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Abstract
Camera traps are important tools in animal ecology for biodiversity
monitoring and conservation. However, their practical application
is limited by issues such as poor generalization to new and unseen
locations. Images are typically associated with diverse forms of
context, which may exist in different modalities. In this work, we
exploit the structured context linked to camera trap images to boost
out-of-distribution generalization for species classification tasks
in camera traps. For instance, a picture of a wild animal could be
linked to details about the time and place it was captured, as well
as structured biological knowledge about the animal species. While
often overlooked by existing studies, incorporating such context of-
fers several potential benefits for better image understanding, such
as addressing data scarcity and enhancing generalization. However,
effectively incorporating such heterogeneous context into the vi-
sual domain is a challenging problem. To address this, we propose
a novel framework that transforms species classification as link
prediction in a multimodal knowledge graph (KG). This framework
enables the seamless integration of diverse multimodal contexts for
visual recognition. We apply this framework for out-of-distribution
species classification on the iWildCam2020-WILDS and Snapshot
Mountain Zebra datasets and achieve competitive performancewith
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state-of-the-art approaches. Furthermore, our framework enhances
sample efficiency for recognizing under-represented species.1
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1 Introduction
Human activities are increasingly endangering wildlife species, re-
sulting in a significant global decline in animal populations [2, 19,
37]. Therefore, accurately identifying and tracking wildlife species
is vital for preserving ecological biodiversity. Camera traps, digital
cameras activated by motion or infrared in natural habitats, have
become ecologists’ preferred data collection tool [23, 44, 67]. How-
ever, manually sifting through the numerous images they capture is
a time-consuming and arduous task for experts. This has led to the
increased use of computer vision techniques for species recognition
[1, 13, 30, 52, 56, 68]. Yet, a challenge has arisen: many of these

1Our code is available at https://github.com/OSU-NLP-Group/COSMO
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models overfit to the backgrounds of their training images, dimin-
ishing their effectiveness on images from new locations [9, 39, 55].
This underscores the need for more adaptable species classification
models that perform well across diverse contexts.

Building on this, cognitive science research has demonstrated
the profound influence of contextual information on human per-
ception and visual recognition processes [4, 5, 45]. Particularly in
wildlife monitoring, camera trap images are replete with crucial
contextual data, such as where (i.e., camera location coordinates)
and when (i.e., timestamps) a photo is taken. Furthermore, the
structured knowledge of biology taxonomy (e.g., Open Tree Taxon-
omy [46]) can also provide valuable context for understanding the
species in camera trap images. Such context provides important
knowledge that can boost the recognition of visual concepts. For
instance, the knowledge that a certain feline image was taken from
a camera trap in Africa significantly reduces the likelihood of it
representing a tiger. In addition, more robust associations might be
learned with the aid of contextual information because the context
provides invariable knowledge that is unbiased towards variations
in the illuminations or angles of an image. This may help to com-
pensate for domain shifts in species images resulting from such
variations and potentially lead to better out-of-distribution (OOD)
generalizability [6, 21]. Consequently, the incorporation of con-
textual information in species identification presents a significant
problem worthy of investigation.

Nevertheless, contextual information has been under-exploited
in the literature of image classification; standard image classifica-
tion models [24, 59] often disregard the contextual information
tied to images. This is partly due to the heterogeneous nature of
the context, which makes it challenging to incorporate contextual
information in image classification using a unified learning frame-
work. Contextual information in differentmodalities (e.g., numerical
values, textual descriptions, or structured taxonomies) is usually
represented separately from the image in distinct feature spaces.
The question of effectively combining features from these different
spaces within a unified learning framework remains unanswered.
Existing research typically treats all the features as additional in-
put to the classifier via feature vector concatenation [6, 21, 32]
or utilizes fusion to obtain aggregate representations [16, 18]. De-
spite their simplicity, such approaches are incapable of capturing
complex structural and semantic relationships between images and
various contextual information. Additionally, these approaches as-
sume a uniform availability of contextual information across all
images, which is often unrealistic in real-world scenarios. As a
result, their flexibility is limited, especially when considering situa-
tions where certain images may lack some contextual details, such
as coordinates or timestamps, like in camera trap photos.

Towards this end, we propose a new learning framework, COSMO
(Classification Of Species using Multimodal cOntext), where we
first organize all species images and contextual information as a
multimodal knowledge graph (KG) and then reformulate species
classification as the standard link prediction task on the KG. Specifi-
cally, we consider species images, their corresponding labels (which
are available in the training data), and their associated attributes
provided in the context as entities within our KG (see Figure 1 for
an example). We represent the relationships between these entities

as edges in our KG (see a more concrete description of our KG con-
struction in Section 3.2). Our KG is multimodal because its entities
belong to different modalities. In this context, species classification
can be framed as a link prediction task, where the objective is to
predict the presence of an edge between an image and its corre-
sponding species label within the KG. This learning framework
enables a unified way to incorporate heterogeneous contextual
information for species classification. Each form of multimodal
information is treated as a type of entity, a first-class citizen of the
multimodal KG with its representation computed using a modality-
specific encoder. The learning process enables the interaction of
different modalities in a joint feature space for robust representation
learning. In addition, COSMO demonstrates greater flexibility by
not assuming uniform availability of all contextual information,
unlike previous methods.

We employ the widely used DistMult [70] model as our backbone
model for link prediction to instantiate the COSMO framework.
To assess the performance of COSMO, particularly in terms of
out-of-distribution generalization, we conduct experiments on the
iWildCam2020-WILDS benchmark [30] and Snapshot Mountain
Zebra [48], which are standard datasets for species classification in
camera trap photos. They contain naturally occurring wildlife pho-
tos associated with metadata. Factors like variation in illumination,
camera pose, and motion blur pose challenges for robustness and
generalization, making these benchmarks an ideal testbed for as-
sessing our framework’s effectiveness. We show that COSMO offers
a unified framework to incorporate heterogeneous context lead-
ing to improved species classification performance over existing
out-of-distribution generalization approaches.

The main contribution of this work is three-fold:

• We propose a novel framework, COSMO, that reformulates
species classification as link prediction in amultimodal knowl-
edge graph, which provides a unified way to incorporate
heterogeneous forms of contextual information associated
with images for visual recognition.

• We instantiate this framework for species classification of
wildlife images, including the construction of a novel mul-
timodal KG for this problem that integrates spatiotemporal
information and structured biology knowledge.

• Evaluation on the standard iWildCam2020-WILDS and Snap-
shot Mountain Zebra datasets demonstrate that COSMO
achieves competitive performance compared with standard
species classification methods, especially in improving ro-
bustness and OOD generalization.

2 Related Work
Species Recognition in Camera Traps. Deep neural networks
such as CNNs have been successfully deployed for large-scale recog-
nition of camera trap images [43, 64, 68]. This has paved the way
for significant savings in logistics costs for biodiversity conser-
vation. However, training such models often requires enormous
amounts of data to perform well. Sadegh Norouzzadeh et al. and
Bothmann et al. propose active learning approaches to mitigate
the sample inefficiency of training species classification models
in such systems. Another challenge arises from the tendency of
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Figure 1: Overview of our framework COSMO. Left: Our multimodal knowledge graph for camera traps and wildlife. Photos
from camera traps are jointly represented in the KG with contextual information such as time, location, and structured biology
taxonomy. The taxonomy is obtained from Open Tree Taxonomy (OTT) [46] or iNaturalist [25]. Right: In our formulation of
species classification as link prediction, the plausibility score𝜓 (𝑠, 𝑟, 𝑜) of each (subject, relation, object) triplet is computed using
a KGE model (e.g., DistMult), where the subject, relation, and object are all first embedded into a vector space. Specifically, for
our multimodal KG, we represent visual entities using a ResNet-50 pre-trained on ImageNet and represent numerical entities
using an MLP. For categorical entities and relations, we directly represent them with embedding lookups.

these models to overfit to the backgrounds present in the train-
ing images [9, 39], which limits their deployment to new camera
trap locations [55, 64]. Improving robustness to new locations is
a significant research challenge [8, 63] leading to the curation of
datasets like iWildCam2020-WILDS [30] to test OOD generalization
for such systems. Domain adaptation approaches in the literature
seek to mitigate this issue by distributionally robust optimization
[26, 50] or learning domain invariant features [61]. In contrast, this
work helps improve the robustness to new camera trap locations
by utilizing a multimodal KG of heterogeneous contexts.

Image Classification with Auxiliary Information. Despite the
ubiquity of contextual metadata, the potential of leveraging them
for image classification has been largely under-explored. Previ-
ous studies have primarily treated metadata as additional input
features for classifiers [6, 21, 32], representing a shallow use that
fails to capture the intricate relationships between metadata and
images. Some works have attempted to model pairwise dependen-
cies between images using heuristics based on metadata, such as
shared tags on social media [35, 38] or aggregating information
from neighborhood images with similar metadata [28] while dis-
regarding more complex relationships among images, metadata,
and labels. Metaformer [18] feeds a sequence of image patches and
metadata to a Transformer model for their fusion. Additionally,
these methods assume a uniform availability of metadata for all im-
ages, which is often not the case in reality due to data scarcity. For

instance, the camera trap location coordinates may not be available
in some cases due to privacy and security reasons. In our work, we
do not assume such uniform availability and build the multimodal
KG using available metadata.

Apart from the metadata, external sources of knowledge are
also used in image classification. For instance, Jayathilaka et al.
embed each class as a vector based on a hierarchy derived from
WordNet [40]. Alsallakh et al. develop a class hierarchy-aware CNN
for image classification on ImageNet. Similarly, Bertinetto et al.
and Zhang et al. design hierarchy-aware objectives to incorporate
taxonomy in image representations. BioCLIP [60] verbalizes the
taxonomic hierarchy to train a CLIP-style foundational model for
species classification across plants, animals, and fungi. Marino et al.
represent images as local subgraphs of Visual Genome [31]. In
contrast, COSMO constructs a global KG with both metadata and
external knowledge, e.g., taxonomy information from Open Tree
Taxonomy, and approaches image classification as link prediction
within the KG. Our novel formulation is flexible in handling data
scarcity of metadata and enables reasoning over diverse relation-
ships present in the KG.

KG Link Prediction. Most real-world KGs are incomplete. The
task of link prediction or knowledge graph completion (KGC) tries
to infer missing links given the observed ones. Early approaches for
link prediction range from translation-based models [12, 34] and
semantic matching models [42, 70] to the ones that leverage neural
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networks like feedforward neural networks [20], CNNs [17, 41],
and Transformer-based models [15, 53, 71]. These methods use a
parameterized scoring function based on learned entity and rela-
tion embeddings to calculate the plausibility of a particular triplet.
However, it could be challenging to fully encode the rich semantic
information of KGs into such shallow embeddings. To mitigate
this, Schlichtkrull et al., Vashishth et al., Yu et al., Pahuja et al. use
graph neural networks (GNNs) to encode the rich neighborhood
context of entities for link prediction. In our framework, we employ
a global multimodal KG, which consists of biological taxonomy and
metadata, as the context to enhance OOD generalization.

Multimodal KG Reasoning. Multimodal KGs extend traditional
KGs by including entities of different modalities such as categorical
data, images, numerical data, etc. KBLRN [22] is a pioneering work
in multimodal KG reasoning that uses extra information in the form
of relational and numerical features for multimodal KG reasoning.
Similarly, IKRL [57] proposes a fusion of linguistic and visual infor-
mation with structured information for link prediction. MKBE [49]
constructs a multimodal KG using numerical, image, and textual
information, treating them as entities instead of auxiliary features,
for the link prediction task. MR-GCN [69] further extends it by
including support for more modalities, e.g., numerical, temporal,
textual, visual, and spatial predicate links in the multimodal KG. To
provide a more expressive way for interaction between different
modalities, IMF [33] uses bilinear pooling to fuse multiple modality
features and trains it using contrastive learning on the contextual
entity representations. Our work leverages link prediction in a mul-
timodal KG to enable out-of-distribution generalization for species
classification in camera traps.

3 Methodology
3.1 Preliminaries
Multimodal KG. Given a set of KG entities with categorical val-
ues EKG , multimodal entities EMM , and a set of relations R, a
multimodal KG can be defined as a collection of facts F ⊆ (EKG ∪
EMM ) × R × (EKG ∪ EMM ) where for each fact 𝑓 = (ℎ, 𝑟, 𝑡),
ℎ, 𝑡 ∈ (EKG ∪ EMM ), 𝑟 ∈ R.
KG Link Prediction. The task of link prediction is to infer missing
facts based on known facts in a KG. Given a link prediction query
(ℎ, 𝑟, ?) or (?, 𝑟 , 𝑡), the model ranks the target entity among the set
of candidate entities.
Problem Setup. The task entails species recognition for camera
trap images amidst distribution shifts. The training and test sets
comprise images obtained from disjoint camera traps, enabling the
evaluation of out-of-domain (OOD) generalization. During training,
we use the multimodal KG to train our model, while we use just the
image to make predictions for inference. The goal is to learn visual
representations robust to distribution shifts by leveraging the rich
structural and semantic information provided by the multimodal
knowledge graph.

3.2 Building the Multimodal KG
The multimodal KG comprises entities from different modalities
interconnected by heterogeneous relationships. The base KG con-
sists of camera trap images linked with their species labels from

the training set (<image>, instance of, <species label>). Next,
we progressively augment the KG with links connecting the exist-
ing entities to contextual information. In this work, we utilize the
following attributes to provide context for species classification:

• Taxonomy: The taxonomy forms the core of the multimodal
knowledge graph, connecting distinct species to higher-
order taxa. For iWildCam2020-WILDS, we obtain the phylo-
genetic taxonomy corresponding to the species of interest
from Open Tree Taxonomy (OTT) [46] and manually link
it to the species in the dataset. For the Snapshot Mountain
Zebra dataset, we utilize the iNaturalist taxonomy [25] map-
ping provided by www.lila.science.

• Location: The camera trap images are associated with the
GPS coordinates of their source cameras. For the iWildCam2020-
WILDS dataset, this metadata is available for a portion of
the images (67%) and is obfuscated within 1 km. for privacy
reasons. Animals demonstrate a preference for particular
habitats; thus, the location context attribute is useful for
species recognition.

• Time: The timestamp attribute indicates the precise moment
when the image was captured. This timestamp information
proves valuable in species recognition since specific animals
exhibit activity patterns tied to particular times of the day,
such as feeding, hunting, or defending their territory. In
our multimodal knowledge graph, we utilize the timestamp
information at an hourly granularity.

Figure 1 presents a schematic representation of various contexts
in a multimodal KG. For location, time, and taxonomy attributes,
the corresponding RDF triplets can be represented as (<image>,
location, <GPS co-ordinate>), (<image>, time, <timestamp>),
and (<taxon_1>, parent, <taxon_2>), respectively.

3.3 Model Architecture
We use DistMult [70], a strong baseline on KGE benchmarks, as our
backbone KG embedding model.2 Note that COSMO is a general
framework that can leverage a variety of KG embedding models
proposed in the literature. DistMult minimizes a bilinear scoring
function between the entity embeddings of the subject and object
entities. For a given triplet (ℎ, 𝑟, 𝑡), the scoring function of DistMult
is defined as:

𝜓 (ℎ, 𝑟, 𝑡) = 𝒉𝑇𝑾𝑟 𝒕 =
𝑑∑︁
𝑖=1

𝒉𝑖 · 𝑑𝑖𝑎𝑔(𝑾𝑟 )𝑖 · 𝒕𝑖 (1)

Here, 𝒉 and 𝒕 denote the vector representations of the head entity
and tail entity, respectively. The relation representation is parame-
terized by𝑾𝑟 ∈ R𝑑×𝑑 , a diagonal matrix.

3.3.1 Multi-modality Encoders. We use an ImageNet pre-trained
ResNet-50 [24] as the image encoder. The base feature of each
location is represented as a 2D vector [latitude, longitude].
Following prior work [49], we use an MLP to project the 2D loca-
tion feature to a higher dimensional space. Similarly, for temporal
context, we use an MLP to project the integer value of the hour

2Recent work [51] showed that simple baselines like DistMult outperform more so-
phisticated neural network baselines when trained properly.

www.lila.science
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timestamp to the higher dimensional embedding space. For cat-
egorical entities such as species labels and taxa, we learn dense
embeddings as representations.

3.3.2 Training. We train the model using an optimization strategy
based on themodality of the tail entity. For categorical attributes, we
formulate it as a multi-class classification problem and use standard
cross-entropy loss to train the model. For instance, in case of a
given image-species label ground truth triplet (I, instance of, 𝑠),
the loss is defined as:

L(I,instance of, 𝑠) =

− log
exp(𝜓 (I, instance of, 𝑠))∑

𝑠
′ ∈𝑆 exp(𝜓 (I, instance of, 𝑠

′ ))
,

(2)

where 𝑆 denotes the set of all species labels and𝜓 (ℎ, 𝑟, 𝑡) denotes
the plausibility score of KG edge (ℎ, 𝑟, 𝑡).

For numerical attributes such as location and time, we formu-
late it as a multi-class multi-label classification problem and use a
binary cross-entropy loss to optimize the parameters. This choice
is motivated by the fact that images can be associated with a range
of GPS coordinates and timestamps, e.g., most animals are active
multiple times during the day. The label space comprises all entities
of ground truth modality. For instance, in the case of a given time
modality ground truth triplet (I, time, 𝑡), the loss is defined as:

L(I, time, 𝑡) = −
∑︁
𝑡
′
𝑙
I,𝑡𝑖𝑚𝑒

𝑡
′ · log(𝜎 (𝜓 (I, time, 𝑡

′
)))+

(1 − 𝑙
I,𝑡𝑖𝑚𝑒

𝑡
′ ) · (1 − log(𝜎 (𝜓 (I, time, 𝑡

′
)))),

(3)

where 𝑙I,𝑡𝑖𝑚𝑒

𝑡
′ is a binary label that indicates whether the triplet

(I, 𝑡𝑖𝑚𝑒, 𝑡
′ ) exists in the set of observed triplets and 𝜎 (·) is the

sigmoid activation function. We train the model by sequentially
minimizing the objective on each type of context triplet. Figure 1
illustrates the overall model architecture.

4 Experimental Setup
4.1 Datasets
We test our approach on the iWildCam2020-WILDS dataset [30], a
variant of the iWildCam 2020 dataset [7] and Snapshot Mountain
Zebra [48]. iWildCam2020-WILDS is a benchmark dataset designed
to test OOD generalization for the task of species classification. The
label space consists of 182 species. Each domain corresponds to a
different location of the camera trap. The training and test images
belong to disjoint sets of locations in the OOD setting.

Snapshot Mountain Zebra comprises camera trap images taken
at the Mountain Zebra National Park in South Africa as a part of the
Snapshot Safari project [48]. The label space consists of 53 species,
mostly annotated at the species level. Prominent animal species
include Cape Mountain zebra, kudu, and springbok. The location
coordinates are not available for this dataset due to privacy and
security reasons. We manually split the images to have disjoint
camera traps in each split due to the absence of a standard split.
These datasets pose a significant challenge for species recognition
due to factors like inadequate illumination, motion blur, occlusion,
temporal variations, and diverse weather conditions, effectively
reflecting the complexities of real-life camera trap usage. Dataset
statistics are shown in Table 2.

4.2 Baselines
We use the COSMO with no context that uses just the species label
edges as our baseline. In addition, we compare with the following
baseline algorithms for OOD generalization: Empirical Risk Mini-
mization (ERM) [30], which trains the model to minimize average
training loss, CORAL [61], a method for unsupervised domain adap-
tation that learns domain invariant features, Group DRO [26], an
algorithm that uses distributionally robust optimization to perform
well on subpopulation shifts, Fish [58] that attempts domain adap-
tation using gradient matching, and ABSGD [50], an optimization
method for addressing data imbalance. As an alternative way of
incorporating contextual information, we implement MLP-concat,
a baseline which utilizes the location and temporal features at both
training and inference time. It uses vanilla concatenation to fuse
visual and spatiotemporal representations which are then fed into
an MLP. The missing features are substituted by a mean value
computed over the training dataset. All models use a pre-trained
ResNet-50 as image encoder. We evaluate the models using overall
accuracy as the metric.

4.3 Implementation Details
We implement our models in PyTorch. The hidden dimension of
the multimodal KG embedding model is set to 512, with a batch
size of 16. The images are resized to 448 × 448 before input to
the image encoder. For the location and time attributes, we use a
3-layer MLP that projects the feature input dimension to the embed-
ding dimension and uses PReLU as the activation function. We use
Adam [29] optimizer with a learning rate of 3e-5 and 1e-3 for the
image encoder and the rest of the parameters, respectively. In our
experiments, the models on iWildCam2020-WILDS and Snapshot
Mountain Zebra were trained for 12 and 15 epochs, respectively.
We use early stopping based on validation accuracy to prevent over-
fitting. The early stopping patience parameter is set to 5 epochs.
All results are reported with averages across three random seeds.

5 Results
In this section, we attempt to answer the following questions:

Q1. Does the use of contextual information contribute toward
better performance? (Section 5.1)

Q2. How does COSMO’s performance compare to the existing
state-of-the-art? (Section 5.2)

Q3. Does the taxonomy-aware COSMO model result in more
semantically plausible predictions? (Section 5.4.1)

Q4. How does COSMO’s performance compare to baselines for
under-represented species? (Section 5.4.3)

5.1 Performance Comparison with Addition of
Multimodal Context

We add taxonomy, location, and temporal context information to
the base KG and observe the impact on the species classification per-
formance. Table 1 shows the results for the iWildCam2020-WILDS
dataset. We make the following observations from these results:

Firstly, the addition of one or more contexts results in a perfor-
mance gain over the no-context baseline in the vast majority of
cases. For instance, in the case of COSMOwith taxonomy, we obtain
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Table 1: Species classification results on iWildCam2020-WILDS (OOD) dataset. The first baseline in the second section shows the
no-context baseline that uses only image-species labels as KG edges. All models use a pre-trained ResNet-50 as image encoder.
Parentheses show standard deviation across 3 random seeds. We highlight the best result in bold and the second best with
underline. We mark the improvements over COSMO (no-context) in green. Missing values are denoted by –.

Model Multi-modality Val. Acc. (%) Test Acc. (%)
Taxonomy Location Time

Empirical Risk Minimization (ERM) [30]

–

62.7 (±2.4) 71.6 (±2.5)
CORAL [61] 60.3 (±2.8) 73.3 (±4.3)

Group DRO [26] 60.0 (±0.7) 72.7 (±2.0)
Fish [58] 58.0 (±0.2) 63.2 (±0.7)

ABSGD [50] – 72.7 (±1.8)
MLP-concat ✓ ✓ 27.3 (±0.8) 39.6 (±1.0)

COSMO (no-context) – 63.2 (±0.4) 68.8 (±2.1)

Si
ng

le
co
nt
ex
t

COSMO
✓ 62.8 (±2.2) (-0.4) 72.4 (±2.5) (+3.6)

✓ 64.4 (±1.0) (+1.2) 74.5 (±3.6) (+5.7)
✓ 64.7 (±0.4) (+1.5) 71.1 (±3.1) (+2.3)

M
ul
tip

le
co
nt
ex
ts

COSMO

✓ ✓ 65.4 (±0.4) (+2.2) 70.4 (±2.1) (+1.6)
✓ ✓ 64.9 (±1.6) (+1.7) 73.7 (±3.8) (+4.9)

✓ ✓ 63.0 (±2.1) (-0.2) 74.2 (±2.2) (+5.4)
✓ ✓ ✓ 65.0 (±1.6) (+1.8) 71.5 (±2.8) (+2.7)

Table 2: Dataset Statistics.

Dataset Split # Images # Camera traps

iWildCam2020-WILDS
Train 129,809 243
Val. 14,961 32
Test 42,791 48

Snapshot Mountain Zebra
Train 39,820 13
Val. 14,754 3
Test 18,417 3

a 3.6% improvement over the no-context baseline in terms of test
accuracy. Incorporating location context produces a notable 5.7%
enhancement in test set accuracy, underlining the significance of
auxiliary information for improved out-of-domain generalization.
We further analyze the role of location in predicting the species dis-
tribution in Section 5.4.2. Additionally, utilizing the time attribute
yields a substantial improvement over the no-context baseline, re-
sulting in a 2.3% performance gain.

Secondly, we observe that the use of multiple contexts results in a
performance boost in a majority of cases. For instance, the addition
of location and time attributes improves over the taxonomy baseline
by a margin of 2.6% and 2.1% respectively in terms of the validation
set accuracy. Similarly, the taxonomy with time baseline obtains
an improvement of 1.3% and 2.6% over the taxonomy and time
baselines, respectively in terms of test accuracy.

Table 3 shows the results for the Snapshot Mountain Zebra
dataset. Incorporating taxonomy and time contexts results in a

Table 3: Species classification results on Snapshot Mountain
Zebra dataset. We obtain the results for OOD baselines by
training them on this dataset using publicly available code.
We mark the improvements over COSMO (no-context) in
green.

Model Multi-modality Test Acc. (%)
Taxonomy Time

ERM [30]

–

96.2 (±0.6)
CORAL [61] 96.6 (±1.2)
Group DRO [26] 93.4 (±2.1)
ABSGD [50] 93.4 (±2.0)
MLP-concat ✓ 94.7 (±0.0)

COSMO (no-context) – 92.9 (±2.5)

COSMO
✓ 93.9 (±2.8) (+1.0)

✓ 95.3 (±3.1) (+2.4)
✓ ✓ 96.8 (±0.4) (+3.9)

performance boost of 1% and 2.4% respectively, over the no-context
baseline. Furthermore, their combined use yields a noteworthy 3.9%
gain in test accuracy.
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5.2 Comparison with OOD Generalization
Approaches

We compare the performance of the COSMO with methods specifi-
cally designed for out-of-domain generalization. Notably, our best-
performing model, which uses location as context, achieves state-of-
the-art performance in terms of OOD test accuracy, outperforming
the existing SOTA model (CORAL) by 1.2% on the iWildCam2020-
WILDS dataset. Likewise, COSMOwith taxonomy and time contexts
outperforms existing approaches on the Snapshot Mountain Zebra
dataset. This demonstrates the effectiveness of leveraging diverse
multimodal contexts for achieving more robust OOD generalization,
even in the absence of sophisticated objectives aimed at improving
domain generalization, e.g., CORAL, Group DRO, ABSGD, and Fish.
The MLP-concat baseline overfits the training camera trap loca-
tions on the iWildCam2020-WILDS dataset, resulting in suboptimal
performance. COSMO consistently outperforms the MLP-concat
baseline by a significant margin across both datasets.

Table 4: Performance comparison among different KGEmod-
els (iWildCam2020-WILDS). DistMult outperforms ConvE in
a majority of cases.

Model Configuration KGE Val. Acc.

No-context DistMult 63.2 (0.4)
ConvE 62.2 (0.4)

Taxonomy Only DistMult 62.8 (2.2)
ConvE 64.7 (0.6)

Location Only DistMult 64.4 (1.0)
ConvE 63.8 (1.8)

Time Only DistMult 64.7 (0.4)
ConvE 59.6 (2.8)

Taxonomy, Location, Time DistMult 65.0 (1.6)
ConvE 55.8 (3.5)

Table 5: Quantitative evaluation of COSMO errors with
and without taxonomy using a hierarchical distance met-
ric (iWildCam2020-WILDS). The taxonomy-aware model
achieves better performance in terms of Avg. LCA height.

Model Avg. LCA height

COSMO (no-context) 6.72
COSMO (w/ taxonomy) 6.39

5.3 Compairson with Alternative KGE
Backbones

In our preliminary experiments, we explored the use of ConvE [17],
a strong neural network baseline, as an alternative to DistMult for
the KGE backbone model for the iWildCam2020-WILDS dataset
(Table 4). Sun et al. [62] show that ConvE outperforms more recent
neural network KGE models when evaluated properly. We observe
that DistMult outperforms ConvE in amajority of cases, particularly

when all incorporating all context types simultaneously. Further-
more, DistMult offers the advantage of being more computationally
efficient than neural network based KG embedding approaches.

5.4 Fine-grained Analyses
5.4.1 Error Analysis for the Taxonomy-aware Model. To analyze
the predictions of our model with and without taxonomy informa-
tion, we employ a metric that takes into account the hierarchical
structure of the labels. Conventional measures like top-1 accuracy
treat all errors equally, disregarding the semantic relationships
among labels. Hence, we use the Least Common Ancestor (LCA)
[10] for the misclassified examples as the metric for this analysis
(Table 5). A lower LCA value indicates that the errors made by the
taxonomy-aware model are more semantically related to the true
label compared to the baseline.

We compare the predictions of COSMO which uses taxonomy
to the no-context baseline (Figure 2). Notably, the inclusion of
taxonomy information assists the model in avoiding implausible
predictions. For instance, consider the case of the animal ocelot
(Leopardus pardalis), which belongs to the cat family (feliformia).
The use of taxonomy information prevents the misprediction of this
animal as a gray fox, which belongs to the dog family (caniformia).
Similarly, in the second example, the baseline model incorrectly
predicts the given image as Central American agouti, a mammal,
instead of ocellated turkey, a bird.

5.4.2 Correlation Analysis for Location and Time Attributes. We
examined the relationship between species distribution and numer-
ical attributes, such as location and time, to gain insights into how
these contexts contribute to the task. The location coordinates can
be grouped into six clusters. A visualization of the location clusters
is shown in Figure 4. For each pair of cluster centroids, we compute
the Bhattacharyya distance [11], a measure of similarity between
probability distributions, between the training and validation set
species distributions (Figure 3a). Similarly, we plot the distance be-
tween species distributions corresponding to each hour of the day
(Figure 3b). We observe that the similarity (corresponds to lower
distance) peaks along the diagonal for the location attribute, as
well as for the day/night categorization of the time attribute. This
suggests these metadata give a prior for species class distribution.

Table 6: Performance comparison on under-represented
species classification (OOD test set). The best performing
COSMO model improves over the ERM baseline by a signifi-
cant margin.

Model Accuracy

ERM 16.3
COSMO 19.0 (+2.7)

3The null value in row 4 is due to the absence of species overlap with respective
validation clusters. The null value in columns 3 and 4 indicates the absence of these
clusters in the validation set.
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COSMO (w/ taxonomy)

COSMO (no-context)

Ocelot
(leopardus pardalis)

Gray fox
(urocyon cinereoargenteus)

ocelot (leopardus pardalis) → 
leopardus → felinae → felidae → 
feliformia → carnivora

Gray fox (urocyon cinereoargenteus) → 
urocyon → canidae → caniformia → 
carnivora

Camera Trap
Image

COSMO (w/ taxonomy)

COSMO (no-context)

Ocellated turkey
(meleagris ocellata)

Central American agouti
(dasyprocta punctata)

Ocellated turkey (meleagris ocellata) → 
meleagris → meleagridinae → … → 
birds (aves)

Central American agouti (dasyprocta 
punctata) → dasyprocta →
dasyproctidae → hystricomorpha → … 
→ mammals (mammalia)

Camera Trap
Image

Taxonomy

Figure 2: Comparison of COSMO model with and without taxonomy edges (iWildCam2020-WILDS validation set). The use of
taxonomy information helps the model to avoid semantically implausible predictions.

(a) Each color square shows
the distance between the
corresponding validation
cluster centroid on x-axis and
the training cluster centroid
on y-axis. The correlation
peaks along the diagonal
(highlighted in red)3.

(b) Each color square shows
the distance between the cor-
responding training hour slot
on x-axis and validation hour
slot on y-axis. The correlation
peaks for day-day and night-
night hour slots (highlighted
in red).

Figure 3: Correlation analysis for location and time attributes.
Best viewed in color.

5.4.3 Performance Comparison for Under-represented Species. The
iWildCam2020-WILDS dataset exhibits a long-tail species distri-
bution [30], posing challenges for accurately recognizing species
that are under-represented in the training set. We compare the
performance of our best-performing model (COSMO with location
context) to the baseline Empirical Risk Minimization (ResNet-50)
model (Table 6). We focus on examples whose labels have a max-
imum of 100 instances in the training set and report the overall
test set accuracy for this subset of species. This selection includes
species like banded palm civet, Brazilian cottontail, and leopard,
all classified as vulnerable in IUCN’s list of threatened species [66].
We observe that COSMO outperforms the ERM baseline by 2.7%,

Figure 4: Plot of location GPS coordinates for training and
validation splits (iWildCam2020-WILDS). The coordinates
can be grouped into six clusters. Most coordinates exhibit an
overlap with their respective cluster centroids at this visual-
ization scale. Best viewed in color.

which is a 16.6% relative improvement. These findings illustrate the
potential of our model to mitigate sample inefficiency in existing
approaches for under-represented species by utilizing multimodal
context information.

6 Discussion and Conclusion
In this work, we presented a novel framework in which the species
classification task is reformulated as link prediction in a multimodal
KG of species images and their diverse contextual information. This
enables a unified way to leverage various forms of multimodal
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context, e.g., numerical, categorical, and taxonomy information
associated with images for species classification in camera traps.
Through our experiments, we demonstrate that our framework
achieves superior out-of-distribution generalization and competi-
tive performance with state-of-the-art for species classification on
the iWildCam2020-WILDS and Snapshot Mountain Zebra datasets.
Additionally, our framework exhibits improved sample efficiency
in recognizing under-represented and vulnerable wildlife species.

We assume that there is a perfect linkage between these con-
texts and the corresponding images in the training set. However, in
scenarios where such linkage is unavailable, the training procedure
may introduce noise, which could lead to inferior generalization
capabilities in the model. Additionally, it is important to note that
the effectiveness of diverse contexts varies based on their informa-
tiveness for the given task. Interestingly, combining two or more
contexts could degrade performance compared to using a single
context type in some cases (Table 1). We posit that specific meta-
data, like location, might have a stronger regularization effect on
improving generalization in species recognition tasks than other
metadata. To address this, future work will involve enabling the
model to assign greater importance to more informative metadata.

Furthermore, we are interested in training a foundation model
for camera trap species classification across a wider spectrum of
species. This model should demonstrate enhanced generalization
capabilities for new camera trap setups worldwide. Additionally,
we aim to integrate a broader spectrum of diverse contexts such as
temperature, weather conditions, habitat, and sequence information
for use with real-world camera trap deployments.
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Figure C.1: Species probabilities conditioned on day/night
for the 10 most frequent species in the training set
(iWildCam2020-WILDS). Animal species demonstrate dis-
tinct temporal preferences for their daily activities, as evi-
denced by the contrasting probabilities observed during day
and night.

Supplementary Material
A Datasets
The iWildCam2020-WILDS dataset [30] and Snapshot Mountain
Zebra dataset [48] are released under the Community Data License
Agreement (CDLA). The Open Tree Taxonomy [46] is licensed
under Creative Commons Attribution 1.0 Generic license. Both
licenses permit their use for academic research in their original
form. The iWildCam2020-WILDS label space consists of 182 species.
Out of these 182 species, 155 species have support in the OTT
taxonomy.

B Experiment Details
Table B.1 and Table B.2 show the training time of COSMO under dif-
ferent settings for iWildCam2020-WILDS and Snapshot Mountain

Zebra, respectively. We performed all experiments using a single
Nvidia RTX A6000 GPU.

Table B.1: Training time for different ablations of COSMO
(iWildCam2020-WILDS). All experiments use a single Nvidia
RTX A6000 GPU.

Multi-modality Running time (hrs.)
Taxonomy Location Time

– 3.9
✓ 3.9

✓ 6.3
✓ 7.5

✓ ✓ 6.3
✓ ✓ 7.5

✓ ✓ 9.9
✓ ✓ ✓ 9.9

Table B.2: Training time for different ablations of COSMO
(Snapshot Mountain Zebra). All experiments use a single
Nvidia RTX A6000 GPU.

Multi-modality Running time (hrs.)
Taxonomy Time

– 4.2
✓ 4.2

✓ 7.0
✓ ✓ 7.0

C Time Attribute Analysis
We analyzed the time attributes associated with the images of
the 10 most frequent species in the training set of iWildCam2020-
WILDS dataset (Figure C.1). We observed a significant difference
in the species distributions between day and night4. This indicates
that temporal information plays a crucial role in recognizing these
species.

4In this analysis, we define the time duration between 5 A.M. and 7 P.M. local time as
daytime.
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