
 

The authors are solely responsible for the content of this paper, which is not a refereed publication. Citation of this work should state 
that it is from the Proceedings of the 16th International Conference on Precision Agriculture. Waltz, L., Katari, S., Hong, C., Anup, A., 
Colbert, J., Potlapally, A., et al. (2024). Cyberinfrastructure for Machine Learning Applications in Agriculture:  Experiences, Analysis, 
and Vision. In Proceedings of the 16th International Conference on Precision Agriculture (unpaginated, online). Monticello, IL: 
International Society of Precision Agriculture.  

 

Cyberinfrastructure for Machine Learning 
Applications in Agriculture: Experiences, Analysis, 

and Vision 

Lucas Waltz1, Sushma Katari1, Chaeun Hong2, Adit Anup2, Julian Colbert2, 
Anirudh Potlapally2, Taylor Dill3, Canaan Porter2, John Engle1, Christopher 

Stewart2, Hari Subramoni2, Raghu Machiraju2, Osler Ortez3, Laura Lindsey3, Arnab 
Nandi2, Sami Khanal1  

1Department of Food, Agricultural, and Biological Engineering, The Ohio State 
University, Columbus, Ohio, USA 

2Department of Computer Science and Engineering, The Ohio State University, 
Columbus, Ohio, USA 

3Department of Horticulture and Crop Science, The Ohio State University, Columbus, 
Ohio, USA 

A paper from the Proceedings of the 
16th International Conference on Precision Agriculture 

21-24 July 2024 
Manhattan, Kansas, United States 

Abstract.  
Advancements in machine learning algorithms and GPU computational speeds over the last 
decade have led to remarkable progress in the capabilities of machine learning. This progress 
has been so much that, in many domains, including agriculture, access to sufficiently diverse and 
high-quality datasets has become a limiting factor.  While many agricultural use cases appear 
feasible with current compute resources and machine learning algorithms, the lack of software 
infrastructure for collecting, transmitting, cleaning, labeling, and training datasets is a major 
hindrance towards developing solutions to address agricultural use cases. 
This work aims to share the learnings from collecting a 1 terabyte (TB) multimodal dataset from 
three agricultural research locations across Ohio during the 2023 growing season. The dataset 
includes Unmanned Aerial System (UAS) imagery (RGB and multispectral), and soil and climate 
sensors for the state’s two largest crops: corn and soybeans. 
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Phenotyping 

1. Introduction 
In recent years, there has been a surge in interest across various domains in leveraging machine 
learning techniques to tackle complex, long-standing challenges. While technically a subfield of 
artificial intelligence, machine learning is often used interchangeably. Machine learning 
techniques have been successfully applied across multiple domains, achieving remarkable 
milestones since 2012, such as AlexNet’s victory in the ImageNet competition (Krizhevsky et al., 
2012) and the introduction of the transformer architecture in 2017 (Vaswani et al., 2017). These 
milestones have propelled machine learning into unprecedented popularity. 
This growing recognition of machine learning’s potential has led experts in various domains to 
explore its applicability to their most daunting challenges. However, while the latest machine 
learning approaches are powerful, they perform best with extensive, high-quality datasets which 
are often expensive and labor-intensive to collect. Existing public datasets in agriculture, though 
useful, are often not adequate to harness the latest advances in model complexity and compute 
resources. The process of collecting and processing agricultural data for machine learning faces 
numerous challenges, including sensor failures, data pipelines, and data privacy concerns.  
The notion that data harnessed from agriculture, coupled with the latest advancements in machine 
learning, can significantly enhance both the profitability and sustainability of farming practices is 
not novel. The agricultural industry’s dominant players in seed, chemicals, fertilizer, and 
equipment have invested heavily in farm management information systems (FMIS).  While much 
of these systems are focused on providing accurate records of past events, falling into the realm 
of descriptive analytics, there are increasing efforts to include predictive and prescriptive analytics 
into these software platforms. For example, Microsoft's Farmbeats project (Kapetanovic et al. 
2004), launched in 2014, focuses on data-driven farming by integrating various data sources, like 
field sensors and UAS, to provide insightful analytics through computer vision and machine 
learning algorithms. It establishes an end-to-end IoT infrastructure for efficient data collection and 
utilizes TV white spaces for transmitting data to computing centers, thus enabling advanced data 
analytics, and, in turn, empowering farmers to enhance productivity and sustainability (Chandra 
et al. 2022). Another example is Mineral, originating from Google/Alphabet's X facility, which 
claims to have surveyed 10% of the world's farmland and developed 80 machine-learning models 
to boost production and mitigate agriculture's impact on the environment (Burwood-Taylor 2023).  
The creation of large-scale, high-quality multimodal datasets, carefully curated and made ready 
for machine learning applications, can significantly advance predictive and prescriptive analytics 
in agriculture. These datasets encompass spatial, spectral, and temporal dimensions. Spatial 
intensity refers to ground sampling distance (GSD) measured in centimeters or meters per pixel. 
Spectral resolution refers to the number of wavelength intervals, while temporal denotes the 
frequency of data collection. Gadiraju et al. (2020) demonstrated a 60% reduction in prediction 
error by using a multimodal deep-learning approach that leveraged spatial, spectral, and temporal 
data characteristics to identify crop types. This involved integrating a Convolutional Neural 
Network (CNN), often used for analyzing images, with spatially intensive data and a Long Short-
Term Memory network (LSTM), often used to analyze text corpora, with temporally intensive data. 
Presently, there is a growing research focus on data-driven agriculture systems that involve 
deploying a diverse array of sensors and the Internet of Things (IoT) for vast data generation and 
Big Data Analytics on these datasets (BDA) (Ur Rehman et al. 2019). This trend holds promise 
for automating farming decisions. Furthermore, edge-cloud architectures (Taheri et al. 2023) can 
enhance real-time decision-making by hastening data processing.  
In addition to the importance of data quantity, it is crucial to consider data quality prior to 
processing and incorporating data into model pipelines. The utilization of data quality indicators, 
such as data source, collection time, and environmental conditions, can serve to flag datasets 
with undesirable traits (Wang et al. 1993). These considerations underpin the critical role of data 
quality in agriculture’s data-intensive domains.  
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This paper outlines our journey in constructing a dataset tailored for specific agricultural use cases 
and outlines a vision for the necessary software and hardware infrastructure or the 
cyberinfrastructure (CI). This CI aims to facilitate the collection and processing of agricultural data 
at scale, enabling the training of Artificial Intelligence (AI) models that are ultimately used for the 
benefit of farmers and other stakeholders in agriculture. 

2. Vision 
It appears that many agricultural use cases now appear to be within the capabilities of current 
compute resources and AI models. However, the lack of CI dedicated to the collection, 
transmission, cleaning, exploration, labeling, and training of the datasets, along with the 
challenges of deploying these solutions onto edge and intelligent sensing devices for inference 
are a major hindrance towards the development of solutions to address these use cases. 
Given the ongoing advancements in the AI community at large and the focused efforts within both 
agricultural industry and academia, we advocate a vision to build publicly available agricultural 
datasets and the development of associated open-source AI-centric CI. This CI would support the 
tools and resources necessary for the collection, transmission, cleaning, exploration, labeling, 
training, and inference of these datasets. 
A vibrant open-source community focused on cyberinfrastructure and datasets for AI applications 
in agriculture has many positive benefits including: 
1. Amplifies the efforts of agricultural researchers through reducing the time needed for 

building and debugging data pipelines, ultimately increasing the quality and quantity of their 
output and their extension efforts to farmers. 

2. Connects computer science researchers with meaningful prevailing problems in the 
agricultural domain. 

3. Lowers the capital requirements for startups to get to product market fit for AI based 
products and services in agriculture by leveraging open-source software and datasets. 

While there are increasing numbers of companies that provide CI to support AI initiatives in 
general, the needs of agriculture are unique and can benefit from CI and datasets that are focused 
on salient agricultural use cases.  There are several reasons for this assertion: 
1. There are very few publicly available datasets of sufficient size and quality focused on 

agricultural use cases. However, there are many universities worldwide that collect volumes 
of agricultural data which if put in the right form and format, could form a tremendously 
valuable resource for AI model training. 

2. The pipelines for collecting, transmitting, cleaning, and transforming agricultural data into 
formats ready for artificial intelligence are labor-intensive and error prone.  Furthermore, 
agricultural researchers in many instances may not possess the data management and 
software development skills to effectively and efficiently perform these necessary tasks. 

3. On-farm and small plot research can be a rich source for training data.  However, the 
approach for splitting the dataset into training, testing, and validation needs to consider 
the replications in the dataset.  Failure to understand this could lead to overfitted models. 

4. Commonly used AI models may benefit from modifications to be better suited to 
agricultural data.  For example, while image-based AI models typically use a softmax 
layer as the final layer for classification, in agriculture it can often be more appropriate to 
set the last layer of a neural network to a regression output (growth stage and disease 
severity are two examples). 

For the reasons stated above, we believe that AI-amenable infrastructure that leverages the 
capabilities in the AI community at large while adapting it for common use cases in agriculture 
has the potential to accelerate the benefits of AI in agriculture. With these benefits in mind, here 
are several core principles that guide our efforts: 
1. Data collection and CI efforts need to co-inform each other and should happen concurrently. 
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2. The speed for both training and inference are critical measures of value. Speed represents 
a holistic view that includes latency starting from the point at which data is collected in the 
field to the point where actionable insights are generated. 

3. The CI must incorporate the latest approaches and models from the broader AI community.  
Vision Transformers (ViT) and semi- and weak supervised labeling techniques are 
examples. 

4. The CI needs to be easy to use, trustworthy, and consider the range of technical 
proficiencies of various stakeholders in agriculture.  It also needs to include interfaces that 
provide transparency into the “black box” of AI and build confidence in its results. Current 
efforts are focused on technical and advanced users as shown in Figure 1. 

5. Existing models and data formats from the AI community at large should be used where 
appropriate to avoid recreating existing CI components. 

 
Figure 1: Mapping of platform components to stakeholders 

In this paper, we delineate our experiences in data collection, data processing, model training and 
user interface. 

4. Initial Data Sources, Types, and Use Cases 
Figure 2 is a summary diagram that shows initial data types collected and initial use cases. 

 
Figure 2: Summary of Initial Data Sources and Use Cases 
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4.1 Initial Data Sources 
The initial data sources underpinning this effort originate from three agricultural research stations 
geographically dispersed across Ohio and operated by The Ohio State University (OSU). They 
include Western Agricultural Research Station in Clark County, Northwest Agricultural Research 
Station in Wood County, and Wooster Campus in Wayne County. Each site included 80 plots for 
corn and 80 plots for soybean. The experiment was a split-plot randomized complete block design 
with four replications of each treatment. Main plot factor included five planting dates spaced 
approximately every two weeks from mid-April to mid-June. The subplot factor for corn was four 
different hybrids of varying relative maturities (H1 – 100; H2 – 107; H3 – 111; H4 – 115 days) 
while the subplot factor for soybean included four different seeding rates (S1 - 100,000; S2 - 
140,000; S3 - 180,000; S4 - 210,000 seeds per acre). Each replicate included a border plot on 
both ends of the block to reduce any edge-of-field effects on the measured plots.  Furthermore, 
yield measurements were based on the center two rows (out of four) for corn and the center five 
rows (out of seven or eight) for soybeans.  The research plots were managed according to 
agronomic best management practices for soybean (Lindsey et al. 2017) and corn (Thomison et 
al. 2017) outside of the main plot and subplot factors. 

 
Figure 3:  Plot Layout insert from the Western Research site, Corn (PD = Planting Date, H = Hybrid, B = Border Plot). 

Each plot was 10 feet wide, configured as either four rows of corn at 30-inch spacing and seven 
or eight rows of soybeans at 15-inch spacing, spanning approximately 30 feet long or longer at 
each location. The plots were systematically designated using a 3-digit numbering system: 101-
120, 201-220, 301-320, and 401-420. A visual representation of the plot layout for Western Corn 
is shown in Figure 3. 

4.2 Initial Data Types 
This section summarizes the various data types that have been collected from the 2023 growing 
season. While a dataset size of less than 1 terabyte (TB) may not be considered extensive 
according to contemporary standards, it signifies a substantial investment in terms of time and 
labor in the agricultural domain. The subsequent sections will offer further elaboration on the data. 
4.2.1 Unmanned Aerial Systems (UAS) Imagery  

The aerial image collection was facilitated using a Wingtra One Unmanned Aerial System (UAS), 
equipped with both a 42MP RGB camera, the Sony RX1R II, and a Micasense Altum Multi-
spectral camera featuring six spectral bands: Red, Green, Blue, Red-edge, Near Infrared, and 
Thermal Infrared. Flight missions were executed at approximately weekly intervals throughout the 
entire growing season, culminating with the final flights in mid-October shortly before harvest. This 
strategy resulted in a total of between 13 and 16 flights per site for each camera. Each flight 
mission generated hundreds of images covering the corn and soybean plots at each research 
location.  
4.2.2 Structured Soil and Climate Data  

In-Situ Soil and Climate Sensing Data 

An array of soil sensors was deployed at two depths, specifically at 30 cm and 60 cm, within the 
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corn and soybean plots for both Planting Date 2 (26-27 April 2023) and Planting Date 4 (25-30 
May 2023) at all three research locations. Additionally, one Apogee SQ-521 photosynthetic active 
radiation (PAR) sensor and one Meter ATMOS 14 weather station were installed at each of these 
research sites. The weather station collected temperature, relative humidity, vapor pressure, and 
barometric pressure in the crop canopy.  
The data collected by these sensors was aggregated by a total of six data loggers, with two 
loggers allocated at each research site. These loggers were connected to the Meter Group’s 
Zentra Cloud, a data management and visualization platform. Data visualization was available 
through user-configurable dashboards on the website and data was also accessible via an 
application programming interface (API).  

Weather Station Data 

At each of the research locations, an OSU managed weather station collects precipitation, wind 
speed, and air temperature at multiple heights, which is accessible at weather.cfaes.osu.edu. In 
addition, the website also provides calculated daily values such as Growing Degree Days (GDD), 
a measure of the degrees above 10C of the average temperature each day. The accumulation of 
GDD over the growing season is widely used in predicting corn growth and development.  

Soil Testing Data 

On a weekly basis, soil samples were taken from each plot corresponding to the locations of the 
in-situ soil and climate sensors. These samples were submitted to a soil testing laboratory to 
measure plant-available nitrogen content, consisting of nitrate and ammonium, as well as CO2 
respiration reported in parts per million (ppm) as an indication of the rate of nitrogen mineralization 
of organic matter. 

Manually Labeled Data 

On a weekly basis, site visits were conducted at all three research locations by personnel from 
the OSU’s Department of Horticulture and Crop Science (HCS). These individuals possessed 
expertise in the classification of corn and soybean growth stages as well as proficiency in 
assessing disease incidence and quantifying disease severity. Furthermore, ears of corn and 
soybean plants were collected at harvest for detailed measurements of the components of yield 
such as kernel rows, kernels per row and kernel weight in corn and seeds per pod, pods per plant, 
and seed weight in soybeans. The data generated from these site visits will be the labels for 
several machine learning use cases derived from this data set.  

4.3 Initial Use Case – Yield Estimation 
Figure 4 shows one agricultural use case for collecting multimodal data.  In this example, growth 
stage is an important part of the dataset for predicting field scale yield along with precipitation, 
growing degree days, and photosynthetic active radiation during the growing season.  UAS 
imagery is used to predict growth stage and subsequently combined with time-series climate data. 

 
Figure 4. Interconnected AI models for Yield Estimation. 
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By combining the various data types into interconnected models, a field-scale yield estimate can 
be obtained during the growing season, which can inform farmers’ grain marketing decisions.  
Furthermore, estimates of yield potential during the growing season can inform the profitability of 
field treatments such as nitrogen and fungicide applications. 

5. Data Readiness Pipelines 
The goal is to create data pipelines that will uniformly process the various forms of data in a 
consistent manner resulting in high data quality. Below, we describe the pipelines for each of the 
data collected in this effort. 

5.1 UAS Imagery Pipeline 
The UAS-based data acquisition relied on the use of Secure Digital (SD) cards as the medium for 
storing captured images during UAV missions and subsequently transferring those images to a 
OneDrive repository on a laptop. Once the images were transferred, proprietary software was 
utilized to geotag images from the nearest Continuously Operating Reference Station (CORS) to 
correct for GPS error during the flight. The pipeline also includes generating a georeferenced 
orthomosaic for each flight using the geotagged images. Figure 5 illustrates this pipeline. 

 
Figure 5.  Version 1 of UAS image pipeline 

In our study, a systematic arrangement of five Ground Control Points (GCPs) was implemented 
at each site. Specifically, GCPs were strategically placed at the four vertices of the field and a 
central point, consistent across every aerial survey. For ensuring accurate spatial referencing, 
these GCPs were positioned at identical coordinates during consecutive weekly surveys. A high-
precision Trimble R8 GNSS receiver, in conjunction with the Trimble TSC3 Controller Data 
Collector, was employed to obtain precise geographical coordinates of each GCP. 
Over the course of summer, a total of 85 flight missions were conducted. These missions included 
flights across three research locations utilizing two payload sensors, namely RGB and multi-
spectral. 
Our initial approach was to use Pix4D, a commercial photogrammetry software provider, to 
generate orthomosaics from each flight.  Specifically, Pix4Dengine, a set of programming 
modules, facilitated the automation of the orthomosaic creation through a Python script. The 
parameters used in creating the orthomosaics can be tailored to the specific requirements of the 
end application. In cases where the images are used for plant counting and plant spacing 
purposes, it creates a demand for high spatial resolution imagery. Conversely, when the aim is 
detecting the crop type, lower resolution suffices. The careful selection of Pix4D parameters is 
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imperative as they exert a significant influence on data quality and processing time. To validate 
the accuracy and consistency of our data, we cross-validated the GCPs’ positions within each 
orthomosaic against their surveyed locations.  
Our data pipeline also involved the creation of plot boundaries in the form of polygon shapefiles 
(.shp) corresponding to the geographic coordinates of each plot. These shapefiles were used as 
a mask to create images for each plot from each flight. However, we experienced several 
drawbacks to this approach.  First was that the orthomosaic creation was a lengthy process, 
generally taking 4 to 6 hours to complete.  Secondly was that the orthomosaic stitching process 
left aliasing artifacts in the resulting orthomosaic, resulting in degraded image quality relative to 
the original image.  Lastly, in our first attempt to create orthomosaics, we experienced roughly 
10% of the orthomosaics were incomplete and did not cover the entire plot area.  We were able 
to get these orthomosaics to cover the entire area by adjusting the settings on Pix4D which also 
increased processing time from 4-6 hours to 1-2 days.  Figure 6 illustrates the degradation in 
image quality that can occur from the creation of an orthomosaic. 

 
Figure 6. Orthomosaic image quality degradation 

Since the settings required to generate complete orthomosaics involved processing times of 1-2 
days, and yet the resulting image quality was often significantly degraded from the underlying raw 
image, an alternative approach to improve processing time without compromising the image 
quality from the underlying raw image was developed. 
This approach involved using calibrated camera extrinsic parameters that were an output from 
the first stage of the Pix4D image processing pipeline and using the parameters to generate a 
georeferenced GeoTIFF image directly from the underlying raw image.  Figure 7 illustrates the 
changes to the sUAS image pipeline that were implemented to both reduce processing time and 
maintain the original image quality. 
The new pipeline designed for the automated creation of tiles for each plot represents an 
advancement over the conventional approach of creating plot tiles from Pix4D orthomosaics. This 
method not only expedites the tile creation process but also yields higher quality plot tile images. 
The reduced processing time makes the data readiness pipeline more efficient while the improved 
image quality is expected to yield improvements to the accuracy of machine learning models 
trained from these images. Furthermore, the reduced processing time is expected to be 
particularly valuable for generating inferences very quickly after image capture. 
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Figure 7. Version 2 of sUAS image pipeline 

This process is facilitated through the utilization of Python libraries such as Rasterio, which is 
dedicated to the handling of geospatial data, and OpenCV for general image processing tasks. 
The initial phase encompasses the conversion of geo-tagged image files into GeoTIFF format. 
This conversion utilizes the camera extrinsic parameters generated from Stage 1 of the Pix4D  
including latitude, longitude, elevation, phi, omega, and kappa for each image, in addition to 
pertinent camera metadata like focal length. The process entails aligning the GIS locations 
accurately using the Ground Sample Distance (GSD) alongside rotation and translation matrices 
(Golparvar & Wang, 2021; Marco et al., 2018). The next phase entails the extraction of tiles from 
the GeoTIFF formatted images using the polygon shapefiles that represent the individual 
rectangular plots as a mask. The accuracy of the tile extraction process is influenced by two 
principal factors: the omega (roll) value and the distance between the image's center and the 
center of each plot. Images characterized by lower omega values and closer proximities to the 
plot centers can extract more precise tiles. 
The accuracy of GeoTIFF files generated directly as compared to orthomosaics generated from 
Pix4D are compared by evaluating the plot tiles extracted from both approaches. The accuracy is 
assessed through the application of the Scale-Invariant Feature Transform (SIFT) algorithm 
(Nevins, 2017). This algorithm's utility lies in its ability to identify identical pixel points across 
disparate images. This new pipeline demonstrated variable error distances across three different 
locations—Western, Northwest, and Wooster. Data from five dates in Western, nine in Northwest, 
and nine in Wooster were utilized. The overall dataset exhibited a mean error distance of 0.68 
meters, with the 25th percentile at 0.30 meters and the 75th percentile at 1.03 meters. Specifically, 
the mean error distances for each site were 0.33 meters for Western, 0.62 meters for Northwest, 
and 0.95 meters for Wooster. The larger errors in Northwest compared to the Western can be 
attributed to significantly biased omega (roll) values in the imagery. Meanwhile, in Wooster, 
images were captured horizontally relative to the plots, resulting in kappa (yaw) values around 0 
degrees or ±180 degrees. This orientation minimally affects the rotation matrix, reducing its 
efficacy in image calibration adjustments. It demonstrated an average error distance of 0.57 
meters, with recorded minimum and maximum error distances of 0.15 meters and 1.2 meters, 
respectively. Furthermore, the process boasts a processing time ranging from 4 to 25 minutes. 
This experiment was run on a machine with a processor of Apple M3 Pro APL1203 SoC and 
18GB RAM. 
There are four metrics that are important for sUAS image processing for machine learning 
applications.  As we evaluate these metrics in Table 1, the version 2 pipeline shows improvements 
on 3 of the 4 metrics.  
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Table I. Comparison of metrics of interest for Version 1 (Orthomosaic) and Version 2 (Direct Georeferencing) pipelines 

Metric Version 1 pipeline Version 2 pipeline 
Completion percentage of 
flights that generate all plot 
tiles from raw images 

86% (63/73) 100% (expected) 

Processing time from raw 
images to plot tiles 4 hours on average 25 minutes on average 

Geospatial accuracy .05 meters on average 0.68 meters on average 
Image quality Aliasing artifacts Best 
 
Further work is planned to improve the version 2 pipeline to further reduce the processing time 
as well as improve geospatial accuracy.  Initial work indicated that switching from SciPy library 
to CuPy library could reduce processing time significantly.  Additional improvements will also be 
evaluated by exploiting parallel computing. 

5.2 Soil and Climate Structured Data Pipeline 
The Soil and Climate Structured Data Pipeline aggregates structured data from three separate 
sources into a database as shown in Figure  8:  
 

 
Figure 8:  Soil and Climate Structured Data Pipeline 

5.2.1 In-Situ Soil and Climate Sensors 

The pipeline harnessed data from in-situ soil and climate sensors, which were distributed across 
the agricultural research sites. These sensors were connected to Meter ZL6 loggers, which 
recorded data at 30-minute intervals. Subsequently, the collected data was transmitted to the 
Meter Zentra Cloud through cellular connections. A Python script was employed to interface with 
the Zentra Cloud application programming interface (API) to retrieve the data and aggregate it 
into a local database.   
5.2.2 Ohio State Weather Stations  

Additionally, the pipeline incorporated data from OSU weather stations, which were located at 
each research site near the field plots. The data generated by these weather stations was 
accessible via a web interface, allowing for convenient querying and retrieval.  
5.2.3 Soil Lab Testing Results 

Soil lab testing results were received regularly as spreadsheets sent over email. The data in these 
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spreadsheets was also incorporated into the database. 

5.3 Time-Series Data Alignment 
The current data cleaning process is heavily reliant on the use of Jupyter notebooks to manually 
handle CSV and Excel files, involving unique scripts for each type of data transformation required 
such as mapping growth stage descriptions to numeric values, converting irregular time-series 
data into a standardized daily format, and averaging hourly sensor readings to daily values.  
In the future, we propose a data pipeline designed to replace these manual Jupyter notebook 
operations with integrated, automated tasks enabling real-time data processing capabilities. This 
architecture would incorporate an Extract, Transform, and Load (ETL) scheme scheduled to 
operate continuously. As new data arrives, it is extracted and then transformed by applying 
various cleaning such as interpolating missing values, correcting errors, and aligning disparate 
data formats into a unified format. Following transformation, the data would be loaded into a 
database system which will act as the central repository from which the Plotly Dash application 
retrieves data. The Plotly Dash app can then dynamically query the database, pulling fresh data 
as updates occur (see Section 7.2 more details). 

6. Model Training 
After acquiring and preprocessing the various data using data pipelines, they are used to train AI 
models. Machine learning (ML) models such as Support Vector Machines (SVM), decision trees, 
regression networks, Convolutional Neural Networks (CNN), etc., are popularly selected for 
various agricultural use cases (Khanal et al. 2020). In one of our studies, we chose the Vision 
Transformer (ViT) model to identify corn and soybean crop growth stages using UAS RGB 
images. We selected the ViT model since it can capture spatial relationships, such as the 
development of leaves and the presence of flowers, in the images, which can be crucial to identify 
crop growth stages. In order to compare the classification and regression approaches for 
estimating crop development, the ViT architecture was modified to perform these tasks (Figure 
9). During the training of the classification model, each crop growth stage is treated as an 
independent, discrete observation, whereas in a regression model, crop growth is considered a 
continuous observation. 
After the model selection, the input data can either be segmented or resampled to match the 
model specifications and requirements. For the ViT model, the UAS images from each of the plots 
were divided into blocks of 224 x 224 x 3 to meet the ViT input requirement and then passed to 
the position embedding layer of ViT architecture. The embedded data is then passed to the 
transformer encoder and then to either the Multi-Layer Perceptron (MLP) head (classification) or 
Linear module (regression).  
Each of the 224 x 224 x 3 blocks were annotated with ground-observed crop growth labels from 
their respective plot. For a more straightforward annotation, we converted crop growth labels to 
numerical values with VC as 1, VE as 2, V1 as 3, V2 as 4, ..., V16 as 19, R1 as 20, R2 as 21, ...., 
R8 as 27. These labels represent specific stages in the crop growth cycle, with VC indicating the 
start of the Vegetative stage and R1 indicating the start of the Reproductive stage. These labels 
can be considered as independent, discrete labels (classification) or as a sequence of continuous 
labels (regression). 
In the annotated dataset, 60% was allocated for training, 20% for validation, and 20% for rigorous 
testing of the model performance. Here, the validation data accuracy was used for 
hyperparameter tuning and early stopping of the model training. The selected model parameters 
were carefully chosen between 100 to 150 epochs with a batch size of 16 to 64 and a learning 
rate of 0.001. The model demonstrated no further improvement in the accuracy after the 100 
epochs, and hence, the training was stopped at that epoch. These models were trained on a 
robust 94GB RAM, Intel Xeon Silver @2.2GHz processor machine, with each model using a 
training time from 20 to 30 mins. We utilized the TensorFlow and Keras libraries in the Python 
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platform to execute the model training and testing. 
 

 
Figure 9:  Illustrating steps in training the Vision Transformer (ViT) model using sUAS images to identify crop growth 

stages as classification and regression tasks. 

We achieved an overall accuracy of 67% for the classification model and 87% for the regression 
model (Figure 10). These results demonstrate the significant impact of the model selection 
process on achieving better results. As continuous data better represent crop growth stages, we 
observed that the regression model produced superior results. 

 
Figure 10:  Confusion matrices representing ViT classification and regression model results with precision, recall, and 

overall accuracy values for each of the crop growth stages for a corn field in Northwest Ohio. 

7. Data Visualization 
In the past decade, we have seen AI and machine learning make an impact on a myriad of data 
rich application areas. As this trend continues, there is a growing need for tools that help 
practitioners gain a better understanding and trust of the data and insights presented by these 
technologies (Beauxis-Aussalet et al. 2021). Cultivating trust is critical for success in data-driven 
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and sustainable agriculture (Raturi et al. 2022). Farmers, especially, need validation that data-
driven AI and ML tools will be able to achieve their envisioned goals of environmental and 
economic sustainability (Gardezi et al. 2024). One such tool to improve trust and provide 
validation is the creation of interactive data visualizations (Beauxis-Aussalet et al. 2021). 

7.1 Dashboard 
An interactive data visualization dashboard was created with the cleaned, wrangled data from this 
study. Visualization methods at this stage in the ML pipeline are generally used to explore 
interesting subgroups and pinpoint particular outliers. The purpose of this dashboard is to 
visualize the collected data at the plot level, providing specific insights for each plot and comparing 
them to other plots in the field. This provides the user with a reference to see if a particular plot 
has characteristics that are significantly different from the norm (i.e., out of distribution), enabling 
better understanding of the data. Figure 11 shows a screenshot of the dashboard. 

 
Figure 11.  Dashboard Screenshot 

The dashboard was created with Plotly Dash, an open-source Python framework that enables the 
creation of interactive, data-driven dashboards. The top left of the dashboard contains a pane 
with a map focused on a specific field [A]. A 3D geospatial layer is rendered on top of the field 
using the plot boundaries from the created orthomosaic files (.geojson files). This rendering is 
created with DeckGL, a WebGL-powered visualization framework. Each plot is outlined and has 
its own 3D layer. The height and color of the cross section represents the current growth stage of 
the plot. To view the exact growth stage value of a specific plot, the user may hover over the 
specific plot.  
Below the map, there is a time slider and a series of dropdown menus to select field, crop type, 
and plot number, respectively [B]. This collection of inputs can be used to update the dashboard 
figures [C] on the right side of the screen that provide information based on the different modalities 
of tabular data collected in the study. Table II provides a summary of the figures in the dashboard. 
The position of the time slider can be altered to update the geospatial visualization and figures 
across different time periods across the growing season. A drone image of the selected plot at 
the specific time selected by the time slider is populated at the bottom left of the screen [D]. 
 Perhaps the most significant feature in the dashboard is the interactivity provided in the 
geospatial visualization. The user may click on a specific plot on the 3D geospatial layer to 
populate the figures with information about the selected plot, enabling the user to derive plot-
specific insights in an interactive, intuitive manner. This interactivity, combined with the time-slider 
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enables the user to explore multimodal data across both spatial and temporal dimensions. 
Table II:  Summary of Dashboard Elements 

Chart Description 

NDVI Values over Time NDVI values for a specific plot are reported over the 
growing season. 

Yield Estimation The yield component information for a specific plot is 
displayed. 

Actual vs Predicted Growth Stage Tracks crop growth stage over the growing season 
alongside a predicted line using the machine learning 
models. 

Precipitation and Soil Moisture Soil moisture, precipitation, and temperature at the 
crop location over the growing season. 

Overall, these figures, driven by plot-clicks and the time-slider, provide a valuable view for users 
that enable further understanding of the collected data. 

7.2 Early User Feedback 
A user feedback session was conducted shortly after an initial prototype of the dashboard was 
developed. Participants were faculty and students from OSU’s HCS who interacted with the 
dashboard to evaluate its features and data presentation. Users highlighted the necessity for 
clearer visual representations of crop growth stages on the geomap, and requested more robust 
capabilities for comparing crop yields not only by location but also by planting date and crop hybrid 
in the case of corn. Additionally, there was a demand for integrating growth stage data with 
weather data on the dashboard, with options for toggling different data layers. The feedback also 
highlighted the importance of certified crop advisors as a potentially important user group for the 
dashboard.  

8. Conclusion 
In summary, we articulate the importance of AI applications in agriculture and highlight a data-
centric approach to building AI-centric CI.  We provide an example of how multimodal data can 
be leveraged for yield estimation that combines UAS imagery with climate sensing. Given that 
one drawback of AI is that it can be a black box to users, we highlight the importance of visual 
interfaces that can build understanding and trust in the system. 
While this paper seeks to present a broad view of AI applications in agriculture, each component 
represented is at a relatively early stage of research.  Furthermore, there is integration work 
needed for each of the components to function in a unified system. 
Direct georeferencing techniques show promise to retain original UAS image quality while 
drastically reducing compute requirements. Further work will be aimed at parallel computing to 
reduce processing time and improvements to geospatial accuracy.  Additional work is also needed 
for error detection to ensure plot tile images are correctly generated. 
The user interface shows promise, but more user research is needed to tailor the interface to the 
needs of unique stakeholders.  The prototype was built using prior year’s data.  A valuable next 
step will be to enable it to show data from the current growing season within a few days after data 
is collected. 
Additional areas of improvement include making use of standardized AI dataset formats that can 
promote aggregation of larger datasets across institutions. Additionally, the various data types 
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currently exist in an ad hoc folder structure.  Organizing the data into a database schema is likely 
an important next step to improve the system. 
The work outlined in this paper is intended to spark discussion and collaboration among various 
stakeholders (e.g., researchers, crop consultants, farmers) such that the promise of AI in 
agriculture can be more fully realized. 

Acknowledgments 
The authors would like to thank the farm managers, Lynn Ault, Joe Davlin, and Matt Davis, and 
their teams at each research site for executing these small-plot research trials and their support 
in collecting the data that went into this study. This study was funded by the Nationwide AgTech 
Innovation Hub and ICICLE (icicle.osu.edu).  The Nationwide AgTech Innovation Hub is a 
collaboration between Nationwide Mutual Insurance Company, Ohio Farm Bureau and The Ohio 
State University College of Food, Agricultural, and Environmental Sciences.  ICICLE is an NSF 
funded AI institute focused on establishing a national cyberinfrastructure for AI with Digital 
Agriculture as one of its three use-inspired science cases. 

References 
Beauxis-Aussalet, E., Behrisch, M., Borgo, R., Chau, D. H., Collins, C., Ebert, D., et al. (2021). The Role of Interactive 
Visualization in Fostering Trust in AI. IEEE Computer Graphics and Applications, 41(6), 7–12. 
https://doi.org/10.1109/MCG.2021.3107875 

Burwood-Taylor, L. (2023, January 10). BREAKING: Alphabet brings agtech startup out of stealth with data from 10% of 
world’s farmland, 3 major customers. AgFunderNews. https://agfundernews.com/breaking-alphabet-brings-agtech-
startup-out-of-stealth-with-data-from-10-of-worlds-farmland-3-major-customers. Accessed 17 October 2023 

Duflock, W. (2023, April 25). A Free Image Library, Now Expanded, for AgTech Startups. Western Growers Association. 
https://www.wga.com/news/a-free-image-library-now-expanded-for-agtech-startups/. Accessed 2 May 2024 

Chandra, R., Swaminathan, M., Chakraborty, T., Ding, J., Kapetanovic, Z., Kumar, P., & Vasisht, D. (2022). 
Democratizing Data-Driven Agriculture Using Affordable Hardware. IEEE Micro, 42(1), 69–77. 
https://doi.org/10.1109/MM.2021.3134743 

Gadiraju, K. K., Ramachandra, B., Chen, Z., & Vatsavai, R. R. (2020). Multimodal Deep Learning Based Crop 
Classification Using Multispectral and Multitemporal Satellite Imagery. In Proceedings of the 26th ACM SIGKDD 
International Conference on Knowledge Discovery & Data Mining (pp. 3234–3242). Presented at the KDD ’20: The 
26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event CA USA: ACM. 
https://doi.org/10.1145/3394486.3403375 

Gardezi, M., Joshi, B., Rizzo, D. M., Ryan, M., Prutzer, E., Brugler, S., & Dadkhah, A. (2024). Artificial intelligence in 
farming: Challenges and opportunities for building trust. Agronomy Journal, 116(3), 1217–1228. 
https://doi.org/10.1002/agj2.21353 

Golparvar, B., & Wang, R.-Q. (2021, November 27). AI-supported Framework of Semi-Automatic Monoplotting for 
Monocular Oblique Visual Data Analysis. arXiv. http://arxiv.org/abs/2111.14021. Accessed 3 May 2024 

Lindsey, L. E., Tilmon, K., Michel, A., & Dorrance, A. (2017). Soybean production. In L. E. Lindsey & P. R. Thomison 
(Eds.), Ohio Agronomy Guide (15th ed., Bulletin no. 472, pp. 56–68). The Ohio State University Extension. 

Kapetanovic, Z., Chandra R., Chakraborty T., & Nelson A. (2019).  FarmBeats: Improving Farm Productivity Using Data-
Driven Agriculture. SIAM News. https://sinews.siam.org/Details-Page/farmbeats-improving-farm-productivity-using-
data-driven-agriculture. Accessed 17 October 2023 

Khanal, S., Kc, K., Fulton, J. P., Shearer, S., & Ozkan, E. (2020). Remote Sensing in Agriculture—Accomplishments, 
Limitations, and Opportunities. Remote Sensing, 12(22), 3783. https://doi.org/10.3390/rs12223783 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. 
Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386 

Marco, C., Claudio, B., Ueli, R., Thalia, B., & Patrik, K. (2018, December 12). Using the Monoplotting Technique for 
Documenting and Analyzing Natural Hazard Events. In J. Simão Antunes Do Carmo (Ed.), Natural Hazards—Risk 
Assessment and Vulnerability Reduction. IntechOpen. https://doi.org/10.5772/intechopen.77321 

Nevins, R. P. (2017). Georeferencing Unmanned Aerial Systems Imagery via Registration with Geobrowser Reference 
Imagery [Master's thesis, Ohio State University]. OhioLINK Electronic Theses and Dissertations Center. 
http://rave.ohiolink.edu/etdc/view?acc_num=osu1500378454106286 

Raturi, A., Thompson, J. J., Ackroyd, V., Chase, C. A., Davis, B. W., Myers, R., et al. (2022). Cultivating trust in 
technology-mediated sustainable agricultural research. Agronomy Journal, 114(5), 2669–2680. 
https://doi.org/10.1002/agj2.20974 

Taheri, J., Dustdar, S., Zomaya, A., & Deng, S. (2023). Edge Intelligence: From Theory to Practice. Cham: Springer 

https://doi.org/10.1109/MCG.2021.3107875
https://agfundernews.com/breaking-alphabet-brings-agtech-startup-out-of-stealth-with-data-from-10-of-worlds-farmland-3-major-customers
https://agfundernews.com/breaking-alphabet-brings-agtech-startup-out-of-stealth-with-data-from-10-of-worlds-farmland-3-major-customers
https://doi.org/10.1109/MM.2021.3134743
https://doi.org/10.1145/3394486.3403375
https://doi.org/10.1002/agj2.21353
https://doi.org/10.1145/3065386
http://rave.ohiolink.edu/etdc/view?acc_num=osu1500378454106286
https://doi.org/10.1002/agj2.20974


 

Proceedings of the 16th International Conference on Precision Agriculture 
21-24 July 2024, Manhattan, Kansas, United States  

16 

International Publishing. https://doi.org/10.1007/978-3-031-22155-2 
Thomison, P., Michel, A., Tilmon, K., Culman, S., Paul, P. (2017). Corn Production. In L. E. Lindsey & P. R. Thomison 
(Eds.), Ohio Agronomy Guide (15th ed., Bulletin no. 472, pp. 32–55). The Ohio State University Extension. 

Ur Rehman, M. H., Yaqoob, I., Salah, K., Imran, M., Jayaraman, P. P., & Perera, C. (2019). The role of big data analytics 
in industrial Internet of Things. Future Generation Computer Systems, 99, 247–259. 
https://doi.org/10.1016/j.future.2019.04.020 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention Is All You Need. 
arXiv. http://arxiv.org/abs/1706.03762.  Accessed 17 October 2023 

Wang, R. Y., Kon, H. B., & Madnick, S. E. (1993). Data quality requirements analysis and modeling. In Proceedings of 
IEEE 9th International Conference on Data Engineering (pp. 670–677). Presented at the IEEE 9th International 
Conference on Data Engineering, Vienna, Austria: IEEE Comput. Soc. Press. 
https://doi.org/10.1109/ICDE.1993.344012 

https://doi.org/10.1007/978-3-031-22155-2
https://doi.org/10.1016/j.future.2019.04.020
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/ICDE.1993.344012

