The International Society of Precision Agriculture presents the

16" International Conferenceon

Precision Agriculture;

21-24 July 2024 | Manhattan, Kansas USA

A Growth Stage Centric Approach to Field Scale
Corn Yield Estimation by Leveraging Machine
Learning Methods From Multimodal Data

Lucas Waltz'!, Sushma Katari', Taylor Dill}, Canaan Porter?, Osler Ortez?, Laura
Lindsey?, Arnab Nandi?, Sami Khanal'

'Department of Food, Agricultural, and Biological Engineering, The Ohio State
University, Columbus, Ohio, USA

2Department of Computer Science and Engineering, The Ohio State University,
Columbus, Ohio, USA

3Department of Horticulture and Crop Science, The Ohio State University, Columbus,
Ohio, USA

A paper from the Proceedings of the
16" International Conference on Precision Agriculture
21-24 July 2024
Manhattan, Kansas, United States

Abstract.

Field scale yield estimation is labor-intensive, typically limited to a few samples in a given field,
and often happens too late to inform any in-season agronomic treatments. In this study, we used
meteorological data including growing degree days (GDD), photosynthetic active radiation (PAR),
and rolling average of rainfall combined with hybrid relative maturity, organic matter, and weekly
growth stage information from three small-plot research locations to predict corn yield. Daily time-
series data was transformed from the time domain to the growth stage domain and subsequently
trained using a Long Short-Term Memory (LSTM) machine learning model. The results showed
a mean absolute error (MAE) of 22.6 bu/acre on a five-fold cross validation set. When trained
with location-specific data, the model achieved an MAE of as low as 19.2 bu/acre.
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1. Introduction

Corn is the largest crop in terms of acreage in the United States. It is extensively used in food,
feed, and fuel products. Monitoring and estimating corn yield accurately in-season at the field
scale level can help to inform the grain marketing efforts of farmers. Furthermore, estimates of
yield during the growing season can inform the profitability of agronomic treatments such as
nitrogen and fungicide applications.

Corn yield can be estimated manually using yield components such as the number of ears,
number of kernel rows, and kernel weight (Licht, 2017) obtained from the field. Calculating these
parameters manually is a time-consuming process. The labor-intensive nature of in-field yield
estimation typically limits the sample size to a small portion and happens too late in the season
to inform the profitability of any agronomic treatments.

However, with advancements in remote and proximal sensing capabilities and machine learning
techniques, there is an opportunity to predict in-season crop yield based on the current year's
weather and soil inputs which can provide in-season yield estimates sooner in the growing season
and with greater accuracy. This paper takes a step towards the goal of in-season yield estimation
by outlining an approach to accurately estimate yield from the combination of meteorological and
phenological data from the prior year.

2. Related Works

In past studies, crop yield models mainly focused on estimating yield based on data acquired
through optical, multispectral, and weather sensors. However, there are limited studies that
estimate yield based on growth stage. The following sections briefly explain some commonly used
methods for predicting crop yield.

2.1 Machine Learning Models

Various machine-learning strategies are used in monitoring within-field yield variability using
satellite optical data namely Sentinel-2 data (Crusiol et al. 2022). High accuracy of crop yield was
observed when the images at the R5 phenological stage of soybean were considered in support
vector regression (SVR) and partial least square regression (PLSR) models demonstrating the
importance of the crop phenological stage in crop yield estimation. However, the study did not
account for the environmental conditions of the field which makes it difficult for generalization.
Similarly, another study integrated a deep learning and machine learning model for estimating
corn yield. This integrated network model achieved an RMSE of 6.298 in measuring the crop yield
index indicating the capabilities of deep learning models (Kuwata and Shibasaki 2015).

Jiang et al. (2020) estimated corn yield at the county level using a combination of meteorological
data and satellite-based vegetation indices. An LSTM model was developed and was found to
outperform least absolute shrinkage and selection operator (LASSO) and random forest (RF).
The LSTM model utilized five different growth phases as inputs to the LSTM model and was able
to achieve RMSE of 1.48 Mg/ha (23.5 bu/acre) with sample size of n = 6,592 across 10 years.

Shook et al. (2021) estimated soybean yield using an LSTM with temporal attention approach
based on data from Uniform Soybean Trust (UST) resulting in a dataset of n = 103,365 and
achieving a mean absolute error (MAE) of 6.17 bu/acre using meteorological variables. This
corresponds to an approximately 14% error in yield given that the range of yield in the study was
between 33 and 55 bu/acre.

These studies indicate that machine learning models can be effective in estimating yield.

2.2 Process-based Models

There exist several process-based models such as Decision Support System for Agro-
Technology Transfer (DSSAT), Agricultural Production Systems sIMulator (APSIM), and World
Food Studies (WOFOST) for estimating crop yield under various crop and weather conditions
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(Sargun and Mohan 2020)(Huang et al. 2019). These models simulate crop growth development
and yield based on genetic features and meteorological conditions.

Even though these models can be tuned and calibrated to predict crop yields accurately, they can
be very crop and field-specific making it difficult to replicate them for other crop fields without
further tuning and calibration. Furthermore, these models have not completely accounted for the
relationship between meteorological conditions and crop growth stage timing which is an
important factor for determining crop yield (Zhou et al. 2017). Considering the timing of growth
stage in combination with meteorological conditions including temperature, precipitation, and
photosynthetic active radiation can make yield predictions more robust and generalized.

2.3 Model-guided machine learning

Model-guided machine learning uses the outputs from a process-based model as inputs into a
machine learning model. One of the studies implemented a framework for monitoring in-season
crop phenology using a biophysical crop model (DSSAT) for guiding neural networks (Worrall et
al. 2023). The results showed that neural networks guided with DSSAT estimated the progression
of phenological stages better compared to the unguided and crop model-only method.

3. Data Sources and Types

Figure 1 shows data types collected in this study.

Data Types
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Figure 1: Summary of Data Types

3.1 Data Sources

The data sources underpinning this effort originate from three Ohio State agricultural research
stations geographically dispersed across Ohio. They include Western Agricultural Research
Station in Clark County, Northwest Agricultural Research Station in Wood County, and Wooster
Campus in Wayne County. Each site included 80 plots. The experiment was a split-plot
randomized complete block design with four replications of each treatment. Main plot factor
included five planting dates spaced approximately every two weeks from mid-April to mid-June.
The subplot-factor was four different hybrids (H1, H2, H3, H4) of varying relative maturities (100,
107, 111, and 115 days). Each replicate included a border plot on both ends of the block to reduce
any edge-of-field effects on the measured plots. Furthermore, yield measurements were based
on the center two rows (out of four). The research plots were managed according to agronomic
best management practices (Thomison et al. 2017) outside of the main plot and subplot factors.

Proceedings of the 16" International Conference on Precision Agriculture 3
21-24 July, 2024, Manhattan, Kansas, United States
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PD4 PD4 PD4 PD4 PD4 | PD4 | PDS5 PD5 PD5 PD5 PD5 PD35

Rep2 H1 H3 H2 H4 H2 H1 H3 H4
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Repl H1 H2 H3 H4 H1 H2 H3 H4

B 101 102 103 104 B B 105 106 107 108 B

Figure 2: Plot Layout insert from the Western Research site (PD = Planting Date, H = Hybrid, B = Border Plot).

Each plot was 10 feet wide, configured as four rows at 30-inch spacing spanning approximately
30 feet long or longer at each location. The plots were systematically designated using a 3-digit
numbering system: 101-120, 201-220, 301-320, and 401-420. A visual representation of the plot
layout for Western Corn is shown in Figure 2.

3.2 Data Types
3.2.1 In-Situ Soil and Meteorological Sensing Data

An array of soil sensors was deployed at two depths, specifically at 30 cm and 60 cm, within the
plots for Planting Date 2 and 4 at all three research locations. Additionally, one Apogee SQ-521
photosynthetic active radiation (PAR) sensor and one Meter ATMOS 14 weather station were
installed at each of these research sites. The weather station collected temperature, relative
humidity, vapor pressure, and barometric pressure in the crop canopy.

The data collected by these sensors was aggregated by a total of six ZL6 data loggers, with two
loggers allocated at each research site. These loggers were connected to the Meter Group’s
Zentra Cloud, a data management and visualization platform. The ZL6 data loggers were
configured to record sensor data at 30-minute intervals and upload data to the Zentra cloud hourly.

Data visualization was available through user-configurable dashboards on the website and data
was also accessible via an application programming interface (API). A Python script was
employed to interface with the Zentra Cloud application programming interface (API) to retrieve
the data and aggregate it into a local database.

3.2.2 Weather Station Data

At each of the research locations, an Ohio State University (OSU) weather station collects
precipitation, wind speed, and air temperature at multiple heights, which is accessible at
weather.cfaes.osu.edu. In addition, the website also provides calculated daily values such as
Growing Degree Days (GDD). The accumulation of GDD over the growing season is widely used
in predicting corn growth and development.

3.2.3 Manually Labeled Data

Site visits were conducted weekly at each location by personnel from the Department of
Horticulture and Crop Science (HCS). These individuals possessed expertise in the classification
of crop growth stages. Furthermore, the final yield of each plot was collected at harvest.

3.3 Analysis of Yield Data

Table | provides a summary of yield information across the three research locations organized by
planting date and hybrid. Note that Hybrid 1 for Planting Dates 1,2, and 3 for Northwest Research
Station were removed from the dataset due to raccoon infestation that affected vyield
measurements.
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Table 1. Summary of yield in bu/acre by location, hybrid, and planting date

Western Research Station Northwest Research Station Wooster - Snyder Farm

Avg Avg Avg

h1 | h2 | h3 | h4 | yieldby| h1 | h2 | h3 | h4 | yieldby| h1 | h2 | h3 | h4 | yield by

Planting | yield | yield | yield | yield | Planting | yield | yield | yield | yield | Planting | yield | yield | yield | yield | Planting
Date Date Date Date
pdl 149 | 192 | 207 | 194 185 NA | 235 | 245 | 249 243 188 | 212 | 214 | 203 204
pd2 162 | 189 | 179 | 142 168 NA | 240 | 236 | 247 241 228 | 229 | 214 | 224 224
pd3 135 | 144 | 124 | 156 140 NA | 246 | 247 | 254 249 190 | 201 | 198 | 180 192
pd4 218 | 268 | 216 | 237 235 198 | 203 | 195 | 202 199 199 | 203 | 196 | 193 198
pd5 225 | 224 | 223 | 237 227 186 | 176 | 166 | 173 175 174 | 189 | 200 | 187 188

4. Data Preparation

Figure 3 summarizes the data processing steps involved:

Data Collection

Wooster - Snyder Farm
Northwest Research Station

Data Cleaning

Wooster - Snyder Farm
Northwest Research Station

Western Research Station

In-plot soil and weather
sensors (30-minute temporal
resolution)

10 June to 11 October 2023

On-site weather station
(Daily temporal resolution)
1 March to 11 October 2023

Western Research Station

*Combine data at daily
resolution

*Remove unneeded columns

*Impute missing values for 7
days to Wooster data from
Daymet.

*Impute PAR values prior to
June 11

*Add 7,14,21,28-day
precipitation rolling averages

Figure 3: Summary of data processing steps

Data Transformation

Wooster - Snyder Farm
Northwest Research Station

Western Research Station

*Create a dataframe for each plot
starting on planting date that
includes climate data and daily
growth stage labels interpolated
from weekly observations.

* Transform data from time
domain to growth stage domain
where each row represents a
growth stage for a given plot.

The data cleaning step involved combining the 30-minute resolution in-plot sensors with the daily
resolution on-site weather station resolving two missing data issues:

The photosynthetic active radiation (PAR) sensors were not available for installation until
mid-June meaning that data from the early part of the growing season was not available
for these sensors. However, the on-site weather station included a measurement for
solar radiation. Using the data from mid-June to the end of the growing season where
PAR and solar radiation were measured concurrently, a linear relationship was
established which was then used to impute PAR values prior to mid-June.
The Wooster on-site weather station had a gap in recorded data where values from 24-
30 August 2023 were not recorded. These were imputed from the Daymet dataset
(Thornton, et al. 2023).

Furthermore, additional calculated columns were created with previous 7, 14, 21, and 28-day
rolling averages of precipitation to be used as a proxy for plant available water.

The growth stage labels were originally recorded as alphanumeric values corresponding to
vegetative and reproductive growth stages commonly used by agronomists (Abendroth et al.
2011). These were converted to integers ranging from -1 to 16 via a Python dictionary and growth
stages V9’ to ‘V18’ were combined in order to achieve growth stages of similar duration as shown
in Figure 4. The integer (-1) represented the period from planting date to ‘VE'.
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gs_corn_dict =
'VE': o, 'vi': 1, 'v2': 2, 'v3': 3, 'v4': 4, 'V5': 5, 'V6': 6,
'‘v7': 7, 'v8': 8, 'v9': 9, 'vie': 9, 'vVii': 9, 'vVi2': 9,

'V13': 9, 'V14': 9, 'V15': 9, 'V16': 9, 'V17': 9, 'V1ig': 9,
'"WT': 10,
'R1': 11, 'R2': 12, 'R3': 13, 'R4': 14, 'R5': 15, 'R6': 16

Figure 4

With knowledge of the planting date for each plot, the data transformation step involved creating
a dataframe for each plot at each location where the meteorological data began on the planting
date. An additional column for growth stage was added and populated as an integer on each
date where a growth stage observation was made, typically weekly as illustrated in Table Il. Daily
growth stage values were achieved by linearly interpolating between the weekly growth stage
observations and converting resulting values to integers.

Table 2. Excerpt of growth stage labels

Planting Date Number|  PD1 PD1 PD1 PD1 PD2 PD2 PD2
Hybrid H1 H2 H3 H4 H1 H2 H3
date 101 102 103 104 105 106 107
5/5/23 VE VE VE VE
5/10/23 V1 V1 V1 V1 VE VE VE
5/17/23 V2 V2 V2 V2 V1 V1 V1
5/24/23 V3 V4 V4 V4 V3 V3 V3
5/31/23 V5 V5 V5 V5 V4 V5 V5
6/7/23 V6 V7 V7 V7 V5 V6 V6
6/14/23 V7 V7 V7 V7 V6 V7 V7
6/21/23 V7 V8 V8 V8 V7 V7 V8
6/26/23 V8 V9 V9 V10 V8 V8 V8
7/6/23 Vi3 V14 Vi3 V13 V10 Vi1 Vi1
7/13/23 R1 R1 R1 VT R1 V16 V15
7/19/23 R2 R2 R2 R2 R1 R1 R1
7/24/23 R2 R2 R2 R1 R2 R2 R2
8/2/23 R4 R4 R3 R3 R3 R3 R3
8/8/23 R4 R4 R4 R4 R4 R4 R4
8/15/23 R5 R5 R4 R4 R4 R4 R4
8/23/23 R5 R5 R5 R5 R5 R5 R5
9/1/23 R5 R6 R6 R6 R5 R6 R6
9/6/23 R6 R6 R6 R6 R6 R6 R6
9/14/23 R6 R6 R6 R6 R6 R6 R6
9/21/23 R6 R6 R6 R6 R6 R6 R6
9/27/23 R6 R6 R6 R6 R6 R6 R6

With a dataframe for each plot consisting of input values of GDD, PAR, several rolling averages
of precipitation, and daily growth stage values, the next step was to transform each dataframe
from the time domain to the growth stage domain. This would ensure that each plot had identical
sequence lengths of 18 rows (-1 to 16) and would be conducive to machine learning approaches.

This transformation was accomplished through functions available in the pandas library in Python.
For all the rows in a dataframe corresponding to a particular growth stage, the sum of GDD and
PAR was calculated along with the mean of the 7, 14, 21, and 28-day rolling averages of
precipitation. Figure 5 shows an example of one of the dataframes that has been transformed to
the growth stage domain.

The resulting plot-level dataframes stored in Python dictionaries were then flattened into
dataframes by location (Northwest, Western, Wooster) and into a combined dataframe that
included all 3 locations. Each location had different organic matter levels which were introduced
as an additional column (independent variable) into the dataset for Western (4.36%), Northwest
(3.24%), and Wooster (2.23%). Planting date labels (pd1-pd5), hybrid labels (1-4), and hybrid
values (100, 107, 111, 115) were introduced as columns (independent variables) in the flattened
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dataframes both for training inputs and to separate the dataset into training and test sets. Finally,
the yield in bu/acre was included as a column (dependent variable) in each dataframe. The
dataset included a total of 228 sequences of data (Western - 80, Wooster - 80, Northwest — 68).

growth_stage GDD (F) PAR_sum 7_day_avg_precip 14_day_avg_precip 21_day_avg_precip 28_day_avg_precip num_days cum_days

Figure 5: Dataframe from Plot 101 at Western Research Station

5. Model Architecture and Configuration

Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural Network (RNN)
commonly used for time-series prediction tasks. LSTM networks were created to solve the
vanishing/exploding gradient issue that presents itself in basic RNNs. In this case, the data has
been formatted where each sequence is a growth stage series of 18 rows and thus makes it
conducive for training by an LSTM network.

The dataset includes columns for GDD, PAR, and rolling averages of precipitation which indicates
the quantity of temperature, PAR, and water available for the creation of biomass and ultimately
grain yield via photosynthesis. Each of the input features was scaled using StandardScaler in the
scikit-learn library to facilitate improved training by removing the mean and scaling to unit
variance. The dataset was subsequently converted into various combinations of training and
testing tensors for model training and inference outlined in the results section.

Each model utilized learning rate = .001, hidden layer size = 25, number of layers = 2, loss function
= mean absolute error (MAE), and dropout = 0.5. These values were determined through initial
experimentation with the dataset.

6. Results

6.1 Batch Size Evaluation

The first evaluation was based on batch size of how data is presented to the LSTM network.
Figure 6 shows that batch sizes 6, 8, and 10 were clustered together and stabilized at a mean
absolute error (MAE) of approximately 20, while batch sizes 4, 12, and 16 stabilized at an MAE
of approximately 28. Based on these results, a batch size of 8 was used for the remainder of the
paper. Each batch size was run for 2,500 epochs.
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Batch Size Analysis
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Figure 6. Comparison of Loss Function (MAE) vs. Training Epochs for Various Batch Sizes (4,6,810,12,16)

6.2 Input Data Evaluation

While each growth stage series included values from -1 to16, it is recognized that in the later
growth stages, the weather has a diminishing role in yield. Additionally, four rolling averages were
calculated to assess which representations of precipitation most positively influenced the model.
To understand which combinations of input data and input sequences yielded the best results,
the data was partitioned into a five-fold cross validation set by planting date, using data from four
planting dates as training data and the remaining one as a validation set. This approach was
chosen to ensure that all replications stayed in the same partition to avoid overfitting. Additionally,
the availability of five planting dates was conducive for five-fold cross validation.

gsl =[-1,..,13] X 1=
gs2 =[-1,..,12] ['GDD', 'PAR', '7d_precip']
gs3 =[-1,..,11] X2 =
gs4 =[-1,..,10] ['GDD', 'PAR', '7d_precip', '14d_precip']
y ey 131 X 3 =
ey 121 ['GDD', 'PAR', '7d_precip', '14d_precip', '21d_precip']

vy 111 X 4 =

w101 ['GDD', 'PAR', '7d_precip', '14d_precip', '21d_precip',
vy 131 ‘28d_precipl

wy 121

wy 111

)

Figure 7: Combinations of growth stage sequence and input columns

Twelve different variations of growth stage sequences were tested with four different variations of
input columns for a total of 48 different combinations. The variations that were evaluated are
shown in Figure 7.
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Table 3. Comparison of Average and Standard Deviation of MAE for 5 cross-validation runs

Average MAE for 5 Cross-

Validation Runs

X1 X2 X3 X4
gsl 30.5 28.2 27.1 29.5
gs2 28.9 26.8 24.7 23.9
gs3 25.7 29.3 25.6 26.1
gs4 26.0 22.6 24.7 28.4
gs5 27.5 30.3 25.5 284
gs6 29.6 27.0 29.2 24.6
gs7 26.2 294 27.5 26.6
gs8 27.5 27.8 26.8 30.6
gs9 25.5 25.8 27.7 31.8
gs10| 25.6 274 27.7 24.9
gs11| 24.0 23.2 27.3 28.9
gs12| 259 29.5 31.8 30.7

Highlighted in Table 1V in green is the best combination of growth stage sequence and training
input columns that yield the lowest MAE (gs4, X_2). The subsequent sections use this input
configuration. Figure 10 shows the predicted vs. actual yield for the input configuration gs4, X_2
that was experimentally determined to have the lowest MAE.

Comparison of Predicted vs. Actual Yield (bu/ac)
300

250

=]
(=3
S

* PD1

PD2
« PD3
100 e PD4
* PD5

150

Predicted Yield (bu/ac)

W
(=}

0 50 100 150 200 250 300 350
Actual Yield (bu/ac)

Figure 8. Results shown from five-fold cross validation. Each planting date shown (PD1-5) is from the test set and was
trained from the other 4 planting dates using input configuration: gs4, X_2.

6.3 Using location specific data

In this section, the effect of keeping location-specific data segregated and training the data for
each location separately using gs4 and X_2 as the input data configuration was evaluated. With
a smaller dataset, training was conducted for 6,000 epochs to enable training losses to stabilize.
This input data configuration was selected based on the results of Section 6.2. Table VI shows
that a marginally improved MAE is achieved during testing at Northwest and Wooster (19.2 and
21.2 respectively) while Western (36.4) does not appear to benefit from location specific training
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and testing. The yield measurements at Western had considerably higher standard deviation
which may contribute to the reduced performance in the LSTM model.

Table 4. Analysis of model accuracy (MAE) using location specific data

Western Research | Northwest Research Wooster
Station Station Snyder Farm
Cross Validation train loss| test loss |train loss| test loss |train loss| test loss
Train (PD2,3,4,5), Test (PD1) 10.5 45.5 7.8 12.8 8.3 21.9
Train (PD1,3,4,5), Test (PD2) 9.7 32.1 8.2 12.2 9.6 31.8
Train (PD1,2,4,5), Test (PD3) 14.0 27.2 9.7 14.0 7.2 20.9
Train (PD1,2,3,5), Test (PD4) 8.4 59.0 9.4 41.5 5.9 14.7
Train (PD1,2,3,4), Test (PD5) 10.6 18.1 10.2 15.3 9.1 16.7
Location Average 36.4 19.2 21.2

7. Future Work

The results from this paper indicate that high quality field scale data could provide the basis for
accurate field-scale yield estimation. Furthermore, it highlights the possibility of creating
agricultural foundation models drawn from the largest dataset possible which can then be fine-
tuned on field scale data to provide the most accurate results for farmers. Of course, farmers
who don’t have the interest or capability in collecting high-fidelity on-farm data could still benefit
from the results of generalized, less accurate models.

While this paper demonstrates promising results for field scale yield estimation, future work
centered around five areas are important to make this a viable approach in production agriculture:

1. Growing the dataset. Machine learning models generally improve as their underlying
dataset grows. Given the accuracy reported in this paper is from a dataset much smaller
than other machine learning approaches referenced in this paper, it shows promise that a
larger dataset that covers many more years and soil types could further increase the
accuracy using this approach.

2. Evaluating alternative models. While LSTM models are commonly used for time-series
data, XGBoost and various types of Transformer architectures have also proven to
perform well on time-series data. It would be beneficial to evaluate alternative model
architectures on this dataset.

3. High spatial resolution soil testing. Including more soil characteristics in addition to
organic matter such as CEC, pH, and slope at higher spatial resolution holds the potential
to improve the model prediction accuracy.

4. Growth Stage inference from Unmanned Aerial Systems (UAS) imagery. While this
paper relied on manual observations of growth stage weekly in the field, future versions
of this work are envisioned to leverage imagery from Unmanned Aerial Systems (UAS) to
infer growth stage using machine learning techniques such as Vision Transformers (ViT).

5. Splicing weather data scenarios in-season to provide daily yield predictions. While
this paper retrospectively looked at yield estimation, the goal is to provide yield predictions
and ranges during the growing season that splices elapsed weather data with future
meteorological scenarios for the current growing season to provide in-season yield
estimation.

8. Conclusion

This paper demonstrated that using a growth stage centric approach to field scale yield estimation
can achieve MAE of 22.6 bushels / acre with a relatively small dataset (228 sequences) across 3
locations. On this dataset, it also demonstrated that the MAE could be improved to 19.2 bu/acre
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by training for a single location. This corresponds to an error of approximately 10% in yield
estimation. Based on these results, it indicates that transforming meteorological data into a growth
stage centric dataset could be a promising approach to provide in-season field scale yield
prediction.
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