Bicorn: An Optimistically Efficient Distributed
Randomness Beacon

Kevin Choil [0009—0006—6890—7313]
0000—0002—7671—5681]

1[0009—0000—1009—2365] N;
i I, Nirvan
1,3[0000—0002—6349—0145]

, Arasu Arun
Tyagi?! , and Joseph Bonneau
! New York University
kc2296@nyu.edu
2 Cornell University
3 al6z crypto research

Abstract. We introduce Bicorn, an optimistically efficient distributed
randomness protocol with strong robustness under a dishonest majority.
Bicorn is a “commit-reveal-recover” protocol. Each participant commits
to a random value, which are combined to produce a random output. If
any participants fail to open their commitment, recovery is possible via
a single time-lock puzzle which can be solved by any party. In the opti-
mistic case, Bicorn is a simple and efficient two-round protocol with no
time-lock puzzle. In either case, Bicorn supports open, flexible participa-
tion, requires only a public bulletin board and no group-specific setup or
PKI, and is guaranteed to produce random output assuming any single
participant is honest. All communication and computation costs are (at
most) linear in the number of participants with low concrete overhead.

1 Introduction

Distributed randomness beacons (DRBs) aim to enable a group of n participants
to jointly compute a random output (which we denote {2) such that no partic-
ipant or coalition of participants can predict or influence the outcome. Among
many other applications, they are useful for cryptographically verifiable lotteries
or leader election in efficient distributed consensus protocols.

A classic approach is commit-reveal [9]. First, all participants publish a com-
mitment ¢; = Commit(r;) to a random value r;. Next, participants reveal their
r; values and the result is 2 = Combine(ry,...,7,) for some suitable combi-
nation function (such as exclusive-or or a cryptographic hash). Commit-reveal
protocols are simple, efficient, and secure as long as one participant chooses a
random r; value—assuming all participants open their commitments. However,
the output can be biased by the last participant to open their commitment (a
so-called last-revealer attack), as that participant will know all other r; values
and can compute {2 early. If the last revealer doesn’t like the impending value
of {2, they can refuse to open, forcing the protocol to abort. Even if the last
revealer is removed from subsequent protocol runs, this enables one bit of bias.

Related work. Several approaches exist to avoid last-revealer attacks. Commit-
reveal-punish protocols impose a financial penalty on any participant who fails

to open their commitment. This penalty can be automatically enforced using
modern cryptocurrencies [2,32], but this requires locking up capital and security
relies on economic assumptions about the value of manipulation to the attacker.

Other protocols relax the security model of commit-reveal and assume an
honest majority of participants. Many constructions enable a majority of par-
ticipants to recover the input of a malicious minority of participants [7,8,19, 20,
24,26,27,34,35,37], using cryptographic tools such as publicly verifiable secret
sharing (PVSS). Typically, these constructions can tolerate some threshold ¢ of
malicious participants failing to complete the protocol, with the trade-off that
any coalition of t+1 participants can (secretly) learn the impending output early
and potentially bias the protocol, leading to a requirement that ¢ < % (honest
majority). These protocols are also often quite complex, with communication
and computation costs superlinear in n. Another approach is to rely on thresh-
old cryptography for participants to jointly compute a cryptographic function
which produces 2, such as threshold signatures in Dfinity [18], threshold encryp-
tion [22], or threshold inversion in RSA groups [3,4]. The drand DRB [1], which
uses a chain of threshold BLS signatures, is now deployed publicly with a group
of 16 participating nodes producing a new random output every 30 seconds.

A very different approach to constructing DRBs uses time-based cryptog-
raphy, specifically using delay functions to prevent manipulation. The simplest
example is Unicorn [28], a one-round protocol in which participants directly pub-
lish (within a fixed time window) a random input r;. The result is computed as
2 = Delay(Combine(ry,...,r,)). By assumption, a party cannot compute the
Delay function before the deadline to publish their contribution r; and therefore
cannot predict {2 or choose r; in such a way as to influence it. This protocol
retains the strong n — 1 (dishonest majority) security model of commit-reveal,
but with no last-revealer attacks. It is also simple and, using modern verifiable
delay functions* (VDFSs) [10], the result can be efficiently verified. The downside
is that a delay function must be computed for every run of the protocol.

Our approach. We introduce the Bicorn family of DRB protocols, which retain
the advantages of Unicorn while enabling efficient computation of the result (with
no delay) if all participants act honestly. The general structure is:

e Each of n participants chooses a random value r; and publishes ¢; = TCom(r;)
using a timed commitment scheme [14] TCom before some deadline T7.

e In the optimistic case, every participant opens their commitment by pub-
lishing ;. The DRB output is 2 = Combine(ry,...,r,). In this case, the
protocol is equivalent to a classic commit-reveal protocol.

e If any participant does not publish their r; value, it can be recovered by
computing r; = ForceOpen(¢;), a slow function requiring ¢ steps of sequential
work which cannot be evaluated quickly enough for a malicious coalition of
participants to learn honest participants’ committed values early. The result

4 The original Unicorn proposal used modular square roots in a prime-order group.
We consider using a modern VDF instead.

(2 is the same as in the optimistic case, even if all participants don’t reveal
their committed values.

This protocol structure was used in a recent proposal by Thyagarajan et
al. [38]. They observe that by using a homomorphic commitment scheme, the
commitments can be combined and only a single forced opening is required, in-
stead of opening every withholding participant’s commitment separately. Asymp-
totically, their protocols require linear (O(n)) communication and computation
costs when run with n participants.

However, Thyagarajan et al. use a general-purpose CCA-secure timed com-
mitment scheme suitable for committing to arbitrary messages, which introduces
significant practical complexity and overhead. Our key insight is that construct-
ing a DRB does not require a general-purpose commitment scheme; it is sufficient
to use a special restricted commitment scheme which only enables committing
to a pseudorandom message. As a result, our protocols are considerably simpler
and offer much better concrete performance.

Contributions. We introduce the Bicorn family of protocols, which comes in
three flavors with slightly different security proofs and practical implications:

e Bicorn-ZK, which requires each participant to publish a zero-knowledge
proof of knowledge of exponent. This imposes the highest practical overhead
but offers the simplest security proof.

e Bicorn-PC, in which participants “pre-commit” their contribution before
the protocol. This is the simplest version, though it adds an extra commu-
nication round (which can be amortized over multiple runs).

e Bicorn-RX, which utilizes a randomized exponent to prevent manipulation
attacks. This is the most efficient version in practice, though the security
proof relies on stronger assumptions.

In Section 3, we prove security of our constructions by reducing to the RSW
assumption [33] in the algebraic group model (AGM) [25], except for Bicorn-ZK
where we assume a zero-knowledge proof of knowledge of exponent (ZK-PoKE)
exists. The Bicorn-RX variant assumes a random oracle. In Section 6, we report
on concrete implementations of these protocols in Ethereum, showing that our
constructions are practical and incur 3-8 increase in per-user cost compared
to commit-reveal (but with no manipulation due to aborts) and 5-7x compared
to Unicorn (but with no delay function required in the optimistic case).

2 Overview

2.1 Protocol Outline

We specify all three of our protocol variants in Protocol 1. Our protocols are
initialized via a security parameter A\ and a delay parameter ¢, and work over a
group of unknown order, which we denote G (see preliminaries in Section 3). In
addition to the group G, the public parameters include a pair (g, h), where g is a
generator of the group and h = g2'. If desired, a Wesolowski [41] or Pietrzak [30]

proof of exponentiation can enable efficient verification that h was computed
correctly. Note that this setup only needs to be run once ever (for a specific
delay parameter t) and can be used repeatedly (and concurrently) by separate
protocol instances; the number of participants does not need to be known and
may dynamically change over time.

The common structure of Bicorn protocols is:

e FEach of n participants chooses a random value «; and publishes ¢; =
g%i. The value ¢; can be viewed as the input to a VDF whose output is
(¢;)2", with a; serving as a trapdoor to quickly compute (¢;)2" = (g%)2" =
(92‘)% = h*. Without knowledge of «; this value is slow to compute.
Depending on the security assumptions made, «; can be sampled from dif-
ferent distributions. We abstract this choice by parameterizing by a uniform
distribution B from which «; is sampled.

e Participants “open” their commitment ¢; by revealing a value &;. It can be
quickly verified that &; is the correct a; by verifying that ¢; = g°.

e Optimistic case: Given all correct «; values, the DRB output (2 is the prod-
uct 2 = Hie[n] h% which is unpredictable as long as at least one of the
«; values was randomly chosen and is easy to compute if all «; values are
correctly revealed.

e Pessimistic case: If any participant withholds «; (or chose ¢; without knowl-
edge of the corresponding «;), then the missing value h%* can be recovered
(slowly) by computing h® = (ci)gt, equivalent to evaluating a VDF. If mul-
tiple participants withhold «;, naively one must compute each missing value
h%i individually. A more efficient approach (which works even if all partic-
ipants withhold «;) is to first combine each participant’s contribution into
the value w = Hie[n] ¢;. The output can then be computed via a single slow

computation as 2 = th, which is identical to the output {2 = Hie[n] h&i
computed in the optimistic case.

By itself this protocol is insecure, because a malicious participant need not
choose ¢; by choosing a value «; and computing g®*. An adversary j who has pre-
computed a desired output 2, = (w*)zt and is able to publish last can compute
a malicious contribution:

-1

Cj = Wx - H (&) (1)

i€[n],i#j

This will cancel out every other participant’s contribution and force the out-
put value §2,. There are three ways to prevent this attack, each leading to a
protocol variant with slightly different properties, which we will present in the
following subsections. We present the protocols combined for comparison in Pro-
tocol 1.

Setup(A, t) (run once for all protocol runs)

1. Run (G, g, A, B) & GGen(\) to generate a group of unknown order
2. Compute h + g2t, optionally with 7, = PoE(g, h, 2")
3. Output (G, g, h, 7, A, B)

Prepare() (run by each participant %)
(7] ﬁ B Q. (i B (073 (E B
ci — gt ¢ — gt ¢ — gt

T <— ZK—POKE(g, C,‘,Oci) dl — H(Cl)

Precommit(d;) (run by each participant)

- Publish d; —

.. deadline Tp . ..

Commit(c;, ;) (run by each participant %)

Publish ¢;, m; Publish ¢; Publish ¢;

.. deadline Ty . ..

Reveal (o) (run by each participant)
Publish «; Publish «; Publish «;
Finalize({(&, ¢, di, i) }ie1) (optimistic case, once per protocol run)
1. V¥, Verify proof 7; 1. V; Verify d; = H(c;) 1. b« H (c1]|---|len)
—else: remove user j —else: remove user j 2. V; Verify ¢; = g%
2. V; Verify ¢; = g% 2. V; Verify ¢; = g% —else: go to Recover
—else: go to Recover —else: go to Recover o— H (hH(csz*))&'i
i€[n] i€[n]
Recover({(ci, di, mi) }ie1) (pessimistic case, once per protocol run)
ot ot 2t
H(c;||bx
2= HC»; 2= HCZ‘ 2= Hci(H)
i€[n] i€[n] i€[n]

Protocol 1: All Bicorn protocol variants: Bicorn-ZK (left column), Bicorn-PC (center
column), and Bicorn-RX (right column).

2.2 Bicorn-ZK: Using Zero-Knowledge Proofs

The conceptually simplest fix is for each user to publish, along with their com-
mitment ¢;, a zero-knowledge proof-of-knowledge m; = ZK-PoKE(g, ¢;, ;) of the
discrete logarithm of ¢; to the base g; (i.e. a;). This version (Bicorn-ZK) is spec-
ified in Protocol 1 (left). This removes the attack above, as an adversary who
computes c; via Equation 1 will not know the discrete log of ¢; to the base g.
Such proofs can be done in groups of unknown order particularly efficiently in
this case. The use of a fixed base g enables the simpler ZKPoKRep protocol of
Boneh et al. [11] (possibly in combination with their proof aggregation PoKCR
protocol).

Participants publishing invalid proofs are removed, and the protocol can con-
tinue and still produce output. Attempting to participate with an invalid proof
is equivalent to not participating at all (though participants who do so might
need to be blocked or penalized financially to deter denial-of-service attacks).

It might be tempting to optimize the protocol by not verifying each proof m;
in the optimistic case, instead checking directly that ¢; = g% using the revealed
value &;. However, this would introduce a subtle attack: a malicious participant
could publish a correctly generated (c¢;, &;) pair but with an invalid proof 7;.
Next, after all other participants have revealed their a values, the attacker can
compute the impending result {2 with their own contribution included, as well
as the alternative {2’ if it is removed. They could then choose which output is
produced, introducing one bit of bias into the protocol: by publishing &;, they
will remain in the protocol (as 7; is not checked) and (2 will result, whereas by
withholding &; they will force the pessimistic case, in which they will be removed
on account of the faulty 7; and (2’ will result. Thus, it is important to verify
every participant’s proof 7; in both cases to prevent this attack.

2.3 Bicorn-PC: Using Precommitment

Another approach to prevent manipulation is to add an initial precommitment
round where participants publish d; = H(¢;), preventing them from choosing
¢; in reaction to what others have chosen. This version (Bicorn-PC) is specified
in Protocol 1 (center). Participants can decline to reveal their committed ¢,
in which case they are removed and the protocol can continue safely. Because
participants will not have time to compute the impending output before choosing
whether to reveal, this does not introduce any opportunity for manipulation.

Note that the precommitted values d; can be published at any point prior
to Tp (the point at which participants start revealing their actual commitment
¢;). If the protocol is run iteratively, it is possible for participants to publish any
number of precommitments d; in advance (or a single commitment to a set of d;
values using a set commitment construction such as a Merkle Tree), making the
protocol a two-round protocol on an amortized basis.

Protocol Rounds Communication Assumptions

§2.2 Bicorn-ZK 2 n((G) + (B) + |r|) RSW, ZK-PoKE
§2.3 Bicorn-PC 3 n({(G) + (B) +) RSW, AGM

§2.4 Bicorn-RX 2 n((G) + (B)) RSW, AGM, ROM
Table 1: A brief comparison of the Bicorn variants. See Figure 1 for notation ((G) and
(B) are the sizes of elements from G and B, respectively) and Section 3 for a background

on the RSW assumptions, the algebraic group model (AGM), the random oracle model
(ROM), and zero-knowledge proof of knowledge of exponent (ZK-PoKE).

2.4 Bicorn-RX: Using Pseudorandom Exponents

Finally, we can prevent manipulation by raising each participant’s contribu-
tion ¢; to a unique (small) exponent which depends on all other participants’
contributions. Specifically, we define b, to be the hash of all ¢; values: b, =
H (c1]|ez]] - - - ||en)- We then raise each value ¢; to the pseudorandom exponent
b; = H(c; || bs). The intuition is that modifying any contribution ¢; will in-

duce new exponents on each participant’s contribution which prevents an ad-
H (cillbx)

i€[n] i

technique was used by Boneh et al. [13] to prevent rogue-key attacks in BLS

multi-signatures. This version (Bicorn-RX) is specified in Protocol 1 (right).

versary from forcing the value w = [] to a fixed value. A similar

2.5 Comparison

Each of these leads to a secure protocol, albeit reducing to slightly different com-
putational assumptions, as we will prove in Section 5. All of our protocols reduce
to the RSW assumptions with Bicorn-PC and Bicorn-RX requiring the algebraic
group model (AGM) for the security reductions and Bicorn-RX also assuming
a random oracle. Bicorn-ZK doesn’t require the AGM explicitly but instead as-
sumes a secure zero-knowledge proof of knowledge of exponent (ZK-PoKE) for
which efficient existing protocols are proven secure only in the AGM [11].

Each protocol also offers slightly different performance trade-offs, though
asymptotically all require O(n) broadcast communication by participating nodes
and O(n) computation to verify the result. While Bicorn-PC incurs an extra
round, Bicorn-ZK incurs extra computational overhead which may be significant
in some scenarios (e.g. smart contracts). Bicorn-RX requires only two rounds and
does not require the user to produce proofs but requires extra group exponenti-
ations which incur slightly higher costs than Bicorn-PC.

3 Preliminaries

Algebraic group model. In some of our security proofs, we consider security
against algebraic adversaries which we model using the algebraic group model,

(G, g,A, B) & GGen(\) || (G,g,A,B) < GGen(\) | | (G, g, A, B) & GGen())

o« Ao(G,g,A,B) o+ Ao(G,g,A,B) o+ Ao(G,g,A,B)

&G &G miG; g}lex?; QoﬁG
7 & Ai(o,2) (e,9) & Ai(o,2) b & Aoz, 7,)

Return § = 22 Return g = (aze)2t Return b = b’

Fig. 1: Security games for the repeated squaring hardness assumptions: computational
RSW (left), computational power-of-RSW (center), and decisional RSW (right).

following the treatment of [25]. We call an algorithm A algebraic if for all group
elements Z that are output (either as final output or as input to oracles), A addi-
tionally provides the representation of Z relative to all previously received group
elements. The previously received group elements include both original inputs to
the algorithm and outputs received from calls to oracles. More specifically, if [X];
is the list of group elements [Xy,..., X,] € G that A has received so far, then,
when producing group element Z, 4 must also provide a list [2]; = [z0,. - ., 2]
such that Z =[], X"

Groups of unknown order and RSW assumptions. Our protocols will
operate over cyclic groups of unknown order. We assume an efficient group gen-
eration algorithm GGen(\) that takes as input security parameter A and outputs
a group description G, generator g, and range [A, B] where A, B, and B — A are
all exponential in A; the group G has order in range [A, B]. We assume efficient

algorithms for sampling from the group (g & G) and for testing membership.

There are a few currently known options with which to instantiate a group
of unknown order. One option that requires only a transparent setup is through
class groups of imaginary quadratic order [15]. However, class groups typically
incur high concrete overheads. Instead, one may opt for more efficient RSA
groups, which require a trusted setup or multiparty computation “ceremony” [21]
to compute the modulus N = pg without revealing safe primes p,q. Looking
forward, we will require our group to additionally be cyclic and satisfy the low
order assumption [12]. So instead we will use the group QR?\}, the group of signed
quadratic residues modulo N (we refer to Pietrzak for more details [30]).

The security of our constructions is based on the assumption, originally pro-
posed by RSW [33], that, given a random element = € G, the fastest algorithm

to compute y = 22" takes ¢ sequential steps. We use three RSW assumptions;
we provide security games in Figure 1.

Randomizing exponent sizes. We recall a useful lemma for randomizing
group elements [29].

Lemma 1. For any cyclic group G and generator g, if r & B is chosen uni-

formly at random, then the statistical distance between g" and the uniform dis-

|G|
t oE

tribution over G is at mos

Looking forward, we will use this lemma in our security proofs to replace a
generator taken to the power of a large exponent of size |B| ~ 22} . |G| with
a random element. Alternatively, one may opt for the stronger short exponent
indistinguishability (SEI) assumption [23] which asserts that an adversary cannot

computationally distinguish between a uniformly random element of G and g"

for r & [0,22]. The latter assumption enables significant efficiency gains in

practice, with participants publishing 32-byte a values instead of 288 bytes.

Non-interactive zero-knowledge proofs. A non-interactive proof system for
a relation R over statement-witness pairs (z,w) enables producing a proof, m
Prove(pk, x,w), that convinces a verifier Jw : (z,w) € R, 0/1 + Verify(vk, 7, x);
pk and vk are proving and verification keys output by a setup, (pk,vk) <«
Keygen(R). A non-interactive argument of knowledge further convinces the ver-
ifier not only that the witness w exists but also that the prover knows w, and if
proved in zero-knowledge, the verifier does not learn any additional information
about w. In this work, we will make use of proof systems for two relations. First,
we use PoE for the following relation for proofs of exponentiation in groups of
unknown order [11,30,41]: {((z,y € G,a € Z), L) : y = *}. Second, we use ZK-
PoKE (realized by ZKPoKRep from [11]) for zero-knowledge proofs of knowledge
of exponent in groups of unknown order: {((z,y € G),a € Z) : y = 2*}.

4 Timed DRBs: Syntax and Security Definitions

We first define a timed DRB using a generalized syntax which captures all of
our protocol variants. A timed DRB protocol DRB with time parameter t is a
tuple of algorithms (Setup, Prepare, Finalize, Recover). We describe them below
for a run of the protocol with n participants:

e Setup(\,t) i> pp: The setup algorithm takes as input a security parameter
A and a time parameter ¢t and outputs a set of public parameters pp.

e Prepare(pp) 8, (e, ¢;,d;, m;): The prepare algorithm is run by each partic-
ipant and outputs a tuple of opening, commitment, precommitment, and
proof. The precommitment is contributed during the Precommit phase (see
Protocol 1). The commitment and proof are contributed during the Commit
phase, and the opening is contributed during the Reveal phase. The length
of the Commit phase is dictated by the time parameter ¢.

e Finalize(pp, {(ai, ¢i, di,)} ;) — £2: The finalize algorithm is run after the
Reveal phase and verifies the contributions of participants to optimistically
produce a final output {2 or returns L indicating the need to move to the
pessimistic case.

e Recover(pp, {(c;, d;, m;)}*_1) — £2: The recover algorithm performs the timed
computation to recover the output {2 without any revealed « values.

? 7é Recover(pp, {(Ci7 di7 7”)}’1'”:1)

G bre(N) Gamore(N) Giasimb.ore(A)
pp & Setup(A, t) pp < Setup(\,t) pp < Setup(A, t)
(a1, c1,d1,m1) & Prepare(pp) (a1, c1,dy,m1) & Prepare(pp) (0, c1,d1,m1) & Prepare(pp)
(0. {di}121) < Ao(pp, dh) (0, {d:}220) <& Ao(pp. i) (00, {d:}721) & Ao(pp, dh)
{(ai, ci,m) ¥y & Ay(0,01,m) (2, {(ci,m)}1s) & Ai(0,c1,m1) (o1, {(ci, i) }imz) < A1 (00, c1,71)
2 «+ Finalize(pp, { (o, ci, di, ™) }i=1) Return 2 = Recover(pp, {(ci,di, ;) }=1) | | 21 < Recover(pp, {(ci, di, mi)}i1)
Return 2 ﬁ G

Q41 blﬁAQ(Uth)

Return b = b’

Fig.2: Security games for our three main security properties: consistency (left), t-
unpredictability (center), and ¢-indistinguishability (right).

We require Finalize to be a deterministic algorithm running in time polylog(t)
(the fast optimistic case), and Recover to be a deterministic algorithm running
in time (1+¢)t for some small e. We also require the following security properties
of a timed DRB (given in pseudocode in Figure 2):

Consistency. Our first security property is a form of correctness. We require
that it is not possible for the optimistic and pessimistic paths to return different
outputs. The adversary is tasked with providing an accepting set of contribu-
tions that results in different outputs from Finalize and Recover. We define the

consist consist

advantage of an adversary as Adv(;, pre (A\) =Pr {QAJ/,”’DRB()\) = 1],

t-Unpredictability. The t-unpredictability game tasks an adversary with pre-
dicting the final output {2 exactly, allowing it control of all but a single honest
protocol participant (which publishes first). We define the advantage of an ad-

unpred unpred

versary as AdvA}m)DRB(/\) =Pr QA)t7n7DRB()\) = 1]

t-Indistinguishability. The t-unpredictability property does not guarantee the
output is indistinguishable from random. For that, we provide a stronger t-
indistinguishability property in which the adversary must distinguish an honest
output from a random output, again allowing the adversary control of all but
one participant. We define the advantage of an adversary as: Advﬁi‘ﬁiDRB \) =
‘Pr |G335s ora (V) = 1] = Pr [gitdist | pea (M) = 1] ‘ A timed DRB that satisfies
t-unpredictability can be transformed generically into one with t-indistinguishability
by applying a suitable randomness extractor [39,40] or hash function (modeled
as a random oracle) to the output. A nice feature of our DRBs is that they satisfy
t-indistinguishability with respect to the group output space (without applying
a randomness extractor) under the suitable decisional RSW assumption.

10

Discussion. In t-unpredictability and ¢-indistinguishability, the adversaries Ay
and Ay are restricted to run in fewer than t sequential steps. This is a slight
simplification of the (p, o)-sequentiality assumption in VDFs [10], which is suit-
able for working in the AGM in which parallelism is not helpful in computing
group operations.

Note that our syntax and security definitions encompass all three of our
protocol variants. Except for Bicorn-ZK, the proofs 7; can be set to 1 and are
ignored; except for Bicorn-PC, the precommitment values d; can be set to L
and are ignored. Also note that there are n’ (> n) values of d; output by the
adversary; they have the option in Bicorn-PC to choose which to use in later
steps. The implementation of Recover is unique to each protocol.

We observe that the consistency property holds unconditionally for all Bicorn
variants, as Finalize and Recover are deterministic and algebraically equivalent.
It remains to prove unpredictability and indistinguishability for each variant.

5 Security of Bicorn-RX

We present a proof of t-unpredictability for Bicorn-RX here, as it is representa-
tive of the techniques used for all other proofs.

Theorem 1 (t-Unpredictability of Bicorn-RX). Let Aprx = (Abrx,05 Abrx,1)
be an algebraic adversary against the t-unpredictability of BRX with random ex-
ponent space B = [22* . B] where hash function H is modeled as a random oracle.
Then we construct an adversary Avsw = (Arsw,0, Arsw,1) such that

2(q%, +n)+1 1

d C-RSW*
AdvuAIf:i?t,n,BRX()‘) < AdV.Arsw,t,GGen ()‘) + 92X+1 + H Ii (Ti7 ’I’L) ’
i=1

and where GGen (G, g, A, B) generates the group of unknown order (|G| =

Hle p;* for distinct primes p1, ..., pe) used by BRX, qyo is the number of queries

made to the random oracle, n is the number of participants, and I.(r,n) =
P

(1- %)” Z;’ir ("+:_1)p*j 1s the reqularized beta function. The running time of

T(Arsw,o) ~ T(Abrx,O) + 2t and T(Arsw,l) ~ T(-Abrx,l)-

Proof. At a high level, our proof strategy will be to replace the initial commit-
ment ¢; provided by the single honest participant with a random group element.
If Ay, can win with non-negligible probability, then we show that due to un-
predictability of the random exponents applied in Bicorn-RX, it must be that
a nontrivial large exponent of ¢; was computed which we can use to win the
computational power-of-RSW game.

More specifically, we bound the advantage of Ay, by bounding the advantage
of a series of game hops, using the fundamental lemma of game playing and
its identical-until-bad argument [6]. We define G = G5"™d (M) and hybrids

Ay ,t,n,BRX
G1,G2,G3 for which we justify the following claims leading to the inequality above:

o [Prig(N)=1]-Pr[Gi(}) =1]| < =

11

o [Prigi(h) =1-Pr[G() =1]
o [PrGa(h) =1] = Pr(Gs(\) = 1| < g +[Tiey 1 (rinn)
e Pr [g3(>‘) = 1] = Adv./(ljl_ri,s;)YGeGen()‘)

G — G1. Hybrid G is defined the same as G except Gy samples ¢, in Prepare at
random from G instead of through an exponent sampled from B. By Lemma 1,
the statistical distance between G and G; is at most 1/22**1,

We can view G; as computing the beacon output {2 using the representations
of {¢;}_ 5 provided by the algebraic adversary. Since Ay, is algebraic, it will
provide a representation for each ¢; in terms of elements (c1, g, h). That is, the
adversary outputs [(e; 0, i1, €i2)]ly such that ¢; =] géi1heiz2,

Given a value h = th, we can compute {2 as follows. Consider the random
exponents b; = H(c¢; || bx) where b, = H (c1]|...]|cn), and let b = (b1,...,b,).
Using these, we have:

n 2! " ot
= (H Cfi) — (Clil . H (cii,ogei’lheig)bi)

i=1 1=2

n n n 2t
_ (01171+Zi:2 biEi,OgEi:z biei1 hzi=2 bieig)

n n
By letting e = (1,e20,...,€n,0), M1 = Z biei 1, and mg = Zbiei,g,
i=2 i=2
t

2 ~
= (™gmam) =@ hm

ma2

Thus if Ap,y wins, i.e., 2 = £2, then we have
() Pe) = 2.
and we build A,y to win the computational power-of-RSW game by setting c¢;
equal to challenge element x and returning this value along with (b, e). All that
is left to show is that (b,e) # 0 which we can do through an application of

the Schwartz-Zippel lemma modulo a composite [17,36,43]. Define a non-zero
polynomial f(z1,...,2,) =1 + Y., xi€; 0. Note that f(b) = (b,e).

—mo

G1 — Gs. To apply the Schwartz-Zippel lemma modulo a composite, we must first
have that the evaluation point b does not coincide with values precomputed by
the adversary. To do this, we step through G in which we disallow the output of
the random oracle H from colliding with (the trailing substring of) any previous
inputs to the random oracle. This ensures that the adversary has not made
any previous queries that include b, and ultimately ensures that the b; values
are chosen randomly after the polynomial is decided. We can apply a standard
birthday analysis to bound the probability of collision among the q,, queries
made to q2,/2%*, to bound the distinguishing advantage between G; and Gs.

Go — G3. After we have that the evaluation point b does not coincide with
precomputed values, we transition to Gsz which is identical to Gy except it

12

Gas Costs (x10%), Operations Involved

Commit/user Reveal /user Recover
Commit-Reveal 50 store;y | 60 xor, hash -
[28] Unicorn 55 storesx - 30n m-hash

§2.2 Bicorn-ZK 2,950 zk-poke.v,storeg [300 exp, mul | (negligible) +2,330
poe.v

§2.3 Bicorn-PC 155; 180 mul, storeg | 300 exp, mul | (negligible)

§2.4 Bicorn-RX 145 mul, storeg | 425 2-exp, mul | 170n n-exp

Table 2: Ethereum gas costs and main operations involved for each Bicorn variant
as well as Unicorn and Commit-Reveal DRBs. For Bicorn-PC, the Commit cost is
split to show Precommit and Commit costs. The operations are: storeg,2x, storing a
group element or 2A-bit value; mul, multiplication of two group elements; exp, raising
a group element to a power of size 2\ bits; poe.v and zk-poke.v, verifying a proof of
exponentiation and proof of knowledge of exponent, respectively. Concrete costs are
given with G = QR}; within an RSA-2048 group and X\ = 128.

aborts if f(b) = 0. We bound the distinguishing advantage to probability
sax + Hle I1 (r;,n) by applying Schwartz-Zippel modulo a composite [17]. Ad-

pq
versary A,y can simulate Gz perfectly, simulating the setup and computing h
with 2¢ work, and wins the RSW game with the same advantage as Gs.]

6 Implementation

We implemented all three variants of Bicorn in Solidity and measured the associ-
ated gas costs in Ethereum [42]. Our results are presented in Table 2. We instan-
tiate G as an RSA group with a 2048-bit modulus (specifically, it is the quadratic
residue subgroup QRY; [30]). Multiplying two group elements costs ~90,000 gas
and raising a group element to a power of size 32 bytes costs ~150,000 gas. As
mentioned in Section 3, we use the short exponent indistinguishability (SEI) as-
sumption [23] to reduce the size of the exponent required in practice from 288 to
32 bytes. The largest costs for each protocol are verifying a proof of exponentia-
tion (PoE) for the VDF computation in the pessimistic Recover case and verifying
a zero-knowledge proof of knowledge of exponent needed for each commitment
in Bicorn-ZK. We implemented both proofs using non-interactive variants of
Wesolowski proofs (ZKPoKRep from [11] for the latter), which requires a prime
challenge to be sampled. Verifying this “hash-to-prime” operation costs between
2.3-4 million gas.’

® Verifying “hash-to-prime” involves testing the primality of a number on-chain using

Pocklington certificates. This costs between 2.3—4 million gas, depending on the size
of the certificate. Table 2 reports costs with the smallest possible certificate.

13

Comparison to other DRBs. Per-user Costs: We find that the user operations
for Bicorn-RX are practical on Ethereum with them costing 3x for Commit
and 7x for Reveal when compared to the standard Commit-Reveal and Unicorn
protocols. In total, the sum of these operations per user per run comes to under
600,000 gas, or $6 USD when 1 Eth = $1,000 USD and 1 gas = 10 Gwei.
Pessimistic Costs: In the pessimistic case, a single call to Recover is required in
all versions of Bicorn, costing millions of gas. This pessimistic case is roughly
equivalent to every run of Unicorn. As the number of users grows large and the
chances of Bicorn’s optimistic case occurring decrease though, at some point it
may make more sense to switch to Unicorn and avoid the overheads of Commit
and Reveal that Bicorn protocols incur.

7 Discussion

Last revealer prediction. All Bicorn variants come with a fundamental secu-
rity caveat: if participant j withholds their a; value, but all others publish, then
participant j will be able to simulate the optimistic case and learn {2 quickly,
while the honest participants will need to execute the pessimistic case and com-
pute the delay function to complete before learning (2. Similarly, a coalition of
malicious participants can share their o values and privately compute §2. This
issue appears fundamental; in any protocol with a fast optimistic case and a slow
pessimistic case, a unified malicious coalition can simulate the optimistic case.

This does not undermine t-unpredictability or ¢-indistinguishability and does
not allow an adversary to manipulate the outcome. As a result, any protocol
built on top of Bicorn should consider the output {2 to be potentially available
to adversaries as of the deadline 77, even if the result is not publicly known until
Ty + t if the pessimistic case is triggered. For example, in a lottery application
all wagers must be locked in before time 7T7.

Incentives and punishment. While all Bicorn variants ensure malicious par-
ticipants cannot manipulate the output, they can waste resources by forcing the
protocol into the more-expensive recovery mode. The protocol provides account-
ability as to which nodes published an incorrect «; value or other minor devia-
tions which lead to removal (i.e. publishing an incorrect ¢; such that H(c¢;) # d;
in Bicorn-PC or publishing an incorrect 7; in Bicorn-ZK). If signatures are added
to each message, efficient fraud proofs are possible. In a blockchain setting, fi-
nancial penalties can be used to punish incorrect behavior.

Batch verification optimization. In the optimistic case, the n exponentia-
tions required to verify that ¢; = g& for each participant can be streamlined
via batch verification [5,16]. The general idea is that ¢* = 1 A g¥ = 1 can be
verified more efficiently by checking ¢"**Y = 1 for a random r & R, as the
latter equation implies the former with high probability given a large enough
R. In our case, to verify that ¢; = ¢® Acg = g A ... Ac, = g%, we gener-

ate random values 7; & R and verify that g% = [1¢;*. Thus, instead of

14

computing n exponentiations each with an exponent of size |B|, verification re-
quires only one exponentiation with an exponent of size n|B||R| and one n-way
multi-exponentiation [31].

Lowering costs with rollup proofs. Practical costs can become significant
if all users must post data to the blockchain to participate. For example, each
run of Bicorn-RX costs about $6 USD per user even in the optimistic case. An
alternative solution is to perform Bicorn mediated via a rollup server (Rollup-
Bicorn) which gathers every participant’s ¢; value and publishes:

e A commitment s = SetCommitment(C) to the set C' = {c1,...,c,} of all
participant contributions. For example, s might be a Merkle Tree root.

e The value ¢, = Hie[n] ¢;, the product of all participants’ commitments.

— For Bicorn-RX, ¢, will be adjusted with each party’s exponent H (¢;||b.).

e A succinct proof (SNARK) Troliup-commit that ¢, has been computed consis-
tently with the set S. This proof does not need to be zero-knowledge.

— For Bicorn-ZK, the proof must recursively check each proof ;.
— For Bicorn-PC, the proof must check ¢; was correctly precommitted.
— For Bicorn-RX, the proof must check ¢; was raised to the power b;.

In the optimistic case, if all participants reveal their private value «;, then
the rollup server can finalize the protocol by posting:

e The output 2 and a succinct proof (SNARK) Tyoliup-finalize that states that:
— The prover knows a set A = {aq,...,an}
— For each ¢; € C, it holds that ¢; = g%
— The output {2 was computed correctly given the set A.

In the pessimistic case, if the rollup server goes offline without supplying the
second proof (or some participants don’t publish «;), anybody can still compute

t
2= a(.? A single proof could be used which is a disjunction of verifying the
t
rollup server’s proof Trollup-finalize OF verifying a PoE proof that 2 = c?". The end
result is that Bicorn can be run with O(1) cost for any number of participants.

Lowering cost with delegation. While the rollup approach requires only
constant overhead on the blockchain regardless of the number of participants,
the primary downside (in common with most rollup systems) is that the rollup
server can censor by refusing to include any participant’s ¢; in the protocol. In
the worst case, a malicious rollup server might only allow participants from a
known cabal to participate, who are then able to manipulate the DRB output.

To achieve the best of both worlds (the efficiency of rollup servers for large
protocol runs as well as robustness against censorship), we might design a dele-
gated Bicorn protocol. In a delegated protocol, users can choose between multiple
rollup servers or directly participate as an untrusted (possibly singleton) rollup
server. This works like delegated proof-of-stake protocols: participants can dele-
gate for efficiency if they want or participate individually if no server is consid-
ered trustworthy. This is straightforward for Bicorn-PC and Bicorn-ZK, as each

15

rollup server can simply compute a partial product ¢, which are multiplied to-
gether to obtain the final output (2. Such a protocol for Bicorn-RX would require
additional rounds of exponent randomization, to ensure each user’s exponent is
randomized by contributions from users at other rollup servers.

Acknowledgments

Kevin Choi, Arasu Arun and Joseph Bonneau were supported by DARPA under
Agreement No. HR00112020022. Nirvan Tyagi was supported via a Facebook
Graduate Fellowship, and part of this work was done while he was a visiting
student at Stanford University. Joseph Bonneau and Arasu Arun were also sup-
ported by al6z crypto research. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the United States Government, DARPA, al6z,
Facebook or any other supporting organization.

16

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Drand. https://drand.love/

Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure Multi-
party Computations on Bitcoin. In: IEEE Security & Privacy (2014)

Beaver, D., Chalkias, K., Kelkar, M., Kogias, L.K., Lewi, K., de Naurois, L., Nico-
laenko, V., Roy, A., Sonnino, A.: Strobe: Stake-based threshold random beacons.
Cryptology ePrint Archive (2021)

Beaver, D., So, N.: Global, unpredictable bit generation without broadcast. In:
Eurocrypt (1993)

Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Eurocrypt (1998)

Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: EUROCRYPT. Lecture Notes in Computer
Science, vol. 4004, pp. 409-426. Springer (2006)

Bhat, A., Kate, A., Nayak, K., Shrestha, N.: OptRand: Optimistically responsive
distributed random beacons. Cryptology ePrint Archive, Paper 2022/193 (2022)
Bhat, A., Shrestha, N., Kate, A., Nayak, K.: RandPiper — Reconfiguration-Friendly
Random Beacons with Quadratic Communication. Cryptology ePrint Archive, Pa-
per 2020/1590 (2020)

Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
ACM SIGACT News (1983)

Boneh, D., Bonneau, J., Biinz, B., Fisch, B.: Verifiable delay functions. In:
CRYPTO (2018)

Boneh, D., Biinz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: CRYPTO (2019)

Boneh, D., Biinz, B., Fisch, B.: A Survey of Two Verifiable Delay Functions. Cryp-
tology ePrint Archive, Paper 2018/712 (2018)

Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Asiacrypt (2018)

Boneh, D., Naor, M.: Timed commitments. In: Annual international cryptology
conference (2000)

Buchmann, J., Hamdy, S.: A survey on IQ cryptography. In: Public-Key Cryptog-
raphy and Computational Number Theory (2011)

Biinz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: IEEE Security & Privacy
(2018)

Biinz, B., Fisch, B.: Schwartz-zippel for multilinear polynomials mod n. Cryptology
ePrint Archive, Paper 2022/458 (2022)

Camenisch, J., Drijvers, M., Hanke, T., Pignolet, Y.A., Shoup, V., Williams, D.:
Internet computer consensus. In: ACM PODC (2022)

Cascudo, I., David, B.: Scrape: Scalable randomness attested by public entities.
In: ACNS (2017)

Cascudo, I., David, B.: Albatross: publicly attestable batched randomness based
on secret sharing. In: Asiacrypt (2020)

Chen, M., Hazay, C., Ishai, Y., Kashnikov, Y., Micciancio, D., Riviere, T., Shelat,
A., Venkitasubramaniam, M., Wang, R.: Diogenes: Lightweight Scalable RSA Mod-
ulus Generation with a Dishonest Majority. In: IEEE Security & Privacy (2021)
Cherniaeva, A., Shirobokov, I., Shlomovits, O.: Homomorphic encryption random
beacon. Cryptology ePrint Archive, Paper 2019/1320 (2019)

17

https://drand.love/

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

Couteau, G., Kloo3; M., Lin, H., Reichle, M.: Efficient range proofs with transpar-
ent setup from bounded integer commitments. In: Eurocrypt (2021)

Das, S., Krishnan, V., Isaac, .M., Ren, L.: Spurt: Scalable distributed randomness
beacon with transparent setup. Cryptology ePrint Archive, Paper 2021/100 (2021)
Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: CRYPTO (2018)

Guo, Z., Shi, L., Xu, M.: SecRand: A Secure Distributed Randomness Generation
Protocol With High Practicality and Scalability. IEEE Access (2020)

Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: CRYPTO (2017)

Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. Cryptology
ePrint Archive, Paper 2015/366 (2015)

Micciancio, D.: The RSA group is pseudo-free. In: CRYPTO (2005)

Pietrzak, K.: Simple Verifiable Delay Functions. In: ITCS (2018)

Pippenger, N.: On the evaluation of powers and monomials. STAM Journal on
Computing 9(2), 230-250 (1980)

Qian, Y.: Randao: Verifiable random number generation (2017), https://randao.
org/whitepaper/Randao_v0.85_en.pdf

Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996)

Schindler, P., Judmayer, A., Stifter, N., Weippl, E.: Hydrand: Efficient continuous
distributed randomness. In: IEEE Security & Privacy (2020)

Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its ap-
plication to electronic voting. In: CRYPTO (1999)

Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. Journal of the ACM (JACM) 27(4), 701-717 (1980)

Syta, E., Jovanovic, P., Kogias, E.K., Gailly, N., Gasser, L., Khoffi, I., Fischer,
M.J., Ford, B.: Scalable bias-resistant distributed randomness. In: IEEE Security
& Privacy (2017)

Thyagarajan, S.A.K., Castagnos, G., Laguillaumie, F., Malavolta, G.: Efficient
CCA Timed Commitments in Class Groups. Cryptology ePrint Archive, Report
2021/1272 (2021)

Trevisan, L.: Extractors and pseudorandom generators. Journal of the ACM 48(4)
(2001)

Trevisan, L., Vadhan, S.: Extracting randomness from samplable distributions. In:
FOCS (2000)

Wesolowski, B.: Efficient Verifiable Delay Functions. In: Eurocrypt (2019)

Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper (2014)

Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Symbolic and alge-
braic manipulation (1979)

18

https://randao.org/whitepaper/Randao_v0.85_en.pdf
https://randao.org/whitepaper/Randao_v0.85_en.pdf

	Bicorn: An Optimistically Efficient Distributed Randomness Beacon

