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Abstract—This work focuses on the optimization of aerial
system controls and the design of autonomous navigation models
for dynamic field animal behavior studies. Unmanned aerial
vehicles (UAVs) can easily traverse remote terrain and quickly
navigate around occlusions to collect imagery for animal ecology
studies. Multiple UAVs, or a swarm, provide multiple views
of group-living animals, providing richer insight into animal
behaviors in the wild. However, animals are dynamic and un-
predictable, requiring system control and autonomous navigation
models capable of adapting to dynamic scenes. Here, I present
my on-going work building such a system and corresponding
autonomous navigation models, and detail future plans.

I. MOTIVATION AND CHALLENGES

UAVs have been used for animal population counts [6],
behavior studies [9], [16], pose estimation, [26], and to infer
the social dynamics of group-living animals [23]. UAVs are
adaptable to a large variety of species and habitats, such as
birds, including penguins and albatrosses [5], [11], marine an-
imals, including sea turtles, seals, and whales [8], [10], as well
as terrestrial animals, including zebras, giraffes, baboons, yaks,
and Przewalski’s horses [9], [16], [21], [23]. However, the vast
majority of these animal ecology studies rely on manually
piloted, single-UAV missions, which are not scalable.

Multiple UAVs, or swarms, overcome the challenge of the
limited flight time of a single UAV working alone, enabling
the collection of large-scale, high resolution spatiotemporal
datasets. Autonomous UAVs can collect large volumes of data
with greater consistency and reliability compared to manually
piloted missions [19]. Furthermore, autonomy is required to
conduct highly dynamic missions that would be impossible
for human pilots to conduct unassisted due to the highly
dynamic nature of the environment and the objects under
surveillance. However, little guidance exists on optimizing
aerial system controls and designing autonomous navigation
models to conduct animal ecology studies. The aerial system
must coordinate the UAVs to collect a comprehensive view of
the dynamic scene, while avoiding collisions and managing
battery levels efficiently. In addition, field animal ecology
studies are conducted in areas with few compute resources,
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Fig. 1. Design of Autonomous Aerial System for Animal Ecology

requiring an Edge AI approach to enable low-latency inference
for the autonomous navigation models.

II. CONTRIBUTION AND OBJECTIVES

My research focuses on the following objectives: 1) the
design of adaptive, autonomous navigation models for UAVs in
a dynamic context, and 2) the system controls for coordinating
autonomous aerial swarms on the edge. The main contribution
of my research is an end-to-end autonomous, aerial system for
field animal ecology studies, illustrated in Figure 1. Previous
works have approached the problem of monitoring animals
with UAVs from a computer vision perspective [21], [23], [25].
My approach complements and builds on existing projects,
such as WildDrone [1], by approaching the challenge of
monitoring animals with UAVs from an autonomous systems
control perspective. In my previously published work [18],
[19], I focus on the application of existing computer vision
models to build autonomous navigation policies to dynami-
cally gather animal ecology data with drones. I will build on
this autonomous navigation model by adding effective swarm
coordination systems controls and considering the hardware
and network constraints of executing navigation models on
the edge.

III. METHODOLOGY AND PRELIMINARY RESULTS

In January 2023, I traveled to the Mpala Research Centre
in Laikipia, Kenya, to collect video data of zebras and gi-
raffes with UAVs. We published the dataset produced by this
study, KABR: In-Situ Dataset for Kenyan Animal Behavior

https://imageomics.osu.edu/
https://icicle.osu.edu/
https://wilddrone.eu/
https://dirtmaxim.github.io/kabr/


Herd Tracking
[19]

Herd Tracking +
Telemetry [18]

Performance
Gain

Accuracy 68.8 87.0 +18.2
F-1 82.1 90.4 +8.3

TABLE I
AUTONOMOUS NAVIGATION MODEL PERFORMANCE [18], [19]

Recognition from Drone Videos [16] and demonstrated the
advantages of using data collected with UAVs to study an-
imal behavior over traditional data collection methods [14].
Building on my experience manually piloting UAV missions
in Kenya, I designed a navigation model using YOLO [15],
a popular light-weight objection detection and classification
model, to autonomously track herds [19], which recreated
flight paths with a 68.8% accuracy, Table I. Next, I analyzed
the KABR telemetry dataset [20] to characterize the missions
that best captured behavior data. Integrating these findings
into the autonomous navigation model from [19], improved its
accuracy by 18.2%, as shown in Table I. I collaborated with
Dr. Pianini and his team from the University of Bologna to
integrate KABR data [20] into the Alchemist simulator [24]
for decentralized multi-drone coordination for animal video
acquisition [7].

A major challenge in deploying dynamic, adaptive au-
tonomous aerial systems in remote regions are the very
limited memory and compute resources [12]. To overcome
this challenge, we designed a distributed edge AI system
optimized for field animal ecology studies with autonomous
aerial systems, which is currently in submission [13]. We
implement distributed AI inference on the edge to maximize
the limited compute and memory resources available. This
distributed computing approach will enable the deployment
of more sophisticated autonomous navigation models in the
future, such as the decentralized multi-drone coordination
model proposed in [7]. Our design is motivated by the unique
compute requirements for animal ecology study workloads,
which we use to model and provision edge resources. We
developed an analytic model to guide the deployment of
remote, edge resources to support autonomous aerial swarms
for field animal ecology studies.

IV. FUTURE WORK AND RESEARCH PLAN

A. Autonomous navigation and system control policies

Behavior-adaptive: A significant concern in deploying
UAVs for animal ecology studies is the potential disturbance to
the animals [3], [4], [22], [25]. For animal behavior studies, it
is crucial that the UAVs be non-disruptive to avoid artificially
inducing vigilant or evasive behaviors in the wildlife. For this
challenge, we propose a multi-agent reinforcement learning
(MARL) behavior-adaptive navigation policy which dynami-
cally adjusts the aerial system’s movements to avoid inducing
behavior in the animals. We use non-deterministic finite-state
machines (FSM) to model animal behavior with a wide variety
of possible behavior distributions to account for differences
due to habitat or demographic class. We aim to demonstrate

Milestone Timeline
Develop behavior-adaptive navigation Spring-Fall ’24
Develop individual id navigation Fall ’24 - Spring ’25
Test behavior-adaptive navigation Summer ’25
Test individual id navigation Summer ’25
Develop end-to-end integrated system Fall ’25 - Spring ’26
Test integrated system Summer ’26

TABLE II
SCHEDULE OF MILESTONES

that our proposed FSM formulation of behavior is general
enough to model a variety of species in different habitats, and
that existing MARL algorithms can covertly observe targets.
A MARL approach simultaneously handles the autonomous
navigation and the system control to coordinate the UAVs for
field animal ecology studies.

Individual identification: The individual identification of
animals is a powerful tool for accurate population estimates
and is an active area of computer vision research. Animals
with distinctive morphologies, such as zebra’s unique stripe
pattern or a whale’s unique fin shape, can be individually
identified and re-identified, from photographs [2]. The ability
to individually identify animals from UAV videos would offer
new opportunities for accurate population counts [6] and fine-
grained analysis of group dynamics [23]. However, tracking
herds and navigating UAVs to capture multiple photographs
suitable for individual identification is a challenging systems
control problem. I have partnered with a group of computer
vision experts developing AI models for the detection, track-
ing, viewpoint classification, and individual identification of
animals. I will use the output of these AI models to inform
the autonomous aerial system for individual identification
navigation, building on my previously published work [17],
[19]. This approach will expand on the aerial systems control
methodology previously proposed in [19].

B. Field testing

I am currently testing the autonomous navigation policy
proposed in [19] and refined in [18] on the zebra and giraffe
herds at The Wilds, a 10,000-acre conservation center located
in Ohio [27]. In the future, I plan to test these navigation
policies and system control techniques at The Wilds. I have
obtained approval from The Wilds to study the Grevy’s zebras,
giraffes, onagers, Przewalski’s horses, and African Wild Dogs.

C. Schedule of milestones

My planned work is summarized in Table II. The system
control policies and autonomous navigation models described
in Section III and IV-A are developed and tested virtually
in simulation. Next, they will be tested at The Wilds during
summer months while the animals are in pasture. The final
phase of my thesis will integrate the distributed edge AI
design, autonomous navigation models, and systems control
policies to create an adaptive autonomous aerial system for
dyanmic field animal ecology studies.

https://www.thewilds.org/
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