Domain-Aware Model Training as a Service for
Use-Inspired Models

1% Zichen Zhang
The Ohio State University
Columbus, USA
0000-0002-8919-6243

Abstract—Use-inspired artificial intelligence (Al) tailors deep-
learning models for image processing tasks in targeted scientific
domains. These use-inspired models meet domain requirements
for accuracy while parsimoniously using compact and efficient
model architectures needed for inference in the field. However,
before settling upon a model, domain experts repeatedly train
and test models over a wide range of hyperparameters, con-
textual settings, and data configurations, making model training
bespoke, time-consuming, and costly. Model-training-as-a-Service
(MTaaS), i.e., cloud services designed for generic training work-
loads, can reduce training costs, but domain-aware designs and
runtime adaptations could yield further reductions. This paper
characterizes the potential for domain-aware design and runtime
adaptation for MTaaS in digital agriculture. First, we studied
the time to train models for 10 use-inspired agricultural datasets
using pre-trained model weights derived from other agricultural
datasets versus pre-trained weights derived from ImageNet, a
widely used benchmark. Using agricultural datasets sped training
time by up to 2X for some datasets, but provided modest speedups
(< 1.07) in the common case; Choosing the right dataset is
critical. Next, we present an approach to predict training time
given domain-aware pre-trained weights. Our predictions are
strongly correlated with training time (r = 0.93). Finally, we
studied the use of domain-aware pre-trained weights in a MTaaS
under Poisson and bursty arrival patterns for training tasks.
Under bursty arrivals and tight memory constraints, domain-
aware MTaaS reduced training time by 2.8X and 12.2X compared
to model training using pre-trained ImageNet weights and from
scratch, respectively.

Index Terms—Transfer Learning, Cloud Service, Dataset Sim-
ilarity, Neural Network, Distributed System, Model-Training-as-
a-Service

I. INTRODUCTION

Use-inspired artificial intelligence (AI) solves domain-
specific image processing and classification problems [!1],
[18], [19], [26]. It relies on image processing via deep-learning
models, e.g., convolutional neural networks [31] and vision
transformer models [7]. Unlike deep-learning models intended
to capture generalized intelligence, use-inspired models must
meet accuracy and performance goals for a domain while par-
simoniously managing resources to reduce costs. The demand
and availability of use-inspired models are growing because,
in many domains, these models have economic value when
deployed in practice. For example, in digital agriculture, use-
inspired models classify crop diseases [38], detect severe crop
defoliation [39], assess growth stages, and inform farmers
about nutrient levels in the soil [26].

2" Christopher Stewart
The Ohio State University
Columbus, USA
0000-0002-2860-7889

Use-inspired models are created using purpose-specific
datasets labeled by domain experts. The model training process
uses these labeled images to adjust neural network weights,
eventually converging on a model (i.e., weights and archi-
tecture) that accepts unseen images and outputs domain-
specific classifications. In practice, robust use-inspired models
usable in the field require multiple model-training runs to find
efficacious training parameters and each training run requires
costly GPUs. The total cost for model training mitigates the
potential for widespread adoption of use-inspired Al.

Cloud-based Model Training as a Service (MTaaS)reduces
training costs by sharing compute resources across generic
deep-learning workloads [4], [10], [21]. These platforms train
deep learning models for image processing efficiently and do
not require upfront investments in hardware and infrastructure.
However, model training workloads within a domain may have
distinguishing traits that can be exploited to further reduce
costs. This paper aims to characterize the potential for such
domain-aware designs in an MTaaS.

Model training platforms can initiate neural network
weights in many ways. To build fresh models influenced solely
by the training datasets, the platform can initialize weights as
zero. Alternatively, platforms employing transfer learning ini-
tialize weights using pre-trained weights from models trained
on other datasets. With pre-trained weights, datasets labeled by
domain experts are used to fine-tune existing model weights
for specific tasks [28], [30], [37]. ImageNet [5], a large dataset
containing over 14 million labeled images across 1,000 object
categories, is widely used for pre-trained weights. It has been
shown to be effective on model training tasks involving large
and general-purposed datasets, making it a go-to choice for
transfer learning in many domains [17]. However, ImageNet’s
pre-trained weights reflect knowledge on generalized image
processing tasks that may differ from domain-specific tasks.
For example, in digital agriculture, image processing tasks
involve leaves, crops, canopies, discoloration patterns, and
disease semantics that are not well-represented in ImageNet.
In addition, the distinguishing features between classes in
digital agriculture are subtle. Domain-aware transfer learning
addresses these challenges by using pre-trained weights from
other digital agriculture datasets.

This paper explores key issues motivating domain-aware
MTaaS. First, we compared 10 digital agriculture datasets to

datasets widely used for general-purpose image processing.
We found that the model training performance using agri-
cultural pre-trained weights outperformed that using general-
purpose benchmark pre-trained weight in both accuracy and
training time. We further discovered that even within a domain,
the performance of pre-trained models varies across datasets.
For that finding, we proposed a domain-aware approach that
uses dataset similarity distance (DSD) to evaluate the effective-
ness of transfer learning given pre-trained weights from agri-
cultural datasets, which can run fast with only CPUs. Finally,
we developed design and runtime adaptations for domain-
aware MTaaS and evaluated upon Poison and bursty workloads
with a limited in-memory storage for pre-trained models.
Results show that our method can speedup the domain-aware
model training workloads up to 3.5 times faster compared
to the benchmark using pre-trained ImageNet weight. With
the help of domain-aware MTaaS, the effectiveness of use-
inspired model training can further reduce training cost an
provide better understanding of domain relevance and transfer
learning.

The remainder of this paper is organized as follows. Sec-
tion II presents recent studies on comparing digital agriculture
datasets to widely used image processing benchmarks. Sec-
tion III describes dataset similarity and our predictive model
on the efficacy of pre-trained weights. Section IV analyzes the
potential for domain-aware design and adaptation in MTaaS,
assessing the impact of bursty and non-stationary request
arrival patterns. Section V describes related work in MTaaS,
use-inspired Al, and transfer learning. Section VI discusses
future work and conclusion.

II. BACKGROUND

In the field of computer vision, researchers have tradi-
tionally relied on general-purpose datasets such as ImageNet
to benchmark the performance of neural network architec-
tures. These datasets have been widely used to compare and
evaluate various models, such as VGG16, EfficientNet, and
ResNet50 [13], [31], [32]. However, the effectiveness of these
models on domain-specific datasets, particularly in the field of
digital agriculture, has not been extensively explored.

Recent studies have highlighted the importance of domain-
specific evaluation [25]. Ockerman et al. explored the need for
individual dataset profiling in digital agriculture by analyzing
the model training performance among common general-
purpose dataset and domain-specific datasets. They studied
different neural network models trained on popular vision
benchmarks and digital agricultural datasets, comparing mod-
els trained on each dataset by ranking their performance
on all the other datasets using Euclidean distance based on
accuracy and loss across the entire training process. From
the results they noticed that the performance ranking order
of models trained on benchmark datasets varies from that
trained on digital agricultural datasets, showing that domain-
specific datasets display fundamentally different properties
than general-purpose datasets. These domain-specific datasets

represent unique challenges and characteristics that may not
be adequately captured by general-purpose datasets.

Despite the growing recognition of the importance of
dataset-specific evaluation, there is still a lack of compre-
hensive studies utilizing the performance difference across
general-purpose and domain-specific datasets in the field of
computer vision.To address this gap, our study aims to inves-
tigate the performance of three widely used DNN architectures
(MobileNet, EfficientNet, and ResNet50) on both general-
purpose datasets (ImageNet) and digital agricultural datasets
and try to quantify the model training difference using dataset
similarity. Our work builds upon the existing literature by
providing a comprehensive analysis of model performance
across a diverse set of datasets, spanning both general-purpose
and domain-specific categories. By quantifying the distances
between datasets and correlating dataset similarity distance
with efficacy of model training performance, we aim to pro-
vide insights into the biases and limitations of relying solely
on classical datasets for benchmarking purposes. This study
contributes to the growing body of research emphasizing the
importance of dataset-specific evaluation and aims to foster
a more nuanced understanding of model performance in the
context of diverse computer vision tasks.

III. MODELING PRE-TRAINED WEIGHTS EFFICACY WITH
DOMAIN-AWARE DATASETS

In this section, we illustrate how we design our system
using pre-trained weights based on domain relevance to profile
model training performance. First, we conducted experiments
to compare the difference in the model training performance
using domain-specific agricultural and general-purpose pre-
trained weights. Then, based on our findings, we further
proposed a dataset similarity distance ranking algorithm to
characterize model training performance using ImageNet as a
benchmark. Last but not least, we developed a cloud-based
MTaaS system with DSD algorithm. For model training jobs
on the cloud, the system is designed to utilize the limited
cache space and dataset similarity to speedup model training
processes.

Model training with pre-trained weights has been long
proved to be an efficient way to boost performance and been
commonly adopted in model training tasks. However, how to
choose a proper neural network architecture and a transferable
knowledge (pre-trained weight) from a most relevant domain
available without conducting the entire training processes
remains a great challenge. Thus, the most common way is
to use the general-purpose ImageNet pre-trained weight by
default. To explore domain-aware model training performance,
we ran experiments with both agricultural pre-trained weights
and ImageNet weight for model training tasks on agricultural
dataset. We first trained a weed leaf counting (WLC) pre-
trained weight by training a ResNet50 model on the weed
leaf counting dataset from scratch. Then we did model training
processes for all other agricultural datasets we collected using
both WLC and ImageNet pre-trained weight. During the model
training process, to make a fair performance comparison, we

Fig. 1. Model training performance comparison on training epochs with weed leaf counting (WLC) and ImageNet pre-trained weight.

used early stopping techniques to report the training epochs
at a close accuracy for both pre-trained weights, as shown
in Figure 2. The comparison is reported in Figure 1, for most
agricultural datasets, model training using WLC pre-trained
weight converge much faster than that using ImageNet pre-
trained weight. It’s also worth noting that the efficiency for
model training using domain-specific pre-trained weight over
that using general-purpose pre-trained weight varies among
agricultural datasets. For example, on cassava dataset, model
training using WLC pre-trained weight converged at a 81% ac-
curacy on 19 epochs while model training using ImageNet pre-
trained weight converged at the same accuracy on 42 epochs,
which yields a 54.76% speedup. However, that performance
boost is not seen in model training processes on some other
agricultural datasets, such as plant village dataset where the
performance for model training using WLC and ImageNet pre-
trained weights are very close.

1 | Val_acc
0.8
0.6
0.4
—ImageNet weight
0.2
WLC weight
Epoch
0
1 5 9 13 17 21 25 29 33 37 41 45

Fig. 2. Comparison of validation accuracy learning curves during model
training process. The blue line represents transfer learning with ImageNet-
1k weight. While the green line indicates that with the Weed Leaf Counting
weight.

To characterize the model training performance using dif-
ferent pre-trained weights, we first adapted and modified the
OTDD algorithm [3] to measure the correlation of dataset
similarity and efficiency of model training with pre-trained
weights. Below is a mathematical equation for the OTDD

algorithm:
OTDD(D4,Dg) = min,ren(pA,pB)/ d(z,2")dn(z,2") (1)
ZXZ

The distance between two datasets can be calculated
by Equation (1). z represents a feature-label pair in one dataset
while 2’ represents a pair in the other dataset. d(z, z’) denotes
the distance between two pairs belonging to two datasets. The
image feature distance can be assessed by just computing the
pixel difference in two images. To compute the label distance,
we need to treat the labels as probability distributions first. Py
and Pp denote the conditional probability distributions used to
represent labels in the datasets: P, = P(X|Y = y). Then, the
Earth Mover’s Distance (Wasserstein Distance) can be use for
computing the label distance. Therefore, the distance between
two pairs can be computed by the following equation:

d(z,7) = \Jd(z,')2 + W(P,, P})? @

We modified OTDD in our method with the goal of making
the process of getting dataset similarity measurements fast,
memory friendly, and accurate. Our adaptation is as follows:
Given two datasets D4 and Dp, first we randomly shuffle and
evenly partition them into N4 and Np units over a constant
unit_size, defaulting at 2000. Then select k4 and kp units
from all the units and run OTDD cross all unit combinations.
The selection of k varies depending on N, the total number
of units of a dataset. It’s calculated by a stair-shaped piece-
wise function. After we have the distance values from k, x k;
OTDD functions, the final distance of two datasets will be the
average of all values.

OTDD algorithm is good at measuring dataset similarity.
However, it lacks the ability to correlate dataset similarity with
model training efficiency, as shown in Figure 4. To address
the problem, we proposed a novel DSD ranking algorithm
based on OTDD that given a new dataset and existing datasets,
DSD algorithm will rank the pre-trained weights related to the
efficiency of model training performance with the ImageNet
weight as a baseline. As illustrated in Figure 3, the DSD
ranking algorithm works as follows: First, for a new dataset,
it will compute the dataset distance with all existing domain-
specific datasets using the modified OTDD algorithm. Once it

Fig. 3. A systematic overview of the model training process with our DSD algorithm. Given a new dataset, the DSD ranking algorithm will compute dataset
distances between the new dataset and all datasets in the system and select the most domain-relevant dataset based on the results. Then the pre-trained weight

from selected dataset will be used for model training task on the new dataset.

gets all dataset distances, it will divide each number over the
dataset distance of the new dataset to ImageNet dataset. The
result vector containing relative dataset distances will be nor-
malized and sorted. Smaller values indicate a relatively better
model training performance if trained with the corresponding
pre-trained weights. After the pre-trained weight is selected
from the DSD ranking result, model training process will be
carried out for the new dataset with the selected weight. With
the DSD ranking algorithm to characterize the efficiency of
model training processes using pre-trained weights, we are
able to find the most domain-relevant pre-trained weight from
the dataset to accelerate the model training process.

IV. EXPERIMENTS

We designed and conducted experiments to evaluate our
method in several aspects. In Sections IV-A and IV-B, we
introduced the datasets and neural network architectures used
in our experiments. In Section IV-C, the baseline approach
for evaluating our method is discussed. In Section IV-D, we
conducted experiments and discussed the correlation between
model training performance and the DSD ranking algorithm.
In Section IV-E, we studied the use case of our system in a
cloud service. Last but not least, in Section IV-F, we illustrated
how we used the DSD algorithm to reflect on the performance
of different network architectures. And in Section IV-G, we
demonstrated the robustness of our system.

A. Data Preparation

To explore the correlation between dataset similarity and
transfer learning and to evaluate our model profiling system,
we used ten publicly available image classification datasets
in agriculture field and ImageNet-1k dataset to conduct our
experiments, as shown in Table I. Datasets were obtained from
different resources and in RGB format. Some of them are
from publicly available websites used in previous researches,
while others from all sorts of machine learning challenges.
For datasets acquired from challenges, only training sets
are labeled. Since we propose our methods in a supervised
manner in this paper, datasets with only training sets labeled
will be randomly shuffled and then split into training and test

sets in a 7:3 ratio.

B. Neural Network Architectures

We used three types of neural network architectures on the
open-sourced machine learning platform, Tensorflow [!], to
conduct our experiments: ResNet [13], EfficientNet [32], and
MobileNet [16].

ResNet. He et al. proposed a deep residual learning frame-
work, called ResNet, to ease the training process on very
deep neural network models, which allows the usage of much
deeper networks [13]. ResNet has many variances with differ-
ent amount of layers. In this paper, we used ResNet50 [14],
the residual network with 50 layers.

EfficientNet. EfficientNet was first invented by Tan and Le
motivated from a new scaling up ConvNets idea that used
compound coefficient to uniformly scale up all dimensions
of a neural network architecture [32]. We used Efficient-
NetV2S [33] to conduct experiments.

MobileNet. For the purpose of building light weight neural
networks that can be embedded on mobile devices, Howard et
al. introduced MobileNet featuring depthwise separable con-
volutions [16]. Results showed that the MobileNet models are
able to achieve a good accuracy while maintaining a relatively
small model size. We used MobileNetV3L [15], an improved
version of the model in the original paper, in our experiments.

C. Baseline

For the baseline approach, we selected the widely used
ImageNet pre-trained weight for performance comparisons
in model training tasks through transfer learning and the
ImageNet-1k [29] dataset for computing dataset similarity with
datasets mentioned above in Section IV-A.

D. Correlation between DSD and Model Training

1) Model Training Performance Comparison: We designed
an evaluation method to compare the transfer learning per-
formance with the baseline approach. As shown in Figure 2,
performance comparisons are made on the learning curves
of validation accuracy. We compare the model performance

TABLE I
WE USE 10 AGRICULTURAL DATASETS AND THE IMAGENET- 1K DATASET TO EVALUATE OUR SYSTEM.

Dataset Number of Number of Dataset Sample
Classes Images Purpose
Apple Foliar Diseases [35] 6 18,632 Diseases Classification
Soybean Diseases [39] 6 6,637 Diseases Classification
Weed Detection [6] 4 15,336 Diseases Classification
Weed Leaf Counting [34] 9 9,372 Crop Counting
Plant Seedlings [9] 12 5,539 Species Classification
Apple Counting [12] 7 70,867 Crop Counting
Vegetable Species [2] 15 21,000 Species Classification
Tomato Leaf Diseases [22] 7 21,758 Diseases Classification 5 B Ok
Plant Village [8] 39 61,486 Species & Diseases Classification . ﬁ
Cassava Diseases [23] 5 5,656 Diseases Classification ™ :
ImageNet-1k [29] 1,000 1,321,167 General

through different transfer learning configurations with the
baseline approach by measuring the number of epochs they
take to get to the peak validation accuracy. Therefore, the
comparison is only fair if the peak validation accuracy they
get to are almost the same. For all our experiments, we define
that two accuracy values are considered the same if they are
within a 0.1% range.

For comparing a network model with the baseline model
trained on the same dataset, first, we train both network
models with a fixed number of epochs to get enough data
for comparison. Then after validation accuracy learning curves
are acquired, we simulate a normal model training process by
applying an early stopping technique with a patience of 5.
Second, if the peak accuracy of both network models fall into
the 0.1% range, we record the number of epochs they take.
If not, we will use the peak accuracy of the baseline model
from the two network models as a reference to select the peak
accuracy from the other model that is closest to it. Third, we
compute the epoch ratio as a measurement on model training
performance.

In Figure 1, we demonstrated the transfer learning perfor-
mance comparisons trained on ResNet50 using Weed Leaf
Counting and ImageNet-1k pre-trained weights. For each
dataset, we recorded the number of epochs they took at getting

a very similar validation accuracy. All results were averaged
from three-fold cross-validation. Among the results, Plant
Seedlings gets the most transfer learning acceleration of 45%
faster with Weed Leaf Counting pre-trained weight compared
to ImageNet-1k weight. While Plant Village only gets less 1%
acceleration.

2) Domain Relevance Experiments: We further conducted
experiments on exploring the correlation of domain relevance
with transfer learning in four steps. First, we randomly selected
the Weed Leaf Counting dataset as the base dataset to conduct
our experiments. Weed Leaf Counting pre-trained weights
for three network architectures were obtained from model
training processes. Second, for each network architecture
and remaining dataset, we conducted model training tasks
through transfer learning using both Weed Leaf Counting
and ImageNet-1k pre-trained weights, resulting in a total of
27 pairs of transfer learning configurations. Furthermore, all
model training results were averaged from three-fold cross
validation. For each pair of transfer learning configuration,
model training performance was recorded by computing the
epoch ratio, as shown in Equation (3). fgppr denotes the
function to compute epoch ratio, fyp denotes the function
to obtain the number of epochs a model training process takes

Fig. 4. Comparing DSD with OTDD for the correlation between dataset similarity and performance boost of model training with different network architectures
with regard to the weed leaf counting dataset. R, E, M respectively represent ResNet50 (R), EfficientNetV2S (E), and MobileNetV3L (M). The orange dots
mean the normalized DSD of datasets with the weed leaf counting dataset, while the blue dots represent the normalized OTDD of datasets with the weed leaf
counting dataset. X-axis is the normalized dataset distance while the y-axis is the epoch ratio of model training using weed leaf counting pre-trained weight

over that using ImageNet weight.

to get to the peak validation accuracy.

_ [ne(D,Weed_Leaf_Counting)

fer(D) fve(D, ImageNet — 1k)

3

Third, we ran our DSD algorithm over all dataset pairs with
a unit_size of 2000 and a image_size of 28x28. Since
we used epoch ratio as a measurement for transfer learning
performance, we proposed to use the ratio of DSD of a dataset
to the Weed Leaf Counting and the ImageNet-1k datasets as a
measurement for domain relevance, as shown in Equation (4).

_ fpsp(D,Weed_Leaf_Counting)
N fpsp(D, ImageNet — 1k)

fpspRatio(D) 4
Last but not least, as shown in Figure 4, we normalized epoch
and dataset distance ratios to examine the correlation between
model training performance and dataset distance. As a contrast
for the DSD ranking algorithm, we also obtained results from
the modified OTDD algorithm.

Across all three networks, results showed a stronger cor-
relation between the epoch ratio and DSD ratio compared
to the modified OTDD. The DSD ratio and the epoch ratio
follow a same trend that if DSD ratio is relatively small,
then the epoch ratio tends to have a similar feature. We also
calculated the Pearson correlation coefficient to measure the
correlation between DSD with epoch ratio. The Pearson cor-
relation coefficient of normalized epoch ratio with normalized
DSD for ResNet50, EfficientNetV2S, and MobileNetV3L are
respectively 0.93, 0.85, and 0.90, showcasing a strong positive
correlation. While the Pearson correlation coefficient of that
with the modified OTDD are 0.23, 0.0, and 0.18.

E. MTaaS with DSD Algorithm

In this section, we studied the use case for deploying
the DSD algorithm on a cloud-based model training service.
We designed experiments to address cloud service memory
limitations and accelerate the training process by leveraging
the DSD algorithm.

When job queues are submitted to the cloud service, DSD
algorithm is initialized on new datasets in the job queue.
The algorithm computes normalized similarity scores between
these new datasets and those existing datasets stored in the
system. The scores aim to help find the best pre-trained weight
for accelerating model training process on new datasets. How-
ever, with limited memory size, we face the problem of fitting
a subset of all pre-trained weights in memory. To reduce the
total training time of the job queue, we also need to consider
other factors. One factor is dataset size. Speedup on larger
datasets may contribute more to time reduction. Another factor
is dataset frequency.

These three factors (normalized similarity scores, dataset
size and frequency) in the job queue together are considered
in a training time estimation (TTE) algorithm for selecting
a subset of pre-trained weights that potentially has largest
speedup on reducing the total training time, as shown in Equa-
tion (5). Based on DSD, the algorithm gives an estimated
training time for a new dataset using transfer learning on
existing pre-training weight. D, represents an existing dataset
in the system, while D,, represents the new dataset. A higher
DSD score means a closer relation between two datasets, and
hence means a faster training time. Therefore, we use inverse
dataset similarity score to estimate model training time. The
results from the estimation algorithm doesn’t represent the
actual training time. They are merely for comparisons to find
the pre-trained weight that has the highest speedup over model
training.

frre(De, Dy) =
(1 — fNormpsp(De, D)) - Size(D,,) - Frequency(D,,) (5)

As a baseline, we compare our approach against using
ImageNet pre-trained weights for all job queues. While Im-
ageNet weights are widely adopted, our method tailors the
selection process based on specific job queue characteristics.

4.0 4.0

3.5 35 -

30 30
. . . 25

Speedup(%)
N

1 2 3 4 5 : i 3 3 4 5
Number of K weights

Number of K weights

14 I 14
12 12
10 10

8 8

6

3 a 5 3 a 5
Number of K weights Number of K weights

Fig. 5. Box plot on speedup performance for ResNet50 from normal and bursty job queues given different K. K represents the number of pre-trained weights
to store in memory.(a) and (b) are speedup performance for bursty and normal job queues over ImageNet pre-trained weight respectively, while (c) and (d)
are speedup performance for bursty and normal job queues over random weight respectively.

To simulate real-world scenarios, we consider two types of job
queues: Bursty job queue that consisting of multiple duplicate
jobs with the same datasets, typically used for hyperparameter
optimization. Normal job queue containing diverse jobs with
fewer duplicates.

We collected 7 new real-world agricultural datasets for
simulating job queues. We randomly selected 5 datasets from
all 7 for each job queue. And randomly generated 8 job queues
for each type. As shown in Figure 5(a) and (b), the average
model training speedup was measured comparing our approach
to the benchmark. From the results, the average speedup for
normal and bursty job queue are 2.3 and 2.8 respectively. The
speedup performance for normal job queues of our algorithm
provides a stable result over the ImageNet benchmark. The
first quartile and the third quartile are very close to each
other given different K values. The most significant speedup
happens at K = 1. With only 1 pre-trained weight stored in the
memory, it can boost the mean training time for all normal job
queues at around 2.2 times. With K growing larger, the mean
speedup grows from 2.2 to 2.3, 2.36 times. That is to say,
with the available memory getting larger to contain all pre-
trained weights, the advantage of our algorithm is gradually
converging to 2.36 times. On the other hand, the performance
of our algorithm on bursty job queues are very dynamic.
The first quartile and the third quartile varies a lot for all
K values. This is due to the random duplicate jobs in the job
queues. However, with this randomness and job duplicates,
the algorithm also provide a higher mean speedup results over
the normal job queues. It started with a mean value at around
2.2 times, and eventually converging to a higher 2.7 times.
To make the experiments more comprehensive, we also report
speedup comparison of our method to model training processes
with random weights. As shown in Figure 5(c) and (d), the
performance speedup is over 12 times faster for bursty job
queues and over 8 times faster for normal job queues. Results
showed that our algorithm gained great speedup performance
over ImageNet benchmark for both normal and bursty job
queues.

F. DSD and Network Architecture Characterization

We also ran experiments to validate our method to deploy
the DSD algorithm on network architecture selection. For each
dataset, models from three network architectures were trained

and used for test set prediction. Then, three predicted test sets
were created based on three network models for computing
the DSD with the original test set. In Figure 6, we showed
results of correlations between the performance of a network
model and the DSD of the predicted test set created from the
model with the original test set. We also deployed three-fold
cross validation technique to make our results reliable. For
most datasets, the results hold true that if a network model
achieves higher accuracy on the test set of a dataset, then the
DSD between its predicted and the original test set will be
closer. In other word, the DSD between the predicted and the
original test set of a dataset can be used as a measurement for
the performance of a network model.

G. DSD Robustness Evaluation

We ran our experiments using the DSD algorithm with a
default configuration, a unit_size of 2000 and an image_size
of 28 x 28. To test the robustness of our DSD algorithm,
we ran different parameter configurations for the domain
relevance dataset pool table. The domain relevance dataset
pool consists of a 10 x 10 row-wise normalized matrix. We
selected image_size of 14x14, 28x28 (default), 56x56 and
unit_size of 1000, 1500, 2000 (default), 2500, 3000 and
computed the element-wise percentage difference separately.
As shown in Figure 7(a), we obtained 5 domain relevance
dataset table, each represents one unit_size configuration, and
did a cross comparison between every two table at an element
level. The percentage difference of each element is computed
and record. In total, data from 1000 pairs of elements were
collected. Among them, a majority of 936 counts falls into
the percentage difference range of 0 to 5%. The largest
range of percentage difference covers from 15% to 20% with
just 6 counts. A similar results were collected for testing
different ¢mage_size configurations. As shown in Figure 7(b),
with 3 image_size configurations, 300 pairs of elements
were collected. 217 out of 300 counts falls into the smallest
percentage difference range of 0 to 5%. Only 3 counts fall into
the largest range from 20% to 25%. Through the conducted
experiments, we established that the DSD algorithm is able to
run accurately with different parameter configurations.

Experiments were conducted on demonstrating the running
speed of the DSD algorithm. We also ran various configura-
tions of image_size and unit_size. Results were collected

100 Acc(%) 85 100 Acc(%) 90 Acc(%)
95 R(28.4, 95.6) %0 R(834.9, 99.8) 89 | R(161.4, 88.6)
90
88
35 75 99.75 M(3%.6,99.8)
%0 87
70 E(837.2,99.7)
75 M(104.2, 76.7) M(324.7,70.5) 86 M(669.5, 88.
70 DSD |65 DSD 99.5 DSD g5 DSD 85 DSD
20 40 60 80 100 230 250 270 290 310 330 833 834 835 836 837 838 150 170 190 210 230 600 620 640 660 680
(a) Plant Seedings (b) Cassava Diseases (c) Weed Detection (d) Soybean Diseases (e) Tomato Leaf Diseases
cc(%) 100 Acc(% 100 ,Acc(%) 100 ,Acc(%) 70 Acc(%)
95 | R(1788.8,94.7) 432,999 R(744.5,99.6) R(408.2, 67.2)
90 o 95 | R(654.7,93.3) 995 -3, 99
g5 99 (% (745.3,99.3) |65
30 E(1831.6, 79.6) 99
M HF82LT
75 98 85) 08,5 60
70 | M(1887.3, 69. M(583.7, 97.6) 80 E(719, 81.6) : M(747.8, 98.4
65 DSD | g7 DSD | 75 DSD | gg DSD |55 DSD
1780 1830 1880 1930 540 555 570 585 650 665 680 695 710 725 742 744 746 748 750 400 410 420 430 440
(f) Apple Counting (g) Vegetable Species (h) Apple Foliar Diseases (i) Plant Village (j) Weed Leaf Counting

Fig. 6. Relationship between DSD of predicted test sets with the original test set and network model performance on different datasets. R represents ReNet50,

E for EfficientNetV2S, and M for MobilNetV3L.

Count 936 Count
(a) s (b)
800 200
600 1504
400 A 100
61
200 504
51 12
o 7 6 7. 3
0.0 0.2 0.2

0.1 . 0.1 .
Percentage Difference Percentage Difference

Fig. 7. Element-wise percentage difference of domain relevance dataset pool
for various configurations. (a) shows data on different unit_size of 1000,
1500, 2000, 2500, 3000. (b) shows data on different image_size of 14x 14,
28x28, 56x56. X-axis represents ranges of percentage difference while y-
axis represents the count of elements in the range.

from a CPU-only server with two Intel Xeon E5-2620 v4
CPU. Each CPU has 8 cores, one thread per core. As shown
in Table II, the speed of the default configuration of the DSD
algorithm has an average running time of 235 seconds for any
two datasets in our system. Even we increased the tmage_size
to 5656, the cost is still less than 5 minutes per computation.

H. Limitations and Future Work

We believe that larger searching pools with more datasets
and network architectures have the potential to make our
system more accurate. In our work, we only explore the
potential of the DSD ranking algorithm on domain-specific
agricultural datasets. We think that our work showed the po-
tential of domain-aware model training tasks beyond the field

TABLE I
TABLE A AND B SHOW THE AVERAGE RUNNING TIME OF VARIOUS IMAGE
SIZE AND UNIT SIZE, RESPECTIVELY.

Table a. The default unit size is 2000.

image size 14x14 28%28 56x56

average time (s) 192.08 235.23 269.30
Table b. The default image size is 28 x28.

unit size 1000 1500 2000 2500 3000

average time (s) 194.69 205.08 23523 237.26 267.29

of precision agriculture for MTaaS. Datasets from different
domains can be used for future study.

V. RELATED WORK

The notion of MTaaS has gradually become a hot topic for
both large companies and research institutions with the huge
demand for Al Parallel computing clusters equiped with GPUs
are emerging for ML related tasks, such as Amazon AWS,
Google Colab, Ohio Supercomputer center, and Alibaba PAI.
However, running diverse model training tasks in heteroge-
neous GPU clusters posts many challenges for high utilization
and fast job completion. To speedup model training process,
Weng et al. proposed a simple shortest-job-first scheduling
strategy for solving long queuing delays for short-running
task instances [36]. Some research also focused on training
models to predict the task runtime and then prioritize them
for high utilization. Mahajan et al. proposed a scheduling
framework for model training workloads that uses auction
and bid mode between GPU devices and model training tasks
based on available computing resources [20]. Narayanan et
al. built a heterogeneity-aware scheduler that systematically
generalizes a wide range of existing scheduling policies [24].
Peng et al. used online fitting to predict model convergence

during training, and set up performance models to accurately
estimate training speed as a function of allocated resources
in each job [27]. These previous works for job scheduling
in parallel computing clusters required either heavy model
training for predicting job runtime or customized framework
support with complex scheduling algorithms. Our approach
stand alone from any framework support and model training.
We focus on domain-awareness for model training jobs within
a domain, and only use dataset similarity that can be computed
fast on CPUs for fast training completion.

VI. CONCLUSION

In this paper, we explored the effectiveness of model
training processes from a domain-specific perspective. A DSD
ranking algorithm is proposed to characterize the efficacy of
model training tasks using pre-trained weights from datasets,
which can be easily computed using CPUs. Furthermore, we
designed a cloud-based system for MTaaS that utilized limited
cache space and hugely speedup model training jobs for a
given dataset without any model training processes needed.
Our results demonstrated that within the agricultural domain,
model training jobs with domain-specific pre-trained weights
for MTaaS could be greatly accelerated up to 12.2 times
compared to that with the ImageNet pre-trained weight.
Acknowledgements: This work was funded by ACCESS Computing
Startup Grant CIS220074, NSF Grants OAC-2112606, and the Ohio
Soybean Council. In addition, we would like to thank Rugved Katole,
Rajbabu Velmurugan, Maryam Shojaei Baghini, DK Panda, Raghu
Machiraju, Seth Ockerman, Hari Subramoni, and Arpita Sinha for
early feedback.

REFERENCES

[1

—

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. {TensorFlow}: a system for {Large-Scale} machine
learning. In /2th USENIX symposium on operating systems design and
implementation (OSDI 16), pages 265-283, 2016. 4

M Israk Ahmed, Shahriyar Mahmud Mamun, and Asif Uz Zaman Asif.
Dcnn-based vegetable image classification using transfer learning: A
comparative study. In 2021 5th International Conference on Com-
puter, Communication and Signal Processing (ICCCSP), pages 235-243.
IEEE, 2021. 5

David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via
optimal transport. Advances in Neural Information Processing Systems,
33:21428-21439, 2020. 3

Xiuhong Chen, Xianglei Huang, Chaoyi Jiao, Mark G Flanner, Todd
Raeker, and Brock Palen. Running climate model on a commercial cloud
computing environment: A case study using community earth system
model (cesm) on amazon aws. Computers & Geosciences, 98:21-25,
2017. 1

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248-255.
Teee, 2009. 1

Alessandro dos Santos Ferreira, Daniel Matte Freitas, Gercina Gongalves
da Silva, Hemerson Pistori, and Marcelo Theophilo Folhes. Weed
detection in soybean crops using convnets. Computers and Electronics
in Agriculture, 143:314-324, 2017. 5

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020. 1

[2

—

[3

[t

[4

=

[5

=

—
2

[7

—

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

[22]
(23]

[24]

[25]

[26]

(27]

(28]

[29]

G Geetharamani and Arun Pandian. Identification of plant leaf diseases
using a nine-layer deep convolutional neural network. Computers &
Electrical Engineering, 76:323-338, 2019. 5

Thomas Mosgaard Giselsson, Mads Dyrmann, Rasmus Nyholm
Jgrgensen, Peter Kryger Jensen, and Henrik Skov Midtiby. A Public
Image Database for Benchmark of Plant Seedling Classification Algo-
rithms. arXiv preprint, 2017. 5

Ubaid Ullah Hafeez and Anshul Gandhi. Empirical analysis and
modeling of compute times of cnn operations on aws cloud. In 2020
IEEE International Symposium on Workload Characterization (IISWC),
pages 181-192. IEEE, 2020. 1

Mohamed Hanafy and Ruixing Ming. Machine learning approaches for
auto insurance big data. Risks, 9(2):42, 2021. 1

Nicolai Héni, Pravakar Roy, and Volkan Isler. Minneapple: a benchmark
dataset for apple detection and segmentation. IEEE Robotics and
Automation Letters, 5(2):852-858, 2020. 5

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778,
2016. 2, 4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity
mappings in deep residual networks. In Computer Vision-ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11—
14, 2016, Proceedings, Part 1V 14, pages 630-645. Springer, 2016. 4
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo
Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay
Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 1314—
1324, 2019. 4

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017. 4

Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes
imagenet good for transfer learning? arXiv preprint arXiv:1608.08614,
2016. 1

Igor Kononenko. Machine learning for medical diagnosis: history, state
of the art and perspective. Artificial Intelligence in medicine, 23(1):89—
109, 2001. 1

Konstantinos G Liakos, Patrizia Busato, Dimitrios Moshou, Simon
Pearson, and Dionysis Bochtis. Machine learning in agriculture: A
review. Sensors, 18(8):2674, 2018. 1

Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram
Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.
Themis: Fair and efficient {GPU} cluster scheduling. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20), pages 289-304, 2020. 8

Oksana Markova, Serhii Semerikov, Andrii Striuk, Hanna Shalatska,
Pavlo Nechypurenko, and Vitalii Tron. Implementation of cloud service
models in training of future information technology specialists. 2019. 1
Ashish Motwani and Qasim Khan. Tomato leaves dataset, 2022. 5
Ernest Mwebaze, Jesse Mostipak, Julia Elliott, and Sohier Dane. Cassava
leaf disease classification, 2020. 5

Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar
Phanishayee, and Matei Zaharia. {Heterogeneity-Aware} cluster
scheduling policies for deep learning workloads. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 481498, 2020. 8

Seth Ockerman, John Wu, Christopher Stewart, and Zitchen Zhang. A
reflection on ai model selection for digital agriculture image datasets.
In 2nd AAAI Workshop on Al for Agriculture and Food Systems, 2023.
2

Jigar Patel, Sahil Shah, Priyank Thakkar, and Ketan Kotecha. Predicting
stock and stock price index movement using trend deterministic data
preparation and machine learning techniques. Expert systems with
applications, 42(1):259-268, 2015. 1

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong
Guo. Optimus: an efficient dynamic resource scheduler for deep learning
clusters. In Proceedings of the Thirteenth EuroSys Conference, pages
1-14, 2018. 9

Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and Cédric
Archambeau. Scalable hyperparameter transfer learning. Advances in
neural information processing systems, 31, 2018. 1

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211-252, 2015. 4, 5

David Salinas, Huibin Shen, and Valerio Perrone. A quantile-based ap-
proach for hyperparameter transfer learning. In International conference
on machine learning, pages 8438-8448. PMLR, 2020. 1

Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 1, 2

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine
learning, pages 6105-6114. PMLR, 2019. 2, 4

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster
training. In International conference on machine learning, pages 10096—
10106. PMLR, 2021. 4

Nima Teimouri, Mads Dyrmann, Per Rydahl Nielsen, Solvejg Kopp
Mathiassen, Gayle J Somerville, and Rasmus Nyholm Jgrgensen. Weed
growth stage estimator using deep convolutional neural networks. Sen-
sors, 18(5):1580, 2018. 5

Ranjita Thapa, Kai Zhang, Noah Snavely, Serge Belongie, and Awais
Khan. The plant pathology challenge 2020 data set to classify foliar
disease of apples. Applications in plant sciences, 8(9):e11390, 2020. 5
Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,
Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. {MLaaS} in the
wild: Workload analysis and scheduling in {Large-Scale} heterogeneous
{GPU} clusters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 945-960, 2022. 8

Dani Yogatama and Gideon Mann. Efficient transfer learning method for
automatic hyperparameter tuning. In Artificial intelligence and statistics,
pages 1077-1085. PMLR, 2014. 1

Zichen Zhang, Jayson Boubin, Christopher Stewart, and Sami Khanal.
Whole-field reinforcement learning: A fully autonomous aerial scouting
method for precision agriculture. Sensors, 20(22):6585, 2020. 1
Zichen Zhang, Sami Khanal, Amy Raudenbush, Kelley Tilmon, and
Christopher Stewart. Assessing the efficacy of machine learning
techniques to characterize soybean defoliation from unmanned aerial
vehicles. Computers and Electronics in Agriculture, 193:106682, 2022.
1,5

	Introduction
	Background
	Modeling Pre-Trained Weights Efficacy with Domain-Aware Datasets
	Experiments
	Data Preparation
	Neural Network Architectures
	Baseline
	Correlation between DSD and Model Training
	Model Training Performance Comparison
	Domain Relevance Experiments

	MTaaS with DSD Algorithm
	DSD and Network Architecture Characterization
	DSD Robustness Evaluation
	Limitations and Future Work

	Related Work
	Conclusion
	References

