Check for
Updates

Orchestrating a DNN training job using an iScheduler
Framework: a use case

Swathi Vallabhajosyula

The Ohio State University
Columbus, Ohio, USA

Maaz Baig
baig.42@buckeyemail.osu.edu
The Ohio State University
Columbus, Ohio, USA

ABSTRACT

Orchestrating DNN training jobs efficiently on HPC centers such
as Ohio Supercomputer Center (OSC), Texas Advanced Computing
Center (TACC), and San Diego Supercomputer Center (SDSC) is
crucial due to the prevalence of Al-driven workloads. However,
managing these workloads effectively requires a deep understand-
ing of available resources, allocation policies, and suitable execution
configurations. Current approaches often lead to job interruptions,
prolonged wait times, and inefficient resource utilization. To ad-
dress these challenges, we propose the deployment of an iScheduler
framework. This framework aims to automate workflow orchestra-
tion for DNN training by estimating resource needs (using existing
state-of-art estimation models) and generating an infrastructure-
aware execution plan. In this study, we demonstrate the practical
application of the iScheduler framework in orchestrating a user-
specific DNN training workflow, showcasing its capabilities in opti-
mizing resource allocation and scheduling. This poster dives deeper
into the user case and shows all user interactions with iScheduler
and the responses.

CCS CONCEPTS

« Computing methodologies — Planning under uncertainty; Model
verification and validation; « Software and its engineering —
Software design engineering.

KEYWORDS

AI4CI, AT40OPT, ML, estimation scalability, model, execution time
estimation, workflow orchestration, job scheduling

ACM Reference Format:

Swathi Vallabhajosyula, Sandeep Satish Budhya, Akanksha Jain, Maaz Baig,
and Rajiv Ramnath. 2024. Orchestrating a DNN training job using an iSched-
uler Framework: a use case. In Practice and Experience in Advanced Research
Computing (PEARC ’24), July 21-25, 2024, Providence, RI, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3626203.3670632

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PEARC 24, July 21-25, 2024, Providence, RI, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0419-2/24/07

https://doi.org/10.1145/3626203.3670632

Sandeep Satish Budhya

vallabhajosyula.2@buckeyemail.osu.edu sandeepsbudhya@protonmail.com

The Ohio State University
Columbus, Ohio, USA

Akanksha Jain
jainakankshah@gmail.com
The Ohio State University
Columbus, Ohio, USA

Rajiv Ramnath
ramnath.6@osu.edu
The Ohio State University
Columbus, Ohio, USA

1 PROBLEM STATEMENT

HPC environments are vital for scientific workloads, but users of-
ten struggle to estimate resource needs accurately, leading to job
interruptions and inefficiencies. The rise of Al-driven workloads ex-
acerbates this challenge, with HPC centers facing increased demand
for GPU-powered clusters. Despite available guidelines, optimizing
resource allocation for DNN workloads remains complex. Existing
Al-based resource estimation models and schedulers aim to address
this, but accessing and integrating them into scheduling tasks is
challenging for end-users. This gap motivates our work in introduc-
ing an iScheduler framework designed to seamlessly integrate Al
models for automating scheduling tasks, thereby optimizing DNN
workload efficiency and resource utilization.

2 METHODS

For the framework to simulate user interactions and manage the
job execution workflow, it needs to address specific queries based
on user-defined configurations. For example, if a user intends to
train a ResNet50 model on WikiFaces Data with 20k images using
the ADAM optimizer for 50 epochs, and desires to refine model
accuracy by scaling batch sizes (e.g., 8, 16, 32, 64), the framework
should provide solutions for the following questions:

e What are the estimated resource requirements for training
ResNet50 with different batch sizes?

o How will the execution time vary for each batch size config-
uration?

e What are the potential costs associated with training the
model using different batch sizes? (Our previous work [1]
addresses solutions to the questions mentioned above.)

o Can the model be trained within specified constraints such as
available cluster resources and time limitations? (as shown
in Table 1)

o Are there any optimal configurations that effectively balance
resource utilization and job completion time?

o Is it feasible to schedule jobs on the immediately available
node instead of waiting for a more efficient allocation? Ad-
ditionally, can we preempt and resume execution on the
preferred node once it becomes available? (as shown in Ta-
ble 1)

e Is it viable to utilize development nodes that become idle
after work hours to execute workloads? This could enable

https://doi.org/10.1145/3626203.3670632
https://doi.org/10.1145/3626203.3670632
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626203.3670632&domain=pdf&date_stamp=2024-07-17

PEARC ’24, July 21-25, 2024, Providence, RI, USA Vallabhajosyula, Budhya, Jain, Baig and Ramnath

External Information from Cl webpages DNN Training Workload)
Cl Information — queues, limits, costs, e Resource Allocation

hardware configurations Neural Training Model q ¢ Maximum Execution time
* Job Profiles - DNN metadata, Training Network Data Configs ¢ Maximum Memory

metadata, Execution Configurations, * Allocation Queue (time, memory)
performance stats Runtime g g Manuall ﬁh’.

® User |”:“> . Configs / Configure]
ﬁ Reads ManualsDD

1. Manually create a
Job Resource Allocation

TAPIS
Interface

- 2. Submit the Job to Cl using
Manual estimations

3. Observe the Job
Progress “status” and

Performance (sayby |, i jop fails or doesn’t ‘J
using Grafana)

5 |IE:> Fpg)

perform as expected, Stop the
job and resubmit - repeat Challenges to Solutions

Figure 1: A: The conventional user interaction workflow is depicted in the figure, highlighting the steps where users encounter
challenges and illustrating how an Al-enabled software can address these challenges effectively.

Table 1: An overview of the available system state at two times (on and off work hours). ** A/I/T - Allocated/Idle/Total #-40-core
nodes. PD-Pending

cr Nodes Alloc Max Time At 11:00:00 CST At 5:00:00 CST
Cluster Partition min-max Type DD- Nodes ** Jobs Nodes ** Jobs
per Job HH:MM:SS A/N/T PD A/l/T PD
development 1-4 CPU 2:00:00 17/1/18 8 15/3/18 0
TACC/ gpu-al00 1-4 GPU 48:00:00 65/8/73 76 69/4/73 72
lonestar6 | gpu-al00-dev 1-4 GPU 2:00:00 4/0/0 7 0/4/4 0
gpu-al00-small 1-1 GPU 48:00:00 24/0/24 [22/2/24 0
OSC/ debug 1-4 GPU 1:00:00 23/1/24 0 24/0/24 0
ascend gpu 1-2 GPU 7-00:00:00 23/1/24 55 24/0/24 50
development 1-40 CPU 2:00:00 371/23/394 5 225/167/394 0
TACC/ normal 3-512 CPU 48:00:00 | 6194/1586/8008 | 1162 | 7649/123/8008 | 1184
frontera | rtx-dev 1-2 GPU 2:00:00 5/1/6 1 0/6/6 0
small 1-2 GPU 48:00:00 208/8/216 135 208/7/216 113
serial 1-1 CPU 7-00:00:00 99/55/164 | 2249 122/42/164 | 2246
OSC/ parallel 2-40 CPU 96:00:00 99/55/164 6 122/42/164 0
pitzer# gpuserial 1-1 GPU 7-00:00:00 11/3/14 0 13/1/14 2
gpuparallel 2-10 GPU 96:00:00 11/3/14 1 13/1/14 1
jobs waiting for allocations on regular nodes to be executed 2.1 Steps for interacting with the job scheduler -
at least partially before receiving a full allocation) iScheduler Framework.

e Is it feasible to execute DNN training on CPU nodes until
GPUs become available? ((as seen from Table 1, CPU-only
nodes are currently idle, even though the queue has pending
jobs. However, many of these jobs are multiple requests
from a few user IDs and may not be allocated due to their
maximum CPU core limitations

(1) The User imports the iSchedulerHelper tool and creates its
instance (TAPIS and DB authentications are set up here).

(2) The User writes his DNN code (create his model, say ResNet50)
to generate model summary JSON and prepares the training
data (processing Wikifaces data loop and getting the training
meta-data).

Github code could be found here! (3) The User invokes the iSchdulerHelper to request resource

estimations for executing his DNN loop against different

Uhttps://github.com/manikyaswathi/iSchedulerFramework hyp er-parameters.

https://github.com/manikyaswathi/iSchedulerFramework

Orchestrating a DNN training job using an iScheduler Framework: a use case

PEARC ’24, July 21-25, 2024, Providence, RI, USA

Table 2: The Estimation Results from executing the iScheduler Functions - Equation 1 and 2

Training Batch Mem (GB) System Posible | Est. (Hrs) | Feasible Q Idle? Cost ($)

20000 8 7.02 | Intel Xeon yes 11 | serial yes 0.924

20000 16 14.05 | Intel Xeon yes 10 | serial yes 0.84

20000 32 28.11 | Intel Xeon yes 9.2 | serial yes 0.7728

20000 64 56.23 | Intel Xeon yes 8.7 | serial yes 0.7308

20000 8 7.02 | NVIDIA V100 | yes 3 | gpuserial no 0.522

20000 16 14.05 | NVIDIA V100 | yes 3 | gpuserial no 0.522

20000 32 28.11 | NVIDIA V100 | yes 2.4 | gpuserial no 0.4176

20000 64 56.23 | NVIDIA V100 | no N/A | N/A no N/A

Allocation Config Execution Configutation:
Queue Name Training Samples Waitime (hrs) Cost ($) Total(hrs)
Without serial 20000 32 0 8.4 1.764 8.4
Preemption: | gpuserial 20000 32 26 2 0.42 28
Wlth. serial * 20000 32 0+ 4+ | 0.84+0.294 64
Preemption | gpuserial 4 1.4 =1.134

(a) The estimator is invoked as shown in formula 1 - which
in turn calls the DB 2 to fetch node

(b) The node configuration, user model, and training configs
are passed to the memory and walltime estimators.

(c) We invoke the Memory and wall-time algorithms—and
submit one or more TAPIS apps (controllers registered as
applications) based on how the resellers configure their
modules.

(d) Wait for the estimators to execute, consolidate the results,
and provide users results like in Table 2

(4) The User invokes an iSchduler function to fetch the feasible
execution systems for the desired memory and walltime
requirements.

(a) The estimator is invoked as shown in formula 2 - which
in turn calls the DBto fetch system queues

(b) The systems are validated against the feasibility of exe-
cutions and respect execution costs. The availability (idle
nodes available on the queue) is computed, and the list is
returned to the User.

(c) The User selects a configuration that suits their require-
ments or offloads the execution to the iScheduler (IP).

(d) If the job is offloaded to IP with a scheduling option such
as "immediate availability," it is scheduled to be executed
on that queue even if better (high compute) queues are
recommended but are unavailable at the moment.

(e) As the job executes, it pushes the progress to the Kafka
broker, and a FLASK consumer checks (a) the progress is
as planned and (b) If the "Ideal" queue is now available.

(f) TheIP terminates the job if a better node becomes available
and continues training from the last checkpoint location.

(g) The IP monitors the job and compares progress left with
allocation left to either reevaluate resources and reset the
job or continue moving the jobs. Table 2 shows the two

2DB Schema could be found here:

https://github.com/manikyaswathi/iSchedulerFramework/blob/main/DataBase/README.md

examples of job orchestration based on resource require-

ments and node availability.
The User invokes an iSchduler function to fetch the feasible exe-
cution systems for the desired memory and walltime requirements.

Memeory, Walltime =
Estimator (FeaturesDNN_Arch, Training_Data,
DNN_HypParams, Systems]) (1)

Waitime, Cost =
Estimator (Memory, Walltime,
System_Queues) (2)

3 RESULTS

Table 2 displays the outcomes of the user workflow. It’s observed
that although a slower node (serial) was allocated, the cost of execu-
tion in non-preemption mode is higher due to the longer allocation
time and the node not being ideal for DNN training. However, the
user’s job was executed even before an Ideal Node became avail-
able, thereby reducing the waiting time. Similarly, in preemptive
mode, as soon as the ideal nodes become available, the running
job is terminated, and the model continues training from the last
checkpoint in the new allocation.

Funding and Collaboration: This work was partially supported
by the National Science Foundation and the NSF Al Institute for Intel-
ligent Cyberinfrastructure with Computational Learning in the En-
vironment(ICICLE) under grant agreements OAC-1945347 and OAC-
2112606.

REFERENCES

[1] Manikya Swathi Vallabhajosyula and Rajiv Ramnath. 2023. Insights from the
HARP Framework: Using an Al-Driven Approach for Efficient Resource Allocation
in HPC Scientific Workflows. In Practice and Experience in Advanced Research
Computing. 341-344.

	Abstract
	1 Problem statement
	2 Methods
	2.1 Steps for interacting with the job scheduler - iScheduler Framework.

	3 Results
	References

