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ABSTRACT

Many modern scientific workloads in HPC centers rely heavily on
Al-driven tasks, particularly deep neural network (DNN) training
workloads. Efficiently managing and scheduling these workloads
via SLURM interfaces requires users to comprehensively under-
stand available resources, allocation policies, and suitable execu-
tion configurations aligned with their models’ estimated resource
requirements and constraints. Typically, scheduling jobs involves
using default configurations, adjusting them as needed, or request-
ing maximum available limits to ensure uninterrupted execution.
However, this approach can lead to job interruptions due to under-
provisioning, prolonged wait times, inefficient resource utilization,
and increased costs from overprovisioning. These issues ultimately
degrade cluster performance, emphasizing the need for a more ef-
ficient solution like an Al-enabled Scheduler framework that can
profile the DNN workloads and estimate and provision resources
dynamically. The existing resource estimation models are trained
independently to predict various aspects of batch processing and
scheduling, which do not work cohesively to orchestrate a job ex-
ecution. In our work, we propose to introduce a framework that
investigates the feasibility of implementing an iScheduler frame-
work, which transforms the traditional SLURM resource provision-
ing workflow into an Al-enabled scheduler that plugs different
estimators where needed to orchestrate workflow by generating a
cyberinfrastructure-aware execution plan, schedules and monitors
jobs till completion. We demonstrate the feasibility of our frame-
work by orchestrating a user-specific DNN training workload.
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« Computing methodologies — Planning under uncertainty; Model
verification and validation; « Software and its engineering —
Software design engineering.
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1 INTRODUCTION

High-performance computing (HPC) environments have become
indispensable for handling various scientific workloads, where re-
sources are shared and allocated using batch scheduling based on
user requests. Users typically rely on their experience or recom-
mended defaults from Cyberinfrastructure (CI) to estimate resource
needs. They aim to secure resources that enable job completion with
minimal wait times, interruptions, and, optionally, adjustments to
allocation costs.
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Figure 1: A: The Conventional user-HPC interaction for job
scheduling; B: The Proposed iScheduler Framework

With the increasing popularity of Deep Neural Network (DNN)
models and a huge shift towards Machine Learning (ML) and DNN-
driven scientific research is observed and these workflows span
from training novel models from scratch to fine-tuning state-of-the-
art architectures. This shift has prompted HPC centers to deploy
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more GPU-powered clusters to accommodate the influx of Al work-
loads.!. HPC centers have seen a splurge in resource demands as
more researchers are initiating Al-driven approaches in their work-
flows, which are heavily computing-dependent and expensive.

Efficient allocation of computational resources is crucial for DNN
training and inference on cloud/HPC. Researchers must compre-
hensively understand their current workloads to ensure optimal
resource requests. This guarantees a fair distribution of resources
amongst researchers and promotes efficient utilization of shared
resources. A wealth of CI documents, articles, and blogs offer best
practices for resource allocation for DNN workloads, considering
factors such as batch and epoch scaling, choice of optimizers, and
memory requirements. Furthermore, research initiatives have been
undertaken to study and understand AI workloads, improve re-
source allocation, and develop new hardware architectures/chips
for compute-intensive Al training, inferencing, and generative Al
modeling. Datasets like The MIT Supercloud Dataset 2 have been
created to facilitate research on workload profiling and estimating
resource requirements, particularly for deep neural network (DNN)
workloads.

To enhance the efficiency of DNN workloads against the avail-
able resources, significant advancements have been made in the
development of Al-based resource estimation models and Reinforce-
ment Learning (RL) based schedulers. These models estimate DNN
memory requirements and training times, profile user workloads,
and analyze and scale DNN jobs online. (See section 2 for related
literature).

However, accessing these models remains challenging for
end-users who request resources and schedule jobs due to the
absence of reproducible code or ready-to-use components. To
our knowledge, no framework is available to seamlessly inte-
grate these models for automating end-to-end job orchestra-
tion (from development to execution). Our work aims to bridge
this gap by introducing a smart-scheduler framework - iScheduler.
This framework orchestrates job execution by leveraging various Al
models designed to allocate resources and monitor jobs via helper
functions and API calls (to interact with HPC centers).

The iScheduler Framework (as shown in Figure 1B) offers the
following features to orchestrate the job execution®:

e Provides an end-user helper tool, a iScheduler Helper Python
module, to interact with cloud-hosted estimators for fetching
resource requirements and orchestrating job submissions.

o Utilizes a database (DB) to store system information and
policies, aiding predictions and decision-making before job
submission.*

e Returns list of feasible predictions (memory, walltime, queue-
ing times), execution status, and cost feasibility against avail-
able systems to end users, enabling them to either submit
jobs manually or delegate them (via Intelligence Plane).

IClusters like *cardinal’ at OSC are deployed, and chipsets like NVIDIA Blackwell are
being released

Zhttps://registry.opendata.aws/dcc/

3The entire iScheduler framework (from Figure 1B) can be configured on one server
(or node), and the users need to deploy only the iScheduler Helper python module on
their work environment

“We used the CI documentation and SLURM commands to create the DB
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o Includes an Intelligence Plane (IP) Service for job submission,
monitoring, and tracking on behalf of the user (using TAPIS
APIs [4])

e Supports plug-and-play upgrades to Al estimators (deployed
as container images and executed as TAPIS apps).

We elaborate the framework components in Section 3 and illus-
trate the workflow for training a vision model in Section 4. We
execute estimators and run the target training workload as TAPIS
Jobs by registering them as applications. While certain components
have broad applicability (like the Database, which is applicable for
any HPC job), we focus on prototyping a workflow for training
DNN models for three main reasons: a) the increasing adoption
of neural networks in workloads, b) the deterministic nature of
DNN architecture implementation, facilitating the development
of Al-based estimators with wider applicability and reducing the
need for individual workload profiling, and c) the simplicity of
checkpointing and re-training models, enabling dynamic scaling
and reallocation.

The code for all components can be found on GitHub >

2 BACKGROUND

Conventional User Job Execution Life-cycle: A user interacts
with HPC environments (depicted in Figure 1, A) by developing
their applications, consulting CI documentation for suitable re-
sources, submitting batch allocation requests, and monitoring job
progress. If a job fails, users diagnose issues and analyze runtime
requirements before resubmitting. This iterative process, known as
online analytics, aims to address submission errors, enhance perfor-
mance, and experiment with parameters for scalability and accuracy
improvement. However, it is both costly and time-consuming.

2.1 Existing Research

Various Al-driven models have emerged for enhancing scheduling
estimations, each addressing different job allocation and execution
aspects. For instance, DNNMem[2] focuses on estimating mem-
ory requirements, while TPUGraphs[3] predict training times per
epoch. Frameworks like HARP[7] conduct offline profiling of DNN
training loops to understand resource needs. Conversely, models
like Scavenger[5] perform online profiling, adjusting allocations
based on consumption. Some models predict job start times, while
others, like Mirage[1], use reinforcement learning for scheduling
GPU jobs. Despite advancements, these models exhibit some esti-
mation errors and still require user assistance in resource allocation
when used independently. For example, our walltime estimator for
DNNs has a 20% error rate, which can either lead to job failure or
longer waittimes. While models like Scavenger offer better accuracy
(4-20% errors), they can only profile jobs while executing them, so
they cannot pre-compare executions across different architectures.

In our previous research, HARP([6, 7], demonstrated offline profil-
ing’s viability for user-centric workflows and developed application-
specific Al-based walltime estimators. We compared default job
configurations with our estimators’ predictions, assessing feasi-
bility and cost-effectiveness. HARP involved: 1) pre-profiling user
workloads against predefined configurations to generate training
data; 2) training off-the-shelf estimators, dynamically selecting suit-
able models based on validation accuracies; and 3) configuring of CI

Shttps://github.com/manikyaswathi/iSchedulerFramework
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Table 1: Components of iScheduler Framework with software
requirements, implementation details, and functionalities

iScheduler Helper tool

S/W: Python (Compatible with TensorFlow and PyTorch)
Actors: - Developers (Create functions to add workflows)
- HPC Users (Utilize functions to invoke inference models)
Functionality: - It offers an interface for end users to
interact with the iScheduler via API calls.

- Users configure their access tokens (TAPIS/DB) to
interact with DB, IP and to submit jobs.

CI Configurations (Local or Cloud Server) [Database]
S/W: MongoDB (Chosen for its lightweight and NoSQL,
nature ideal for prototyping, flexible to schema changes)
Actors: - Developers/Admins (Configure and manage the DB),
- Automated Script (Updates the DB with CI changes),

- HPC Users (Interact with the DB using the iScheduler)
Functionality: The DB stores CI details to estimate

resource needs against node configs, validating

allocations against batch limitations and execution costs
against allocations.

Intelligence Plane (IP)

S/W: - Kafka (Kafka is used to capture the profiling and
progress status of the executing jobs for online analytics),
- Flask (The consumers of the monitoring data that invoke
IP rules and make appropriate decisions.)

Actors: - Developers (Add more IP features),

- HPC Users (Interact with IP using the iScheduler Helper.)
Functionality:

- Maintains independent daemons for tracking job progress
and making ad-hoc decisions for rescheduling.

- The current prototype supports rescheduling jobs based on
progress and remaining allocation time

- Submits a TAPIS job on behalf of the user by creating a job hook.

AI Models (Local or Cloud Server)

S/W: Images (Docker/Apptainer) (facilitates on-the-fly
inferencing deployment, seamless integration with TAPIS

, and supports plug-and-play for developing new models)
Actors: - Developers/Admins: (Create iScheduler helper
functions to add new workflow estimation models),

- HPC Users (Invoke these models via the helper functions).
Functionality: Replaces human estimations and incorporates
existing work (online and offline analytic models) that could be
invoked based on need in the workflow at appropriate times

The Framework uses TAPIS to invoke Al models and automate
the Job execution. It is a cloud-hosted API configuring systems
on multiple CIs, and applications for job scheduling.

policies to estimate predictions’ cost and feasibility. However, users
needed to run all three steps once to create and store estimators
locally, requiring local HARP instances and familiarity with
its modules.

2.2 Opportunities for HPC Job Execution
Workflow Enhancement

Current Bottlenecks: 1: Manual fine-tuning is time-consuming,
expensive, and resource-intensive, as depicted in Figure 1A.; 2: Inde-
pendent use of current AI-models still needs more accurate resource
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requirement estimation, hindering end-to-end job automation.; 3:
Utilizing available queues rather than waiting for ideal configura-
tions demands diligent job monitoring and frequent rescheduling.
For example, development queues offer similar computing capabil-
ities to longer allocation queues but with limited allocation time
(2 hours), requiring users to fragment their execution and submit
multiple jobs ©.
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Figure 2: The user interaction flow with the iScheduler

The proposed framework (Figure 1B) seamlessly integrates plug-
and-play resource estimators by leveraging CI awareness through a
centralized database for end-to-end job execution. Key components
of our architecture are (a) CI database: Stores all CI policies and
aids in Intelligence Plane decisions. (b) Model repository: Hosts
Al estimator models. (c) TAPIS Interface: Facilitates job schedul-
ing across diverse ClIs and clusters via APIs. (d) Intelligence Plane
(IP): Manages job scheduling, monitors execution progress, and
adjusts schedules as needed. Additionally, our iScheduler Helper
module offers various functions for users to invoke suitable Al
models for estimations based on their configurations. The subse-
quent sections discuss further details on these components and an
example workflow.

3 THE ISCHEDULER COMPONENTS

Table 1 describes different iScheduler components as shown in
Figure 1B, including their objectives, implementation details, and
rationale behind the selected software stack. The current prototype
is designed to facilitate DNN vision model training, and the software
stack choice aims to complement other ICICLE’ modules, such

ORefer to the cluster batch limitations outlined in the respective CI documentation.
"https://icicle.osu.edu/
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as cloud-to-edge orchestration. Figure 2 shows the job execution
orchestration workflow using iScheduler.

4 ISCHEDULER WORKFLOW WITH A DNN
TRAINING JOB EXECUTION SCENARIO

Figure 2 illustrates the user interaction flow with the iScheduler
Helper module to ascertain their job’s resource requirements against
available systems. It shows the orchestration of job execution with
the Intelligence Plane.

Use Case: A user trains a ResNet50 vision model with 20k images
and 50 epochs to improve accuracy by testing various batch sizes.
They utilize the iScheduler helper to manage resource requirements
efficiently. Workloads are single-node allocations managed through
TAPIS, with in application checkpointing and callbacks ensuring
job continuity and progress monitoring.

Workflow: The workflow between the user and the Smart Sched-
uler is as follows:

o After configuring the DNN architecture, the user invokes
the appropriate iScheduler Helper function, providing model
details and desired batch sizes (32, 64).

o The Helper Function retrieves node configurations (CPU and
GPU note configs for Pitzer Cluster) from the CI database
and runs estimators to provide resource predictions.

o The user reviews the estimations and selects an execution
plan, either manually submitting the job or delegating it to
the Intelligence Plane. Result: A Pitzer CPU node can execute
ResNet50 for all batch sizes with maximum execution times
of 9.2 and 9.7 hours and corresponding costs of $0.7728 and
$0.7308 for batch sizes 32 and 64, respectively. Additionally,
Pitzer GPU (with a maximum of 32 GB memory) can handle
only batch size 32 with an estimated time of 2.4 hours and
costs of $0.4176.

e The user has two options after reviewing the estimation re-
sults: a) Manual Submission, where they configure a SLURM
script to submit the job themselves, and b) Delegating the job
execution and monitoring to the Intelligence Plane. The pro-
totype demonstrates two feasibilities - submitting with the
best configurations (ideal system configurations for minimal
interruptions) and based on system availability (CI queue
state: number of idle nodes, number of waiting jobs).

e Containerize the code, publish it to a publicly accessible
location, and create a TAPIS Application.

e The Intelligence Plane manages job execution, submitting,
and monitoring progress through callbacks. Jobs may run
as single tasks or cascading ones if exceeding maximum
walltime. It reassesses plans after each sub-job, adjusting
or rescheduling as needed, triggering Al-finetuning loops
for memory and walltime estimations. For instance, submit-
ting a job (batch size 32) with an ideal configuration (Pitzer
GPU) has an estimated job completion of 28 hours (26 hours
wait time + 2 hours execution) and $0.348 cost. Alternatively,
executing based on availability yields an estimated job com-
pletion of 9 hours (no waiting time as resources are allocated
immediately) with $0.756 cost.

Given the wait time for GPU node allocation, the current appli-
cation (ResNet50) could be completed before the GPU allocation,
potentially saving researchers time.
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5 CONCLUSION AND FUTURE WORK

Offloading the job execution-monitoring loop to the IP enables the
utilization of various estimation models, including offline profil-
ers, estimated allocations based on cluster queue information, and
online profiles with predefined rules for job execution. Opting for
availability allows users to execute their jobs partially or entirely
on less preferred nodes until a desired allocation becomes available,
reducing overall execution time, including wait times. Develop-
ment queues, with identical node configurations as full queues,
are typically idle at night, making them ideal for utilization with
the scheduler framework without requiring manual monitoring
of short cascading jobs. Employing an intelligent scheduler can
enhance the productivity of such compute-intensive workflows and
diminish the human-in-the-loop effort.

Our future work will refine the current prototype to support
DNN workflow orchestration, collaborating closely with domain
experts. Estimating wait times is challenging, and currently, we’re
using basic SLURM commands to identify queues with idle nodes to
determine immediate availability. We aim to implement approaches
from existing papers for a more refined and accurate approach. This
involves validating and designing each component, such as ensuring
the CI database mirrors the SLURM DB, requiring collaboration
with CI Admins for effective development. We want to conduct a
load test on the scheduler server by submitting at least 10,000 jobs
to assess scalability and service viability.
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