Riggs: Decentralized Sealed-Bid Auctions

Nirvan Tyagi

Cornell University

Riad Wahby
Carnegie Mellon University
Cubist

ABSTRACT

We introduce the first practical protocols for fully decentralized
sealed-bid auctions using timed commitments. Timed commitments
ensure that the auction is finalized fairly even if all participants drop
out after posting bids or if n — 1 bidders collude to try to learn the
n'® bidder’s bid value. Our protocols rely on a novel non-malleable
timed commitment scheme which efficiently supports range proofs
to establish that bidders have sufficient funds to cover a hidden
bid value. This allows us to penalize users who abandon bids for
exactly the bid value, while supporting simultaneous bidding in
multiple auctions with a shared collateral pool. Our protocols are
concretely efficient and we have implemented them in an Ethereum-
compatible smart contract which automatically enforces payment
and delivery of an auctioned digital asset.

1 INTRODUCTION

Sealed-bid auctions are an important tool in auction design. The
most well-known format is the sealed-bid second-price auction, also
known as a Vickrey auction in honor of Vickrey’s Nobel prize—
winning 1961 work formalizing the concept [Vic61] (though such
auctions were regularly used in practice in the 19th century [LR00],
well before Vickrey’s work). In a classic (offline) Vickrey auction, a
group of n bidders privately submits bids to a trusted auctioneer,
who awards the good to the highest bidder at the price of the second-
highest bid submitted. Vickrey showed that, in an idealized model,
bidders in this auction format are incentivized to bid their true
valuation of the good and the resulting sale price is equivalent to
that produced by the more commonly used open-bid ascending-
price auction (or English auction).

Vickrey auctions only require one round of communication, a
compelling efficiency advantage over English auctions which can
require an extended bidding period to discover the winning price.
Vickrey auctions also have a privacy advantage: only the auctioneer
need see bid values. English auctions inherently require publicizing
bids to enable price discovery.

Despite these advantages, Vickrey auctions have remained far
less common in practice. Rothkopf et al. [RTK90] argued in 1990
that two key issues prevented more widespread use: concerns about
cheating by the trusted auctioneer and concerns by bidders about
revealing their true valuations. For example, just this year, Google
is being sued by the US Justice department for “anticompetitive
auction manipulation” [Goo23].

In 1993, Nurmi and Salomaa [NS93] first proposed using cryp-
tography to prevent cheating by the auctioneer and limit public
revelation of bids. Franklin and Reiter [FR96] proposed the first
complete cryptographic protocol for sealed-bid auctions, relying
on an honest majority of auctioneers to ensure honest behavior.

Arasu Arun
New York University

Joseph Bonneau
New York University
aléz crypto research

Cody Freitag
Cornell Tech

David Maziéres
Stanford University

Sealed-bid auctions have since motivated a diverse cryptographic
literature with dozens of proposed protocols, covering many differ-
ent auction formats and privacy models (for a survey see Alvarez
and Nojoumian [AN20]). Generically, the auction process can be
cast as a secure multi-party computation problem between the bid-
ders [NPS99]; MPC was famously deployed in a real 2009 auction
for Danish sugar beets [BCD*09].

Prior to the advent of blockchains, all of these protocols suf-
fered from a fundamental limitation that the cryptographic proto-
col could only compute the correct sale price but not enforce that
the winning bidder actually pays (nor that the item is delivered as
promised). Blockchains with a sufficiently powerful smart contract
environment can facilitate a fully decentralized auction by enforcing
payment and even enforcing delivery for certain types of digital
goods (e.g., NFTs). Unsurprisingly, cryptographic auctions were
quickly suggested as an example application for smart-contract
enabled blockchains [KMS*16, BK18].

The typical structure sees users post cryptographic commit-
ments to the blockchain to bind them to a (hidden) bid value. Users
then reveal their bids after all commitments have been published.
However, blockchains cannot force any user to reveal their com-
mitted bid. Bidders can be incentivized to open their bid via penal-
ties [ADMM14, KZZ16] or required to provide enough information
for a majority of other bidders to reconstruct their bid [BK18]. But
these approaches are complex in practice, requiring either careful
reasoning about the size of penalties required to incentivize cor-
rect behavior or opening the auction up to attack by a dishonest
majority of participants.

In this work, we refine the approach of implementing sealed-bid
auctions using timed commitments, as first proposed by Boneh and
Naor [BN00]. With timed commitments, a participant’s bid can be
recovered without the participant’s cooperation, by computing a
slow function which forces open their commitment. This approach
guarantees that the auction can be fairly concluded even if all
parties drop out or if n — 1 bidders collude. The slowness of the
force-opening algorithm is necessary to ensure bidders cannot learn
others’ bids in time to adjust their own bidding strategy.

The basic proposal of Boneh and Naor does not achieve fully
decentralized auctions, however, as it does not defend against bid-
ders placing bids they cannot afford. This problem is more than
merely a nuisance: a malicious bidder can manipulate their balance
during the bid-opening phase to back out of a bid by nullifying their
ability to pay. Such manipulation has implications on the credibility
of an auction [AL20] in which a set of bidders may collude with
the seller to bias auction results. In this work, we extend timed
commitment-based techniques to the fully decentralized sealed-
bid setting. Specifically, we develop new techniques for efficient

proofs that a bid sealed via a timed commitment is fully backed
by a bidder’s available funds, while keeping the actual bid amount
private. Our proposed solutions (which we collectively call Riggs)
support concurrent bids on multiple asynchronous auctions and
are extensible to any auction design in the sealed bid setting. This
includes not just second-price Vickrey auctions, but also, for exam-
ple, generalized k + 1 price multi-good auctions or multi-round
simultaneous ascending auctions as used by the FCC for wireless
spectrum [GV99].

We implement our designs in Rust and build a compatible smart
contract implementation in Solidity that adheres to existing token
standards and can be deployed on the Ethereum blockchain to inter-
act with the NFT and token ecosystems. The cost to generate a bid
in our Rust implementation is 71 ms; the cost to validate that bid in
our Ethereum smart contract implementation is roughly 2.5 million
gas. While the latter is expensive (*$134 on Ethereum at time of
writing), we believe that these costs will decrease substantially in
the future; we discuss in Section 7.

To summarize, our contributions are:

e Introducing the threat model for a fully decentralized auc-
tion and uncovering weaknesses in folklore proposals for the
setting.

e Construction of a new non-malleable timed commitment
scheme that efficiently supports range proofs. With practical-
ity in mind, we design and prove our scheme secure in the
random oracle model. Thus, even when used without range
proofs, our timed commitment scheme is the most efficient
that we are aware of.

e Design of the Riggs-RP and Riggs-TC variants of an auction
protocol for the decentralized setting.

e Implementation and evaluation of our protocols in a native
Rust implementation and a compatible smart contract imple-
mentation deployable on the Ethereum blockchain.

2 BACKGROUND AND PRELIMINARIES

Prime-order cyclic groups. We denote G as a cyclic group of prime
order. Looking forward, the group will be selected to have order p
determined by the range of valid bids and a security parameter .
We denote canonical generators of the group as g and h, and we
assume an efficient setup algorithm that on input security parameter
A, generates a group, (p, G, g, h) «s GGen(\), where ||p|| = A. The
discrete log of ¢ is not known with respect to h.

Pedersen commitments. A Pedersen commitment [Ped91] com-
mits to a message m € Zj in a commitment com = ¢g™h® in a
prime-order cyclic group for a random « «s Z,. The commitment
com can be opened to reveal m by providing opening proof o and
m. The commitment is hiding and binding meaning no information
about m is revealed through com and it is infeasible for computa-
tionally bounded adversaries to open com to any value other than
m. Pedersen commitments have a convenient additive homomorphic
property that we will take advantage of. That is, two commitments,
com; = g™ h®! and coma = g™2h*? can be combined to com-
pute com < comj - comsa that opens to mj1 + mo using opening
a1+ a9.

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Maziéres

RSA groups. A strong RSA group is the multiplicative group of in-
vertible integers modulo N (denoted Z}, = {z € Z : ged(z, N) =
1}), where N is the product of two safe primes g1, g2 (i.e., such
that (“771 and ng L are also prime). We define the group of RSA
quadratic residues for N as QR = {22 mod N xr € Zyh
and the signed quadratic residues as QRJ;V ={lz] : € QRy}.In
QRR,, the elements N — z and z are equivalent, so the group can

be represented by integers in the interval [1, L%J]. Furthermore,
all elements can be efficiently tested for membership and all ele-
ments (except for 1) are part of subgroups of size > ga(i\/) , where
¢(+) is the Euler totient function. For this reason, we will use the
group G = QRR, \ {1}, for which we assume a setup algorithm,
(q1,92, N, G, g, h) <s RSAGGen(}) where [|q1]| = llg2ll = 7(A);
and 7(\) is defined such that factoring IV takes time 2. We refer
to [Pie19, MT19] for more details.

Timed commitments. A timed commitment [BN0O] (or similar
time-lock puzzle [RSW96]) commits to a message m in a commit-
ment com such that the message is hidden, but can be force-opened
by any party by performing a sequential amount of work deter-
mined by some delay parameter ¢. Timed commitments can be
created and opened efficiently by the committer (requiring at most
O(lgt) work). Furthermore, if a commitment is force-opened, an
efficiently-verifiable proof of opening can be provided.

Most timed-commitment protocols rely on the decisional re-
peated squaring problem [RSW96]: given g € G, it is hard to dis-
tinguish z = ggt from random without executing a computation of
sequential depth at least ¢. This problem is believed to be as hard as
computing the order of the group (for an RSA group, factoring NV);
this has been proven in generic computation models [KLX20, RS20].

Boneh and Naor’s original construction [BN00] required the
committer (but not others) to know the group order ||G|| and hence
required a different G for each committer. Modern timed commit-
ments [FKPS21, KLX20, MT19, TCLM21] use of proofs of exponenti-
ation in groups of unknown order [Wes19, Pie19], in which a prover
convinces a verifier for z,g € G and « € Z, the relation z = g¢
holds. Importantly, the integer a can be much larger than |G|, but
the verifier’s running time remains (j(log||G||). Thus these modern
constructions enable all committers to use the same G which can
be a global parameter.

Non-interactive zero-knowledge proofs. A non-interactive proof
system for a relation R over statement-witness pairs (z,w) enables
producing a proof, m « Prove(pk, x, w), that convinces a verifier
Jw : (z;w) € R, 0/1 « Ver(vk,w,x); pk and vk are proving
and verification keys output by a setup, (pk, vk) <« Keygen(R). A
non-interactive argument of knowledge further convinces the verifier
not only that the witness w exists but also that the prover knows w
(also known as soundness). If proved in zero-knowledge, the verifier
does not learn any additional information about w.

Range proofs. We make use of non-interactive zero-knowledge
range proofs which allow a prover to convince a verifier that a
committed integer x falls within a range [A, B]. There have been
two standard approaches to constructing range proofs. The first is
based on n-ary decomposition of = (or x — A and B —), commit-
ting to decomposed limbs, using homomorphic properties of the

Riggs: Decentralized Sealed-Bid Auctions

commitment to show the limbs recompose to x, and lastly proving
that each limb falls within [0, n] [CCS08, Gro11, BBB*18, CHJ*20].
The second is based on square decomposition of = using Lagrange’s
four square theorem which states that every positive integer can be
decomposed to the sum of four integer squares, x = 221:1 mf The
prover homomorphically computes a commitment to z — A and
B — x and proves that both are positive by additionally providing
commitments to the square decomposition and homomorphically
verifying the sum of squares [Bou00, Lip03, Gro05, CPP17]. This
approach requires commitments to integers which has typically
necessitated using hidden order groups [FO97, DF02], until recently
Couteau et al. constructed bounded integer commitments in known
order groups [CKLR21]. Our techniques for constructing range
proofs on top of timed commitments will be compatible with either
approach.

3 OVERVIEW
3.1 Auction Setting and Threat Model

In this work, we are concerned with building decentralized sealed-
bid auctions. In place of a trusted auctioneer used in traditional
sealed-bid auctions, we rely on a decentralized consensus protocol
(in short, a blockchain). This could be done using a special-purpose
consensus protocol implementing the auctioneer logic; though our
goal is to use a general-purpose consensus protocol that supports
arbitrary programs (or smart contracts).

We do not rely on any specific underlying consensus mechanism,
e.g., proof-of-work or proof-of-stake. We assume, as is standard,
that the underlying consensus protocol is correct, that is, only valid
transactions which follow the rules of the smart contract can be
added to the chain. We also assume that the consensus protocol is
eventually consistent, that is, all nodes agree on transaction history
except up to a small suffix. Finally, we assume that the underlying
consensus protocol is live and censorship-resistant. That is, users
attempting to broadcast a transaction to the chain will succeed
with high probability, possibly under the assumption that adequate
fees are paid. No auction system will be secure if an attacker can
manipulate the consensus protocol (for example, via bribery of the
participants) to prevent anybody else from placing a bid.

We model bidders and sellers as pseudonymous, possibly ephemeral
cryptographic identities. An adversary may control any number
of Sybil identities, but cannot impersonate an identity they do not
own. Since identities are pseudonymous, the auction mechanism
cannot rely on reputational or legal pressure to induce exchange
between the winner(s) and seller; enforcement must therefore be
integrated into the protocol.

Our system can tolerate targeted network-level denial-of-service
attacks, e.g. arbitrarily dropping or delaying packets. As long as
we assume that a new ephemeral identity is able to send at least
one transaction (a bid commitment) to the blockchain before being
targeted for denial of service, our use of timed commitments ensures
an attacker cannot manipulate the auction result by preventing
them from publishing their bid opening.

3.2 Technical Overview

Our main technical contribution is a cryptographic protocol that
composes timed commitments with efficient range proofs. Using

this protocol, we avoid pitfalls in previously proposed auction
systems stemming from abandoned bids, high collateral cost, and
denial-of-service attacks. We provide an overview of our approach
by stepping through a series of strawman solutions illustrating each
of these issues.

“Commit-and-reveal” with a per-auction collateral. As a start-
ing point, consider a natural two-phase construction in which bid-
ders first submit a commitment to their bid in a bid collection phase,
and then open the commitment to reveal their bid to conclude the
auction in a later bid self-opening phase. A serious problem with this
approach is that bidders must be trusted to open their commitment:
a cheating bidder can watch the bids as they are opened during the
second phase and simply refuse to open theirs if they do not like the
outcome, thus biasing the auction. Consider the following concrete
attack against second-price (Vickrey) auctions. Cheating bidders
in collusion with the seller (or Sybils controlled by the seller) can
place multiple bids at various price points. As honest bids are re-
vealed, the cheating bidder can reveal a bid that is just below the
highest honest bid and abandon other bids, thus driving up the
price paid to the seller. This is a standard attack in the economics
literature against the credibility of an auction [AL20]. In the worst
case this attack reduces the auction to a first-price auction which
is a poor outcome - it incentivizes bidders not to bid their actual
value, hindering efficient price discovery.

To incentivize against such abandoned bids, we might require
bidders to place collateral in escrow (via a smart contract) before
bidding, which is forfeit if the bidder does not self-open. In this
case, the collateral must be larger than the corresponding bid so
that the seller can collect payment; an opened bid greater than its
collateral is invalid. It has been shown that setting collateral in this
manner recovers credibility of an auction [FW20].

However, even this collateral strawman proposal has two limi-
tations that motivate our work. First, unless the escrow contract
has some privacy mechanism, collateral values are public—so to
avoid revealing information, the user must escrow much more than
the bid amount (say, an upper bound on the item’s value). Schlegel
et al. [SM21] analyzed this setup from an economic point of view
and concluded that it has the potential to skew bidding strategy.
It is also inefficient, as users must lock up a large amount of extra
collateral to avoid revealing information. This is even more severe
with simultaneous auctions, each of which require separate col-
lateral per bid. In total, several concurrent bids may require the
user to escrow a huge amount, potentially limiting their ability to
participate.

Second, while collateral incentivizes a bidder not to abandon
their bid, it does not address scenarios where a bidder tries to open
their bid but is unable to. As examples, a user may have unreliable
network access, or an auction may be held on a blockchain that
experiences transaction congestion. In these and similar situations,
the risk of losing collateral may dissuade users from participating.
Perhaps more importantly, bidders have an incentive to mount
denial-of-service attacks against one another: an attacker can iden-
tify other bidders from their posted bid commitment and interfere
with future self-opening posts, thereby reducing the pool of bids in
the auction. We now address these limitations in turn.

Pooled collateral and concurrent auctions. Using a blockchain
platform that doesn’t support transaction-level privacy inherently
requires that users have more collateral on deposit than the max-
imum plausible price for an item. However, if a user is bidding
on multiple items in concurrent auctions, the user can escrow a
single collateral pool for all of their active bids, potentially greatly
reducing their escrow requirements.

We could try pooling collateral with a simple rule that a user’s
bid is invalid if it exceeds the collateral size, otherwise the bid
value (once revealed) is subtracted from the bidder’s collateral pool.
Unfortunately, this enables bidders to abandon their bids: during
the opening phase, a remorseful bidder can race to win a separate
item in a wash-sale auction (i.e., creating a short-term auction in
which they are the seller), thereby siphoning enough collateral from
their pool to invalidate the regretted bid.

This attack relies on the fact that concurrent auctions’ start and
end times can be different, allowing a wash-sale auction to complete
during another auction’s opening phase. Thus, we might prevent
this attack by forcing auctions to be synchronized in epochs: all
auctions within an epoch start and end together, and the auctions
for the next epoch cannot start until the prior epoch is finished.
In this case, a user’s bids are either all valid (i.e., bids sum to less
than the collateral pool) or all invalid, and a user’s collateral pool
is locked during any epoch in which the user placed a bid. We give
further details on this approach in Appendix B.

The requirement to synchronize the start and end of all auctions
is inconvenient, both for bidders and sellers. To sidestep this re-
quirement, an alternative approach is to ask bidders to prove in
zero knowledge that the sum of their active bids is less than their
collateral (reminiscent of private payment systems [BAZB20]). In
this model, a bidder cannot place any bid that would exceed the size
of their collateral pool (and hence invalidate a prior bid), since in
that case they would be unable to produce a valid proof—meaning
it is safe to allow asynchronous concurrent auctions. Bidders can
even adjust the size of their collateral pool as long as they prove
that the new amount covers all outstanding bids.

Denial-of-service protection via timed commitments. Boneh
and Naor first proposed using timed commitments (§2) for sealed-
bid auctions [BN00]. In this arrangement, any abandoned bids that
were not opened during the self-opening phase are instead opened
during a subsequent force-opening phase, via a long sequential com-
putation; the cost to force a commitment must be chosen so that
the bid remains secret until all bids are collected. This approach
ensures that all bids are included in the auction results, even ones
a bidder is unwilling or unable to open. Parties who do the ex-
pensive computational work of forcing open abandoned bids can
be incentivized with a reward; this reward must be chosen care-
fully to avoid incentivizing undesirable behavior (e.g., launching
denial-of-service attacks purely for the opportunity to collect the
forced-opening reward). We now show how to integrate timed com-
mitments with range proofs, which (as discussed above) enable
asynchronous concurrent auctions.

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Maziéres

Range proofs over timed commitments. A natural approach to inte-

grating timed commitments and range proofs is to use a non-
interactive zero knowledge proof system to prove that the en-
closed bid lies in the valid range. Many general-purpose zero-
knowledge succinct non-interactive argument of knowledge (zk-
SNARK) constructions are known (e.g., [PHGR13, Gro16, BBHR19,
GWC19, CHM™20, Set20]; [Tha20] surveys). In principle, such sys-
tems allow one to prove arbitrary relations, and in fact Katz et
al. recently used zkSNARKSs to ensure non-malleability of timed
commitments [KLX20]. In practice, however, the relation being
proved must be encoded in an arithmetic constraint formalism,
which often introduces orders-of-magnitude overheads for natural
computations. We evaluate this approach in Section 7, finding that
it results in over 20 second proving times; looking ahead, this is
~ 300x worse than our solution.

To avoid the overhead of general-purpose proof systems, we
devise an application-specific proof system that takes advantage of
the algebraic structure of the timed commitment. Our starting point
is the linearly-homomorphic timed commitment of [MT19], which
is related to Paillier encryption [Pai99]. Given an input-output pair
for the sequentially hard repeated squaring problem (h, z) where
z=h? (mod N), a commitment to bid b is as follows:

com(b; o) = (ha (mod N), (1+N)?-2N'® (mod N2)) ,

where o is sampled as a large random exponent. To force open
the commitment, one first computes the blinding factor 2V yia
repeated squaring of h¥"®, then unblinds the second element of
com and computes the discrete log of the result to the base (1 + N).
[TCLM21] show how to use a proof of group homomorphism over
hidden-order groups [CCL*20, BBF19, BCM05] to prove knowledge
of the enclosed bid, ensuring non-malleability.

This construction can be extended to support range proofs. At a
high level, the strategy is to take advantage of concretely efficient
range proof constructions for Pedersen commitments in a prime-
order cyclic group, ie., comg = ghP for random 8 [BBB*18,
CKLR21]. Specifically, rather than simply proving knowledge of
the bid enclosed in the timed commitment (as discussed above),
one can use a similar proof of group homomorphism to prove that
the values committed in com and comg are equal [WBJP20], then
apply a efficient range proof to comg to show that the timed com-
mitment com contains a bid in the appropriate range.! While this
construction is much more efficient than using a general-purpose
zkSNARK, we can optimize even further in the auction setting.

Timed commitment to range proof commitment opening. The key ob-

servation behind our final optimization is that, in our setting, the
commitment consistency check can be deferred to the opening
phase. Let the timed commitment com’s value be the opening of
the range-proof commitment comg. As before, the range proof
must be checked at bid time; later, upon opening the timed com-
mitment, one can simply check that the claimed opening of the
range-proof commitment is valid; otherwise, the bid is regarded
as invalid. This approach—a timed commitment to the opening of
another commitment—was previously proposed for decentralized

! Another approach would be to perform the range proof in the RSA group that the
timed commitment is in. Unfortunately, range proofs over RSA groups [Bou00, Lip03,
Gro05, CPP17] are concretely expensive.

Riggs: Decentralized Sealed-Bid Auctions

auctions [DDM*20]; we observe that the same mechanism yields
very efficient range proofs in our context.

In slightly more detail, the range-proof commitment is a Pedersen
commitment comg = gb h? to bid b, and the timed commitment’s
value is (b, /3), i.e., the opening of comg. During the bidding phase,
any efficient range proof can be used with comg; once the timed
commitment is opened, the bid is accepted if and only if its value
opens comg.

Importantly, if the timed commitment is non-malleable and bind-
ing, the bid’s validity is determined at the outset and cannot be
changed later. Moreover, all collateral lock-ups are determined by
the range-proof commitment, so a valid proof ensures sufficient
collateral. The attacker might still submit a malformed timed com-
mitment (i.e., one that does not open the range-proof commitment),
but this is not an issue: the effect is just that the attacker’s collateral
is locked until the bid is invalidated at opening time.

This protocol has significant efficiency benefits over generating
range proofs directly on the timed commitment. It obviates the
proof of equivalence, thereby allowing the use of non-algebraic
timed commitments [FKPS21], which are more efficient. It is also
modular: if denial-of-service (DoS) protection is not needed, the
timed commitment can just be elided. Putting it all together, we
are left with a timed commitment range proof with essentially
minimal overhead: it consists solely of the most efficient known
non-malleable timed commitment and the most efficient known
range proof.

4 NON-MALLEABLE TIMED COMMITMENTS

In this section, we formalize and construct the non-malleable (non-
interactive) timed commitments used for our decentralized auction
protocols. Our construction builds off of plain commitments by
adding a timed trapdoor following [BN00, FKPS21, KLX20]. In Sec-
tion 4.1, we first define a plain (non-timed) commitment, and then
we formalize timed commitments in Section 4.2. Finally, in Sec-
tion 4.3, we construct a non-malleable timed commitment given
any non-malleable plain commitment (e.g. using Pedersen commit-
ments with Bulletproofs [BBB*18]). Full details, discussion, and
security proofs for this section are provided in Appendix A.

4.1 Non-interactive Commitments

At a high level, a plain non-interactive commitment consists of
a commitment algorithm Comm that on input a bid b outputs a
commitment com and an opening proof mopen- Then, a verification
algorithm VerOpen checks whether or not com is a valid commit-
ment to b with respect to Topen. The syntax for a non-interactive
commitment C consists of the following algorithms:

e pp <3 C.Setup(\): The setup algorithm defines the public
parameters pp given a security parameter A\. We will assume
pp is available to all following algorithms, and all parties have
assurance it was generated honestly.

o (com,Topen) <3 C.CommPP(b): The commit algorithm takes
in a message b. It produces a commitment com with an open-
ing proof Topen-

e 0/1 « C.VerOpenPP(com, b, Topen): The opening verifica-
tion algorithm on input mope, verifies the commitment com

opens to the claimed message b. We note that the proof covers
the case where the commitment is claimed to be unopenable,
ie, b= 1.

For simplicity, we may drop the public parameters from the super-
script if the use is clear from context.

Correctness and security properties. We give high level overviews
of the correctness and security properties we require for such com-
mitments. We defer formal definitions to Appendix A.1.

For correctness, we require that for any well-formed pp, VerOpen
outputs 1 on well-formed values output by Comm. We also require
that if VerOpen outputs 1 for some commitment com and bid b,
then com is in the support of Comm with bid b. This always can
hold by having mopen include the randomness used by Comm and
checking that com was computed correctly in VerOpen.

For security, we require two main properties: binding and non-
malleability (hiding). All properties hold with high probability over
honestly generated public parameters pp. Binding guarantees that
no adversary can provide valid opening proofs to open a commit-
ment com to two different values b # b’.

Non-malleability guarantees that no meddler-in-the-middle (MIM)
adversary that receives as input a commitment com for a bid b can
output a different commitment com’ for a bid b’ related to b. In
fact, we require a stronger notion of concurrent non-malleability
that guarantees the MIM cannot output many different commit-
ments for bids by, . .., by, such that they are all jointly related to b
in a non-trivial way. We note that non-malleability implies that the
commitment satisfies hiding. If an adversary can compute the bid
b under a commitment com better than guessing, it could generate
a fresh commitment to b + 1, for example, which is clearly related
to b.

4.2 Timed Commitments

Timed commitments extend plain commitments by adding a “force
opening” functionality to open the commitment com after some
specified ¢ time, given by the algorithm ForceOpen. We addition-
ally require that “timed” versions of the security properties hold
even in the presence of the ForceOpen algorithm, which we dis-
cuss below. A timed commitment TC consists of the algorithms
(Setup, Comm, ForceOpen, VerOpen), although the syntax of Comm
and VerOpen remain unchanged from plain (non-timed) commit-
ments. The new syntax for Setup and ForceOpen are as follows:

o pp «s TC.Setup(A,t): The setup algorithm additionally takes
as input a delay parameter ¢. For definitional simplicity, we as-
sume a fixed delay parameter during setup, but our proposed
construction will support flexibly-chosen delay parameters,
which we discuss later.

e (b,mopen) « TC.ForceOpenPP(com): The force open al-
gorithm allows any party to recover the message b and an
opening proof mopen given the commitment com. The force
open algorithm runs in time ¢ - poly (). If the commitment
fails to open, b is set to L.

Timed correctness and security properties. Again, we defer the for-
mal definitions to Appendix A.1, but provide a high level overview
here. Correctness is the same as for plain commitments, but we
also require that on input a well-formed commitment com for bid

b, ForceOpen outputs b. Furthermore, if com is not well-formed,
we require that ForceOpen outputs L.

For security, binding remains unchanged. However, a timed ver-
sion of non-malleability now must hold even in the presence of the
ForceOpen algorithm. Note that the full notion of non-malleability
cannot hold in general as ForceOpen immediately breaks hiding
(and hence non-malleability) for time ¢ adversaries. As such, we re-
quire that MIM attackers running in parallel time less than ¢ cannot
maul a commitment com for a bid b into a commitment com’ for
a related bid b’. Freitag et al. [FKPS21] show that concurrent non-
malleability is impossible to achieve in the timed setting. In brief, a
MIM attacker that receives as input a commitment com for a bid b
can commit to bids b1, ..., by, that jointly encode com, but this is
clearly related to b. So, following the work of [FKPS21], we consider
a weaker notion which they term functional non-malleability with
respect to a class of functions. We consider the class of functions
Fe that roughly correspond to functions that can be computed in
parallel time less than ¢ and have bounded output length ¢ such that
£ bits are too short to encode com. We require that for any function
f € F¢, no MIM attacker that receives as input a commitment com
for a bid b can commit to bids b1, ..., by, such that f(by,..., by)
is non-trivially related to b. We discuss the subtleties of this def-
inition further in Appendix A.3, but note that (1) this essentially
implies the definition of Katz et al. [KLX20] for £ = 1 (formally
shown in [FKPS21]) and (2) this suffices for the security of most
natural auction types (and all counterexamples for auctions with
long output seem to be contrived).

4.3 TTD: Timed Trapdoor Construction

Our main construction is a timed commitment based on RSA groups
and proofs of exponentiation and defined relative to an underlying
commitment scheme C. Our construction is defined in the random
oracle model where all algorithms have access to a random hash
function H. Let C be a non-malleable (non-timed) commitment
scheme. Looking ahead, we will instantiate C with a Pedersen
commitment coupled with Bulletproofs as a proof of knowledge to
satisfy non-malleability [BBB*18, GT21, GOP*22].

On top of the plain commitment scheme, we construct our timed
commitment scheme TTD. We set up a “timed trapdoor” based on
the sequential hardness of repeated squaring following the seminal
work of Rivest, Shamir, and Wagner [RSW96] and additionally using
a hash function H (modeled as a random oracle). Specifically, during
setup, we initialize an input/ output pair h, z such that h2 = 2
(mod N). When computing the commitment, the committer first
computes a plain (non-timed) commitment comc for the bid b with
opening proof Topen,c using an underlying commitment scheme C.
It then sets up a “timed trapdoor” to open comc to the bid b in time
t as follows. The committer randomizes the input/ output pair h, z
from the setup using a large random exponent o to compute h=
h® (mod N) and 2 = 2% (mod N). The committer computes a
hash of the output (and public parameters pp) to generate a key
k = H(Z2, pp) which is used to encrypt the bid b with the opening
proof mopen,c using a CCA-secure symmetric encryption scheme,
so ct « CCA.Enc(k, (b, Topen,c))- The timed trapdoor consists

of the randomized repeated squaring input h and the ciphertext ct.
So, to compute the bid and opening, it suffices to compute 2 = h2

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Maziéres

TTD.Setup(A, t)

ppc <3 C.Setup()\)

(91,92, N,G, g, h) <8 RSAGGen(})

2 — h(2” mod <p(N)) (mod N)

Return pp = (ppc, N, h, z,t)
TTD.CommPP(b)

(comc, Topen,c) <3 C.Comm(b)

o «$[22*]

h e ho (mod N); 2 < 2% (mod N)
k < H(2, pp)

ct <8 CCA.Enc(k, (b, Topen,c))

Return (com = (comc, (h, ct)), Topen = (committer, a))

TTD.ForceOpen®? (com = (comc, (k, ct)))

5 B2 (mod N)

Tpoe S PoE.Prove(N, h, 2, t)

k < H(2, pp)

(b, Topen,c) « CCA.Dec(k, ct) ; Topen < (£, TpoE)

If not C.VerOpen(comc, b, Topen,c) then return (L, (force, mopen))
Else return (b, (force, mopen))

TTD.VerOpen® (com = (comc, (h, ct)), b, Topen = (mode, 7))

If mode = force
Parse ™ = (2, mpog)
k — H(%,pp); (b, mopen,c) « CCA.Dec(k, ct)
Return O if PoE.Ver((N, h, 2, t), mpog) = 0or b # b’
Else if mode = committer
Parsem =« ; 2 < 2% (mod N)
k — H(%,pp); (b, mopen,c) < CCA.Dec(k, ct)
Return 0 if A # h® (mod N)or b # b’
If b= L, return (C.VerOpen(comc, b, mopen,c) = 0)
Else if b # L, return (C.VerOpen(comc, b, Topen,c) = 1)

Figure 1: A non-malleable timed commitment TTD, parameterized
by a non-malleable (non-timed) commitment scheme C, a proof
of exponentiation PoE, and a CCA-secure symmetric encryption
scheme CCA. The construction is in the random oracle model where
all algorithms have access to the hash function H, modeled as a
uniformly random function initialized during setup.

(mod N), the corresponding key k = H(Z, pp), and then decrypt
the ciphertext ct.

Additionally, we note that if a committer deviates from the pro-
tocol and produces an invalid commitment, i.e., a commitment in
which either (1) the key derived from k = H(Z, pp) fails to decrypt
ct, or (2) the decrypted opening (b, mopen,c) < CCA.Dec(k, ct)
fails to open comc, force-opening will return L along with a proof
that the commitment is malformed. A proof of exponentiation (e.g.
via the protocol of Wesolowski [Wes19] or Pietrzak [Pie19]) is com-
puted to convince the verifier of the correct computation of output
Z; given this element, the verifier can confirm for themselves that
and the timed trapdoor is invalid.

The full details of the timed commitment protocol are provided
in Figure 1, and we defer the proofs of security to Appendix A.2.
Security relies on a trusted setup to compute an RSA group of
hidden order. However, given such a setup, the RSA group can be
reused across many delay parameter configurations. To use a new
delay parameter ¢, a (h, z) pair where z = h! (mod N) must be
computed and included as part of the public parameters. Without
the RSA group trapdoor, computing such a pair will take time on the

Riggs: Decentralized Sealed-Bid Auctions

Protocol: Sealed-Bid Auction with Timed Commitments

Initialization: The auction is initialized with public parameters for a timed com-
mitment scheme C and delay parameter ¢.

Phase 1: Bid collection
(1) The auctioneer starts accepting bids at time ¢¢.
(2) To place a bid, a user must:

(a) Commit to bid b,
(com, mopen) <% C.Comm(b). User stores opening Topen-

sending com to the auctioneer,

(b) Lock up bid amount with the auctioneer (see Figure 3). Lock up opening
rewards with the auctioneer in the amount of rwdgpen and rwdporce-

(3) The auctioneer ends bid collection at time tg + ¢.

Phase 2: Bid self-opening

(1) Users provide openings mopen computed in phase 1 to reveal bid b.

(2) Auctioneer verifies opening (C.VerOpen(com, b, Topen)). If opening is
valid, rewards rwdopen and rwdperce are unlocked, and the bid entry is
marked as opened.

(3) Attime tg + t + topen, any bid entries that were not self-opened are marked
as abandoned. The locked up reward rwdopen is forfeited.

Phase 3: Bid force-opening

(1) Each abandoned bid is force-opened by a third-party opener,
(b, Topen) < C.ForceOpen(com).

(2) Auctioneer verifies opening (C.VerOpen(com, b, Topen)). If opening
is valid, the opener receives rwdporce. If b # L, the bid entry is marked
as opened, else it is marked as invalid.

(3) Auctioneer ends bid force-opening when there are no more abandoned
entries.

Output: Auction results are determined from the bids marked as opened.

Figure 2: Sealed-bid auction protocol of Riggs-RP and Riggs-TC pro-
ceeds in phases. The highlighted integration of timed commitments
is included only in Riggs-TC.

order of the delay parameter, but once computed, it can be reused
to compute any number of commitments. The party computing
pair (h, z) may also compute a proof of exponentiation to allow
for others to verify the wellformedness of the public parameters.

5 DECENTRALIZED SEALED-BID AUCTIONS

Here we present our two auction protocols, Riggs-RP and Riggs-TC.
Riggs-RP uses range proofs to verify validity of bids across asyn-
chronous concurrent auctions. Riggs-TC extends Riggs-RP with
timed commitments to protect against DoS by bidders who refuse
to open their bids (§3).

5.1 Range Proofs for Concurrent Auctions

In Riggs-RP, each user is associated with a collateral that is used to
back all bids to auctions a user has participated in. Auctions consist
of two phases (detailed in Figure 2). First, in the bid collection phase,
users choose bid b, generate a Pedersen commitment compeq =
gPh», and lock up a portion of their collateral (we describe the lock-
up mechanism below). In the second phase, users open and reveal
their committed bid, and the results of the auction are determined
from the opened bids. If a user does not open their commitment,
they forfeit the locked-up portion of their collateral.

As discussed in Section 3.2, when sharing a single collateral
pool across many auctions, new bids and changes to the collateral
pool must not invalidate outstanding bids. Riggs-RP enforces this by
requiring a user to prove statements about the collateral and a user’s
active bids (using range proofs) whenever they bid or change their
collateral pool. In particular, Riggs-RP stores a user’s collateral bal,
plus a commitment to the sum of the user’s active bids comactive-

e When a user places a new bid, they prove that their bid is
bounded (0 < b < 232) and that the sum of their current
active bids B and new bid is at most their collateral (B +
b < bal). If these range proofs verify, the bid commitment
is accepted and comyctive is updated by summing the bid
commitment homomorphically.

e When a user wishes to withdraw part of their collateral, they
prove that the amount being withdrawn amt does not cause
the remaining collateral to not cover active bids, i.e., B <
bal — amt.

The details of the auction house protocol are given in Figure 3.

In Figure 3, for simplicity of presentation, we overload use of the
delay parameter ¢ both as the cryptographic delay parameter and
as a unit of time. In practice, determining the relationship between
the cryptographic delay parameter and the wall-clock time delay is
an intricate process; we discuss this further in Section 7.

5.2 Timed Commitments for DoS Protection

As discussed in Section 3.2, Riggs-RP relies on each bidder to come
online and open their bid commitment. To ensure that all bids
are opened, Riggs-TC uses our timed trapdoor commitment (§4)
alongside the Pedersen commitment to the bid amount used in
Riggs-RP. Riggs-TC also adds a force-opening phase after the self-
opening phase concludes; any bid commitments that have not yet
been opened are forced open using the timed trapdoor, and the
auction results are not determined until all bids have been opened.
This means that bidders cannot abandon their bids, nor are they
incentivized to DoS other bidders in order to exclude bids from the
final result. Figure 2 details the force-opening phase.

Incentives for force opening. Force-opening entails a significant
amount of sequential work; this work (and thus the auction) will
not be completed without an incentive. Both the seller and honest
bidders have an incentive to force-open bids to complete the auction
and unlock collateral, but relying on these parties to force-open
may affect the efficiency of the auction: rational bidders will price in
the expected force-opening cost when placing their bids. Worse, the
total cost of force-opening can be manipulated, e.g., by malicious
bidders who submit and abandon low-value bids.

To address this, Riggs-TC requires bidders to lock-up a reward
for the first party who forces open their abandoned bid. This reward
must be chosen to closely match the cost of opening an abandoned
bid: too small and abandoned bids will never be opened, too large
and adversaries are incentivized to DoS honest bidders and then
force-open their bids. One potential solution is to choose the re-
ward and delay parameters by consulting a marketplace like Open-
Square [TGB*21]. Even so, introducing a force-opening reward
without care enables certain types of undesireable behavior such

Protocol: Asynchronous Auction House with Timed Commitments

Initialization: The auction house is initialized with public parameters for the Ped
commitment scheme and for the TTD timed commitment scheme. The auction
house stores a list of active auctions active in addition to the following for each
associated user:

- bal: Account collateral balance of the user.
— COMyetive: Pedersen commitment to sum of active bids of the user.

Since the auction house is asynchronous, the protocol is not defined by phases,

but rather by asynchronous actions.

Action 0: Auction registration: A seller may register an auction with the auction

house to start any time tg, specifying the length of the auction with a time
parameter ¢t. The seller will also provide the necessary additional public param-
eters for TTD for ¢. The auction house immediately begins an instance of the
auction protocol from Figure 2 adding it to active.

Action 1: Balance updates

(1) A user may deposit funds into their account. The auction house updates the
collateral bal accordingly, bal « bal + amt.

(2) A user may withdraw funds from their account by providing a proof for the
following relation where amt is the amount being withdrawn:

((comgcgive, bal, amt), (B,)) :

COMyetive = g°h™* A0 < B < bal — amt

Rwdrw =

If the proof verifies, the amount is withdrawn and the user’s collateral is
updated.

Action 2: Bidding

Users may place a bid on any auction that is in its bid collection phase (see

Figure 2). To place a bid:

(1) A user locks up the bid amount and requisite opening rewards by
producing a range proof. The user collateral is updated accordingly:
bal < bal — rwdopen — I'WdForce. A user submits a commitment to their
bid compeq (or timed commitment comttp = (compeq, com;)) and proves:

((comPedvcomactiVey ba])a (b7B7abaO‘B)) :
Rbid = COMpeg = gbho‘b A COMyepive = gBh“B
A0<b<2%2 A B+b < bal

(2) If the proof verifies, the bid is accepted for the auction, and the user’s active
bids commitment is updated,

COMyctive €~ COMlactive * COMPed-

Action 3: Auction results

When an auction ends, the auction is removed from active and the results are

incorporated into the auction house state:

(1) The value of each opened bid b is removed from the user’s active bid com-
mitment, COM¢give < COMactive /9"

(2) Any bid amount amt < b determined to be transacted as part of the auction

results is subtracted from the user’s collateral and deposited to the seller,
bal « bal — amt.

Figure 3: Asynchronous auction house protocol of Riggs-RP and
Riggs-TC to handle multiple concurrent auctions. The highlighted
integration of timed commitments is included only in Riggs-TC.

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Maziéres

as griefing and front-running attacks. We address each of these
attacks in Riggs-TC in turn below.

The bidder themself (who knows the opening to their own com-
mitment) has a small advantage in computing a force-opening proof
for their commitment, compared to a party with no such knowl-
edge [Wes19]. They also have the opportunity to begin computing
the force-opening proof early (before their bid is publicly available).
This enables a griefing attack: a bidder pretends to abandon their
bid, waits for others to do most of the force-opening work, then
announces the force-opening proof, thus retrieving the reward and
wasting others’ time. To disincentivize this behavior, Riggs-TC also
requires bidders to lock-up a separate self-opening reward that
is forfeit if a bidder abandons their bid, ensuring that users lose
money on net from griefing. Figures 2 and 3 give details.

Finally, we must consider front-running attacks. Here, a mali-
cious party does no work but attempts to intercept and replay the
force-opening proof of an honest party to claim the reward for
themself. To solve this, we can use watermarked proofs [KOR04,
Wes19, ABC22] which allow the prover to embed associated data
that is authenticated during proof verification. In our timed commit-
ment protocol, force-opening requires producing a proof of integer
exponentiation [Wes19] (see Figure 1). An honest party embeds
their identity as the watermark for the proof of integer exponentia-
tion. The watermark is verified as part of the force-opening proof
and the opening reward is given to the watermarked identity. Wa-
termarking prevents front-running attacks: since malicious parties
are not able to tamper with watermarked proofs to edit the water-
mark (e.g., to change the watermark to a different identity), only
a party that performed the sequential work needed to produce a
valid watermarked proof will be eligible for the reward. Support-
ing watermarks in existing proofs of integer exponentiation ap-
proaches incurs minimal overhead, simply requiring committing to
the watermark in the challenge-generation step of the Fiat-Shamir
proof [Wes19, ABC22].

5.3 Security

We now consider how the proposed construction, Riggs-TC meets
the security goals of the auction setting. We consider Riggs-TC as it
is a superset of the functionality provided by Riggs-RP. We discuss
the goals of completeness and bid privacy.

Completeness. First consider the completeness of the construction.
An auction that is complete should (1) result in a winner and price
determined by the auction protocol (e.g., second-price) among all
valid bids, and (2) result in the winning bidder paying the seller
the appropriate winning price. Riggs-TC has two mechanisms for
determining the correct winner and price of the auction. First, the
binding property of the (timed) commitment scheme ensures that
it is infeasible for bids to be opened to anything other than one
value; this prevents malicious bidders from equivocating on their
bid. Second, the completeness property of the timed commitment
scheme means that commitments are guaranteed to be opened to
their one value even without further interaction from the bidder;
this prevents honest bidders from being excluded from the final auc-
tion results. Once a winner and price is determined, Riggs-TC relies
on the soundness of the range proofs along with the additive homo-
morphic properties of the Pedersen commitment to ensure auction

Riggs: Decentralized Sealed-Bid Auctions

payment. By construction of the protocol, a Pedersen commitment
to the sum of all active bids is maintained using the additive ho-
momorphic property of Pedersen commitments. Finally, from the
soundness of the range proof protocol for relations R grw and Rpiqg
(see Figure 3), the sum of all active bids for a bidder is always less
than or equal to the bidder’s collateral, thereby guaranteeing the
ability to payout in the event of a win.

Bid privacy. In addition to completeness which reasons about the
completion of an auction, we consider bid privacy in which we
reason about the confidentiality of bid values during the bidding
phase. Recall that the incentive compatibility of sealed-bid auctions
relies on the inability of bidders to see the bids of others before
placing their own bid. Consider again the strawman proposal in
which a per-auction collateral is locked up (see Section 3.2). Here,
the argument is simple: the bid commitment completely hides the
bid value by the hiding property of the commitment, thus the only
information leaked is from the public collateral in that a valid bid
must fall below the collateral value. We depart from this strategy
in favor of a shared collateral across all auctions that a bidder is
participating in simultaneously. Our approach has usability benefits
in that bidders may more easily participate in simultaneous auctions
without locking up excessive amounts of funds but comes at the
cost of a weaker bid privacy guarantee.

More precisely, Riggs-TC (and Riggs-RP) necessarily leak an
upper bound of the sum of a bidder’s bids across all active auctions
as the bidder’s public collateral. Further, observing this leakage
over time as auctions begin and end (and over a possibly changing
collateral) may allow for more fine-grained inference on a bidder’s
bids for long-term auctions. Note that this leakage is necessary to
achieve the completeness property described above and ensure
winner payout. Ultimately, the flexibility of a shared collateral
allows a bidder some plausible deniability over how their bids are
distributed across their active auctions, but it does not provide a
shortcut to providing full bid privacy with respect to the maximum
bid amount for each auction. For that, the bidder would need to incur
the large collateral lock-up of the per-auction strawman. We leave
to future work, an empirical analysis of the leakage and efficacy
of inference attacks in realistic simultaneous auction scenarios.
Lastly, an adversary does not learn anything more beyond the
above described leakage. In Riggs-TC, we appeal to the functional
non-malleability of the timed commitment (analog to hiding in the
non-timed setting).

Formal analyses. As mentioned above, we provide formal secu-
rity definitions for timed commitments and proofs of security for
our proposed timed commitment primitive T TD, the core underly-
ing component of Riggs-TC (deferred to Appendix A). This formal
treatment does not cover the full auction protocol informally dis-
cussed above. Developing formal models suitable for analysis of
these higher level primitives remains an open problem.

6 IMPLEMENTATION

We implement our constructions in Rust. Our auction house imple-
mentation consists of a number of modular libraries that may be
of independent interest. We implement a Bulletproofs range proof

library in the arkworks ecosystem (for pairing-based cryptogra-
phy and zero-knowledge proofs) [BCG*20]. The implementation
is agnostic to the choice of curve, however our evaluation is per-
formed over the BN254 curve [BNO05], which, looking forward,
will be efficient within the Ethereum Virtual Machine (EVM). We
also implement a proof of exponentiation for RSA hidden order
groups [Wes19]; we discuss several implementation optimizations
(for hash-to-prime) to reduce EVM costs. Lastly, we provide a timed
commitments library of the constructions from Section 4 as well as a
SNARK-based timed trapdoor (used as a baseline). In evaluation, we
instantiate the timed commitments (and proof of exponentiation)
with an RSA group of 2048 bits. Putting these libraries together,
we implement the Riggs-RP and Riggs-TC auction house proto-
cols. The protocols are described for any single-round sealed-bid
auction; we implement a second-price auction. In total, our Rust
implementation consists of ~ 7000 lines of code and is available

open source 2 .

Ethereum smart contracts. In addition to evaluating our auc-
tion house through a Rust implementation, we implement an auc-
tion house smart contract in Solidity that can be deployed on the
Ethereum blockchain. The smart contract is compatible with the
Rust implementation, i.e., client operations are computed using the
Rust library and the produced outputs are serialized into a contract
call. Our Ethereum auction house smart contract integrates with
existing Ethereum standards. An auction can be created for any
non-fungible token (NFT) that follows the ERC-721 standard, and
the auction house collateral is made up of an “auction house token”
that abides by the ERC-20 standard for fungible tokens.

Our auction protocols additionally require an “auction comple-
tion” contract call to compute the auction winner, complete the
payout between the winner(s) and seller, and refund the losers.
Looking forward, we find that the cost of this contract call scales
with the number of bidders in the auction, so it is not sufficient for
it to be paid solely by the seller. Instead, we have bidders escrow
some funds with the contract to reimburse the caller of the comple-
tion call; the cost of the contract call varies with the price of gas
(Ethereum’s computation unit), to address this variance, one may
escrow gas tokens instead of ether [BDTJ18]. In total, our smart
contracts implementation consists of ~ 2000 lines of Solidity.

Hash-to-prime optimization. The dominating cost in verifica-
tion of the proof of exponentiation (for force-opening) is validation
of the hash-to-prime. The non-interactive proof of exponentiation
requires a prime challenge drawn from a space of size twice the
security parameter (i.e., 256 bits of entropy for 128 bits of secu-
rity) [BBF18]. Typically, testing primality of a large prime using
Miller-Rabin primality test is concretely efficient but is expensive
in the EVM computation model. Instead, we use rejection sampling
on carefully constructed integers to find a prime that admits gen-
eration of a short Pocklington primality certificate [BLS75]; the
certificate can be efficiently verified with the EVM. Our techniques
are related to those applied in other computation models such as
embedded systems [CFTP12] and zero-knowledge constraint sys-
tems [OWWB20].

Zhttps://github.com/nirvantyagi/riggs

Baselines. To evaluate our proposed constructions, we additionally
implement two baselines. We implement the per-auction collateral
solution described in Section 3.2 as a minimal comparison point
with limited features. We also implement a SNARK-based solution
with the same feature set as Riggs-TC. The SNARK construction
is the same as Riggs-TC except we replace the timed trapdoor of
Section 4 with a SNARK proof of equivalence between the Peder-
sen commitment and HTC timed commitment. We implement the
SNARK timed commitment in Rust generic to the choice of SNARK
proving system and pairing-friendly curve within arkworks, and
evaluate using the Groth16 [Gro16] proof system. We also provide
smart contract implementations in Solidity for the baselines, includ-
ing SNARK verifier implementations for Groth16. We instantiate
the Pedersen commitment over the Edwards curve on BN254 (i.e.,
Baby Jubjub) which admits efficient circuit encodings when proved
with a SNARK over BN254. However, Baby Jubjub does not admit
the same efficiency benefits of BN254 on EVM,; it does not have
precompiled opcodes for group operations.

7 EVALUATION
This section answers the following questions:
e What are the costs to host an auction?
e What are the costs for a bidder to participate?

e What are the costs of force-opening and what are the implica-
tions for setting time parameters?

To answer these questions, we must also evaluate the costs for the
participants (verifiers or miners) in the decentralized consensus
protocol. In our auction protocols, consensus participants are tasked
with, for example, verifying commitment openings and maintaining
collateral balances. The cost of performing these tasks is passed on
to the bidders and seller in the form of transaction fees.

We evaluate blockchain costs in two ways (shown in Figure 4).
First, we provide cost as the running time of our Rust implemen-
tation, which represents the case of running a special-purpose
blockchain dedicated to hosting auctions. Second, we provide the
costs of running our protocols as a smart contract on the Ethereum
blockchain. These costs are measured in gas, a currency used in
Ethereum to assign cost to operations in the EVM computational
model; we report gas costs per the London hard fork of Ethereum.?

The blockchain costs can be divided into costs that are fixed
per-auction and costs that scale linearly with the number of partic-
ipating bidders. In our smart contract implementation, we require
bidders to pay the per-bidder cost and the seller to pay the fixed
costs. but other payment configurations are possible (e.g., winner
pays fixed costs). A bidder also incurs costs to compute commit-
ments and range proofs; we report the running times in Figure 5. All
benchmarks for bidders and consensus participants were performed
using an Intel Core i7-1165G7 processor with 4 cores.

Fixed costs to host an auction. To host an auction, two fixed
costs that edit blockchain state and require blockchain consensus
are incurred: auction creation and auction completion. In auction
creation, the seller initializes new state on the blockchain for the
new auction, incurring a cost that depends on the blockchain’s

3Concretely, one unit of Ethereum gas costs *$10™% at time of writing.

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Maziéres

storage model. For Ethereum, the per-auction collateral baseline
and Riggs-RP have the smallest costs, followed by Riggs-TC and the
SNARK baseline, which are ~2.5x greater. This is because the latter
protocols need extra storage for timed commitment parameters.

Completing an auction consists of (1) a fixed-size computation
that pays from winner(s) to seller, and (2) a computation that scales
with the number of bidders, namely, computing the winner and
updating each bidder’s state based on the result of the auction. The
fixed-size computation is minimal for all of our auction protocols;
we discuss per-bidder costs next.

Per-bidder costs to participate in an auction. A bidder incurs
cost for (1) submitting a bid to the blockchain, (2) opening their bid,
and (3) computing their portion of the completion procedure. (We
discuss force-opening further below.)

To submit a bid, a bidder must first perform some local com-
putation to prepare their bid and accompanying proof material,
then pay for the blockchain computation that stores the bid and
verifies the proofs. Figure 5 shows the running time for the local
computation (no proof is required for the per-auction collateral
baseline). Riggs-RP and Riggs-TC require two range proofs, which
are the dominant cost; Riggs-TC is slightly more expensive since
it also requires computing the timed commitment. The SNARK
baseline requires computing a proof of equivalence between the
Pedersen commitment and the timed commitment; this cost dom-
inates, resulting in ~ 300X overhead. We discuss on-blockchain
costs below.

Self-opening costs are as follows; note that the bidder has already
computed the opening during bid submission, so no further local
computation is required. The per-auction collateral baseline admits
the cheapest verification: because it does not use any algebraic
proofs, it uses a hash-based commitment that is cheap to verify
on-chain. The other three protocols require opening a Pedersen
commitment; while costlier than hashing, this is still relatively
inexpensive.

Finally, for Riggs-RP, Riggs-TC, and the SNARK baseline (which
maintain a unified per-user collateral instead of collateral per user
per auction), a bidder may also deposit and withdraw funds from
their collateral. Deposits are essentially free, while withdrawals
require submitting a range proof showing that the withdrawal
doesn’t reduce the collateral below the sum of the user’s active bids;
the cost of computing the withdrawal proof is small (<50 ms).

Blockchain costs for submitting a bid. Figure 4 shows on-chain
costs for submitting a bid. The per-auction collateral baseline simply
stores the commitment and does not require proof verification.
Riggs-RP and Riggs-TC entail range proof verification, and the
SNARK baseline requires verification of the SNARK. We discuss
these costs below.

Riggs-RP and Riggs-TC have rather high per-bid costs: at time
of writing, 2.5 million gas costs ~$134 on Ethereum. In practice,
we believe the cost (in dollars) of running auctions would be much
lower, for two reasons. First, EVM-compatible chains like EOS [eos]
and Avalanche [ava] are growing rapidly in popularity, and have
orders of magnitude lower transaction costs (concretely, the cost of a
bid on Avalanche at time of writing would be ~$1.50). Second, *90%
of per-bid cost is verifying Bulletproofs; since this computation is
useful elsewhere (e.g., for private payments [BAZB20, Dia21]), it

Riggs: Decentralized Sealed-Bid Auctions

Per-auction col. Riggs-RP Riggs-TC SNARK
Auction phase cost type native (us) EVM (gas) native (us) EVM (gas) native (us) EVM (gas) native (us) EVM (gas)
Auction creation fixed - 23 x 104 - 25 x 104 - 71 x 10% - 74 x 10%
Bid collection per-bidder | 0.7 (05) | 16x10% | 2100 (2000 | 191 x 10% | 2100 (2000 | 221 x 10% | 8100 (400) | 10243 x 10%
Bid self-opening per-bidder | 1.6 (0.3) | 10x 10% 210 (30) 10 x 10% 220 (20) 10 x 10% 300 (10) 148 x 10%
Auction completion fixed 3 (1) | 12x10% 29 (0.4) 12 x 104 31 (0.4) 12 x 104 25 (0.4) 12 x 104
per-bidder | 03 (0.2) 6 x 104 13 (0.2) 9x 104 11 (03) 10 x 10% 34 (0.3) 11 x 10%

Figure 4: Costs for each phase of an auction, given both as a running time (ps) of our native Rust implementation and as a gas cost for the EVM
compilation of the corresponding computation. The costs for each phase are specified as fixed per-auction or linearly scaling per-bidder. The
running time is given with a standard deviation while the gas cost is deterministically computed.

Operation Per-auction col. Riggs-RP | Riggs-TC SNARK
Submitbid | 0.0006 (0.0001) | 66 (1) | 71 (3) | 21700 (700)
Withdraw - 3 2 | 4 @ 34 (2

Figure 5: Bidder running time (ms) for computing commitments and
proofs for bid submission and collateral withdrawal.

x10°

o
2 4000 W 4
o %]
E S
:; 2000 F -2 @
E 0 1 1 1 1 1 1 0

248 20 216 232 248

delay parameter

Figure 6: Verification costs of force-opening as a function of the
delay parameter.

might eventually become a precompiled contract (i.e., a built-in
primitive), slashing costs *.

In addition to high monetary costs, throughput limitations of
existing blockchain infrastructure are another barrier to the deploy-
ment of decentralized auctions. For example, Ethereum’s current
target block size is 15 million gas and block time is 12 seconds,
meaning current throughput will only allow for < 50 bids to be
collected per minute (in the optimistic case where full throughput
is dedicated to auctions). Again, we expect scalability to improve
as significant work is underway to improve scalability of layer 1
smart contract platforms as well as build layer 2 solutions (e.g.,
rollups) [But, WGH*, SSV21]. Our approach should extend to fu-
ture systems as scalability improves. Future work may also consider
special-purpose roll-up solutions tailored to the auction setting.

Estimating the delay parameter. To evaluate force-opening, we
first need select the delay parameter ¢ for each timed commitment,
which is an intricate process when deploying time-based crypto-
graphic tools. First, we must estimate the minimum desired wall-
clock time below which no plausible adversary should be able to
force-open a committed bid. In our auction setting, this time must
be long enough to ensure no adversary can (privately) force-open

4Our SNARK baseline takes advantage of Ethereum precompiled contracts purpose
built for verifying SNARKSs, which both skews the results and evidences an appetite
for supporting such primitives.

a posted bid and still have time to post their own bid commitment,
possibly influenced by learning one or more existing bids.

The bid collection phase can be relatively short: a sealed-bid auc-
tion does not require back-and-forth interaction as in an English
auction; all bid commitments can be posted roughly simultaneously
at auction start.’ However, we must consider the maximum time be-
tween when a bidder broadcasts their bid to the network and when
it is included in a block that is confirmed (with high probability) in
the eventual longest chain. An attacker can begin force-opening
as soon as a transaction is broadcast, and we can conservatively
assume they can react to the forced-open bid and get their own
bid included in block instantly. Transaction confirmation times
vary based on network congestion and the gas price offered by the
user. A common approximation is that Ethereum transactions are
typically confirmed within 5 minutes.

Next, given a wall-clock time target such as 5 minutes, we must
determine what delay parameter ¢ in our timed commitment scheme
achieves this minimum for plausible adversaries. This is also an
imprecise process which requires assumptions about adversarial
sequential computation speed. An attacker with an unlimited bud-
get can likely eke out out marginally more computation speed.
We can use existing best-in-class implementations to inform our
assumptions: FPGAs have been shown to achieve 224 modular
squarings per second for a 2048 RSA modulus [0zt20], and speeds
up to 228 squarings per second are projected for ASICs with cur-
rent technology [M0OS22]. Based on these results, we might take
230 squarings per second as a conservative estimate of adversary
capability. Combining this estimate with our 5 minute goal suggests
a delay parameter ¢ = 239,

We note that, compared to many other scenarios that use time-
based cryptography, auctions are relatively robust to incorrect as-
sumptions about attacker capabilities. First, delay parameters can be
chosen close to the time of each auction, meaning there is no need
to reason about future improvements in attacker speed. Second, the
worst-case scenario of an attacker able to force-open bids in less
than the desired time only reveals committed bids to the attacker.
This does not help an attacker who is attempting to bid for and win
the auction: they are still incentivized in the second-price format to
bid their true valuation. The only attack this enables is for a seller
observing committed bids to post a shill bid to raise the ultimate
sale price, effectively reducing the auction to a first-price auction

3Since bidding in sealed-bid auctions requires no real-time human action, users who
are not available at the designated bidding time, can set up a simple automated bidding
agent to post their desired bid at the correct time.

or open-bid auction. The attacker cannot modify other users’ bids
or prevent the auction from completing.

Cost and time to force-open a bid. While the delay parameter
is set based on conservative estimates of the best plausible adver-
sary’s capability, force-opening must be completed using whatever
capability is available to honest parties.® Moreover, the cost of force-
opening comprises both computing blinding factor of the timed
commitment and proving the correct computation using a proof
of exponentiation. Wesolowski [Wes19] provides an algorithm for
computing the proof of exponentiation in 3 - ¢/log ¢ group opera-
tions given storage of V# group elements. With an ASIC performing
the initial blinding factor computation and a CPU computing the
proof of exponentiation, we would expect force-opening to take
~ 8 hours.

In addition to locking up a reward to reimburse the force-opening
party for the force-opening computation, the bidder also locks up
a fee for blockchain costs associated with verifying force-opening
(e.g., using gas tokens [BDTJ18] for Ethereum). Figure 6 shows
how the verification cost of force-opening changes with the delay
parameter. Asymptotically, the force-opening costs increase log-
arithmically with the delay parameter. However, in practice we
find that the variance in hash-to-prime cost dwarfs the asymptotic
growth. Verification costs remain low (< 5 ms) for large delay pa-
rameters, well beyond the conservative estimate for a 5 minute
auction.

8 RELATED WORK

Auctions from timed commitments. Timed commitments have
long been proposed (at least theoretically) for use with sealed-bid
auctions [BN00, MT19, KLX20, FKPS21]. This work addresses the
practical details of the deployment setting including handling con-
current auctions (with range proofs) and abandoned bids (with
reward incentives), as well as optimizing and evaluating an imple-
mentation. Perhaps the most closely related work is that of Deuber
et al. [DDM™*20] that employs a similar “timed commitment to a
commitment opening” approach for practical efficiency. In their
setting, a first-price sealed-bid auction is proposed for minting new
tokens where bids correspond to “waiting time”, and the bidder
willing to wait the longest wins the newly minted token. Here, bid
currency corresponds to time, in contrast to tokens, and enforcing
valid auction results using range proofs on token balances is not a
concern; [DDM™*20] also does not consider incentives for opening
abandoned bids. Further, we formalize and prove that the strategy
of generically combining a timed commitment with another com-
mitment scheme results in a secure timed commitment with the
desired properties (see Section 4 and Appendix A) — this modular
result was not previously provided [DDM™*20].

Sealed-bid auctions on the blockchain. A number of papers have
proposed blockchain-based sealed-bid auction platforms, mostly
building on top of Ethereum. These proposals can be divided into
two broad approaches. The first category are protocols which use
a variation of commit-reveal. These protocols generally guaran-
tee bid privacy but cannot guarantee the auction will complete,

%In the literature on VDFs the ratio of these speeds is often denoted Apax.

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Maziéres

relying on deposits and penalties to discourage participants from
aborting [BCDB18, KST*20, LZL*21, CLXW22].

The second category of proposals utilize some form of off-chain
auctioneer (or set of auctioneers) to collect and reveal bids. These
protocols guarantee auction completion but rely on trust assump-
tions to ensure bid privacy. Many protocols assume a semi-trusted
auctioneer, using a variety of cryptographic approaches to prove
that the winner and winning price were computed correctly [GY18,
DKK19,SVS*21, CC21, AMG21]. However, the auctioneer is trusted
not to collude with bidders by revealing private bid values early.
Other implementations use trusted enclaves [GY19, DK21] to ful-
fill the role of the auctioneer. Blass and Kerschbaum proposed
STRAIN [BK18], in which all parties jointly implement the auc-
tion as a multi-party computation protocol, requiring an honest-
majority assumption to prevent a malicious coalition from learning
bid values early.

In contrast to all of these proposals, our protocols guarantee
auction completion (as long as timed commitments can be force-
opened) as well as bid privacy (as long as an adversary cannot
exceed maximum estimated computation speeds).

The only concrete protocol we know of using timing assumptions
is due to Xiong and Wang [XW19], using time-release encryption.
However, their time-release encryption primitive relies on a trusted
third party (the time server) rather than computational assump-
tions. Specifically, the time server releases information allowing
the auctioneer to decrypt bids at the appropriate time. Thus the
security model for bid privacy is similar to that in protocols with a
semi-trusted auctioneer.

Finally, we note that we are unaware of any widely-deployed
blockchain auction system in practice which uses sealed bids. Auc-
tionity [LNPR18], for example, which bills itself as “the world’s
largest blockchain auction house for cryptocollectibles” uses an
open-bid English auction format, as do major NFT platforms which
implement auctions such as OpenSeas or Rarible. The traditional
(offline) auction houses Sotheby’s [sot21] and Christie’s [chr21]
both began auctioning NFTs with bids denominated in ETH in 2021,
but maintained an English auction format with a fully trusted (and
in fact, human) auctioneer.

Publicly verifiable secret sharing (PVSS). PVSS [Sta96] has
been an alternative proposal to timed commitments for settings
like sealed auctions that require unbiased outputs. Bids are verifi-
ably secret-shared to a set of parties. Parties keep the secret share
hidden during the duration of the auction so as to hide bids, and
then communicate with other parties after the close of the auction
to reconstruct bids. Auction integrity is maintained as long as some
threshold of parties adhere to the protocol. We opt for timed commit-
ments as they generally incur less communication costs and have
a weaker trust model than PVSS-based approaches. Furthermore,
timed commitments offer a route to a simpler blockchain-agnostic
protocol, as opposed to PVSS which require determining a set of
parties to secret share (which ideally would bootstrap on top of spe-
cific committee-based consensus protocols [GHM*17, DGKR18],
e.g., [GKM*22, BGG*20, GHK*21, GHM*21]).

Distributed randomness beacons. Distributed randomness gen-
eration or beacons are protocols in which untrusted parties collabo-
rate to produce an unbiased random output. Systems for distributed

Riggs: Decentralized Sealed-Bid Auctions

randomness have thus been proposed based on PVSS [SJK*17,
CD17, SJSW20, BSL*21, DKIR21] and timed commitments [LW15,
BGB17, Dra18, SJH*21, TCLM21]. Parties contribute randomness
in the form of secret shares or timed commitment which are com-
bined to form the final output. While the sealed-bid auction setting
shares many similarities with distributed randomness generation,
it introduces more complexities including verifying bid validity.

Front-running countermeasure for decentralized exchanges.
Front-running, in the context of decentralized exchanges, is when
privileged parties with low network latency (e.g., miners) observe
incoming transactions, create new transactions of their own, and or-

der transactions beneficially to claim the price difference value [DGK*20]

(see [BCD*21] for detailed survey of front-running strategies).
There is evidence that the existence of such privileged parties
is inherent in the peer-to-peer network setting [TKFJ22], so in-
stead commit-and-reveal protocols (that can be instantiated via
PVSS or timed commitments) have been proposed to mitigate front-
running by hiding the proposed transactions during a commit
phase [ZMEF22, MGZ22]. Instantiating our sealed bid auction pro-
tocols with a double auction mechanism for matching buyers and
sellers may result in a front-running resistant exchange protocol.
We leave further evaluation of such a proposal to future work.

Delay encryption. Burdges and De Feo present a new primi-
tive termed delay encryption related to timed commitments [BF21].
Given a fresh random identifier (e.g., from a randomness beacon),
messages (bids) can be encrypted to the identifier such that the
resulting ciphertexts can all be decrypted (opened) by computing
a decryption key from the identifier with a sequential amount of
work. Thus, only one sequential problem needs to be solved to open
all bids, whereas with timed commitments, every abandoned bid
requires a different sequential problem. Unfortunately, the only
existing construction for delay encryption is based on isogenies
and is not practical for deployment.

Related to delay encryption, there exists a line of work that aims
to “encrypt to the future” bootstrapping on public values that are
created during progression of the blockchain (e.g., signatures signed
by trusted committee or sequence of solutions to computational
puzzles). Using a primitive known as witness encryption [GGSW13],
bids can be encrypted to a statement about these to-be-public values
that can be decrypted when the witness (public value) is revealed
in the future. Existing practical approaches [CDK*21, DHMW22]
have the limitation that they can only encrypt to a committee
that is known ahead of time, which for relevant consensus proto-
cols [GHM*17, DGKR18] allows encrypting a few blocks ahead but
not more than that, or using not yet practical witness encryption
for NP [LJKW18].

Sealed payments on the blockchain. Zether [BAZB20, Dia21]
and ZCash [zca] (among others) employ zero-knowledge proofs
for hiding the amount transferred in a token transaction on the
blockchain; Zether [BAZB20] employs range proofs in a manner
similar to Riggs-RP to verify account balances, while ZCash proves
the existence of an unspent transaction. Both works along with
Zerocoin [MGGR13] also propose approaches for anonymizing the
participants of a transaction. These techniques can be adapted to
our setting to, if used with care [KYMM18], help hide collateral

amounts (see Section 9). While these protocols, namely Zether,
offer approaches for proving validity of hidden bids and collateral,
they do not address denial-of-service attacks in the auction setting.
In Riggs-TC, we show how to compose range proofs with timed
commitments to mitigate such attacks.

Timed payments on the blockchain. A challenge that arises in
contingent payments on the blockchain (e.g., multi-hop or cross-
chain) is atomicity, enforcing that all dependent transactions either
succeed or fail together. A hash time-lock contract (HTLC) [PD16]
enables atomic transactions by requiring a recipient to acknowl-
edge a payment by a certain time (typically determined by block
numbers) or forfeit the ability to claim the transaction, return-
ing the funds to the payer. HTLCs have been extended to hide
the identity of participating parties [MMK*17, MMS*19, AEE*21,
TBM™20] and for hiding other contingencies for transaction execu-
tion [Max15, CGGN17, BK19]. As in our setting, the time compo-
nent requires thinking carefully about incentives for participating
parties [TYME21]. However, HTLCs do not attempt to hide the
payment amount which make them unsuitable for the sealed-bid
setting without significant new machinery.

9 CONCLUDING DISCUSSION

We conclude by discussing several important directions for future
work and extensions to the auction setting beyond the core proto-
cols presented.

Multi-round auctions. It is straightforward to extend our pro-
tocols to multi-round auction formats such as the simultaneous
ascending auctions employed by Federal Communications Commis-
sion for wireless spectrum auctions [GV99]. In such an auction, the
public parameters (e.g., the reserve price or participant set) of the
next auction is determined by the results of previous round auc-
tions. Since the parameters are public, the blockchain can enforce
the next round’s auction is parameterized appropriately.

Hidden collateral via private payments. The public collateral
of a user serves as an upper bound for the sum of a user’s ac-
tive bids. Thus, observing the collateral of a user leaks some in-
formation on the possible values of their sealed bids. This leak-
age can be reduced using techniques for private payments on the
blockchain [BAZB20, zca]. Instead of storing public collateral, the
auction house could store a commitment to collateral and support
private payments between users’ collateral pools to further ob-
fuscate collateral amounts. Private blockchain payment protocols
are not perfect [KYMM18, GKRN18], but may be a worthwhile
improvement over the current leakage in some settings.

Minimizing locked-up opening rewards. We can consider a hy-
brid protocol between Riggs-RP and Riggs-TC in which the timed
commitment is optional. The auction protocol can allow users that
are not worried about DoS attacks (e.g., large custodial “users” with
significant infrastructure) to submit bids without timed commit-
ments, omitting opening rewards. On a similar note, we can allow
for bids to be submitted using varied delay parameters dependent
on how close the auction is to the end of the bid collection phase.
Bids submitted close to the end of the auction would allow for a
smaller delay parameter and a correspondingly smaller opening
reward lock-up.

Mitigating opportunity cost for participants. If a bid is aban-
doned, the duration of the auction (and time for which collateral is
locked up) is extended while the force-opening phase completes.
Participating bidders pay an opportunity cost in their locked up col-
lateral, and the seller pays an opportunity cost in delayed payment
for their locked up good. Some examples of possible mitigations
might be releasing collateral lock-up early if a self-opened bid is
not in contention to win (e.g., in a second price auction, if a bid is
not the current highest bid), or allowing an auction to end with-
out completing the force-opening phase if both seller and current
winning bidder(s) agree on doing so. However, sellers opting for
early completion may again incentivize bidders to mount denial-
of-service attacks against each other. Another approach could be
to compensate the seller and users with bids in contention with
the forfeited self-opening rewards of abandoned bids. Of course,
the opportunity cost is dependent on the amount of the bid, and
since the bid amount is sealed, it seems difficult to set self-opening
rewards in a way to guarantee to proper compensation. We leave
further investigation to future work.

Credible auctions. Akbarpour and Li [AL20] introduce the notion
of credible auctions, a game-theoretic property roughly stating that
the auctioneer (or seller, in the decentralized setting) is disincen-
tivized from deviating from the protocol even in undetectable ways.
This includes, for example, submitting false bids under pseudonyms.
Ferreira and Weinberg [FW20] show that, when assuming hiding
and binding cryptographic commitments, it is possible to design
credible sealed-bid second-price auctions by setting a high enough
collateral to disincentivize abandoning bids while assuming certain
properties about the distribution of bid values.

While these prior works analyze auctions in a setting with pri-
vate communication, Chitra et al. [CFK23] show that the public
broadcast channel of blockchains allow for credible auctions us-
ing much weaker assumptions about the distribution of bid values.
A key requirement still is the sufficiently large upfront collateral
bidders must pay, which is again calculated using assumptions on
the distribution of bid values. However, as our auction protocols
provide “efficient collateralization” by leveraging the linearity of
the sealed-bid commitments to penalize abandoned bids for ex-
actly the bid amount, they may provide credibility under weaker
assumptions about the distribution of user bids. We leave a formal
game-theoretic analysis of this as future work.

ACKNOWLEDGMENTS

Nirvan Tyagi was supported by NSF grant CNS-2120651 and by
the Stanford Future of Digital Currency Initiative (FDCI); part of
this work was completed while he was a visiting student at Stan-
ford University. Cody Freitag’s work was partially done while at
NTT Research, and he is supported by the National Science Founda-
tion Graduate Research Fellowship under Grant No. DGE-2139899,
DARPA Award HR00110C0086, AFOSR Award FA9550-18-1-0267,
and NSF CNS-2128519. Arasu Arun and Joseph Bonneau were sup-
ported by DARPA under Agreement No. HR00112020022 and by
al6z crypto research. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the United States
Government, DARPA, al6z, or any other supporting organization.

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Maziéres

REFERENCES

[ABC22] Arasu Arun, Joseph Bonneau, and Jeremy Clark. Short-lived zero-
knowledge proofs and signatures. In ASIACRYPT (3), volume 13793
of Lecture Notes in Computer Science, pages 487-516. Springer, 2022.

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and
Lukasz Mazurek. Secure multiparty computations on bitcoin. In 2014
IEEE Symposium on Security and Privacy, pages 443-458. IEEE, 2014.

[AEE*21] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina
Hostakova, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi.
Generalized channels from limited blockchain scripts and adaptor sig-
natures. In ASTACRYPT (2), volume 13091 of Lecture Notes in Computer
Science, pages 635-664. Springer, 2021.

[AL20] Mohammad Akbarpour and Shengwu Li. Credible Auctions: A Trilemma.
Econometrica, 88(2):425-467, March 2020.

[AMG21] Hussein Abulkasim, Atefeh Mashatan, and Shohini Ghose. Quantum-
based privacy-preserving sealed-bid auction on the blockchain. Optik,
242, 2021.

[AN20] Ramiro Alvarez and Mehrdad Nojoumian. Comprehensive survey on
privacy-preserving protocols for sealed-bid auctions. Computers & Secu-
rity, 88:101502, 2020.
[ava] Avalanche. https://www.avalabs.org/.

[BAZB20] Benedikt Biinz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh.
Zether: Towards privacy in a smart contract world. In Financial Cryptog-
raphy, volume 12059 of Lecture Notes in Computer Science, pages 423-443.
Springer, 2020.

[BBB*18] Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wauille, and Gregory Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In IEEE Symposium on Security and Privacy, pages
315-334. IEEE Computer Society, 2018.

[BBF18] Dan Boneh, Benedikt Biinz, and Ben Fisch. A survey of two verifiable
delay functions. IACR Cryptol. ePrint Arch., page 712, 2018.

[BBF19] Dan Boneh, Benedikt Biinz, and Ben Fisch. Batching techniques for
accumulators with applications to iops and stateless blockchains. In
CRYPTO (1), volume 11692 of Lecture Notes in Computer Science, pages
561-586. Springer, 2019.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable
zero knowledge with no trusted setup. In CRYPTO (3), volume 11694 of
Lecture Notes in Computer Science, pages 701-732. Springer, 2019.

[BCD*09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler,
Thomas Jakobsen, Mikkel Kroigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, et al. Secure multiparty computation
goes live. In International Conference on Financial Cryptography and
Data Security, pages 325-343. Springer, 2009.

[BCD*21] Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper
Frederiksen, and Lorenzo Gentile. Sok: Mitigation of front-running in
decentralized finance. IACR Cryptol. ePrint Arch., page 1628, 2021.

[BCDB18] Chiara Braghin, Stelvio Cimato, Ernesto Damiani, and Michael
Baronchelli. Designing smart-contract based auctions. In International
Conference on Security with Intelligent Computing and Big-data Services,
2018.

[BCG*20] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush
Mishra, and Howard Wu. ZEXE: enabling decentralized private compu-
tation. In IEEE Symposium on Security and Privacy, pages 947-964. IEEE,
2020.

[BCM05] Endre Bangerter, Jan Camenisch, and Ueli M. Maurer. Efficient proofs of
knowledge of discrete logarithms and representations in groups with
hidden order. In Public Key Cryptography, volume 3386 of Lecture Notes
in Computer Science, pages 154-171. Springer, 2005.

[BDTJ18] Lorenz Breidenbach, Philip Daian, Florian Tramer, and Ari Juels. Gasto-
ken: A journey through blockchain resource arbitrage. In CESC, 2018.

[BF21] Jeffrey Burdges and Luca De Feo. Delay encryption. In EUROCRYPT
(1), volume 12696 of Lecture Notes in Computer Science, pages 302—326.
Springer, 2021.

[BGB17] Benedikt Biinz, Steven Goldfeder, and Joseph Bonneau. Proofs-of-delay
and randomness beacons in ethereum. In IEEE Workshop on Security and
Privacy on the Blockchain. IEEE Computer Society, 2017.

[BGG*20] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo
Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public
blockchain keep a secret? In TCC (1), volume 12550 of Lecture Notes in
Computer Science, pages 260-290. Springer, 2020.

[BK18] Erik-Oliver Blass and Florian Kerschbaum. Strain: A secure auction for
blockchains. In European Symposium on Research in Computer Security,
2018.

[BK19] Sergiu Bursuc and Steve Kremer. Contingent payments on a public
ledger: Models and reductions for automated verification. In ESORICS
(1), volume 11735 of Lecture Notes in Computer Science, pages 361-382.
Springer, 2019.

Riggs: Decentralized Sealed-Bid Auctions

[BLS75]

[BNOO]

[BNO5]

[Bou00]

[BSL*21]

[But]

[ccz]

[CCL*20]

[CCS08]

[cD17]

[CDK*21]

[CFK23]

[CFTP12]

[CGGN17]

[CHJ*20]

[CHM*20]

[chr21]

[CKLR21]

[CLXW22]

[CPP17]

[DDM*20]

[DFo2]

[DGK*20]

John Brillhart, Derrick H Lehmer, and John L Selfridge. New primality
criteria and factorizations of 2™ + 1. Mathematics of computation,
29(130):620-647, 1975.

Dan Boneh and Moni Naor. Timed commitments. In CRYPTO, volume
1880 of Lecture Notes in Computer Science, pages 236—254. Springer, 2000.
Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic
curves of prime order. In Selected Areas in Cryptography, volume 3897 of
Lecture Notes in Computer Science, pages 319-331. Springer, 2005.
Fabrice Boudot. Efficient proofs that a committed number lies in an
interval. In EUROCRYPT, volume 1807 of Lecture Notes in Computer
Science, pages 431-444. Springer, 2000.

Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik
Nayak. Randpiper - reconfiguration-friendly random beacons with
quadratic communication. In CCS, pages 3502-3524. ACM, 2021.
Vitalik Buterin. The dawn of hybrid layer 2 protocols. https://vitalik.ca/
general/2019/08/28/hybrid_layer_2.html.

Theodoros Constantinides and John Cartlidge. Block Auction: A general
blockchain protocol for privacy-preserving and verifiable periodic double
auctions. In IEEE International Conference on Blockchain, 2021.
Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Bandwidth-efficient threshold EC-DSA. In
Public Key Cryptography (2), volume 12111 of Lecture Notes in Computer
Science, pages 266-296. Springer, 2020.

Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols
for set membership and range proofs. In ASTACRYPT, volume 5350 of
Lecture Notes in Computer Science, pages 234-252. Springer, 2008.
Ignacio Cascudo and Bernardo David. SCRAPE: scalable randomness
attested by public entities. In ACNS, volume 10355 of Lecture Notes in
Computer Science, pages 537-556. Springer, 2017.

Matteo Campanelli, Bernardo David, Hamidreza Khoshakhlagh, An-
ders K. Kristensen, and Jesper Buus Nielsen. Encryption to the future: A
paradigm for sending secret messages to future (anonymous) committees.
IACR Cryptol. ePrint Arch., page 1423, 2021.

Tarun Chitra, Matheus V. X. Ferreira, and Kshitij Kulkarni. Credible,
optimal auctions via blockchains, 2023.

Christophe Clavier, Benoit Feix, Loic Thierry, and Pascal Paillier. Gen-
erating provable primes efficiently on embedded devices. In Public Key
Cryptography, volume 7293 of Lecture Notes in Computer Science, pages
372-389. Springer, 2012.

Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Niz-
zardo. Zero-knowledge contingent payments revisited: Attacks and
payments for services. In CCS, pages 229-243. ACM, 2017.

HeeWon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, and
Jae Hong Seo. Bulletproofs+: Shorter proofs for privacy-enhanced dis-
tributed ledger. IACR Cryptol. ePrint Arch., page 735, 2020.

Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas P. Ward. Marlin: Preprocessing zksnarks with
universal and updatable SRS. In EUROCRYPT (1), volume 12105 of Lecture
Notes in Computer Science, pages 738-768. Springer, 2020.

Welcome to the future. Digital Art: NFTs. https://www.christies.com/
auctions/christies-encrypted, Mar 2021.

Geoffroy Couteau, Michael Kloof}, Huang Lin, and Michael Reichle. Effi-
cient range proofs with transparent setup from bounded integer commit-
ments. In EUROCRYPT (3), volume 12698 of Lecture Notes in Computer
Science, pages 247-277. Springer, 2021.

Biwen Chen, Xue Li, Tao Xiang, and Peng Wang. SBRAC: Blockchain-
based sealed-bid auction with bidding price privacy and public verifia-
bility. Journal of Information Security and Applications, 2022.

Geoffroy Couteau, Thomas Peters, and David Pointcheval. Removing
the strong RSA assumption from arguments over the integers. In EU-
ROCRYPT (2), volume 10211 of Lecture Notes in Computer Science, pages
321-350, 2017.

Dominic Deuber, Nico Déttling, Bernardo Magri, Giulio Malavolta, and
Sri Aravinda Krishnan Thyagarajan. Minting mechanism for proof
of stake blockchains. In ACNS (1), volume 12146 of Lecture Notes in
Computer Science, pages 315-334. Springer, 2020.

Ivan Damgard and Eiichiro Fujisaki. A statistically-hiding integer com-
mitment scheme based on groups with hidden order. In ASIACRYPT, vol-
ume 2501 of Lecture Notes in Computer Science, pages 125-142. Springer,
2002.

Philip Daian, Steven Goldfeder, Tyler Kell, Yungi Li, Xueyuan Zhao, Iddo
Bentov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrun-
ning in decentralized exchanges, miner extractable value, and consensus
instability. In IEEE Symposium on Security and Privacy, pages 910-927.
IEEE, 2020.

[DGKR18]

[DHMW22]

[Dia21]

[DK21]

[DKIR21]

[DKK19]

[Dra18]

[eos]

[FKPS21]

[FO97]

[FR96]

[FW20]

[GGSW13]

[GHK*21]

[GHM*17]

[GHM*21]

[GKM*22]

[GKRN18]

[Goo23]

[GOP*22]

[Gro05]

[Gro11]

[Gro16]

[GT21

[GV99]

[GWC19]

Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-
stake blockchain. In EUROCRYPT (2), volume 10821 of Lecture Notes in
Computer Science, pages 66—98. Springer, 2018.

Nico Déttling, Lucjan Hanzlik, Bernardo Magri, and Stella Wohnig. Mcfly:
Verifiable encryption to the future made practical. JACR Cryptol. ePrint
Arch., page 433, 2022.

Benjamin E. Diamond. Many-out-of-many proofs and applications to
anonymous zether. In IEEE Symposium on Security and Privacy, pages
1800-1817. IEEE, 2021.

Harsh Desai and Murat Kantarcioglu. SECAUCTEE: Securing Auction
Smart Contracts using Trusted Execution Environments. In 2021 IEEE
International Conference on Blockchain (Blockchain), 2021.

Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. SPURT:
scalable distributed randomness beacon with transparent setup. JACR
Cryptol. ePrint Arch., page 100, 2021.

Harsh Desai, Murat Kantarcioglu, and Lalana Kagal. A Hybrid Blockchain
Architecture for Privacy-Enabled and Accountable Auctions. In Interna-
tional Conference on Blockchain, 2019.

Justin Drake. Minimal VDF randomness beacon. Technical report,
Ethereum Research, 2018.

EOS. https://eos.io/.

Cody Freitag, llan Komargodski, Rafael Pass, and Naomi Sirkin. Non-
malleable time-lock puzzles and applications. In TCC (3), volume 13044
of Lecture Notes in Computer Science, pages 447-479. Springer, 2021.
Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge
protocols to prove modular polynomial relations. In CRYPTO, volume
1294 of Lecture Notes in Computer Science, pages 16-30. Springer, 1997.
Matthew K Franklin and Michael K Reiter. The design and implementa-
tion of a secure auction service. IEEE Transactions on Software Engineer-
ing, 22(5), 1996.

Matheus V. X. Ferreira and S. Matthew Weinberg. Credible, truthful, and
two-round (optimal) auctions via cryptographic commitments. In EC,
pages 683-712. ACM, 2020.

Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness
encryption and its applications. In STOC, pages 467-476. ACM, 2013.
Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus
Nielsen, Tal Rabin, and Sophia Yakoubov. YOSO: you only speak once
- secure MPC with stateless ephemeral roles. In CRYPTO (2), volume
12826 of Lecture Notes in Computer Science, pages 64-93. Springer, 2021.
Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies.
In SOSP, pages 51-68. ACM, 2017.

Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and
Sophia Yakoubov. Random-index PIR and applications. In TCC (3),
volume 13044 of Lecture Notes in Computer Science, pages 32—61. Springer,
2021.

Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno,
and Yifan Song. Storing and retrieving secrets on a blockchain. In Public
Key Cryptography (1), volume 13177 of Lecture Notes in Computer Science,
pages 252-282. Springer, 2022.

Steven Goldfeder, Harry Kalodner, Dillon Reisman, and Arvind
Narayanan. When the cookie meets the blockchain: Privacy risks of web
payments via cryptocurrencies. PETS, 2018.

Justice Department Sues Google for Monopolizing Digital Advertising
Technologies. The United States Department of Justice, Jan 2023.
Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and
Daniel Tschudi. Fiat-shamir bulletproofs are non-malleable (in the
algebraic group model). In EUROCRYPT. Springer, 2022.

Jens Groth. Non-interactive zero-knowledge arguments for voting. In
ACNS, volume 3531 of Lecture Notes in Computer Science, pages 467-482,
2005.

Jens Groth. Efficient zero-knowledge arguments from two-tiered homo-
morphic commitments. In ASIACRYPT, volume 7073 of Lecture Notes in
Computer Science, pages 431-448. Springer, 2011.

Jens Groth. On the size of pairing-based non-interactive arguments. In
EUROCRYPT (2), volume 9666 of Lecture Notes in Computer Science, pages
305-326. Springer, 2016.

Ashrujit Ghoshal and Stefano Tessaro. Tight state-restoration soundness
in the algebraic group model. In CRYPTO (3), volume 12827 of Lecture
Notes in Computer Science, pages 64-93. Springer, 2021.

Sharon E Gillett and Ingo Vogelsang. Competition, regulation, and con-
vergence: current trends in telecommunications policy research. Routledge,
1999.

Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
permutations over lagrange-bases for oecumenical noninteractive argu-
ments of knowledge. IACR Cryptol. ePrint Arch., 2019:953, 2019.

[GY18]

[GY19]

[KLX20]

[KMS*16]

[KOR04]

[KST*20]

[KYMM18]

[KZZ16]

[Lip03]

[LJKW18]

[LNPR18]

[LROO]

[LW15]

[LZL*21]

[Max15]

[MGGR13]

(MGZ22]

[MMK*17]

[MMS*19]

[MOS22]

[MT19]

[NPS99]

[NS93]

[OWWB20]

[0zt20]

[Pai99]

Hisham S. Galal and Amr M. Youssef. Verifiable Sealed-Bid Auction on
the Ethereum Blockchain. Cryptology ePrint Archive, Paper 2018/704,
2018.

Hisham S Galal and Amr M Youssef. Trustee: Full Privacy Preserving
Vickrey Auction on top of Ethereum. In Financial Crypto, 2019.
Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock
puzzles and timed commitments. In TCC (3), volume 12552 of Lecture
Notes in Computer Science, pages 390-413. Springer, 2020.

Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalam-
pos Papamanthou. Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In 2016 IEEE symposium on security
and privacy (SP), pages 839-858. IEEE, 2016.

Jonathan Katz, Rafail Ostrovsky, and Michael O. Rabin. Identity-based
zero knowledge. In SCN, volume 3352 of Lecture Notes in Computer
Science, pages 180-192. Springer, 2004.

Michal Krél, Alberto Sonnino, Argyrios Tasiopoulos, Ioannis Psaras, and
Etienne Riviére. PASTRAMI: privacy-preserving, auditable, Scalable
& Trustworthy Auctions for multiple items. In Proceedings of the 21st
International Middleware Conference, 2020.

George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. An
empirical analysis of anonymity in zcash. In USENIX Security Symposium,
pages 463-477. USENIX Association, 2018.

Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust
multi-party computation using a global transaction ledger. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 705-734. Springer, 2016.

Helger Lipmaa. On diophantine complexity and statistical zero-
knowledge arguments. In ASIACRYPT, volume 2894 of Lecture Notes in
Computer Science, pages 398—415. Springer, 2003.

Jia Liu, Tibor Jager, Saqib A. Kakvi, and Bogdan Warinschi. How to build
time-lock encryption. Des. Codes Cryptogr., 86(11):2549-2586, 2018.
Pascal Lafourcade, Mike Nopére, Daniela Pizzuti, and Etienne Roudeix.
Auctionity yellow paper. https://www.auctionity.com/wp-content/
uploads/2018/09/Auctionity- Yellow-Paper.pdf, 2018.

David Lucking-Reiley. Vickrey auctions in practice: From nineteenth-
century philately to twenty-first-century e-commerce. Journal of eco-
nomic perspectives, 14(3):183-192, 2000.

Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, uni-
corn, and trx. IACR Cryptol. ePrint Arch., page 366, 2015.

Genhua Lu, Yi Zhang, Zhongxiang Lu, Jun Shao, and Guiyi Wei.
Blockchain-based sealed-bid domain name auction protocol. In EAI
International Conference on Applied Cryptography in Computer and Com-
munications, 2021.

Gregory Maxwell. Zero knowledge contingent payment. Technical
report, Bitcoin Wiki, 2015.

Tan Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zero-
coin: Anonymous distributed e-cash from bitcoin. In IEEE Symposium
on Security and Privacy, pages 397-411. IEEE Computer Society, 2013.
Peyman Momeni, Sergey Gorbunov, and Bohan Zhang. Fairblock: Pre-
venting blockchain front-running with minimal overheads. IACR Cryptol.
ePrint Arch., page 1066, 2022.

Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei,
and Srivatsan Ravi. Concurrency and privacy with payment-channel
networks. In CCS, pages 455-471. ACM, 2017.

Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket
Kate, and Matteo Maffei. Anonymous multi-hop locks for blockchain
scalability and interoperability. In NDSS. The Internet Society, 2019.
Ahmet Can Mert, Erding Oztiirk, and Erkay Savas. Low-latency ASIC
algorithms of modular squaring of large integers for VDF evaluation.
IEEE Trans. Computers, 71(1):107-120, 2022.

Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic
time-lock puzzles and applications. In CRYPTO (1), volume 11692 of
Lecture Notes in Computer Science, pages 620—649. Springer, 2019.

Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving
auctions and mechanism design. In Proceedings of the 1st ACM Conference
on Electronic Commerce, pages 129-139, 1999.

Hannu Nurmi and Arto Salomaa. Cryptographic protocols for vickrey
auctions. Group Decision and Negotiation, 2(4), 1993.

Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. Scaling
verifiable computation using efficient set accumulators. In USENIX
Security Symposium, pages 2075-2092. USENIX Association, 2020.
Erding Oztiirk. Design and implementation of a low-latency modular
multiplication algorithm. IEEE Trans. Circuits Syst. I Regul. Pap., 67-
1(6):1902-1911, 2020.

Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In EUROCRYPT, volume 1592 of Lecture Notes in
Computer Science, pages 223-238. Springer, 1999.

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Maziéres

[PD16]

[Ped91]

[PHGR13]

[Pie19]

[RS20]

[RSW96]

[RTK90]

[Set20]

[STH*21]

[SJK*17]

[SJSW20]

[SM21]

[sot21]

[ssv21]

[Sta96]

[sVs*21]

[TBM*20]

[TCLM21]

[TGB*21]

[Tha20]

[TKFJ22]

[TYME21]

[Vic61]

[WBJP20]

[Wes19]

[WGH"]

[XW19]

Joseph Poon and Thaddeus Dryja. The bitcoin lightnight network: Scal-
able off-chain instant payments. Technical report, Lightning Network,
2016.

Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO, volume 576 of Lecture Notes in
Computer Science, pages 129-140. Springer, 1991.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In IEEE S&P, May 2013.
Krzysztof Pietrzak. Simple verifiable delay functions. In ITCS, volume
124 of LIPIcs, pages 60:1-60:15. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2019.

Lior Rotem and Gil Segev. Generically speeding-up repeated squaring
is equivalent to factoring: sharp thresholds for all generic-ring delay
functions. In CRYPTO, 2020.

Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles
and timed-release crypto. Technical report, Massachusetts Institute of
Technology, 1996.

Michael H Rothkopf, Thomas J Teisberg, and Edward P Kahn. Why are
vickrey auctions rare? Journal of Political Economy, 98(1):94-109, 1990.
Srinath Setty. Spartan: Efficient and general-purpose zksnarks without
trusted setup. In CRYPTO (3), volume 12172 of Lecture Notes in Computer
Science, pages 704-737. Springer, 2020.

Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter,
and Edgar R. Weippl. Randrunner: Distributed randomness from trapdoor
vdfs with strong uniqueness. In NDSS. The Internet Society, 2021.

Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly,
Linus Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scalable
bias-resistant distributed randomness. In IEEE Symposium on Security
and Privacy, pages 444-460. IEEE Computer Society, 2017.

Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar R.
Weippl. Hydrand: Efficient continuous distributed randomness. In
IEEE Symposium on Security and Privacy, pages 73-89. IEEE, 2020.

Jan Christoph Schlegel and Akaki Mamageishvili. On-chain auctions
with deposits. arXiv preprint arXiv:2103.16681, 2021.

Sotheby’s to Announce Live Bidding Increments in Ether (ETH) Cryp-
tocurrency for Banksy’s ‘Trolley Hunters’ and ‘Love Is In The Air’.
Sotheby’s press release, Nov 2021.

Cosimo Sguanci, Roberto Spatafora, and Andrea Mario Vergani. Layer 2
blockchain scaling: a survey. CoRR, abs/2107.10881, 2021.

Markus Stadler. Publicly verifiable secret sharing. In EUROCRYPT, vol-
ume 1070 of Lecture Notes in Computer Science, pages 190-199. Springer,
1996.

Gaurav Sharma, Denis Verstraeten, Vishal Saraswat, Jean-Michel Dricot,
and Olivier Markowitch. Anonymous Sealed-Bid Auction on Ethereum.
Electronics, 10(19):2340, 2021.

Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta,
Nico Déttling, Aniket Kate, and Dominique Schréder. Verifiable timed
signatures made practical. In CCS, pages 1733-1750. ACM, 2020.

Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabien Laguil-
laumie, and Giulio Malavolta. Efficient CCA timed commitments in class
groups. In CCS, pages 2663-2684. ACM, 2021.

Sri Aravinda Krishnan Thyagarajan, Tiantian Gong, Adithya Bhat,
Aniket Kate, and Dominique Schroder. Opensquare: Decentralized re-
peated modular squaring service. In CCS, pages 3447-3464. ACM, 2021.
Justin Thaler. Proofs, arguments, and zero knowledge. https://people.cs.
georgetown.edu/jthaler/ProofsArgsAndZK html, 2020.
Weizhao Tang, Lucianna Kiffer, Giulia Fanti, and Ari Juels.
gic latency reduction in blockchain peer-to-peer networks.
abs/2205.06837, 2022.

Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay Eyal. MAD-
HTLC: because HTLC is crazy-cheap to attack. In IEEE Symposium on
Security and Privacy, pages 1230-1248. IEEE, 2021.

William Vickrey. Counterspeculation, auctions, and competitive sealed
tenders. The Journal of finance, 16(1):8-37, 1961.

Riad S. Wahby, Dan Boneh, Christopher Jeffrey, and Joseph Poon. An
airdrop that preserves recipient privacy. In Financial Cryptography, vol-
ume 12059 of Lecture Notes in Computer Science, pages 444-463. Springer,
2020.

Benjamin Wesolowski. Efficient verifiable delay functions. In EURO-
CRYPT (3), volume 11478 of Lecture Notes in Computer Science, pages
379-407. Springer, 2019.

Barry Whitehat, Alex Gluchowski, HarryR, Yondon Fu, and Philippe
Castonguay. Roll up / roll back snark. https://ethresear.ch/t/roll-up-roll-
back-snark-side-chain-17000-tps/.

Jie Xiong and Qi Wang. Anonymous Auction Protocol Based on
Time-Released Encryption atop Consortium Blockchain. arXiv preprint
arXiv:1903.03285, 2019.

Strate-
CoRR,

Riggs: Decentralized Sealed-Bid Auctions

[zca] ZCash. https://z.cash/.
[ZMEF22] Haogqian Zhang, Louis-Henri Merino, Vero Estrada-Galifianes, and Bryan
Ford. F3B: A low-latency commit-and-reveal architecture to mitigate
blockchain front-running. CoRR, abs/2205.08529, 2022.

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Maziéres

A SECURITY DEFINITIONS AND PROOFS FOR TTD

In Appendix A.1, we formally define the security properties for timed commitments. The properties for non-timed commitments are the same
while ignoring ForceOpen and the time bound ¢. Then, in Appendix A.2, we provide proofs for our main timed commitment construction
TTD given in Figure 1. In Appendix A.3, we discuss the functional non-malleability notion that we use in this work in greater detail,
including how it is used in context of decentralized auctions.

A.1 Timed Commitment Security Definitions

We say that a timed commitment, given by the algorithms (Setup, Comm, ForceOpen, VerOpen), is a secure timed commitment if it satisfies
the following properties. The definition below closely follows the definition of [FKPS21] extended to our setting.

e Full Correctness: For every A\, t € N, pp € Supp (Setup(A, t)), and string com € {0, 1}*, the following hold:
e If (com,-) € Supp (CommPP (b)) for some b € {0, 1}*, then ForceOpenPP(com) = (b, -).
e If (com,-) ¢ Supp (CommPP (b)) for any b € {0,1}*, then ForceOpenPP(com) = (L, -).
e Completeness: For every \,t € N, pp € Supp (Setup (], t)), and string com € {0, 1}*, the following hold:
o If (com, mopen) € Supp (CommPP (b)) for any b € {0, 1}, then VerOpenPP(com, b, Topen) = 1.
e If (b,mopen) < ForceOpenPP(com), then VerOpenPP (com, b, mopen) = 1.
o If VerOpenPP(com, b, mopen) = 1 for any b, mopen € {0, 1}*, then (com, -) € Supp (CommPP(b)).

e Efficiency: For every polynomial g1, there exists a polynomial g2 such that for every A, ¢ € N, pp € Supp (Setup(A, t)), and for inputs
bounded by length q1 (), Setup, CommPP, and VerOpenPP run in time at most g2 (), and ForceOpenPP runs in time at most ¢ - g2 ().

e Binding: For every non-uniform PPT A, there exists a negligible function negl such that for all A\, ¢ € N,

VerOpenPP (com, by, =1
pp <3 Setup(A, t) p (Open,0)

A VerOpenPP (com, b1, Topen,1) =1 | < negl(}).
(com, (bg, ﬂ—Open,O)v (blyﬂOpen,l)) « A(pp) per

A bg # by
Note that by or by output by the adversary A may be equal to L.

Defining non-malleability. Let L be a bound on the length of a bid, and let # be a class of functions that takes inputs of the form
(L U {0,1}X)*. We next define the notion of functional non-malleability for the class of functions ¥, extending the definition of Freitag et
al. [FKPS21] to our setting. To define functional non-malleability, we introduce the notion of a meddler-in-the-middle (MIM) adversary. We
consider 1-many concurrent non-malleability, which is known to imply many-many concurrent non-malleability [FKPS21].

For any \,t € N, pp € Supp (Setup()\, t)), MIM adversary A, and bid b € {0, 1}, we define the experiment mim 4 (pp, b) as follows.
An n-MIM adversary A takes as input pp and com as given by Comm”P(b). A then outputs a sequence of 7 values com; for i € [n]. For
each i € [n], we set b equal to (bz, -) « ForceOpenPP (comy) if com; # com. Otherwise, we set b = L. The output of the experiment
mim 4 (pp, b) is b1, ey bn.

We say that (Setup, Comm, ForceOpen, VerOpen) satisfies (concurrent) functional non-malleability with respect to the class of functions
¥ if the following holds:

e Functional Non-Malleability: Let L be a bound on the bid length. For every function f € ¥ and polynomial n, there exists a polynomial o
such that for all polynomial time bounds 7" > «, n-MIM adversary A running in parallel time less than 7°(A)/c(\), and polynomial-time
distinguisher D, there exists a negligible function negl such that for all A € N, ¢ = T'(\), bids bg # b1 € {0, 1}Z, it holds that

pp s Setup(A, t)

1<s{0,1}

Pr| bg, b1 « A(pp) 217 =i| £ 1/2+negl()).
Bl,...,bn(,\) — mim4(pp, b;)
i <—D(pp,b1,... n()\))

Random oracle model formalism. We formalize timed commitments in the random oracle model by giving all algorithms oracle access to
a hash function H modeled as a random function. For each security parameter A € N, we assume that the hash function H has fixed input
and output length, bounded by a polynomial in A. Furthermore, we assume for simplicity that any two distinct inputs have a uniformly and
independently sampled output (to deal with concrete issues surrounding padding inputs to a fixed length). We require that the correctness
properties hold for any choice of hash function H, and we require that the security properties hold where the probability is additionally over
a uniformly sampled hash function H.

Riggs: Decentralized Sealed-Bid Auctions

A.2 Security Proofs for TTD
Before providing proofs, we first formally state the assumptions we need for our main claims.
Assumptions. We recall the repeated squaring assumption, based on the time-lock puzzle proposal of [RSW96], which we refer to as the RSW

assumption. Informally, the assumption states that no adversary, on input a random RSA group element x, can compute y = 22 (mod N)
while running in parallel time less than ¢. Our formal definition is modeled off of the definition of time-lock puzzles given in [FKPS21].

Definition A.1 (The RSW Assumption). Let B be a function of the security parameter. We say that the RSW assumption holds against B(\)-
time attackers if there is a positive polynomial a such that for all polynomial time bounds T > &, non-uniform B(\)-time pre-processing
algorithms A1, and non-uniform online adversaries A2 running in parallel time less than 7'(\) /a(A) and total time less than B(\), there
exists a negligible function negl such that for all A € N, ¢t = T'(}),

(-,+,N,G,g,-) «s RSAGGen(\)
Pr| p— A;(\,N) :zzgzt (mod N)| <

z «— Aa(g, p)

negl(\)
B\

Next, we define the properties we need for our underlying encryption scheme. In addition to semantic security, we require a simulatable
variant of IND-CCA security. First, we recall that definition of semantic security as follows.

Definition A.2. We say that an encryption scheme (Keygen, Enc, Dec) is semantically secure if for every pair of non-uniform PPT
algorithms A = (Aj, Ag), there exists a negligible function negl such that for all A € N, it holds that

k «— Keygen(\)

(mo,m1,p) « A1 oo

Pr| i«s{0,1} : < negl(A).
Imol = |ma]
ct « Enc(k, m;)

i« Aa(ct, p)

Informally, we rely on the fact that no attacker, on input a ciphertext for a random key, can produce any other valid ciphertext. We refer
to such a scheme as CCA-SIM-1-secure.

Definition A.3. We say that an encryption scheme (Keygen, Enc, Dec) is CCA-SIM-1-secure if it is a semantically secure encryption
scheme and the following holds. For every non-uniform PPT A, there exists a negligible function negl such that for all A € N, m € {0, 1}, it
holds that

k «— Keygen()\)
Dec(k,ct’) # L
Pr| ct « Enc(k,m) : < negl()\).
ct # ct’
ct’ « A(ct)

We note that the standard “encrypt-then-MAC” construction of a symmetric-key CCA-secure encryption scheme satisfies this stronger
property. However, it is not immediately implied by plain IND-CCA security (as there may exist fixed strings that are valid ciphertexts under
any key).

Security proofs. We provide full proofs for the security properties binding and functional non-malleability. However, the proofs for full
correctness, completeness, and efficiency are straightforward, so we omit the full details. We note that full correctness follows immediately
from the completeness of the underlying commitment scheme and the correctness of the encryption scheme. Completeness also follows from
completeness of the underlying commitment scheme and correctness of the encryption scheme, and additionally relies on the completeness
of the proof of exponentiation. Efficiency follows immediately from inspection of the algorithms.

We proceed to prove binding of our timed commitment scheme.

LEMMA A.4. Assuming correctness of the encryption scheme CCA and soundness of the proof exponentiation PoE, TTD satisfies binding.

PrOOF. Suppose there exists a polynomial ¢ and a non-uniform PPT A that on input pp «s Setup (A, t) outputs

(com, (bg, Topen,0), (b1, Topen,1)) and violates binding with probability at least 1/q()).

Let com = (comc, (h, ct)). Consider the event where the binding experiment outputs 1. For i € {0, 1}, let b be the bid value computed
via decryption by VerOpen(com, b, Topen,;)- As VerOpen outputs 1, it follows that b} = b; and hence b(j # b]. If both by and by are
non-_, binding follows immediately from binding of the underlying commitment scheme, but we still need to cover the case where one of
the bids is L and the other is non-_L.

Fori € {0, 1}, let ; be the element used to generate the corresponding encryption key k; = H(y;, pp) during VerOpen(com, b;, Topen,:)-
Recall that if mode = force, y; is provided (with a proof of exponentiation) in Topen, i, and if mode = committer, y; is computed as y*
for a randomization exponent c; provided in Topen, ;-

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Maziéres

First, suppose that yg = y1 in the event that the binding experiment outputs 1. This implies that the generated keys ko and kj are also
equal, so it holds that bg = by by correctness of the encryption scheme, in contradiction. To analyze the case where yg # y1, we split the event
that the binding experiment outputs 1 into three sub-cases: (1) mode = committer for both mopen,0 and mopen,1, (2) mode = committer
for mopen,0 and mode = force for Topen,1 (or Vice versa), and (3) mode = force for both Topen,0 and mopen,1- Thus, one of (1), (2), or (3)
must occur with probability at least 1/(3¢())), which we show violates our assumptions.

In case (1), we have that mode = committer for mopen,o, 0 for some g provided in mopen,0, We have that yg = 240 = (h2t)°‘0 =
(ho‘o)zt = 2 (mod N). However, since mode = committer for mopen,1, it also holds that 31 = B2 (mod N), so yo = 1, in
contradiction.

In case (2), mode = force for Topen,1, S0 A provides an accepting proof of exponentiation that y; is equal to B2 (mod N). However,
B2 = yo by our analysis of case (1). So if yo # y1, this violates soundness of the proof of exponentiation. As A is a non-uniform PPT
algorithm, this implies that case (2) cannot occur with 1/(3¢(\)) probability.

For case (3), mode = force for both Topen,0 and mopen,1, and recall that yo # y1. This means that A provides an accepting proof of
exponentiation that h2 s equal to both yo and y1, but at least one of these values must not be correct. Thus, this violates soundness of the
proof of exponentiation and cannot occur with 1/(3¢(\)) probability. O

We next prove that TTD satisfies functional non-malleability for the class of functions ¥, that can be computed “in low depth” and have
output length bounded by £()\). At a high level, we require that any function f € ¥y can be computed in parallel time less than the time
parameter ¢ used in our construction, for any (polynomial) number of participants n. We formalize this requirement to capture functions
that don’t depend on the time bound ¢ following [FKPS21]. Specifically, let f € F; be a function. We require that there exists a polynomial d
such that for any polynomial n representing the number of inputs to f, f can be computed in parallel time less than d(\, log n(\)). This
ensures that for large enough (yet polynomial) time bounds T'(\), f can be computed in parallel time less than T'(\) for any n(\) < 2*.

LEmMMA A.5. Let £ be a function of the security parameter. Assuming the underlying encryption scheme CCA is CCA-SIM-1 secure, the RSW
assumption holds against 2£(X) . poly (\)-time attackers, and C satisfies concurrent functional non-malleability for %5, TTD satisfies concurrent
functional non-malleability for F.

Proor. For any MIM adversary A, distinguisher D, and function f € #, let G; be the game representing the output of D in the
functional non-malleability security game when the bit 7 is chosen. By way of contradiction, suppose there is a valid MIM adversary A and a
polynomial-time distinguisher D that computes i’ = 7 on game G; for a random i «s {0, 1} with better than 1/2 + 1/g()) probability for
some polynomial g. We define a sequence of hybrid games as follows for each i € {0, 1} as follows:

e Hybrid H; o: This game is identical to G;.

e Hybrid H; 1: This game is the same as hybrid H; o, except instead of determining the bids 1317 e ,Bn using
ForceOpen((com;, (fzi, ct;))), we use the function OPENSIM, defined as follows. OPENSIM((com;, (fzi, ct;))) checks if the ad-
versary has queried k; = H(Z;, pp) such that 2; = (iLi)? (mod N).
If so, it outputs by if (b;, Topen,i) = CCA.Dec(k;, ct;) and C.VerOpen(com;, bi, TOpen,i) = 1. Otherwise, it outputs L.
e Hybrid H; : In this hybrid, TTD.Comm computes the key k = H(r, pp) for a randomly chosen group element 7.
e Hybrid H; 3: Same as H; 2, except TTD.Comm computes ct < CCA.Enc(k, (_j) such that |6| = |(b, mopen) -
e Hybrid H; 4: This hybrid is the same as H; 3, except TTD.Comm computes comc « C.Comm(0%).
Let p; ; be the probability that D outputs 1 in hybrid H; ;. As Hy o, H1,0 correspond to the game when by or by are chosen, respectively,
this means that p1 0/2 + (1 —po,0)/2 > 1/2 + 1/q()\), which implies that [pg,0/2 — p1,0/2] = 1/q(\). As Ho 4 and H 4 are independent
of by and by, respectively, it follows that the games are identical so pp,4 = p1,4. So, it must be the case that |p; j/2 — p; j+1/2| for some

i€ {0,1} and j € {0, 1,2, 3} must be at least 1/(8¢(A)). In the following claims, we show that this must contradict our assumptions.
Without loss of generality, we prove the claims for i = 0.

Cramv 1. Assuming CCA is CCA-SIM-1 secure, |po,0/2 — po,1/2| < 1/(8q(N)).

Proor. For every A € N, we consider a sequence of n + 1 additional hybrids Jy, ..., J,, where Jo = Hg g and J,, = Hp,1. In hybrid
Jg, the first n — k bids Bj corresponding to commitments output by A are computed using ForceOpen, and the remaining k bids Bj are
computed using OPENSIM. Thus, Jj, and Ji4 differ solely in the way that the k + 1st bid Bk+1 is computed. We show that if, for any
k € [0,n — 1], A distinguishes Jj from Jy41 with greater than 1/(8 - n - ¢) probability, we can use A to break the CCA-SIM-1 security of
the underlying encryption scheme CCA.

Consider any j € [0,n — 1]. Let (comj1, (fALjJrl7 ct;+1)) be the j + 1st commitment output by A. The output of the game is identically
distributed, unless ForceOpen and OPENSIM compute different values for Bj+1, in which case we make no assumptions on the output of
the game.

Riggs: Decentralized Sealed-Bid Auctions

Suppose that OPENSIM outputs a valid Bj+1 # L. By definition of OPENSIM, this implies that (l~)j+1, TOpen,j+1) = CCA.Dec(k, ctji1)
where 2,1 = (iLkH)Qt, k = H(Zj41, pp), and C.VerOpen(com;1, Bj+1, TOpen,j+1) = 1. But this means that (com;+1, (izj+1, ctjy1)) is
a valid commitment for l~)j+1, so ForceOpen outputs Bj+1 = Bj+1. Thus, the output of the game can only differ between J; and Jj11 if
OPENSIM outputs L and ForceOpen outputs a value b# L.

Suppose OPENSIM outputs L on the j + 1st commitment even though (com;j1, (ﬁj+1, ctj41)) is a valid commitment for some value
Bj+1 # L. This implies that ct; is a valid encryption under the key k = H(Z;4+1, pp), but A has not queried H on (2;41, pp). Thus, k is a
uniformly random key. At most, A has received a single ciphertext ct = CCA.Enc(k, (bg, Topen,0)) under this key (or has not received such

a ciphertext if the k + 1st query happens before the challenge), and outputs a distinct valid ciphertext under k. By CCA-SIM-1 security, this
cannot happen with probability at least 1/(8 - n - ¢), in contradiction. O

CraM 2. Assuming RSW assumption holds for 2L . poly (N)-time attackers, [po,1/2 —po,2/2| < 1/(8q(N)).

Proor. Using the MIM adversary A, the function f € ¥, and distinguisher D, we construct an adversary B = (B1, Bg) that wins the
RSW game with sufficient advantage. Furthermore, B will run in total time at most 2¢ (M) . poly()) and By will run in low parallel time.

The pre-processing adversary Bj first receives as input the group description N. It samples the remainder of the public parameters
pp for TTD.Setup(, t), including a random group element h. It then computes z = h2* (mod N) by computing ¢ squarings. By next
computes comc and ct for TTD.CommPP(by), using k = H(r, pp) for a random group element r. Next, B runs D on all possible £(\)-bit
inputs, querying H up to 2t(N) . poly () times, and lets i denote the sequence of values y such that D queried H(y, pp). B1 outputs its
state p = (pp, comc, ct,).

Next, the online adversary Ba receives a random group element = and the state p from Bj. By runs A(comc, (z, ct)) and gets the
output (comy;, (iLl, ct;)) for all i € [n]. B2 computes 51 «— OPENSIM((com;, (iALl, ct;))) for each output in parallel, and then Bg runs
f(b1,...,bn). Let ¥ be the sequence of values y’ such that A or f queried H(y’, pp). B2 chooses a random value § from 4 or 3’ and
outputs g.

We first analyze the running time of B. B takes time ¢ - poly(\) to compute z and takes time 2N . poly(A) to compute ¥, so for
polynomial time bounds 7'(), Bj runs in time 2¢(A) . poly (). The online adversary Bg runs A, invokes OPENSIM on each output in
parallel, and then runs f (Bl, . ,Bn) Let t 4 be the parallel running time of A. All OPENSIM evaluations can be computed in parallel
time p1 (), for a polynomial p; independent of the time parameter t. By assumption on ¥y, f can be computed in time d(\, logn())). For
n(X) < 2%, this implies that By runs in time 4 + pa(A) < T'(\)/a(X) +p2 () for a fixed polynomial po independent of the time parameter
t. For the running time of A, recall that for every positive polynomial «, there exists a polynomial 7' > « such that A succeeds and runs in
parallel time at most 7'/«. To show that B violates our assumption on the running time, let &’ be an arbitrary positive polynomial. We
invoke the assumed adversary A for the value @ = 2a’ - pa, so T' > 2a - pa. Then, by our analysis above, B runs in parallel time at most
T/a+p2=(T+a-p2)/a <2T/a < T/d . Thus, B has the appropriate parallel running time, and it remains to argue B violates the RSW
assumption the required probability.

Consider a hypothetical experiment where By computes the key k for the challenge using y = 22 (mod N). This corresponds to hybrid
Hy,1, whereas B2’s real behavior corresponds to hybrid Hy 2. However, the output of hybrids Ho,1 and Ho 2 are identically distributed unless
A, f,or D query the random oracle H on either (1) the input (r, pp) where r was the randomly chosen group element in the experiment
or (2) (y, pp) fory = 22 (mod N). This is because in both cases, the challenge key k generated is uniformly random and identically
distributed in each hybrid. Let m < 2t(\). poly()) be the number of queries in §j or 3/’. Case (1) happens with at most m/2” probability since
7 is a random, independently chosen group element, and there are at least 2* group elements in G. In case (2), B succeeds in the RSW game
with probability at least 1/m. Therefore, B succeeds with probability at least (|po,1/2 —po,2/2| — m/2)) /m > [p0,1/2—po,2/2|/m — 1/27.
If |po,1/2 — po,2/2| > 1/8¢, this implies the existence of a polynomial ¢’ such that B succeeds with probability at least 1/(q” - 2¢(A),
contradicting our RSW assumption against 2° (M) . poly(A)-time attackers, as required. O

Cramm 3. Assuming CCA is semantically secure, |po,2/2 — po,3/2| < 1/(8q(N)).

Proor. Using the MIM adversary A, function f, and distinguisher D that distinguish hybrids Ho o and Ho, 3, we construct an adversary
B = (By, B2) that breaks semantic security as follows. B first samples public parameters pp for TTD. It then computes (comc, Topen,c) <
C.Comm(bg). By sends mg = (bo, Topen,c) and my = 0 such that |6| = |(bo, Topen,c)| to the semantic security challenger. B2
receives ct corresponding to an encryption of m; for either ¢ = 0 or ¢ = 1. It then computes the commitment com = (comc, (}Al7 ct))
where h «— h% (mod N) for a «s [22*]. By runs A(pp, com) and gets commitments (com;, (fzi, ct;)) for all i € [n]. B computes
b; — OPENSIM((com;, (hj, ct;))), and outputs i/ = D(f(b1,..., bn)).

B clearly runs in polynomial-time as the time bound ¢ = T°() is polynomially bounded. For correctness, note that whenever the semantic
security challenger i = 0, ct corresponds to the message (bo, Topen,c), S0 the output of the game is identical to hybrid Ho 2 since the key k
chosen by the semantic security challenger is uniformly random. Similarly, whenever ¢ = 1 is chosen, the output of the game is identical to
hybrid Hg 3. Thus, B’s distinguishing advantage is |po,2/2 — po,3/2|, which violates semantic security of the underlying encryption scheme
if |po,2/2 = po,3/2| > 1/8q¢. o

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Maziéres

Cramv 4. Assuming C satisfies functional non-malleability for Fy, |po,3/2 — po,4/2] < 1/(8q(N)).

Proor. Given the MIM adversary A, we construct a MIM adversary B for the functional non-malleability game for the underlying
commitment scheme C for the function f on messages mq = bg or m1 = 0 as follows. B receives as input public parameters ppc and
a commitment comc « C.CommPPc(m;) for some ¢ «—s {0, 1}. It then samples the remainder of the public parameters for TTD as well
as a value h and ct = CCA.Enc(k, 6) as in hybrid Ho 3. It runs A(pp, (comc, (il, ct))) and gets outputs (com;, (ﬁi, ct;)) for all i € [n].
B computes Bl «— OPENSIM((com;, (lAzZ, ct;))) for each i € [n] in parallel, and sets ¢om; = com; if Bl # L and com; = L otherwise. B
then outputs (¢omy, . . ., comy,).

For the running time analysis, we note that B runs A and then additionally runs in parallel running time pj (), for a polynomial p;
independent of the time parameter ¢. It follows that B runs in the appropriate parallel running time for a MIM adversary to break the
non-malleability game; see the analysis in Claim 2 for full details.

For correctness, we note that if 7 = 0 and B receives a commitment for mq = bg, then A’s view is identical to hybrid Hg 3. Similarly, if
i =1 and B receives a commitment for m1 = 0F, then A’s view is identical to hybrid Hy 4. So the outputs (com, (iLi, ct;)) for i € [n] are
distributed exactly according to Hg 3 when 7 = 0 and according to Hp 4 when ¢ = 1. Furthermore, B can compute the bids BZ underlying
com; that are fed into f and then the distinguisher D by running OPENSIM identically as in hybrids Ho 3 and Ho 4. It then sets commitments

com; to open to the same Bz values. It follows that the MIM experiment for B outputs 1 with probability pg 3 whenever i = 0 and with
probability pg 4 whenever i = 1. Therefore, D distinguishes mg = bg and m1 = 0 for the MIM adversary B with function f with probability
[po,3 — po,4l, which is a contradiction if |pg,3/2 — po,4/2| > 1/(8¢q(N)), as required. O

This completes the proof of the lemma. O

A.3 Discussion of Functional Non-Malleability

For non-malleability, we follow the treatment of Freitag et al. [FKPS21] by going through functional non-malleability as fully concurrent
non-malleability is impossible to achieve in the timed setting. Specifically, for a suitable function f, we show that any meddler-in-the-
middle (MIM) attacker running in time less than the time parameter ¢ cannot maul a timed commitment com for a bid b into a sequence
of commitments comy, ..., com, with underlying values b1, ..., by, such that f(by,..., by,) is related to b. We consider the class of
functions ¥ that can be computed in low parallel time and have bounded output length £. The reason this bound ¢ is seemingly necessary is
to prevent the adversary from encoding the original timed commitment com into the output of f(b1,..., by), as it has full control over
b1, ..., by. For this reason, it is useful to consider functions with output length ¢ which is smaller than the size of the timed commitments
com.

We briefly compare with the non-malleability notion proposed in Katz et al. [KLX20]. They consider a CCA-style notion and require that
no attacker running in time less than ¢ can distinguish commitments to bg from commitments to b1, even with oracle access to a ForceOpen
oracle (that naively requires at least ¢ time to run). The reason we do not consider this definition is because it doesn’t provide a meaningful
guarantee of security after ¢ time has elapsed. In fact, it is argued in [FKPS21] that this notion (without oracle access to ForceOpen) is
equivalent to functional non-malleability for the class of low depth function 77 with 1 bit output—essentially, the function f plays the role
of the CCA adversary A that outputs a single bit.

In context of our application to decentralized auctions, functional non-malleability provides the following guarantee. Suppose an honest
participant submits a timed commitment com for a bid b. A MIM adversary tries to bias the output of the protocol as a function of b in
the following way. It computes a series of commitments comy, ..., comy, for underlying bids by, ..., by,. The function f in functional
non-malleability represents the contribution that the values the attacker commits to can affect the final outcome in the protocol. So, for
second-priced sealed-bid auctions, f would output the top two bid values from the attacker and the index of the highest bid, which could
then be used to determine the output of the protocol. For such an auction, this information is very small, so intuitively, this says that the
attacker is very limited in how much it could adversarially influence the result of the auction as a function of another participant’s original
bid b.

Consider a (k + 1)-priced auction where the top k bidders receive a copy of the item, and pay the (k + 1)st price. If k is large enough, a
MIM attacker could bid large values to ensure that participants ¢1, i2, . . ., ¢ win the auction, but simultaneously have it be the case that the
concatenation of 1] ... |ig € {0,1}" as a string write out the bit string for a timed commitment com for a bid b that another participant
provided. This means that the attacker forced the output of the protocol to non-trivially depend on one of the bids b from another honest
participant, technically violating fairness for the auction! While this counterexample is somewhat contrived—and very likely is not financially
in the attacker’s interest—it highlights the subtlety and care required to guarantee a meaningful notion of security for decentralized auctions.

In summary, we decide to formalize our non-malleability guarantees using functional non-malleability for the class of length bounded
functions, following [FKPS21]. We believe this captures a broad class of auction-types and also provides a framework to understand specific
auctions as needed. Furthermore, we note that instead of looking at the outcome of the auction protocol as a whole, we could instead
consider the outcome for any particular participant, which is likely to have short representation and therefore cannot be biased based on
their submitted bid by our analysis. For this reason, we believe any counterexamples to fairness in natural protocols are likely contrived and
also likely not game-theoretically (i.e. financially) realistic.

Riggs: Decentralized Sealed-Bid Auctions

HTC.Setup(, t)

(q1,92, N,G, g, h) <8 RSAGGen ()

z — h(zt mod ¢(N)) (mod N)

Return pp = (N, h, 2, t)
HTC.CommPP(b)

o —$ [22>‘]

h—h® (mod N); 2« z* (mod N)
k < H(2, pp)

ct «$ CCA.Enc(k, b)

Protocol: Synchronous Auction House with Timed Commitments

Initialization: The auction house is initialized with public parameters for a timed commitment
scheme C and delay parameter . The auction house stores the following for each associated user:

- bal: Account collateral balance of the user.
- active: List of active bids in the current epoch for the user.

Auctions proceed in synchronous, sequential epochs, in which each epoch may run many auctions.

An epoch consists of the following phases:

Phase 0: Auction registration: An auctioneer may register an auction with the auction house for

- hy i h. Thi istrati h ipeli ith i h
Return (com = (h, ct), Topen = (committer, cv)) the upcoming epoc is registration phase may be pipelined with previous epochs

- Phase 1: Bid collecti 1
HTC.ForceOpen? (com = (h, ct)) ase 1: Bid collection and balance updates

oot (1) The auction house runs a separate instance of the auction protocol from Figure 2 (with some
2« h? (mod N)

7pok —$ PoE.Prove(N, h, 2, t)

k «— H(2, pp)

b « CCA.Dec(k, ct) ; mopen < (£, TpoE)
Return (b, (force, mopen))

minor changes) for each registered auction. Call this the beginning of the epoch (time).

(2) Users may place a bid on any auction. The user’s collateral is updated to remove the locked
opening rewards, bal «— bal — rwdopen — I'WdForce- If a user’s balance is not sufficient for
locking rewards, the bid is not accepted. Any accepted bid is added to a user’s list of active bids,

R active.

HTC.VerOpen™ (com = (h, ct), b, Topen = (mode, 7)) (3) Users may also transfer funds in and out of their account. The account collateral is updated

If mode = force accordingly.

Parse ™ = (2, TTpoE)

k «— H(2,pp); b’ « CCA.Dec(k,ct)

Return PoE.Ver((N, b, 2,t), mpoe) =1 A b# b
Else if mode = committer (1) Bids are opened following the mechanisms of Figure 2 (Phases 2 and 3). However, the results of

(4) The auction house ends bid collection and locks account collaterals at time ¢ + ¢.

Phase 2: Bid opening and auction results

Parsem =« ; 2 « 2% (mod N) the auction are not yet determined.

k — HA(—%’ pp); b’ « CCA.Dec(k, ct) (2) If a user’s bid is abandoned in any auction in the non-timed commitment setting, the user’s
Return h = h® (mod N) A b=Db’

collateral is forfeited: bal < 0. In the timed commitment setting, the next step does not begin

until all bids for all registered auctions are opened.

(3) For each user, the auction house sums the user’s opened bids (across auctions). If the sum is
greater than the user’s collateral bal, all the user’s bids for the epoch are marked as invalid,
and the user forfeits their rewards had they self-opened.

(4) Auction results are determined by the remaining valid opened bids. Bid amounts that are

determined to be transacted as part of the auction results are subtracted from user collaterals.

(5) Lists of active bids for each user are reset in preparation for the next epoch.

Figure 7: (Left) The HTC non-malleable timed commitment protocol parameterized by a proof of exponentiation protocol PoE. The hash
function H is modeled as a random oracle. HTC is the timed commitment used within TTD as the timed trapdoor to the C commitment scheme.
(Right) Epoch-based auction house protocol to support multiple simultaneous auctions without the use of range proofs.

B EPOCH-BASED SYNCHRONOUS AUCTION HOUSE

We expand on a proposal for an epoch-based synchronous auction house, outlined in Section 3.2. The protocol allows for an efficient auction
house that does not incur the overhead of range proofs as in Riggs-RP and Riggs-TC. However, it comes at the disadvantage of requiring
auctions to proceed in synchronous epochs with synchronized start and end times.

B.1 HTC: Simple Hash-based Non-Malleable Timed Commitment

Recall the design of the timed commitment TTD used by Riggs-RP and Riggs-TC: The bid is enclosed using a second non-timed commitment
scheme C that is amenable to range proofs, and then the opening to the commitment of C is enclosed as a “timed trapdoor”. Since the
synchronous auction house does not require range proofs, we can simplify this construction, and extract out the “timed trapdoor” component
of TTD as a separate timed commitment scheme which we call HTC.

We provide pseudocode for HTC in Figure 7 (left). We provide the following corollaries for the security of HTC that follow from the
security proofs of TTD in Appendix A.2.

CoROLLARY B.1. Assuming correctness of the encryption scheme CCA and soundness of the proof exponentiation PoE, HTC satisfies binding.

COROLLARY B.2. Let { be a function of the security parameter. Assuming the underlying encryption scheme CCA is CCA-SIM-1 secure and
the RSW assumption holds against 2¢(0) . poly (N)-time attackers, HTC satisfies concurrent functional non-malleability for .

B.2 Synchronous Auctions without Range Proofs

As in Riggs-RP, each user is associated with a collateral that is used to back all bids to auctions a user participates in during a particular
epoch. Auctions may be registered ahead of time to take place in a particular epoch. Once an epoch begins, auctions proceed in two phases

Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David Maziéres

(detailed in Figure 7). In the first phase, bids are collected for ongoing auctions and, in the case of timed commitments, opening rewards are
locked up. The bid collection phase ends synchronously for all auctions in the epoch, and after this point, importantly, user collaterals are
locked for the entirety of the second phase. This ensures that users cannot adaptively change their collateral during bid opening to validate
or invalidate their bids across auctions.

In the second phase, bids are opened (with a self-open phase, followed by a force-open phase in the case of timed commitments). Without
DoS protection from timed commitments, if a user fails to self-open a bid, their full collateral is forfeited. In the case of timed commitments,
the results of auctions are not determined until all bids from all auctions have been opened. All of a user’s opened bids across auctions are
summed and compared to their locked collateral. If their collateral covers their bids, then the bids are deemed valid, otherwise all the user’s
bids are discarded. This all-or-none validity property is important to ensure users cannot selectively invalidate bids. Lastly, the remaining
valid bids are used to determine the results of each auction, and the process is repeated for the auctions slated for the next epoch.

	Abstract
	1 Introduction
	2 Background and Preliminaries
	3 Overview
	3.1 Auction Setting and Threat Model
	3.2 Technical Overview

	4 Non-Malleable Timed Commitments
	4.1 Non-interactive Commitments
	4.2 Timed Commitments
	4.3 TTD: Timed Trapdoor Construction

	5 Decentralized Sealed-Bid Auctions
	5.1 Range Proofs for Concurrent Auctions
	5.2 Timed Commitments for DoS Protection
	5.3 Security

	6 Implementation
	7 Evaluation
	8 Related Work
	9 Concluding Discussion
	References
	A Security Definitions and Proofs for TTD
	A.1 Timed Commitment Security Definitions
	A.2 Security Proofs for TTD
	A.3 Discussion of Functional Non-Malleability

	B Epoch-based Synchronous Auction House
	B.1 HTC: Simple Hash-based Non-Malleable Timed Commitment
	B.2 Synchronous Auctions without Range Proofs

