧ ∃�푡3 ∈ T ,�푤�푟: (�푡2, �푡3) ∧ co(�푡1, �푡3) (1)

Note the circular dependency between ww and co: Commit ordering may imply additional arbitra-
tion ordering, which in turn may imply additional commit ordering. This property leads to chal-
lenges in encoding SMT constraints that §4 explains and addresses. Thus a history is serializable
if and only if there exists a co that is consistent with hb and ww:

⟨�푇, �푠�표,�푤�푟 ⟩ is serializable ⇐⇒ ∃co, hb ∪ ww ⊆ co

Equivalently, the history is serializable if and only if there exists co such that (hb ∪ ww ∪ co)+ is
acyclic. An execution is unserializable if and only if it is not serializable.

Example. Figure 2a’s history is serializable because there exists a commit order (�푡0 <co �푡1 <co �푡2),
shown in Figure 2b, that is consistent with the serializable axioms. Note that the arbitration rule
(Equation 1) never applies in Figure 2a, and so Figure 2b shows no ww edges.

The history in Figure 3a is unserializable because there does not exist a commit order that
satifies the serializable axioms. For example, as Figure 3b shows, if co(�푡1, �푡2), then ww(�푡1, �푡0) by
Equation 1, which implies co(�푡1, �푡0) and thus co is cyclic. Alternatively, if co(�푡2, �푡1), then ww(�푡2, �푡0)

and thus co(�푡2, �푡0), and again co is cyclic.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Data Store Applications 161:5

2.3 Causal Consistency

Causal consistency (causal) is a weak isolation level that preserves the order of operations that are
causally related [3]. causal is of theoretical and practical interest because it is the strongest isolation
level achievable when a data store requires availability under network partitions [13, 28, 36].
Similar to serializable, causal is defined in terms of whether there exists a commit order

that is consistent with happens-before (hb) and an arbitration order, which we call wwcausal to
distinguish it from the arbitration order for serializable (ww). Two transactions �푡1 and �푡2 are
ordered by wwcausal if they write the same key and if there is a third transaction �푡3 that happens-
after �푡1 (hb(�푡1, �푡3)) and reads from �푡2’s write to the same key (wr(�푡2, �푡3)). More formally,

wwcausal(�푡1, �푡2) ≔ ∃�푘, �푡1 and �푡2 write to �푘 ∧ ∃�푡3 ∈ T ,�푤�푟: (�푡2, �푡3) ∧ ℎ�푏(�푡1, �푡3) (2)

A history is causal if and only if there exists a commit order consistent with hb and wwcausal :

⟨�푇, so,wr⟩ is causal ⇐⇒ ∃co, hb ∪ wwcausal ⊆ co (3)

Equivalently, a history is causal if and only if (hb ∪ wwcausal)
+ is acyclic.1

Example. The history in Figure 2a is causal because there exists a commit order �푡0 <co �푡1 <co �푡2
that is consistent with the causal axioms. (Or, since the history is serializable, which is strictly
stronger than causal, the history must be causal.) The history in Figure 3a is causal because there
exists a commit order, �푡0 <co �푡1 <co �푡2 (or �푡0 <co �푡2 <co �푡1), that is consistent with the causal axioms.

2.4 Read Commi�ed

Read committed (rc) is a popular weak isolation level because of the balance between performance
and consistency it provides [5]. Whereas causal requires transactions ordered by happens-before
(hb) to be viewed by other transactions in the same order, rc’s arbitration order, wwrc , only applies
to write transactions that are read by multiple read events from the same transaction. More formally,
rc is defined based on whether there exists a commit order that is consistent with hb and wwrc ,
which is defined as follows:

wwrc(�푡1, �푡2) ≔ ∃�푘, �푡1 and �푡2 write to �푘 ∧ ∃�훼, �훽, po(�훽, �훼) ∧ wr: (�푡2, �훼) ∧ ∃�푘 ′,wr: ′ (�푡1, �훽) (4)

where po is program order, a strict partial order that orders events within a transaction; and wr: (�푡, �푒)
is true if and only if �푒 is a read event that reads from a write in transaction �푡 (and thus �푒 ̸= �푡 ). Thus �훼
and �훽 must be events in the same transaction such that �훼 is a read(�푘) event that reads from write(�푘)
in �푡2, and �훽 is a read event that reads from any write in �푡1. An execution history is rc if and only if
there exists a commit order that is consistent with hb and wwrc :

⟨�푇, so,wr⟩ is rc ⇐⇒ ∃co, hb ∪ wwrc ⊂ co (5)

Example. The execution histories in Figures 2a and 3a are rc because there exist commit orders
(in fact, the same commit orders used to establish causal) satisfying the above condition. Or, the
histories are rc because they are causal, which is strictly stronger than rc.

3 ISOPREDICT OVERVIEW

IsoPredict consists of two main components, as shown in Figure 4: predictive analysis and validation.
The predictive analysis component takes as input an observed execution history that is recorded

at the client application’s backend data store, generates SMT constraints, and uses an SMT solver to
find a predicted unserializable execution if one exists. §4 describes IsoPredict’s predictive analysis.

1Unlike serializable, causal can be defined in terms of whether (hb∪wwcausal )
+ is acyclic, which implies that a total commit

order must exist. In contrast, serializable’s arbitration order (ww) is dependent on the commit order, so serializable

must be defined in terms of whether (hb ∪ ww ∪ co)+ is acyclic.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



161:6 Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang

Predictive

Constraint

Generation
Data Store

Client App

Recorded

History

Query

IsoPredict

SMT

Solver

Trace

Encoder

Predictive Analysis

Predicted

History

Query

Engine

Results

Serializability

Constraint

Generation

SMT

Solver

Validation

History Validation

App Replay
Query

Prediction Validated

Prediction

sat

unsat

No Prediction
sat

unsat/unknown

Fig. 4. IsoPredict’s components and workflow.

The validation component tries to execute the predicted execution history to determine if
it is feasible, and it generates and solves constraints to determine if the resulting execution is
unserializable. If so, IsoPredict outputs the validated history alongside a visualization of the
validated unserializable execution. §5 describes IsoPredict’s validation component.

Validation is optional; developers may choose to skip it for two reasons. First, it may be overkill—
in our experiments, over 99% of predicted unserializable executions are successfully validated.
Second, validation may be impractical if the application cannot be replayed easily. Validation is,
however, useful to our evaluation to measure how many predicted executions are feasible.

4 PREDICTIVE ANALYSIS

IsoPredict’s predictive analysis component takes as input an observed execution history of a data
store application. The observed history History = ⟨T , so,wrobs⟩ consists of a set of transactions
T , session order so between transactions, and observed write–read ordering wrobs . The goal of
IsoPredict is to find a feasible, unserializable execution that is valid under a weak isolation model
�푀 (i.e., causal or rc). To find such an execution, IsoPredict encodes and solves the following
necessary and sufficient constraints for a predicted execution history, History′ = ⟨�푇 ′, so,wr⟩:

(1) History′ must be a feasible execution prefix2 of the program that produced History (§4.1).
(2) History′ must be unserializable (§4.2).
(3) History′ must be valid under�푀 (§4.3).

As an example, Figure 2a shows a serializable execution history that contains two deposit
transactions (Algorithm 1) running concurrently. IsoPredict generates and solves the constraints
sketched above, in order to predict the causal and rc but unserializable execution from Figure 3a.

4.1 Encoding of Feasible Execution

This section describes the constraints that IsoPredict generates to ensure that History′ = ⟨�푇 ′, so,wr⟩

is a feasible execution of the application that produced History = ⟨�푇, so,wrobs⟩.

Session order. The predicted execution must preserve the observed execution’s session order (so).
IsoPredict generates constraints over a Boolean SMT function �휙so(�푡1, �푡2) that takes two transactions
as input; a transaction is an SMT data type representing the set of all executed transactions �푇 . The

2We allow) ′ to be a subset of) to exclude transactions that may diverge from the observed execution (§4.5). An execution

prefix is sufficient: If History′ exists, a full execution history exists that has History′ as a prefix and meets the criteria above.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Data Store Applications 161:7

analysis generates the following constraints to preserve the observed execution’s so:

∀�푡1, �푡2 ∈ �푇, �푡1 ̸= �푡2,
�휙so(�푡1, �푡2) if so(�푡1, �푡2)

¬�휙so(�푡1, �푡2) otherwise

For clarity, SMT constraints generated by IsoPredict are boxed throughput the paper. The way

to understand the above is that, for every �푡1, �푡2 ∈ �푇 such that �푡1 ̸= �푡2,
3 the analysis generates a

constraint—either �휙so(�푡1, �푡2) or ¬�휙so(�푡1, �푡2) depending on whether the transactions are ordered by so.

Write–read order. Each read in the predicted execution can potentially read from any transaction
that writes the same key.4 To help reason about multiple reads in a transaction to the same
key that have different writer transactions (and to help exclude potentially divergent events;
§4.5), we introduce the notion of an event’s position: In each session, events are numbered with
monotonically increasing integers. To ensure each read has exactly one writer transaction in the
predicted execution, IsoPredict introduces an SMT function �휙choice(�푠, �푖) that takes as input a session
and the position of a read event in the session, and returns the writer transaction that the read reads
from. Like transactions, sessions are a finite SMT data type representing the set of all sessions. (Note
that �휙choice(�푠, �푖) is left undefined if �푖 is not the position of a read event in �푠 .) IsoPredict generates the
following constraints to ensure that �휙choice(�푠, �푖) is equal to some transaction that writes the same key:

∀�푘 is a key,∀�푡2 reads �푘,∀�푖 ∈ rdposk(�푡2),
∨

C1 ̸=C2 writes :

�휙choice(�푠2, �푖) = �푡1

where �푠2 is �푡2’s session, and rdposk(�푡 ) is the set of positions of reads to �푘 in transaction �푡 .
IsoPredict encodes wr: by generating constraints on Boolean SMT functions �휙wr: (�푡1, �푡2):

∀�푘 is a key,∀�푡1 writes �푘,∀�푡2 reads �푘, �푡1 ̸= �푡2, �휙wr: (�푡1, �푡2) =
∨

8∈rdposk (C2)

�휙choice(�푠2, �푖) = �푡1

where �푠2 is �푡2’s session.
To encode wr(�푡1, �푡2), the analysis generates constraints on a Boolean SMT function �휙wr (�푡1, �푡2) that

represents the union of all �휙wr: (�푡1, �푡2):

∀�푡1, �푡2 ∈ T , �푡1 ̸= �푡2, �휙wr (�푡1, �푡2) =
∨

: is a key

�휙wr: (�푡1, �푡2)

4.2 Encoding Unserializability

This section describes how the analysis encodes constraints for the predicted execution to be
unserializable. The constraints must ensure that all possible commit orders are cyclic. §4.2.1
presents an approach that encodes the needed constraints exactly, resulting in long solving times.
§4.2.2 presents an alternative approach that encodes a sufficient condition for unserializability,
which has lower solving time than the first approach, but still has high coverage in our experiments.

3Although the partial and total orders throughout the paper are irreflexive, the analysis never needs to generate irreflexivity

constraints (e.g., ∀C, ¬qA (C, C ) for relation A ) because it never generates any constraints that use qA (C, C ).
4Recall that a read to : can only read from another transaction’s last write to : (§2.1).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



161:8 Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang

4.2.1 Constraints that encode an exact condition. To encode that no acyclic co exists for the predicted
execution history, IsoPredict generates the following constraint:

∀�휙co,¬IsSerializable(�휙co)

where IsSerializable is defined as shown below. Note that in the constraint above, �휙co(�푡 ), which takes
a transaction �푡 as input and evaluates to an integer indicating �푡 ’s position in the co total order, is not
an SMT function—it is a bound variable of the quantifier. Function IsSerializable is defined as follows:

IsSerializable(�휙co) ≔ Distinct(�휙co(�푡1), . . . , �휙co(�푡=)) ∧
∧

∀C1,C2∈),C1 ̸=C2

(�휙wr (�푡1, �푡2) ∨ �휙so(�푡1, �푡2) ∨ Arbitration(�푡1, �푡2)) ⇒ �휙co(�푡1) < �휙co(�푡2)

where �푡1, . . . , �푡= are all transactions in T , and Distinct(�푣1, . . . , �푣: ) is a built-in SMT function that
requires all input values to be distinct from each other. By mapping �휙co (t) to a unique integer for
each �푡 , the first line of the equation above ensures that co is a total order.
The second line of the equation ensures that co is consistent with wr , so, and ww, respectively.

For simplicity and to reduce the size of the constraints, arbitration constraints are factored out into
the Arbitration function, which is defined as follows:

Arbitration(�푡1, �푡2) ≔
∨

∀:,C1 and C2 write :
∀C3∈T\{C1,C2 },C3 reads :

�휙wr: (�푡2, �푡3) ∧ (�휙co(�푡1) < �휙co(�푡3))

which is a straightforward encoding of the serializable arbitration constraints in Equation 1.
By using this approach we are pushing all the heavy lifting to the SMT solver. However, SMT

solvers are known to be inefficient at solving constraints with universal quantifiers [34]—an issue
confirmed by our performance results (§7.2).

4.2.2 Constraints encoding a sufficient but unnecessary condition. Alternatively, the analysis can
encode a sufficient, but unnecessary, condition for predicting an unserializable execution. We
introduce a partial order, pco, that is a subset of every commit order for every valid predicted execution.
If there exists a predicted execution for which pco is cyclic, then there cannot exist an acyclic co for
the predicted execution, meaning it is unserializable. In theory, this approach has the potential
for missing unserializable executions that §4.2.1’s approach finds. But in our experiments, the
pco-based approach predicts all unserializable executions that §4.2.1’s approach finds (§7.2).

We define pco to include all orders that must be in co: session (so), write–read (wr), and arbitration
(ww) orders. We also introduce an anti-dependency order (rw) that must be in every co, which
allows adding more edges to pco and thus finding more unserializable executions. A challenge
with encoding pco is that the arbitration and anti-dependency orders are both defined in terms of
commit order, creating a circular dependency that leads to erroneous self-justifying edges in pco.
We break both circular dependencies by introducing the notion of rank in the generated constraints.
Next we describe anti-dependency order (rw), the circular dependency problem and our rank-based
solution to it, and finally the constraints that the analysis generates.

Adding anti-dependency order (rw) to pco. To make pco as large as possible while still being
consistent with every valid co, we add an anti-dependency (rw) order to pco. rw must be part of
any valid co, as we prove in the extended version of this paper [25]. Intuitively, for any write–
read relation wr: (�푡1, �푡2), anti-dependency prevents future transactions that also write �푘 from being
ordered between �푡1 and �푡2 in the commit order. More formally, we define rw(�푡1, �푡2) as follows:

rw(�푡1, �푡2) ≔ ∃�푘, �푡2 writes �푘 ∧ ∃�푡F,wr: (�푡F, �푡1) ∧ pco(�푡F, �푡2)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Data Store Applications 161:9

write(acct)

t0

so, wracct

t1

read(acct)

write(acct)

so, wracct

t2

read(acct)

write(acct)

rwacct

rwacct

Fig. 5. Including anti-dependency ordering (rw;
dashed arrows) in pco makes pco cyclic.

wrk

read(k)
t3

write(k)
t2

write(k)
t1

ww

pco

Fig. 6. An example of circular dependency:
ww(�푡1, �푡2) depends on pco(�푡1, �푡3), which in turn de-
pends on ww(�푡1, �푡2).

Figure 5 shows an example in which pco is cyclic only if rw is included.
The partial order pco can now be defined as the union of all orders that must be part of co:

pco = (so ∪ wr ∪ ww ∪ rw)+

Adapting Equation 1 to use pco instead of co, we define arbitration order, ww, as follows:

ww(�푡1, �푡2) ≔ ∃�푘, �푡1 and �푡2 write to �푘 ∧ ∃�푡3 ∈ T ,�푤�푟: (�푡2, �푡3) ∧ pco(�푡1, �푡3)

Circular dependency and rank. In the definitions above, note the circular dependencies between
pco and ww and between pco and rw, which seem to permit “self-justifying” edges. As an example,
consider Figure 6. According to the definitions, pco(�푡1, �푡3) ⇒ ww(�푡1, �푡2), and ww(�푡1, �푡2) ⇒ pco(�푡1, �푡3),
allowing us to wrongly conclude ww(�푡1, �푡2) and pco(�푡1, �푡3). To avoid such self-justifying edges, pco,
ww, and rw in fact must be defined as the minimal relations that satisfy the above definitions.

How can we encode this “minimal relation” property in the SMT constraints? If IsoPredict simply
encodes the above definitions as SMT constraints, the constraint solver will find self-justifying
edges, resulting in spurious cycles and reporting executions that are not actually unserializable.
For example, for Figure 6, the SMT solver would choose both ww(�푡1, �푡2) and pco(�푡1, �푡3) to be true,
finding a cycle and wrongly reporting a predicted execution that is actually serializable.

We address this problem by introducing the notion of rank, which orders pco edges that depend
on each other. IsoPredict relies on an integer SMT function rank(�푡1, �푡2) to enforce the following rule:

For any relations �푟 and �푟 ′, if �푟 (�푡1, �푡2) depends on �푟
′(�푡 ′1, �푡

′
2), then rank(�푡1, �푡2) > rank(�푡 ′1, �푡

′
2).

Note that the rule does not require �푡1 ̸= �푡 ′1 or �푡2 ̸= �푡 ′2. For Figure 6, rank constraints disallowww(�푡1, �푡2)

and pco(�푡1, �푡3), which would require both rank(�푡1, �푡2) > rank(�푡1, �푡3) and rank(�푡1, �푡3) > rank(�푡1, �푡2).

Generated constraints. IsoPredict generates arbitration and anti-dependency constraints on
Boolean SMT functions �휙ww(�푡1, �푡2) and �휙rw(�푡1, �푡2):

∀�푡1, �푡2 ∈ �푇, �푡1 ̸= �푡2,

�휙ww(�푡1, �푡2) =
∨

∀:,C1 and C2 write :
∀C3∈T\{C1,C2 },C3 reads :

�휙wr: (�푡2, �푡3) ∧ �휙pco(�푡1, �푡3)) ∧ rank(�푡1, �푡2) > rank(�푡1, �푡3)

�휙rw(�푡1, �푡2) =
∨

∀:,C1 reads : ∧ C2 writes :
∀C3∈T\{C1,C2 },C3 writes :

�휙wr: (�푡3, �푡1) ∧ �휙pco(�푡3, �푡2) ∧ rank(�푡1, �푡2) > rank(�푡3, �푡2)

The following constraints ensure that pco is a partial order implied by so, wr , ww, and rw:

∀�푡1, �푡2 ∈ �푇, �푡1 ̸= �푡2,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



161:10 Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang

�휙pco(�푡1, �푡2) = �휙so(�푡1, �푡2) ∨ �휙wr (�푡1, �푡2) ∨ �휙ww(�푡1, �푡2) ∨ �휙rw(�푡1, �푡2) ∨
∨

C ∈T\{C1,C2 }

�휙pco(�푡1, �푡 ) ∧ �휙pco(�푡, �푡2) ∧ rank(�푡1, �푡2) > rank(�푡1, �푡 ) ∧ rank(�푡1, �푡2) > rank(�푡, �푡2)

To ensure that pco is cyclic, the analysis generates the following constraint:

∨

∀C1,C2∈T ,C1 ̸=C2

�휙pco(�푡1, �푡2) ∧ �휙pco(�푡2, �푡1)

If the solver finds a satisfying solution, a predicted unserializable execution exists. If the solver
reports no satisfying solution, a predicted unserializable execution may or may not exist. In our
experiments, a predicted unserializable execution never exists in this case.

We have not been able to come up with an execution for which our pco-based approach misses
a predicted unserializable execution. We believe that such an execution should exist because
otherwise it would imply a polynomial-time algorithm for deciding if an execution history is
serializable—a problem that is NP-hard [6].

4.3 Encoding Weak Isolation

This section describes the constraints that IsoPredict generates to ensure that the execution conforms
to the target weak isolation model (causal or rc).
Regardless of the model, IsoPredict encodes hb as the transitive closure of so and wr (§2.1), by

generating constraints on a Boolean SMT function �휙hb(�푡1, �푡2):

∀�푡1, �푡2 ∈ �푇, �푡1 ̸= �푡2, �휙hb(�푡1, �푡2) = �휙so(�푡1, �푡2) ∨ �휙wr (�푡1, �푡2) ∨
∨

∀C ∈) \{C1,C2 }

�휙hb(�푡1, �푡 ) ∧ �휙hb(�푡, �푡2)

4.3.1 Causal consistency (causal). To ensure that the predicted execution is causal, IsoPredict
generates constraints that ensure that the transitive closure of causal arbitration order (wwcausal)
and happens-before (hb) is acyclic (§2.3). IsoPredict encodes the causal axiom (Equation 2) by
generating constraints on a Boolean SMT function �휙wwcausal

(�푡1, �푡2) representing wwcausal :

∀�푡1, �푡2 ∈ �푇, �푡1 ̸= �푡2, �휙wwcausal
(�푡1, �푡2) =

∨

∀:,C1 and C2 write :
∀C3∈T\{C1,C2 },C3 reads :

�휙wr: (�푡2, �푡3) ∧ �휙hb(�푡1, �푡3)

To ensure the execution is causal, there must exist a strict total order that is consistent with (hb ∪

wwcausal)
+ (Equation 3). IsoPredict generates the constraints on an integer SMT function �휙cocausal (�푡 ):

∀�푡, �푡1, �푡2 ∈ �푇, �푡1 ̸= �푡2, �휙hb(�푡1, �푡2) ∨ �휙wwcausal
(�푡1, �푡2) ⇒ �휙cocausal (�푡1) < �휙cocausal (�푡2)

4.3.2 Read commi�ed (rc). Similar to causal, IsoPredict generates constraints so that the transitive
closure of rc arbitration order (wwrc) and happens-before (hb) is acyclic (§2.4). IsoPredict encodes
the rc axiom (Equation 4) with the help of a Boolean SMT function �휙wwrc

(�푡1, �푡2) that representswwrc :

∀�푡1, �푡2 ∈ �푇, �푡1 ̸= �푡2, �휙wwrc
(�푡1, �푡2) =

∨

∀:, C1 and C2 write :
∀C3∈T\{C1,C2 }, C3 reads :

∀8∈rdpos∗(C3),∀ 9∈rdposk (C3), 8< 9

�휙choice(�푠3, �푖) = �푡1 ∧ �휙choice(�푠3, �푗 ) = �푡2

where rdpos∗(�푡 ) is the set of positions of read events in transaction �푡 , rdposk(�푡 ) is the set of positions
of read to �푘 in transaction �푡 , and �푠3 is �푡3’s transaction. To ensure there exists a strict total order that

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Data Store Applications 161:11

so, wrx

read(x)

write(x)

write(y)

t1

so, wry

read(x)

write(x)

t3

write(x)

write(y)

t0

read(y)
t2

so

wrx

(a) An observed execution of Wikipedia for which a
predicted causal, unserializable execution exists.

so, wrx

read(x)

write(x)

write(y)

t1

so, wry

read(x)

write(x)

t3

write(x)

write(y)

t0

read(y)
t2

so
rwx

wrx

rwx

(b) A causal, unserializable prediction; the pco cycle
(including rw edges) shows it is unserializable.

so, wrx

read(x)

write(x)

write(y)

t1

wry

read(x)

write(x)

t3

write(x)

write(y)

t0

read(y)
t2

so

so

wrx

(c) An observed execution of Wikipedia, for which no

predicted causal, unserializable execution exists.

so, wrx

read(x)

write(x)

write(y)

t1

wry

read(x)

write(x)

t3

write(x)

write(y)

t0

read(y)
t2

so

so

wrx

(d) The non-causal execution that results if we try
to change (c) so �푡3 reads from �푡0.

Fig. 7. Comparison of (relevant subsets of) executions from Wikipedia. Blue edges highlight the differences
between observed and predicted executions.

is consistent with (hb ∪ wwrc)
+ (Equation 5), IsoPredict generates constraints on an integer SMT

function �휙corc (�푡 ):

∀�푡, �푡1, �푡2 ∈ �푇, �푡1 ̸= �푡2, �휙hb(�푡1, �푡2) ∨ �휙wwrc
(�푡1, �푡2) ⇒ �휙corc (�푡1) < �휙corc (�푡2)

4.4 Prediction Examples

This section shows causal, unserializable behaviors predicted by IsoPredict on programs evalu-
ated in §7. The actual executions consist of dozens of transactions and thousands of events; the
figures show only the transactions and events relevant to predicting unserializable behavior.
Figure 7a shows an observed execution of the Wikipedia benchmark, and Figure 7b shows

the causal, unserializable execution predicted by IsoPredict. In contrast, Figure 7c shows a
different observed execution of Wikipedia, from which no causal, unserializable execution can
be predicted. Figure 7d serves to illustrate that changing �푡3’s read of �푥 to read from �푡0 would lead to
a non-causal execution (and thus will not be reported by IsoPredict).
Figure 8a shows an observed execution of the Smallbank benchmark, and Figure 8b shows

the IsoPredict-predicted execution. As Figure 8b shows, a causal, unserializable predicted
execution exists in which both reads read from the initial state (�푡0), as demonstrated by the pco
cycle �푡1 <co �푡3 <co �푡2 <co �푡4 <co �푡1.

4.5 Handling Divergence in the Predicted Execution

Reading from a different write in the predicted execution than in the observed execution, may lead
to different application behaviors. Specifically, code in the data store application that is control
dependent on a read from a different writer transaction may generate different events. For example,
consider the observed execution shown in Figures 9a and 9b, which executes transactions shown
in Algorithms 1 and 2. Figure 9c shows an unserializable predicted history that IsoPredict would
find using the constraints presented so far. However, the predicted execution is infeasible: �푡2 aborts

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



161:12 Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang

wrx

so

write(x)

write(y)

t0

write(y)
t2

so

wry read(x)
t4

write(x)
t1

so

read(y)
t3

so

(a) An observed execution for which a causal,
unserializable predicted execution exists.

wrxso

write(y)
t2

write(x)

write(y)

t0

so

wry

read(x)
t4

write(x)
t1

so

read(y)
t3

so

rwyrwx

(b) A causal, unserializable predicted execution
as shown by the pco cycles including rw edges.

Fig. 8. Observed and predicted executions of Smallbank. For simplicity, each history shows a subset of the
executed transactions, and each transaction shows a subset of the executed events.

Algorithm 2 A procedure in a data store application that withdraws money from an account.

procedure withdraw(account, amount)

balance ← DataStore.get(account) ⊲ Read balance; implicitly starts transaction

if balance < amount then

DataStore.rollback() ⊲ Abort transaction

else

DataStore.put(account, balance − amount) ⊲ Update balance

DataStore.commit() ⊲ Commit transaction

if it reads from �푡0, making it impossible for �푡3 to read from �푡2, as Figure 9d shows. IsoPredict (mostly)
avoids make spurious predictions, by excluding (much of the) potentially divergent behavior.

Divergent behavior. To account for divergent behavior, we make a distinction between the predicted
execution, which is generated by IsoPredict based on the observed execution, and what we call the
validating execution, which is the execution that actually occurs if one tries to produce the predicted
execution using the data store application. Divergent behaviors are behaviors that differ between
the predicted and validating executions. We categorize divergent behaviors into two categories:

• The validating execution reads or writes different keys or omits or adds events from the predicted
execution, leading to a different execution history with different properties.

• A transaction that commits in the predicted execution, aborts in the validating execution (e.g., an
application might have logic that aborts if a consistency check fails), as Figures 9c and 9d show.

The problem with divergent behavior is that an unserializable predicted execution can lead to a
serializable validating execution. (The validating execution will always be a feasible execution
conforming to the weak isolation model because validation ensures these properties; §5.)

Prediction boundary. IsoPredict accounts for divergence by generating prediction boundary con-
straints that exclude events that may be impacted by divergence—specifically, events that happen-
after (i.e., inverse of hb) any read event that reads from different writers in the predicted and ob-
served executions. IsoPredict supports a prediction boundary that is strict or relaxed, as shown in
Table 1. The strict boundary excludes events that happen-after events that read from a different
writer in the predicted execution than in the observed execution. The strict boundary prevents
false predictions except when a transaction in the predicted execution aborts in the validating ex-
ecution. Alternatively, the relaxed boundary excludes events that happen-after transactions that
read from a different writer, risking more false predictions but increasing the chances of finding an
unserializable predicted execution.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Data Store Applications 161:13

read(acct): 0

write(acct, 0 + 60)

commit

t1: deposit(acct, 60)

initial balance: 0

ending balance: 15

read(acct): 60

write(acct, 60 - 50)

commit

t2: withdraw(acct, 50)

read(acct): 10

write(acct, 10 + 5)

commit

t3: deposit(acct, 5)

(a) One session deposits into an account twice, while
another session withdraws once.

t0

write(acct)

so, wracct

wracct
t1

read(acct)

write(acct)

t2

read(acct)

write(acct)

t3

read(acct)

write(acct)

so

so

wracct

(b) The execution history for (a), which is serializ-
able. The write–read edge from �푡1 to �푡2 (shown in
blue) is not present in the predicted execution in (c).

t0

write(acct)

so, wracct so, wracct

t1

read(acct)

write(acct)

t2

read(acct)

write(acct)

rwacct

rwacct

t3

read(acct)

write(acct)

so

wracct

(c) A predicted execution history that is unserializ-
able. The write–read edge from �푡0 to �푡2 (shown in
blue) was not present in the observed execution (b).

read(acct): 0

write(acct, 0 + 60)

commit

t1: deposit(acct, 60)

initial balance: 0

ending balance: 65

read(acct): 0

abort

t2: withdraw(acct, 50)

read(acct): 60

write(acct, 60 + 5)

commit

t3: deposit(acct, 5)

(d) The validating execution based on the predicted
execution in (c). It diverges because �푡2 aborts, and
the resulting execution is serializable.

t0

write(acct)

t1

read(acct)

write(acct)

t2

read(acct)

rwacct

so, wracctso, wracct

(e) This execution history consisting of the events
from the predicted execution in (c) that are within
the strict prediction boundary is serializable.

t0

write(acct)

t1

read(acct)

write(acct)

t2

read(acct)

write(acct)

rwacct

rwacct

so, wracct so, wracct

(f) This execution history consisting of the events
from the predicted execution in (c) that are within
the relaxed prediction boundary is unserializable.

Fig. 9. Motivation for a prediction boundary (a–d) and illustration of the two kinds of prediction boundaries (e–
f). The target weak isolationmodel is causal. Dashed arrows represent pco edges that are not part of the history.

Table 1. Comparison of strict and relaxed prediction boundaries.

Prediction Divergent behaviors can

boundary Excluded events cause false predictions

Strict Events that happen-after any read event with a different writer Abort-related only

Relaxed
Events that happen-after any transaction containing a read

event with a different writer
Any

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



161:14 Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang

Figures 9e and 9f show strict and relaxed boundaries, respectively, applied to the prediction
in Figure 9c. The strict boundary excludes all events that happen-after �푡2’s read (since it has a
different writer than in Figure 9b); the resulting execution history is serializable. The relaxed
boundary excludes all transactions that happen-after �푡2’s read; the resulting execution history is
unserializable. Although the relaxed boundary allows a false prediction in this example, in our
evaluation the relaxed boundary results in few false predictions.

Generating prediction boundary constraints. Here we present IsoPredict’s constraints for excluding
events using the prediction boundary. We show constraints for the strict prediction boundary, but
the constraints for the relaxed prediction boundary are similar except they also constrain every
session’s boundary to be the last event of a transaction.
The prediction boundary is delimited by a boundary event in each session, which is either (1)

a read event, which reads from a different write in the predicted execution than in the observed
execution, or (2) the last event in the session (which will always be a commit event). IsoPredict
generates the following constraints on an integer SMT function �휙boundary(�푠) to ensure that the
boundary event for each session is either a read event or the last event (represented by position∞):

∀�푠 is a session,
(

∨

C is a transaction in B
8∈rdposk (C )

�휙boundary(�푠) = �푖
)

∨ �휙boundary(�푠) = ∞

Recall that rdposk(s) is the set of positions of reads to �푘 in the transaction �푡 .
To ensure that each read that happens-before the prediction boundary reads from the same write

as in the observed execution, IsoPredict generates the following constraints, where �휙obs(�푠, �푖) is an
integer SMT function that represents the last write of each read in the observed execution history
(and is thus the analogue of �휙choice for the observed execution):

∀�푡1, �푡2 ∈ �푇, �푡1 ̸= �푡2,∀�푖 ∈ rdposk(�푡2) = �푖, �푡2’s read at pos �푖 reads from �푡1 in wrobs, �휙obs(�푠2, �푖) = �푡1

∀�푘 is a key,∀�푡1 writes �푘,∀�푡2 reads �푘,∀�푖 ∈ rdposk(�푡2), �푖 < �휙boundary(�푠2) ⇒ �휙choice(�푠2, �푖) = �휙obs(�푠2, �푖)

where �푠1 is �푡1’s session and �푠2 is �푡2’s session.
A read to �푘 on or before the prediction boundary must read from a write to �푘 that is before the

prediction boundary. IsoPredict ensures this property by generating the following constraints:

∀�푘 is a key,∀�푡1 writes �푘,∀�푡2 reads �푘,∀�푖 ∈ rdposk(�푡2),

�휙choice(�푠2, �푖) = �푡1 ∧ �푖 ≤ �휙boundary(�푠2) =⇒ wrpos: (�푡1) < �휙boundary(�푠1)

where �푠1 is �푡1’s session, �푠2 is �푡2’s session, and wrpos: (t) is the position of �푡 ’s last write to key �푘 .
To exclude events after the prediction boundary, IsoPredict generates modified constraints for

all arbitration and anti-dependency rules, as detailed in the extended version of this paper [25].

5 VALIDATION

Even by using the prediction boundary, IsoPredict’s predictive analysis may report unserializable
predicted executions for which the corresponding validating execution is serializable. To rule out
such predictions, IsoPredict can attempt to validate predicted executions, by executing the data
store application based on the predicted execution history, and checking whether the resulting
validating execution is unserializable.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Data Store Applications 161:15

Validating execution. Validation produces the validating execution using a query engine that takes
the predicted execution as input. At each read(�푘) event, the query engine checks that (1) the
corresponding read in the predicted execution also read from �푘 ; (2) the writer transaction �푡 from
the predicted execution also wrote to �푘 in the validating execution; and (3) reading from �푡 in the
validating execution will satisfy the weak isolation model (causal or rc). If any of these conditions
is violated, we categorize the execution as having diverged, and the query engine chooses a different,
weak isolation model–conforming writer for the read to read from. Note that it is always possible
to keep executing while preserving causal or rc [10]. Furthermore, the validating execution may
still be unserializable, as our evaluation shows.
Recall that the predicted execution history contains events only up to the prediction boundary.

To avoid serendipitously introducing unserializable behaviors that were not part of the predicted
execution (which could make it tough to measure the effectiveness of IsoPredict’s predictive
analysis), validation executes each transaction in full that is on the boundary or that happens-
before any transaction on the boundary—and then it terminates the execution. This approach is
sufficient: If this execution prefix is unserializable, then so is the full execution.

Note that validation must directly control what transaction each read reads from, i.e., the write–
read relation (wr). Our evaluation extends MonkeyDB [7] to allow explicit control of wr (§6). In
settings where MonkeyDB cannot be used, such as production systems, there are other ways
to control wr . One is using resource locks (e.g., sp_getapplock in SQL Server) to force specific
transaction orders that produce the desired wr relation.

Checking serializability. Validation generates constraints to check whether the validating execution
history is serializable (which can be encoded more efficiently than unserializable, since serial-
izable implies a total commit order exists). If the solver returns “satisfiable,” IsoPredict reports no
prediction. Otherwise (the solver returns “unsatisfiable”), IsoPredict reports the validating execution,
which is known to be a feasible, unserializable, weak isolation model–conforming execution.

6 IMPLEMENTATION

This section describes the implementation of IsoPredict, which is publicly available [26].

Predictive analysis. We implemented IsoPredict’s predictive analysis (§4) as a Python program that
uses Z3Py, the Python binding of the Z3 SMT solver [18]. Observed and predicted execution histo-
ries are in the form of traces containing read and write events and transaction and session identifiers,
including the transaction that each read reads from. If Z3 finds a predicted unserializable execu-
tion, it either reports the predicted execution history in both textual and graphical forms, or passes
the predicted history to the validation component, depending on how IsoPredict is configured.

To generate observed execution traces, we extended the implementation of MonkeyDB, a trans-
actional key–value data store [7]. MonkeyDB handles relational queries by translating them to
key–value queries. MonkeyDB executes transactions serially, and we configured it to choose the
latest writer at each read, so observed executions are always serializable.

Validation. IsoPredict’s validation component replays the client application on a customized query
engine that we also built on top of MonkeyDB. The query engine executes transactions one at a
time, in an order dictated by the predicted execution, to ensure that read events always occur after
their writers. At each read, the query engine chooses a last writer that satisfies the weak isolation
model and, if possible, matches the predicted execution (§5). Validation uses Z3Py to generate and
solve SMT constraints to determine if the validating execution history is unserializable, reporting
the validating execution to the user in both textual and graphical forms if so.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



161:16 Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang

Table 2. IsoPredict prediction strategies.

Pred. strategy Encoding precision Pred. boundary Divergence ⇒ false predictions?

Exact-Strict Exact encoding Strict Only because of aborts

Approx-Strict Approximate encoding Strict Only because of aborts

Approx-Relaxed Approximate encoding Relaxed Yes

Algorithm 3 Code executed by each of Voter’s transactions.

procedure Vote(id)

votes ← DataStore.get(id)

if votes < 1 then

DataStore.put(id, 1)

DataStore.commit()

The customized query engine handles transaction aborts by rewinding the predicted execution
trace to the beginning of the current transaction. In our experiments, every transaction that aborted
during the observed execution also aborts during the validating execution—except in a few cases,
when a transaction that aborted in the observed execution and immediately precedes a committed

transaction on the prediction boundary, actually commits in the validating execution. As for other
divergent behavior, the resulting validating execution may or may not be unserializable.

7 EVALUATION

This section evaluates how effectively and efficiently IsoPredict predicts unserializable executions
under causal and rc, and it compares empirically against prior work MonkeyDB [7].

7.1 Methodology

Prediction strategies. Table 2 shows the combinations of unserializability constraints and prediction
boundaries that we evaluated, which we call prediction strategies. The Exact-Strict prediction
strategy uses precise encoding of unserializability (§4.2.1), while Approx-Strict and Approx-Relaxed
encode the sufficient condition for unserializability (§4.2.2). Exact-Strict and Approx-Strict encode
the strict prediction boundary, while Approx-Relaxed encode the relaxed prediction boundary.

Benchmarks. We evaluated IsoPredict and MonkeyDB using transactional workloads from OLTP-

Bench, a database testing framework that generates various workloads for benchmarking relational
databases [19]. Table 3 shows quantitative characteristics of the evaluated Benchmarks.

Our experiments used versions of the OLTP-Bench programs that the MonkeyDB authors ported
to use simplified SQL queries recognized by MonkeyDB [7]. In these versions, each benchmark runs
a nondeterministic number of transactions based on a specified time limit. For the purposes of our
evaluation, wemodified the benchmarks to bemore deterministic for two reasons. First, determinism
provides a more stable comparison among IsoPredict’s prediction strategies. Second, determinism
helps with validation, since the validating execution can run the benchmark with the same RNG seed
that the observed execution used. (To use validation in a production setting, one should record and
replay the application [22, 35].) We modified the benchmarks to be more deterministic by (1) fixing
the number of sessions and transactions per session and (2) adding a random number generator
(RNG) seed as a parameter to each benchmark. Although these modifications increase determinism,
the benchmarks still execute nondeterministically because the interleaving of transactions is timing
dependent. This source of nondeterminism does not hinder validation, which executes transactions
in an order consistent with the predicted execution’s hb relation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Data Store Applications 161:17

Table 3. Average number of events and commi�ed transactions across 10 trials of each OLTP-Bench program.

Small workload Large workload

KV accesses Committed txns KV accesses Committed txns

Program Reads Writes Total (Read-only) Reads Writes Total (Read-only)

Smallbank 669.7 14.7 11.0 (3.5) 1271.3 30.5 20.3 (6.6)

Voter 763.0 6.0 12.0 (11.0) 919.0 6.0 24.0 (23.0)

TPC-C 3297.3 763.0 11.9 (0.9) 7025.6 1502.4 23.8 (1.7)

Wikipedia 1067.7 55.1 9.9 (8.8) 2677.1 111.1 22.8 (20.6)

We configured each benchmark with both small and large workloads, in which three sessions
each execute four or eight transactions, resulting in 12 or 24 attempted transactions, respectively.
The number of committed transactions is somewhat fewer because all programs except Voter
occasionally abort a transaction based on application-specific logic.

Platform. All experiments ran on an Intel Xeon server at 2.3 GHz with 16 cores, hyperthreading
enabled, and 187 GB of RAM, running Linux.

7.2 IsoPredict’s Effectiveness and Performance

Tables 4 and 5 show IsoPredict’s effectiveness and performance at predicting unserializable

executions under causal and rc, respectively. For each benchmark and each of IsoPredict’s three
prediction strategies, we ran IsoPredict on 10 executions, each of which used one of 10 RNG seeds,
which we kept consistent across prediction strategies and isolation levels.

Predictive analysis. The Sat column under Prediction reports the number of unserializable execu-
tions (out of 10) that IsoPredict found. The Approx-Relaxed prediction strategy generally predicts
more than the other strategies because it uses the relaxed boundary. Although Exact-Strict can
theoretically predict more executions than Approx-Strict, this never happened in our experiments.
IsoPredict consistently predicts more unserializable executions under rc than under causal,

which makes sense because rc is strictly weaker than causal. Voter has the biggest difference—
there were no successful predictions under causal. This is because every observed execution of
Voter has only one writing (i.e., non-read-only) transaction (see Algorithm 3), which is not sufficient
to predict an unserializable execution under causal.5 Similarly, IsoPredict has low prediction
rates forWikipedia, which has few writing transactions. In contrast, under rc, a transaction may
legally read both the initial state and the writing transaction, which is why IsoPredict has higher
prediction rates for Voter andWikipedia under rc than under causal. §4.4 and the extended version
of this paper [25] present some observed and predicted executions from the evaluated benchmarks.

Validation. We configured IsoPredict to validate every predicted unserializable execution. The
Validated column reports the number of validating executions that were unserializable. Across
all experiments, all but three predicted executions were successfully validated as unserializable.

The Diverged column shows that, in many cases, the validating execution diverged, i.e., it could
not match the predicted execution history (§5). Unsurprisingly, the relaxed boundary experienced
significantly more divergence than the strict boundary. However, divergence rarely resulted in failed
validation: Among the 81 divergent executions across Tables 4 and 5, only three failed validation
(i.e., produced serializable executions). One validation failure was caused by divergent behavior

5More specifically, the initial state transaction C0 and the writing transaction CF constitute the only pair of conflicting

writes. If a transaction CA reads from the initial state, then a commit order with CA preceding CF is acyclic. On the other

hand, if CA reads from another transaction, a commit order CA following CF is acyclic.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



161:18 Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang

Table 4. IsoPredict effectiveness and performance under causal. “T/O” means the solver did not finish
within 24 hours. “Unk” means the solver returned “unknown” without reaching the timeout.

Prediction Prediction Validation Constraint gen. Solving time

Program strategy Unk Unsat Sat Validated (Diverged) # Literals Time Sat Unsat

Smallbank

Exact-Strict 0 6 4 4 (0) 140K 8.8 s 13.9 s 11.3 s

Approx-Strict 0 6 4 4 (1) 366K 22.9 s 1.0 s 3.2 s

Approx-Relaxed 0 0 10 9 (1) 366K 22.9 s 0.6 s –

Voter

Exact-Strict 0 10 0 0 (0) 687K 61.7 s – 64.5 s

Approx-Strict 0 10 0 0 (0) 1,526K 131.7 s – 10.4 s

Approx-Relaxed 0 10 0 0 (0) 1,526K 132.1 s – 10.0 s

TPC-C

Exact-Strict 0 1 9 9 (0) 3,493K 220.4 s 230.4 s 752.3 s

Approx-Strict 0 1 9 9 (0) 6,508K 425.8 s 35.1 s 105.2 s

Approx-Relaxed 0 0 10 10 (0) 6,508K 425.5 s 22.7 s –

Wikipedia

Exact-Strict 1 9 0 0 (0) 180K 13.9 s – 24.0 s

Approx-Strict 0 10 0 0 (0) 529K 36.3 s – 1.3 s

Approx-Relaxed 0 8 2 2 (1) 529K 36.3 s 2.5 s 1.0 s

(a) Small workload

Prediction Prediction Validation Constraint gen. Solving time

Program strategy T/O Unsat Sat Validated (Diverged) # Literals Time Sat Unsat

Smallbank

Exact-Strict 4 1 5 5 (1) 1,073K 55.6 s 8,618.9 s 2,366.2 s

Approx-Strict 1 0 9 9 (0) 2,175K 121.0 s 332.5 s –

Approx-Relaxed 0 0 10 10 (0) 1,073K 118.8 s 19.3 s –

Voter

Exact-Strict 9 1 0 0 (0) 2,623K 235.1 s – 5,708.7 s

Approx-Strict 0 10 0 0 (0) 5,623K 490.5 s – 47.2 s

Approx-Relaxed 0 10 0 0 (0) 5,623K 496.1 s – 47.1 s

TPC-C

Exact-Strict 4 3 3 3 (0) 36,434K 1,914.6 s 30,413.1 s 24,281.2 s

Approx-Strict 2 0 8 8 (0) 60,834K 3,416.1 s 1,210.3 s –

Approx-Relaxed 0 0 10 10 (2) 60,834K 3,332.3 s 186.2 s –

Wikipedia

Exact-Strict 8 1 1 1 (0) 1,773K 111.9 s 910.2 s 1,876.8 s

Approx-Strict 0 9 1 1 (0) 4,316K 263.7 s 15.6 s 30.1 s

Approx-Relaxed 0 8 2 2 (2) 4,316K 258.3 s 20.3 s 25.3 s

(b) Large workload

unrelated to aborts (§5), and the other two failures were caused by previously aborted transactions
being committed (an implementation issue discussed in §6).

Performance. The four rightmost columns of each table report the performance of IsoPredict’s
predictive analysis, which consists of two components: (1) the time the analysis takes to generate
SMT constraints (Constraint gen.) and (2) SMT solving time (Solving time). Each table also reports
the size of the generated constraints (# Literals),6 which correlates with constraint generation time.
SMT solving is significantly faster for successful prediction (Sat) than for failed prediction (Unsat),7

so the table reports the two average solving times separately.
Compared to the other prediction strategies, Exact-Strict, which generates a single quantified

constraint, spends less time generating constraints but more time solving constraints because its
constraints are inherently harder to solve. Approx-Relaxed and Approx-Strict have performance
similar to each other, which makes sense since they share the same approximation techniques.

6The Approx-Strict and Approx-Relaxed prediction strategies generate different constraints, but they have the same size.
7It makes sense that successful prediction, which finds a single satisfying solution, is faster than failed prediction, which

requires the solver to prove that no satisfying solution exists.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Data Store Applications 161:19

Table 5. IsoPredict effectiveness and performance under rc. “T/O” means the solver did not finish within 24
hours. “Unk” means the solver returned “unknown” without reaching the timeout.

Prediction Prediction Validation Constraint gen. Solving time

Program strategy Unk Unsat Sat Validated (Diverged) # Literals Time Sat Unsat

Smallbank

Exact-Strict 0 0 10 10 (0) 144K 10.0 s 2.3 s –

Approx-Strict 0 0 10 10 (0) 370K 24.3 s 0.8 s –

Approx-Relaxed 0 0 10 10 (0) 370K 24.4 s 0.6 s –

Voter

Exact-Strict 0 0 10 10 (2) 688K 62.5 s 12.9 s –

Approx-Strict 0 0 10 10 (7) 1,527K 133.0 s 12.3 s –

Approx-Relaxed 0 0 10 10 (10) 1,527K 132.7 s 12.7 s –

TPC-C

Exact-Strict 0 0 10 10 (0) 3,855K 359.0 s 52.0 s –

Approx-Strict 0 0 10 10 (0) 6,869K 569.2 s 27.2 s –

Approx-Relaxed 0 0 10 10 (3) 6,869K 588.9 s 22.8 s –

Wikipedia

Exact-Strict 2 1 7 7 (2) 184K 15.4 s 3.9 s 8.0 s

Approx-Strict 0 3 7 7 (1) 533K 38.3 s 2.1 s 0.5 s

Approx-Relaxed 0 3 7 7 (7) 533K 38.1 s 1.7 s 0.5 s

(a) Small workload

Prediction Prediction Validation Constraint gen. Solving time

Program strategy T/O Unsat Sat Validated (Diverged) # Literals Time Sat Unsat

Smallbank

Exact-Strict 0 0 10 9 (1) 1,085K 60.3 s 624.6 s –

Approx-Strict 0 0 10 10 (1) 2,187K 124.5 s 19.0 s –

Approx-Relaxed 0 0 10 10 (1) 2,187K 128.7 s 51.7 s –

Voter

Exact-Strict 0 0 10 10 (2) 2,625K 255.7 s 212.0 s –

Approx-Strict 0 0 10 10 (6) 5,625K 491.7 s 76.2 s –

Approx-Relaxed 0 0 10 10 (10) 5,625K 495.2 s 75.4 s –

TPC-C

Exact-Strict 0 0 10 10 (2) 38,062K 2,571.0 s 898.6 s –

Approx-Strict 0 0 10 10 (2) 62,462K 3,981.9 s 279.7 s –

Approx-Relaxed 0 0 10 10 (4) 62,462K 4,040.4 s 201.0 s –

Wikipedia

Exact-Strict 0 0 10 10 (1) 1,807K 124.6 s 81.4 s –

Approx-Strict 0 0 10 10 (1) 4,350K 272.8 s 29.2 s –

Approx-Relaxed 0 0 10 9 (10) 4,350K 272.9 s 16.9 s –

(b) Large workload

Generating constraints can take a long time—often longer than constraint-solving time. We
investigated this issue by using the perf [41] and py-spy [21] performance analysis tools on the
slowest instance of constraint generation: the large workload of TPC-C under rc using the Approx-
Relaxed strategy (Table 5). To the best of our understanding, 97% of time is spent in Python
code (IsoPredict and Z3Py), and 3% is spent in C code (Z3). Of the time spent in Python, 81% is
spent in Z3Py functions, with most time spent in the following Z3PY API functions and their
callees: __call__(), And(), and Or(). The __call__() function is part of Z3Py’s implementation of SMT
functions, which act as callable objects in Python. The And() and Or() functions create conjunction
and disjunction clauses, respectively. Z3Py functions call into Z3 code written in C; an unknown
fraction of the time spent in Z3Py is due to making cross-language calls from Z3Py to Z3.

7.3 Comparison with MonkeyDB

MonkeyDB is a transactional key–value data store that aims to produce unusual executions that
are legal under a target isolation level [7]. MonkeyDB handles each read to a key by returning a
randomly chosen value among the set of legal values under the target isolation level.

MonkeyDB and IsoPredict both aim to find erroneous executions under weak isolation, but they
use completely different approaches. MonkeyDB relies on a customized query engine that produces

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



161:20 Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang

Table 6. Comparison between MonkeyDB [7] and IsoPredict (Approx-Relaxed strategy) under causal. The
numbers report how o�en a benchmark assertion failed (Fail) or the history was unserializable (Unser).

MonkeyDB IsoPredict

Program Fail Unser Unser

Smallbank 70% 98% 90%

Voter 70% 80% 0%

TPC-C 98% 100% 100%

Wikipedia 0% 11% 20%

(a) Small workload

MonkeyDB IsoPredict

Program Fail Unser Unser

Smallbank 84% 100% 100%

Voter 56% 80% 0%

TPC-C 100% 100% 100%

Wikipedia 0% 19% 20%

(b) Large workload

Table 7. Comparison between MonkeyDB [7], IsoPredict (Approx-Strict strategy), and regular execution
using MySQL under rc. Each number is the percentage of runs in which a benchmark assertion failed (Fail)
or the history was unserializable (Unser).

MonkeyDB IsoPredict MySQL

Program Fail Unser Unser Fail

Smallbank 100% 100% 100% 0%

Voter 89% 100% 100% 0%

TPC-C 100% 100% 100% 50%

Wikipedia 54% 54% 70% 0%

(a) Small workload

MonkeyDB IsoPredict MySQL

Program Fail Unser Unser Fail

Smallbank 100% 100% 100% 0%

Voter 95% 100% 100% 0%

TPC-C 100% 100% 100% 70%

Wikipedia 89% 89% 100% 0%

(b) Large workload

a single execution, while IsoPredict uses predictive analysis to analyze an equivalence class of
many executions at once. They also differ in how they define and expose unserializable behavior:
IsoPredict tries to find an unserializable execution, while MonkeyDB uses programmer-crafted
assertions to detect unserializable behaviors.

Tables 6 and 7 compare MonkeyDB and IsoPredict’s effectiveness at predicting unserializable

executions. To account for MonkeyDB’s randomized approach, we ran it 100 times for each config-
uration: 10 times for each of the 10 RNG seeds used as benchmark input (§7.1). The percentage of
these executions with an assertion failure is reported in the Fail column.

To compare MonkeyDB and IsoPredict directly, we computed whether each execution produced
by MonkeyDB was unserializable, by generating and solving constraints corresponding to the
definition of serializable. An assertion failure is a sufficient but unnecessary condition for an
unserializable execution; hence, for MonkeyDB, the number of executions failing assertions (Fail)
never exceeds the number of unserializable executions (Unser).

The IsoPredict column shows the percentage of executions that led to unserializable predictions
that were successfully validated (i.e., same results as the Validation columns in Tables 4 and 5). The
tables use the best-performing prediction strategy for each isolation level.

Quantitatively, MonkeyDB and IsoPredict are comparable, finding erroneous executions at simi-
lar rates, except for two cases. In one case—Voter under causal—MonkeyDB produces unserializ-
able executions, but IsoPredict never predicts any. Voter issues only one write transaction under
serializable (Algorithm 3), from which it is impossible to predict an unserializable execution
under causal, because IsoPredict cannot predict events that did not happen in the observed execu-
tion. In contrast, since MonkeyDB chooses values on the fly, its choices of reads can lead Voter to
perform additional writes, leading to unserializable behavior. In another case—Wikipedia under
causal—IsoPredict is able to predict several unserializable executions while MonkeyDB never has
assertion failures, since its assertions are not sensitive enough to detect unserializable behaviors.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Data Store Applications 161:21

Qualitatively, the approaches differ in two significant ways. First, IsoPredict does not require
programmers to write assertions. Second andmore significantly, IsoPredict predicts unserializable
executions from observed executions, which in theory could be produced by any data store. In
contrast, MonkeyDB’s approach requires its specialized query engine.

Comparison with regular execution. Both MonkeyDB and IsoPredict routinely produce unserializ-
able executions for the evaluated programs, but a natural question is whether executing these pro-
grams normally on a real-world data store yields unserializable executions. To evaluate this ques-
tion, we executed the programs using MySQL [37] in rc mode (MySQL does not support causal).
As for the MonkeyDB runs, we executed each program 100 times—10 times for each of the 10 RNG
seeds used as input to the program—and evaluated the assertions used by MonkeyDB.

Table 7’s MySQL columns show the percentage of runs in which an assertion failed, a sufficient
condition for an unserializable history. The results show that Smallbank, Voter, andWikipedia
never experienced an assertion failure under regular execution.8 TPC-C experienced an assertion
failure half of the time on the small workload and 70% of the time on the large workload. In contrast,
MonkeyDB and IsoPredict often produce assertion-failing, unserializable executions.

Differences between our MonkeyDB results and the MonkeyDB paper’s results. In our experiments,
MonkeyDB triggered fewer assertion failures than reported in the MonkeyDB paper [7]. These
differences exist because we found and fixed a few bugs in the ported benchmarks and their
assertions, which eliminated a few spurious failures. We confirmed all of the bugs and fixes with the
MonkeyDB authors [8]. To be clear, the differences do not impact the MonkeyDB paper’s takeaway:
MonkeyDB often produces unserializable, erroneous executions for the evaluated programs.

8 RELATED WORK

The closest existing approaches to IsoPredict are arguably MonkeyDB [7], IsoDiff [23], 2AD [51],
and Sinha et al.’s predictive analysis [46]. As §7.3 explained, MonkeyDB produces a single execution,
which may or may not be unserializable, while IsoPredict predicts unserializable executions from an
observed execution. IsoPredict can in theory work with any data store that can generate execution
traces, while MonkeyDB requires its specialized query engine.
IsoDiff and 2AD detect unserializable behaviors based on an observed execution [23, 51]. They

build an abstract graph that does not take into account potential dependencies between read values.
As the 2AD paper acknowledges, “2AD’s abstract histories are value-agnostic and do not account for
control flow within a program; in effect, 2AD’s abstract history construction process assumes that
each variable read and written can assume arbitrary values. However, there are often dependencies
(e.g., ~ = �푥 + 1) between the values that variables assume” [51]. As a result, 2AD incurs high false
positive rates even after using programmer-guided refinement: 37 reported “witnesses” on average
per application, but only 22 bugs across 12 applications, or 2 bugs on average per application [51].
In contrast, IsoPredict accounts for dependencies among read values through its axiomatic

encoding of constraints, which permits encoding of potential dependencies using the prediction
boundary. IsoPredict may still report false positives, but for narrower reasons: divergent aborts or
(only when using the relaxed boundary) intra-transaction dependencies.

Sinha et al.’s analysis predicts atomicity violations in shared-memory multithreaded programs
by encoding the conditions for unserializability as SMT constraints [46]. A key difference with
IsoPredict is that Sinha et al.’s work deals with execution histories of shared-memory programs,
in which all pairs of conflicting accesses are fully ordered, while IsoPredict deals with execution

8It is an open question whether MySQL in rc mode can actually produce unserializable executions for these programs.

Data store implementations may preclude behaviors that are theoretically possible under the target isolation level.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



161:22 Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang

histories of distributed data store applications, in which conflicting accesses are unordered in
general. As a result, Sinha et al.’s work only needs to encode graph cyclicity, while IsoPredict
must encode that every potential commit order is acyclic. Addressing this unique challenge led
us to develop IsoPredict’s approximate encoding (§4.2.2). Other differences include the different
prediction spaces: Sinha et al.’s analysis predicts different orderings of critical sections on the same
lock, while IsoPredict predicts different write–read orders.

Dynamic analysis. Non-predictive dynamic analysis can check if an observed execution satisfies
an isolation level. ECRacer checks whether an observed execution is serializable, using a relaxed
definition of serializability that accounts for commutative operations [11]. In contrast, IsoPredict
finds new executions that violate serializability.

Prior work uses run-time testing and constraint solving to check if a data store provides a stated
weak isolation level [6, 32, 48, 52, 53]. In contrast, IsoPredict assumes the data store provides the
target weak isolation level and predicts feasible unserializable executions.

Model checking explores multiple executions, avoiding exhaustively exploring all possible execu-
tions by using techniques such as dynamic partial order reduction (DPOR) [1, 10, 27]. Conschecker
uses a DPOR-based stateless model checking algorithm to verify distributed shared-memory pro-
grams under causal consistency [1]. Bouajjani et al.’s work adapts DPOR-based algorithms to trans-
actional database applications to check them under a range of isolation levels [10].

Static analysis. Static analysis can find unserializable behavior, but precision and performance scale
poorly with program size. C4 and Nagar and Jagannathan’s analysis detect serializability violations
under causal consistency, eventual consistency, and snapshot isolation [12, 39]. Clotho uses static
analysis, model checking, and test generation to detect unserializable executions; it avoids false
positives by verifying the feasibility of unserializable behaviors [43]. In contrast, IsoPredict detects
unserializable behaviors with high precision by basing it on a single observed execution.

Isolation levels. IsoPredict generates constraints based on isolation levels encoded in Biswas and
Enea’s axiomatic framework [6]. Other prior work besides Biswas and Enea’s has introduced
axiomatic encodings of weak isolation levels [9, 14, 31, 42].
Adya et al. define various isolation levels with dependency graphs where each level allows

certain types of cycles [2]. Their approach encompasses “classical” database isolation levels such as
read committed and snapshot isolation, but not isolation levels typically used in distributed data
stores such as causal consistency [4, 9, 13, 29, 42] and eventual consistency [13].

IsoPredict currently supports only causal and rc, by encoding axioms from Biswas and Enea’s
framework [6]. We expect that extending IsoPredict to more isolation levels from their framework—
read atomic (a.k.a. repeated reads) and snapshot isolation—to be straightforward. We do not
know how difficult it would be to encode other isolation levels (e.g., eventual consistency and
monotonic atomic view) into Biswas and Enea’s framework or into IsoPredict.

9 CONCLUSION

IsoPredict is the first predictive analysis for detecting unserializable behaviors of applications
backed by weakly isolated data stores. IsoPredict’s design introduces novel approaches to address
challenges involving constraint complexity, constraint encoding, and divergent behaviors. An
evaluation shows that, based on observed executions of data store applications, IsoPredict effectively,
precisely, and efficiently predicts feasible, unserializable behaviors.

DATA-AVAILABILITY STATEMENT

An artifact reproducing this paper’s results is publicly available [24].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.



IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Data Store Applications 161:23

ACKNOWLEDGMENTS

We thank the MonkeyDB authors [7] for making their implementation publicly available and
answering our questions about it; Vincent Beardsley and Noah Charlton for helpful discussions; and
the anonymous reviewers for valuable feedback. This material is based in part upon work supported
by the National Science Foundation under Grant Numbers NSF CCF-2118745, CSR-2106117, and
OAC-2112606, and by Oracle America, Inc.

REFERENCES

[1] Parosh Abdulla, Mohamed Faouzi Atig, S. Krishna, Ashutosh Gupta, and Omkar Tuppe. 2023. Optimal Stateless

Model Checking for Causal Consistency. In Tools and Algorithms for the Construction and Analysis of Systems, Sriram

Sankaranarayanan and Natasha Sharygina (Eds.). Springer Nature Switzerland, Cham, 105–125.

[2] A. Adya, B. Liskov, and P. O’Neil. 2000. Generalized isolation level definitions. In Proceedings of 16th International

Conference on Data Engineering (Cat. No.00CB37073). IEEE Computer Society, Los Alamitos, CA, USA, 67–78. https:

//doi.org/10.1109/ICDE.2000.839388

[3] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and P.W. Hutto. 1995. Causal Memory: Definitions,

Implementation and Programming. Distributed Computing 9, 1 (1995), 37–49. https://doi.org/10.1007/BF01784241

[4] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data

Mining for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (Jul 2014), 74 pages. https://doi.org/10.

1145/2627752

[5] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. 1995. A Critique of ANSI

SQL Isolation Levels. In Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data (San

Jose, California, USA) (SIGMOD ’95). ACM, New York, NY, USA, 1–10. https://doi.org/10.1145/223784.223785

[6] Ranadeep Biswas and Constantin Enea. 2019. On the Complexity of Checking Transactional Consistency. Proc. ACM

Program. Lang. 3, OOPSLA, Article 165 (Oct 2019), 28 pages. https://doi.org/10.1145/3360591

[7] Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal. 2021. MonkeyDB: Effectively

Testing Correctness under Weak Isolation Levels. Proc. ACM Program. Lang. 5, OOPSLA, Article 132 (Oct 2021),

27 pages. https://doi.org/10.1145/3485546

[8] Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal. 2023. Personal communica-

tion.

[9] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. 2017. On verifying causal consistency. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL ’17).

Association for Computing Machinery, New York, NY, USA, 626–638. https://doi.org/10.1145/3009837.3009888

[10] Ahmed Bouajjani, Constantin Enea, and Enrique Román-Calvo. 2023. Dynamic Partial Order Reduction for Checking

Correctness against Transaction Isolation Levels. Proc. ACM Program. Lang. 7, PLDI, Article 129 (Jun 2023), 26 pages.

https://doi.org/10.1145/3591243

[11] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev. 2017. Serializability for Eventual Consistency:

Criterion, Analysis, and Applications. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming

Languages (Paris, France) (POPL ’17). Association for Computing Machinery, New York, NY, USA, 458–472. https:

//doi.org/10.1145/3009837.3009895

[12] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev. 2018. Static Serializability Analysis for Causal

Consistency. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Philadelphia, PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA, 90–104. https:

//doi.org/10.1145/3192366.3192415

[13] Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Found. Trends Program. Lang. 1, 1–2 (oct 2014), 1–150.

https://doi.org/10.1561/2500000011

[14] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A Framework for Transactional Consistency Models

with Atomic Visibility. In 26th International Conference on Concurrency Theory (CONCUR 2015) (Leibniz International

Proceedings in Informatics (LIPIcs), Vol. 42), Luca Aceto and David de Frutos Escrig (Eds.). Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, Dagstuhl, Germany, 58–71. https://doi.org/10.4230/LIPIcs.CONCUR.2015.58

[15] Chaoyi Cheng,MingzheHan, NuoXu, Spyros Blanas, Michael D. Bond, and YangWang. 2023. Developer’s Responsibility

or Database’s Responsibility? Rethinking Concurrency Control in Databases. In 13th Conference on Innovative Data

Systems Research, CIDR 2023, Amsterdam, The Netherlands, January 8-11, 2023. www.cidrdb.org. https://www.cidrdb.

org/cidr2023/papers/p30-cheng.pdf

[16] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman, Sanjay Ghemawat,

Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.

https://doi.org/10.1109/ICDE.2000.839388
https://doi.org/10.1109/ICDE.2000.839388
https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/3360591
https://doi.org/10.1145/3485546
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3591243
https://doi.org/10.1145/3009837.3009895
https://doi.org/10.1145/3009837.3009895
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1561/2500000011
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://www.cidrdb.org/cidr2023/papers/p30-cheng.pdf
https://www.cidrdb.org/cidr2023/papers/p30-cheng.pdf


161:24 Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang

Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,

Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-Distributed

Database. In 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12). USENIX Association,

Hollywood, CA, 261–264. https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett

[17] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017. Seeing is Believing: A Client-Centric Specification

of Database Isolation. In Proceedings of the ACM Symposium on Principles of Distributed Computing (Washington, DC,

USA) (PODC ’17). ACM, New York, NY, USA, 73–82. https://doi.org/10.1145/3087801.3087802

[18] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction

and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

337–340.

[19] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-Mauroux. 2013. OLTP-Bench: An Extensible

Testbed for Benchmarking Relational Databases. Proc. VLDB Endow. 7, 4 (Dec 2013), 277–288. https://doi.org/10.14778/

2732240.2732246

[20] Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph Idziorek, Richard Krog, Colin Lazier, Erben Mo, Akhilesh

Mritunjai, Somasundaram Perianayagam, Tim Rath, Swami Sivasubramanian, James Christopher Sorenson III, Sroaj

Sosothikul, Doug Terry, and Akshat Vig. 2022. Amazon DynamoDB: A Scalable, Predictably Performant, and Fully

Managed NoSQL Database Service. In 2022 USENIX Annual Technical Conference (USENIX ATC 22). USENIX Association,

Carlsbad, CA, 1037–1048. https://www.usenix.org/conference/atc22/presentation/elhemali

[21] Ben Frederickson. 2024. https://github.com/benfred/py-spy

[22] Leonidas Galanis, Supiti Buranawatanachoke, Romain Colle, Benoît Dageville, Karl Dias, Jonathan Klein, Stratos

Papadomanolakis, Leng Leng Tan, Venkateshwaran Venkataramani, Yujun Wang, and Graham Wood. 2008. Oracle

Database Replay. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (Vancouver,

Canada) (SIGMOD ’08). Association for Computing Machinery, New York, NY, USA, 1159–1170. https://doi.org/10.

1145/1376616.1376732

[23] Yifan Gan, Xueyuan Ren, Drew Ripberger, Spyros Blanas, and Yang Wang. 2020. IsoDiff: Debugging Anomalies Caused

by Weak Isolation. Proc. VLDB Endow. 13, 12 (Jul 2020), 2773–2786. https://doi.org/10.14778/3407790.3407860

[24] Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang. 2024. IsoPredict artifact. https://doi.org/10.5281/

zenodo.10802748

[25] Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang. 2024. IsoPredict: Dynamic Predictive Analysis for

Detecting Unserializable Behaviors in Weakly Isolated Data Store Applications. arXiv:2404.04621 Extended version of

PLDI 2024 paper.

[26] Chujun Geng, Spyros Blanas, Michael D. Bond, and Yang Wang. 2024. IsoPredict implementation. https://github.com/

PLaSSticity/IsoPredict-implementation

[27] M. Ghafoor, M. Mahmood, and J. Siddiqui. 2016. Effective Partial Order Reduction in Model Checking Database

Applications. In 2016 IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE Computer

Society, Los Alamitos, CA, USA, 146–156. https://doi.org/10.1109/ICST.2016.25

[28] Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant

web services. SIGACT News 33 (June 2002), 51–59. Issue 2. https://doi.org/10.1145/564585.564601

[29] Jad Hamza. 2015. Algorithmic Verification of Concurrent and Distributed Data Structures. Ph. D. Dissertation. PhD thesis,

Université Paris Diderot.

[30] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal sound predictive race detection with control flow

abstraction. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Edinburgh, United Kingdom) (PLDI ’14). Association for Computing Machinery, New York, NY, USA, 337–348.

https://doi.org/10.1145/2594291.2594315

[31] Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan. 2018. Safe replication through

bounded concurrency verification. Proc. ACM Program. Lang. 2, OOPSLA, Article 164 (Oct 2018), 27 pages. https:

//doi.org/10.1145/3276534

[32] Kyle Kingsbury and Peter Alvaro. 2020. Elle: Inferring Isolation Anomalies from Experimental Observations. Proc.

VLDB Endow. 14, 3 (Nov 2020), 268–280. https://doi.org/10.14778/3430915.3430918

[33] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic race prediction in linear time. In Proceedings of

the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI

2017). Association for Computing Machinery, New York, NY, USA, 157–170. https://doi.org/10.1145/3062341.3062374

[34] K. R. M. Leino and Clément Pit-Claudel. 2016. Trigger Selection Strategies to Stabilize Program Verifiers. In Computer

Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing, Cham, 361–381.

[35] Qian Li, Peter Kraft, Michael Cafarella, Çağatay Demiralp, Goetz Graefe, Christos Kozyrakis, Michael Stonebraker,

Lalith Suresh, Xiangyao Yu, and Matei Zaharia. 2023. R3: Record-Replay-Retroaction for Database-Backed Applications.

Proc. VLDB Endow. 16, 11 (Jul 2023), 3085–3097. https://doi.org/10.14778/3611479.3611510

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://doi.org/10.1145/3087801.3087802
https://doi.org/10.14778/2732240.2732246
https://doi.org/10.14778/2732240.2732246
https://www.usenix.org/conference/atc22/presentation/elhemali
https://github.com/benfred/py-spy
https://doi.org/10.1145/1376616.1376732
https://doi.org/10.1145/1376616.1376732
https://doi.org/10.14778/3407790.3407860
https://doi.org/10.5281/zenodo.10802748
https://doi.org/10.5281/zenodo.10802748
https://arxiv.org/abs/2404.04621
https://github.com/PLaSSticity/IsoPredict-implementation
https://github.com/PLaSSticity/IsoPredict-implementation
https://doi.org/10.1109/ICST.2016.25
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/2594291.2594315
https://doi.org/10.1145/3276534
https://doi.org/10.1145/3276534
https://doi.org/10.14778/3430915.3430918
https://doi.org/10.1145/3062341.3062374
https://doi.org/10.14778/3611479.3611510


IsoPredict: Dynamic Predictive Analysis for Detecting Unserializable Behaviors in Data Store Applications 161:25

[36] P. Mahajan, L. Alvisi, and M. Dahlin. 2011. Consistency, Availability, Convergence. Technical Report TR-11-22. Computer

Science Department, University of Texas at Austin.

[37] MySQL 2023. http://www.mysql.com

[38] MySQL 2023. MySQL Cluster. https://www.mysql.com/products/cluster/

[39] Kartik Nagar and Suresh Jagannathan. 2018. Automated Detection of Serializability Violations under Weak Consistency.

arXiv:1806.08416 [cs.PL]

[40] Andrew Pavlo. 2017. What Are We Doing With Our Lives? Nobody Cares About Our Concurrency Control Research.

In Proceedings of the 2017 ACM International Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17).

Association for Computing Machinery, New York, NY, USA, 3. https://doi.org/10.1145/3035918.3056096

[41] perf 2024. https://perf.wiki.kernel.org/index.php/Main_Page

[42] Matthieu Perrin, Achour Mostefaoui, and Claude Jard. 2016. Causal Consistency: Beyond Memory. In Proceedings of

the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Barcelona, Spain) (PPoPP ’16).

Association for Computing Machinery, New York, NY, USA, Article 26, 12 pages. https://doi.org/10.1145/2851141.

2851170

[43] Kia Rahmani, Kartik Nagar, Benjamin Delaware, and Suresh Jagannathan. 2019. CLOTHO: Directed Test Generation

for Weakly Consistent Database Systems. Proc. ACM Program. Lang. 3, OOPSLA, Article 117 (Oct 2019), 28 pages.

https://doi.org/10.1145/3360543

[44] Jake Roemer, Kaan Genç, and Michael D. Bond. 2020. SmartTrack: efficient predictive race detection. In Proceedings of

the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020).

Association for Computing Machinery, New York, NY, USA, 747–762. https://doi.org/10.1145/3385412.3385993

[45] Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. 2011. Generating Data Race Witnesses by an SMT-

Based Analysis. In NASA Formal Methods, Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 313–327. https://doi.org/10.1007/978-3-642-20398-5_23

[46] Arnab Sinha, Sharad Malik, Chao Wang, and Aarti Gupta. 2012. Predicting Serializability Violations: SMT-Based Search

vs. DPOR-Based Search. In Hardware and Software: Verification and Testing, Kerstin Eder, João Lourenço, and Onn

Shehory (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 95–114. https://doi.org/10.1007/978-3-642-34188-5_11

[47] Snowflake 2023. Snowflake transactions. https://docs.snowflake.com/en/sql-reference/transactions

[48] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael Walfish. 2020. COBRA: making transactional key-value stores

verifiably serializable. In Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation

(OSDI’20). USENIX Association, USA, Article 4, 18 pages. https://www.usenix.org/conference/osdi20/presentation/tan

[49] Chuzhe Tang, Zhaoguo Wang, Xiaodong Zhang, Qianmian Yu, Binyu Zang, Haibing Guan, and Haibo Chen. 2022.

Ad Hoc Transactions in Web Applications: The Good, the Bad, and the Ugly. In Proceedings of the 2022 International

Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Machinery, New

York, NY, USA, 4–18. https://doi.org/10.1145/3514221.3526120

[50] Hünkar Can Tunç, Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2023. Sound Dynamic Deadlock

Prediction in Linear Time. Proc. ACM Program. Lang. 7, PLDI, Article 177 (Jun 2023), 26 pages. https://doi.org/10.1145/

3591291

[51] Todd Warszawski and Peter Bailis. 2017. ACIDRain: Concurrency-Related Attacks on Database-Backed Web Applica-

tions. In Proceedings of the 2017 ACM International Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD

’17). ACM, New York, NY, USA, 5–20. https://doi.org/10.1145/3035918.3064037

[52] Rachid Zennou, Ranadeep Biswas, Ahmed Bouajjani, Constantin Enea, and Mohammed Erradi. 2022. Checking Causal

Consistency of Distributed Databases. Computing 104, 10 (Oct 2022), 2181–2201. https://doi.org/10.1007/s00607-021-

00911-3

[53] Jian Zhang, Ye Ji, Shuai Mu, and Cheng Tan. 2023. Viper: A Fast Snapshot Isolation Checker. In Proceedings of the

Eighteenth European Conference on Computer Systems (Rome, Italy) (EuroSys ’23). Association for Computing Machinery,

New York, NY, USA, 654–671. https://doi.org/10.1145/3552326.3567492

Received 2023-11-03; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 161. Publication date: June 2024.

http://www.mysql.com
https://www.mysql.com/products/cluster/
https://arxiv.org/abs/1806.08416
https://doi.org/10.1145/3035918.3056096
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1145/2851141.2851170
https://doi.org/10.1145/2851141.2851170
https://doi.org/10.1145/3360543
https://doi.org/10.1145/3385412.3385993
https://doi.org/10.1007/978-3-642-20398-5_23
https://doi.org/10.1007/978-3-642-34188-5_11
https://docs.snowflake.com/en/sql-reference/transactions
https://www.usenix.org/conference/osdi20/presentation/tan
https://doi.org/10.1145/3514221.3526120
https://doi.org/10.1145/3591291
https://doi.org/10.1145/3591291
https://doi.org/10.1145/3035918.3064037
https://doi.org/10.1007/s00607-021-00911-3
https://doi.org/10.1007/s00607-021-00911-3
https://doi.org/10.1145/3552326.3567492

	Abstract
	1 Introduction
	2 Background
	2.1 Weakly Isolated Execution Histories
	2.2 Serializablility
	2.3 Causal Consistency
	2.4 Read Committed

	3 IsoPredict Overview
	4 Predictive Analysis
	4.1 Encoding of Feasible Execution
	4.2 Encoding Unserializability
	4.3 Encoding Weak Isolation
	4.4 Prediction Examples
	4.5 Handling Divergence in the Predicted Execution

	5 Validation
	6 Implementation
	7 Evaluation
	7.1 Methodology
	7.2 IsoPredict's Effectiveness and Performance
	7.3 Comparison with MonkeyDB

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

