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Abstract.

Advancements in machine learning algorithms and GPU computational speeds over the last
decade have led to remarkable progress in the capabilities of machine learning. This progress
has been so much that, in many domains, including agriculture, access to sufficiently diverse and
high-quality datasets has become a limiting factor. While many agricultural use cases appear
feasible with current compute resources and machine learning algorithms, the lack of software
infrastructure for collecting, transmitting, cleaning, labeling, and training datasets is a major
hindrance towards developing solutions to address agricultural use cases.

This work aims to share the learnings from collecting a 1 terabyte (TB) multimodal dataset from
three agricultural research locations across Ohio during the 2023 growing season. The dataset
includes Unmanned Aerial System (UAS) imagery (RGB and multispectral), and soil and climate
sensors for the state’s two largest crops: corn and soybeans.
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Phenotyping

1. Introduction

In recent years, there has been a surge in interest across various domains in leveraging machine
learning techniques to tackle complex, long-standing challenges. While technically a subfield of
artificial intelligence, machine learning is often used interchangeably. Machine learning
techniques have been successfully applied across multiple domains, achieving remarkable
milestones since 2012, such as AlexNet’s victory in the ImageNet competition (Krizhevsky et al.,
2012) and the introduction of the transformer architecture in 2017 (Vaswani et al., 2017). These
milestones have propelled machine learning into unprecedented popularity.

This growing recognition of machine learning’s potential has led experts in various domains to
explore its applicability to their most daunting challenges. However, while the latest machine
learning approaches are powerful, they perform best with extensive, high-quality datasets which
are often expensive and labor-intensive to collect. Existing public datasets in agriculture, though
useful, are often not adequate to harness the latest advances in model complexity and compute
resources. The process of collecting and processing agricultural data for machine learning faces
numerous challenges, including sensor failures, data pipelines, and data privacy concerns.

The notion that data harnessed from agriculture, coupled with the latest advancements in machine
learning, can significantly enhance both the profitability and sustainability of farming practices is
not novel. The agricultural industry’s dominant players in seed, chemicals, fertilizer, and
equipment have invested heavily in farm management information systems (FMIS). While much
of these systems are focused on providing accurate records of past events, falling into the realm
of descriptive analytics, there are increasing efforts to include predictive and prescriptive analytics
into these software platforms. For example, Microsoft's Farmbeats project (Kapetanovic et al.
2004), launched in 2014, focuses on data-driven farming by integrating various data sources, like
field sensors and UAS, to provide insightful analytics through computer vision and machine
learning algorithms. It establishes an end-to-end loT infrastructure for efficient data collection and
utilizes TV white spaces for transmitting data to computing centers, thus enabling advanced data
analytics, and, in turn, empowering farmers to enhance productivity and sustainability (Chandra
et al. 2022). Another example is Mineral, originating from Google/Alphabet's X facility, which
claims to have surveyed 10% of the world's farmland and developed 80 machine-learning models
to boost production and mitigate agriculture's impact on the environment (Burwood-Taylor 2023).

The creation of large-scale, high-quality multimodal datasets, carefully curated and made ready
for machine learning applications, can significantly advance predictive and prescriptive analytics
in agriculture. These datasets encompass spatial, spectral, and temporal dimensions. Spatial
intensity refers to ground sampling distance (GSD) measured in centimeters or meters per pixel.
Spectral resolution refers to the number of wavelength intervals, while temporal denotes the
frequency of data collection. Gadiraju et al. (2020) demonstrated a 60% reduction in prediction
error by using a multimodal deep-learning approach that leveraged spatial, spectral, and temporal
data characteristics to identify crop types. This involved integrating a Convolutional Neural
Network (CNN), often used for analyzing images, with spatially intensive data and a Long Short-
Term Memory network (LSTM), often used to analyze text corpora, with temporally intensive data.
Presently, there is a growing research focus on data-driven agriculture systems that involve
deploying a diverse array of sensors and the Internet of Things (loT) for vast data generation and
Big Data Analytics on these datasets (BDA) (Ur Rehman et al. 2019). This trend holds promise
for automating farming decisions. Furthermore, edge-cloud architectures (Taheri et al. 2023) can
enhance real-time decision-making by hastening data processing.

In addition to the importance of data quantity, it is crucial to consider data quality prior to
processing and incorporating data into model pipelines. The utilization of data quality indicators,
such as data source, collection time, and environmental conditions, can serve to flag datasets
with undesirable traits (Wang et al. 1993). These considerations underpin the critical role of data
quality in agriculture’s data-intensive domains.
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This paper outlines our journey in constructing a dataset tailored for specific agricultural use cases
and outlines a vision for the necessary software and hardware infrastructure or the
cyberinfrastructure (Cl). This Cl aims to facilitate the collection and processing of agricultural data
at scale, enabling the training of Artificial Intelligence (Al) models that are ultimately used for the
benefit of farmers and other stakeholders in agriculture.

2. Vision

It appears that many agricultural use cases now appear to be within the capabilities of current
compute resources and Al models. However, the lack of Cl dedicated to the collection,
transmission, cleaning, exploration, labeling, and training of the datasets, along with the
challenges of deploying these solutions onto edge and intelligent sensing devices for inference
are a major hindrance towards the development of solutions to address these use cases.

Given the ongoing advancements in the Al community at large and the focused efforts within both
agricultural industry and academia, we advocate a vision to build publicly available agricultural
datasets and the development of associated open-source Al-centric Cl. This Cl would support the
tools and resources necessary for the collection, transmission, cleaning, exploration, labeling,
training, and inference of these datasets.

A vibrant open-source community focused on cyberinfrastructure and datasets for Al applications
in agriculture has many positive benefits including:

1. Amplifies the efforts of agricultural researchers through reducing the time needed for
building and debugging data pipelines, ultimately increasing the quality and quantity of their
output and their extension efforts to farmers.

2. Connects computer science researchers with meaningful prevailing problems in the
agricultural domain.

3. Lowers the capital requirements for startups to get to product market fit for Al based
products and services in agriculture by leveraging open-source software and datasets.

While there are increasing numbers of companies that provide Cl to support Al initiatives in
general, the needs of agriculture are unique and can benefit from Cl and datasets that are focused
on salient agricultural use cases. There are several reasons for this assertion:

1. There are very few publicly available datasets of sufficient size and quality focused on
agricultural use cases. However, there are many universities worldwide that collect volumes
of agricultural data which if put in the right form and format, could form a tremendously
valuable resource for Al model training.

2. The pipelines for collecting, transmitting, cleaning, and transforming agricultural data into
formats ready for artificial intelligence are labor-intensive and error prone. Furthermore,
agricultural researchers in many instances may not possess the data management and
software development skills to effectively and efficiently perform these necessary tasks.

3. On-farm and small plot research can be a rich source for training data. However, the
approach for splitting the dataset into training, testing, and validation needs to consider
the replications in the dataset. Failure to understand this could lead to overfitted models.

4. Commonly used Al models may benefit from modifications to be better suited to
agricultural data. For example, while image-based Al models typically use a softmax
layer as the final layer for classification, in agriculture it can often be more appropriate to
set the last layer of a neural network to a regression output (growth stage and disease
severity are two examples).

For the reasons stated above, we believe that Al-amenable infrastructure that leverages the
capabilities in the Al community at large while adapting it for common use cases in agriculture
has the potential to accelerate the benefits of Al in agriculture. With these benefits in mind, here
are several core principles that guide our efforts:

1. Data collection and ClI efforts need to co-inform each other and should happen concurrently.
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The speed for both training and inference are critical measures of value. Speed represents
a holistic view that includes latency starting from the point at which data is collected in the
field to the point where actionable insights are generated.

The CI must incorporate the latest approaches and models from the broader Al community.
Vision Transformers (ViT) and semi- and weak supervised labeling techniques are
examples.

The Cl needs to be easy to use, trustworthy, and consider the range of technical
proficiencies of various stakeholders in agriculture. It also needs to include interfaces that
provide transparency into the “black box” of Al and build confidence in its results. Current
efforts are focused on technical and advanced users as shown in Figure 1.

Existing models and data formats from the Al community at large should be used where
appropriate to avoid recreating existing Cl components.

Current focus of this initiative

Platform Farmers Agronomists Technical Users Advanced Users
Components

Graphical User Gtz User

. Interface, Command Line Command Line
Platform Interaction Interface,
- more advanced
minimal setup
setup
. . NA Load datasets Load and Bl.md Wik
Data Engineering . manipulate and
manipulate datasets
move data
Software NA NA Beginner / Advanced
Engineering Intermediate
View Inference View Inference Training and Modification of
Al Models Results Results, Correct Inference of Al model architectures
Errors Models

Figure 1: Mapping of platform components to stakeholders

In this paper, we delineate our experiences in data collection, data processing, model training and

user interface.

4. Initial Data Sources, Types, and Use Cases

Data Types and Use Cases
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Figure 2 is a summary diagram that shows initial data types collected and initial use cases.

Artificial
Intelligence
Use Cases

Phenotypes

Canopy Temperature
Soil Moisture and Temperature

Soil Chemistry Testing -

Ground Based Images

Yield
Estimation

Soil
Moisture

Feature Database

Figure 2: Summary of Initial Data Sources and Use Cases
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4.1 Initial Data Sources

The initial data sources underpinning this effort originate from three agricultural research stations
geographically dispersed across Ohio and operated by The Ohio State University (OSU). They
include Western Agricultural Research Station in Clark County, Northwest Agricultural Research
Station in Wood County, and Wooster Campus in Wayne County. Each site included 80 plots for
corn and 80 plots for soybean. The experiment was a split-plot randomized complete block design
with four replications of each treatment. Main plot factor included five planting dates spaced
approximately every two weeks from mid-April to mid-June. The subplot factor for corn was four
different hybrids of varying relative maturities (H1 — 100; H2 — 107; H3 — 111; H4 — 115 days)
while the subplot factor for soybean included four different seeding rates (S1 - 100,000; S2 -
140,000; S3 - 180,000; S4 - 210,000 seeds per acre). Each replicate included a border plot on
both ends of the block to reduce any edge-of-field effects on the measured plots. Furthermore,
yield measurements were based on the center two rows (out of four) for corn and the center five
rows (out of seven or eight) for soybeans. The research plots were managed according to
agronomic best management practices for soybean (Lindsey et al. 2017) and corn (Thomison et
al. 2017) outside of the main plot and subplot factors.

PD3 PD3 PD3 PD3 PD3 PD3 PD2 PD2 PD2 PD2 PD2 PD2
Rep 4 H2 H1 H4 H3 H2 H1 H3 H4
B 401 402 403 404 B B 405 406 407 408 B

PD2 PD2 PD2 PD2 PD2 PD2 PD4 PD4 PD4 PD4 PD4 PD4

Rep 3 H3 H4 H2 H1 H2 H1 H3 H4
B 301 302 303 304 B B 305 306 307 308 B
PD4 PD4 PD4 PD4 PD4 PD4 PDS5 PD5 PD5 PDS5 PD5 PD5
Rep2 H1 H3 H2 H4 H2 H1 H3 H4

B 201 202 203 204 B B 205 206 207 208 B

PD1 PD1 PD1 PD1 PD1 PD1 PD2 PD2 PD2 PD2 PD2 PD2
Repl H1 H2 H3 H4 H1 H2 H3 H4
B 101 102 103 104 B B 105 106 107 108 B

Figure 3: Plot Layout insert from the Western Research site, Corn (PD = Planting Date, H = Hybrid, B = Border Plot).

Each plot was 10 feet wide, configured as either four rows of corn at 30-inch spacing and seven
or eight rows of soybeans at 15-inch spacing, spanning approximately 30 feet long or longer at
each location. The plots were systematically designated using a 3-digit numbering system: 101-
120, 201-220, 301-320, and 401-420. A visual representation of the plot layout for Western Corn
is shown in Figure 3.

4.2 Initial Data Types

This section summarizes the various data types that have been collected from the 2023 growing
season. While a dataset size of less than 1 terabyte (TB) may not be considered extensive
according to contemporary standards, it signifies a substantial investment in terms of time and
labor in the agricultural domain. The subsequent sections will offer further elaboration on the data.

4.2.1 Unmanned Aerial Systems (UAS) Imagery

The aerial image collection was facilitated using a Wingtra One Unmanned Aerial System (UAS),
equipped with both a 42MP RGB camera, the Sony RX1R Il, and a Micasense Altum Multi-
spectral camera featuring six spectral bands: Red, Green, Blue, Red-edge, Near Infrared, and
Thermal Infrared. Flight missions were executed at approximately weekly intervals throughout the
entire growing season, culminating with the final flights in mid-October shortly before harvest. This
strategy resulted in a total of between 13 and 16 flights per site for each camera. Each flight
mission generated hundreds of images covering the corn and soybean plots at each research
location.

4.2.2 Structured Soil and Climate Data
In-Situ Soil and Climate Sensing Data

An array of soil sensors was deployed at two depths, specifically at 30 cm and 60 cm, within the
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corn and soybean plots for both Planting Date 2 (26-27 April 2023) and Planting Date 4 (25-30
May 2023) at all three research locations. Additionally, one Apogee SQ-521 photosynthetic active
radiation (PAR) sensor and one Meter ATMOS 14 weather station were installed at each of these
research sites. The weather station collected temperature, relative humidity, vapor pressure, and
barometric pressure in the crop canopy.

The data collected by these sensors was aggregated by a total of six data loggers, with two
loggers allocated at each research site. These loggers were connected to the Meter Group’s
Zentra Cloud, a data management and visualization platform. Data visualization was available
through user-configurable dashboards on the website and data was also accessible via an
application programming interface (API).

Weather Station Data

At each of the research locations, an OSU managed weather station collects precipitation, wind
speed, and air temperature at multiple heights, which is accessible at weather.cfaes.osu.edu. In
addition, the website also provides calculated daily values such as Growing Degree Days (GDD),
a measure of the degrees above 10C of the average temperature each day. The accumulation of
GDD over the growing season is widely used in predicting corn growth and development.

Soil Testing Data

On a weekly basis, soil samples were taken from each plot corresponding to the locations of the
in-situ soil and climate sensors. These samples were submitted to a soil testing laboratory to
measure plant-available nitrogen content, consisting of nitrate and ammonium, as well as CO-
respiration reported in parts per million (ppm) as an indication of the rate of nitrogen mineralization
of organic matter.

Manually Labeled Data

On a weekly basis, site visits were conducted at all three research locations by personnel from
the OSU’s Department of Horticulture and Crop Science (HCS). These individuals possessed
expertise in the classification of corn and soybean growth stages as well as proficiency in
assessing disease incidence and quantifying disease severity. Furthermore, ears of corn and
soybean plants were collected at harvest for detailed measurements of the components of yield
such as kernel rows, kernels per row and kernel weight in corn and seeds per pod, pods per plant,
and seed weight in soybeans. The data generated from these site visits will be the labels for
several machine learning use cases derived from this data set.

4.3 Initial Use Case — Yield Estimation

Figure 4 shows one agricultural use case for collecting multimodal data. In this example, growth
stage is an important part of the dataset for predicting field scale yield along with precipitation,
growing degree days, and photosynthetic active radiation during the growing season. UAS
imagery is used to predict growth stage and subsequently combined with time-series climate data.

Growth Stage Regression Yield Estimation

Input Data Labels Labels
UAS RGB Growth stage Yield (bu/acre)

Model Architecture

. Time-Series In D
Vision Transformer e-Series Input Data

Precipitation

Growing Degree Days
Photosynthetic Active Radiation
Growth Stage

PwnNE

Model Architecture
Long Short-Term Memory

Figure 4. Interconnected Al models for Yield Estimation.
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By combining the various data types into interconnected models, a field-scale yield estimate can
be obtained during the growing season, which can inform farmers’ grain marketing decisions.
Furthermore, estimates of yield potential during the growing season can inform the profitability of
field treatments such as nitrogen and fungicide applications.

5. Data Readiness Pipelines

The goal is to create data pipelines that will uniformly process the various forms of data in a
consistent manner resulting in high data quality. Below, we describe the pipelines for each of the
data collected in this effort.

5.1 UAS Imagery Pipeline

The UAS-based data acquisition relied on the use of Secure Digital (SD) cards as the medium for
storing captured images during UAV missions and subsequently transferring those images to a
OneDrive repository on a laptop. Once the images were transferred, proprietary software was
utilized to geotag images from the nearest Continuously Operating Reference Station (CORS) to
correct for GPS error during the flight. The pipeline also includes generating a georeferenced
orthomosaic for each flight using the geotagged images. Figure 5 illustrates this pipeline.

Data Collection Data Preprocessing

Raw Images
fetched from Wingtra Hub A Geotagged
ingtra Hub App Images
memory card
Wingtra UAV capturing Pix4DEngine
the field images L
P !
) . Ground Ctrl Pt
= —
0& g Orthomosaic ArcGIS Cross-Validation

Plot
Shapefiles
—

Plot Images
(1 image per plot)

(GCP)

Crop growth stage labels
(Manual observations)

Crop growth observations

Figure 5. Version 1 of UAS image pipeline

In our study, a systematic arrangement of five Ground Control Points (GCPs) was implemented
at each site. Specifically, GCPs were strategically placed at the four vertices of the field and a
central point, consistent across every aerial survey. For ensuring accurate spatial referencing,
these GCPs were positioned at identical coordinates during consecutive weekly surveys. A high-
precision Trimble R8 GNSS receiver, in conjunction with the Trimble TSC3 Controller Data
Collector, was employed to obtain precise geographical coordinates of each GCP.

Over the course of summer, a total of 85 flight missions were conducted. These missions included
flights across three research locations utilizing two payload sensors, namely RGB and multi-
spectral.

Our initial approach was to use Pix4D, a commercial photogrammetry software provider, to
generate orthomosaics from each flight. Specifically, Pix4Dengine, a set of programming
modules, facilitated the automation of the orthomosaic creation through a Python script. The
parameters used in creating the orthomosaics can be tailored to the specific requirements of the
end application. In cases where the images are used for plant counting and plant spacing
purposes, it creates a demand for high spatial resolution imagery. Conversely, when the aim is

detecting the crop type, lower resolution suffices. The careful selection of Pix4D parameters is
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imperative as they exert a significant influence on data quality and processing time. To validate
the accuracy and consistency of our data, we cross-validated the GCPs’ positions within each
orthomosaic against their surveyed locations.

Our data pipeline also involved the creation of plot boundaries in the form of polygon shapefiles
(.shp) corresponding to the geographic coordinates of each plot. These shapefiles were used as
a mask to create images for each plot from each flight. However, we experienced several
drawbacks to this approach. First was that the orthomosaic creation was a lengthy process,
generally taking 4 to 6 hours to complete. Secondly was that the orthomosaic stitching process
left aliasing artifacts in the resulting orthomosaic, resulting in degraded image quality relative to
the original image. Lastly, in our first attempt to create orthomosaics, we experienced roughly
10% of the orthomosaics were incomplete and did not cover the entire plot area. We were able
to get these orthomosaics to cover the entire area by adjusting the settings on Pix4D which also
increased processing time from 4-6 hours to 1-2 days. Figure 6 illustrates the degradation in
image quality that can occur from the creation of an orthomosaic.

¢ e L L 3 o~ =  « 3
Orthomosaic image Original image
Figure 6. Orthomosaic image quality degradation

Since the settings required to generate complete orthomosaics involved processing times of 1-2
days, and yet the resulting image quality was often significantly degraded from the underlying raw
image, an alternative approach to improve processing time without compromising the image
quality from the underlying raw image was developed.

This approach involved using calibrated camera extrinsic parameters that were an output from
the first stage of the Pix4D image processing pipeline and using the parameters to generate a
georeferenced GeoTIFF image directly from the underlying raw image. Figure 7 illustrates the
changes to the sUAS image pipeline that were implemented to both reduce processing time and
maintain the original image quality.

The new pipeline designed for the automated creation of tiles for each plot represents an
advancement over the conventional approach of creating plot tiles from Pix4D orthomosaics. This
method not only expedites the tile creation process but also yields higher quality plot tile images.
The reduced processing time makes the data readiness pipeline more efficient while the improved
image quality is expected to yield improvements to the accuracy of machine learning models
trained from these images. Furthermore, the reduced processing time is expected to be
particularly valuable for generating inferences very quickly after image capture.
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Figure 7. Version 2 of sUAS image pipeline

This process is facilitated through the utilization of Python libraries such as Rasterio, which is
dedicated to the handling of geospatial data, and OpenCV for general image processing tasks.
The initial phase encompasses the conversion of geo-tagged image files into GeoTIFF format.
This conversion utilizes the camera extrinsic parameters generated from Stage 1 of the Pix4D
including latitude, longitude, elevation, phi, omega, and kappa for each image, in addition to
pertinent camera metadata like focal length. The process entails aligning the GIS locations
accurately using the Ground Sample Distance (GSD) alongside rotation and translation matrices
(Golparvar & Wang, 2021; Marco et al., 2018). The next phase entails the extraction of tiles from
the GeoTIFF formatted images using the polygon shapefiles that represent the individual
rectangular plots as a mask. The accuracy of the tile extraction process is influenced by two
principal factors: the omega (roll) value and the distance between the image's center and the
center of each plot. Images characterized by lower omega values and closer proximities to the
plot centers can extract more precise tiles.

The accuracy of GeoTIFF files generated directly as compared to orthomosaics generated from
Pix4D are compared by evaluating the plot tiles extracted from both approaches. The accuracy is
assessed through the application of the Scale-Invariant Feature Transform (SIFT) algorithm
(Nevins, 2017). This algorithm's utility lies in its ability to identify identical pixel points across
disparate images. This new pipeline demonstrated variable error distances across three different
locations—Western, Northwest, and Wooster. Data from five dates in Western, nine in Northwest,
and nine in Wooster were utilized. The overall dataset exhibited a mean error distance of 0.68
meters, with the 25th percentile at 0.30 meters and the 75th percentile at 1.03 meters. Specifically,
the mean error distances for each site were 0.33 meters for Western, 0.62 meters for Northwest,
and 0.95 meters for Wooster. The larger errors in Northwest compared to the Western can be
attributed to significantly biased omega (roll) values in the imagery. Meanwhile, in Wooster,
images were captured horizontally relative to the plots, resulting in kappa (yaw) values around 0
degrees or £180 degrees. This orientation minimally affects the rotation matrix, reducing its
efficacy in image calibration adjustments. It demonstrated an average error distance of 0.57
meters, with recorded minimum and maximum error distances of 0.15 meters and 1.2 meters,
respectively. Furthermore, the process boasts a processing time ranging from 4 to 25 minutes.
This experiment was run on a machine with a processor of Apple M3 Pro APL1203 SoC and
18GB RAM.

There are four metrics that are important for sUAS image processing for machine learning
applications. As we evaluate these metrics in Table 1, the version 2 pipeline shows improvements
on 3 of the 4 metrics.
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Table I. Comparison of metrics of interest for Version 1 (Orthomosaic) and Version 2 (Direct Georeferencing) pipelines

Metric Version 1 pipeline Version 2 pipeline
Completion percentage of
flights that generate all plot 86% (63/73) 100% (expected)
tiles from raw images
Processing time from raw .
: . 4 hours on average 25 minutes on average
images to plot tiles
Geospatial accuracy .05 meters on average 0.68 meters on average
Image quality Aliasing artifacts Best

Further work is planned to improve the version 2 pipeline to further reduce the processing time
as well as improve geospatial accuracy. Initial work indicated that switching from SciPy library
to CuPy library could reduce processing time significantly. Additional improvements will also be
evaluated by exploiting parallel computing.

5.2 Soil and Climate Structured Data Pipeline

The Soil and Climate Structured Data Pipeline aggregates structured data from three separate
sources into a database as shown in Figure 8:

__| Extract/Transform
(API)
oil Sensors.
30 minute temporal
resolution data
Weather Extract/Transform SQLite
station —>
website (HTTP request) Database

Weather Station

Extract soil test

—>| reports delivered

as .xls via email Daily temporal
resolution data

Soil Tests

Collect Ingest Store  Transform

Figure 8: Soil and Climate Structured Data Pipeline

5.2.1 In-Situ Soil and Climate Sensors

The pipeline harnessed data from in-situ soil and climate sensors, which were distributed across
the agricultural research sites. These sensors were connected to Meter ZL6 loggers, which
recorded data at 30-minute intervals. Subsequently, the collected data was transmitted to the
Meter Zentra Cloud through cellular connections. A Python script was employed to interface with
the Zentra Cloud application programming interface (API) to retrieve the data and aggregate it
into a local database.

5.2.2 Ohio State Weather Stations

Additionally, the pipeline incorporated data from OSU weather stations, which were located at
each research site near the field plots. The data generated by these weather stations was
accessible via a web interface, allowing for convenient querying and retrieval.

5.2.3 Soil Lab Testing Results
Soil lab testing results were received regularly as spreadsheets sent over email. The data in these
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spreadsheets was also incorporated into the database.

5.3 Time-Series Data Alignment

The current data cleaning process is heavily reliant on the use of Jupyter notebooks to manually
handle CSV and Excel files, involving unique scripts for each type of data transformation required
such as mapping growth stage descriptions to numeric values, converting irregular time-series
data into a standardized daily format, and averaging hourly sensor readings to daily values.

In the future, we propose a data pipeline designed to replace these manual Jupyter notebook
operations with integrated, automated tasks enabling real-time data processing capabilities. This
architecture would incorporate an Extract, Transform, and Load (ETL) scheme scheduled to
operate continuously. As new data arrives, it is extracted and then transformed by applying
various cleaning such as interpolating missing values, correcting errors, and aligning disparate
data formats into a unified format. Following transformation, the data would be loaded into a
database system which will act as the central repository from which the Plotly Dash application
retrieves data. The Plotly Dash app can then dynamically query the database, pulling fresh data
as updates occur (see Section 7.2 more details).

6. Model Training

After acquiring and preprocessing the various data using data pipelines, they are used to train Al
models. Machine learning (ML) models such as Support Vector Machines (SVM), decision trees,
regression networks, Convolutional Neural Networks (CNN), etc., are popularly selected for
various agricultural use cases (Khanal et al. 2020). In one of our studies, we chose the Vision
Transformer (ViT) model to identify corn and soybean crop growth stages using UAS RGB
images. We selected the ViT model since it can capture spatial relationships, such as the
development of leaves and the presence of flowers, in the images, which can be crucial to identify
crop growth stages. In order to compare the classification and regression approaches for
estimating crop development, the ViT architecture was modified to perform these tasks (Figure
9). During the training of the classification model, each crop growth stage is treated as an
independent, discrete observation, whereas in a regression model, crop growth is considered a
continuous observation.

After the model selection, the input data can either be segmented or resampled to match the
model specifications and requirements. For the ViT model, the UAS images from each of the plots
were divided into blocks of 224 x 224 x 3 to meet the ViT input requirement and then passed to
the position embedding layer of ViT architecture. The embedded data is then passed to the
transformer encoder and then to either the Multi-Layer Perceptron (MLP) head (classification) or
Linear module (regression).

Each of the 224 x 224 x 3 blocks were annotated with ground-observed crop growth labels from
their respective plot. For a more straightforward annotation, we converted crop growth labels to
numerical values with VC as 1, VE as 2, V1 as 3, V2 as 4, ..., V16 as 19, R1 as 20, R2 as 21, ....,
R8 as 27. These labels represent specific stages in the crop growth cycle, with VC indicating the
start of the Vegetative stage and R1 indicating the start of the Reproductive stage. These labels
can be considered as independent, discrete labels (classification) or as a sequence of continuous
labels (regression).

In the annotated dataset, 60% was allocated for training, 20% for validation, and 20% for rigorous
testing of the model performance. Here, the validation data accuracy was used for
hyperparameter tuning and early stopping of the model training. The selected model parameters
were carefully chosen between 100 to 150 epochs with a batch size of 16 to 64 and a learning
rate of 0.001. The model demonstrated no further improvement in the accuracy after the 100
epochs, and hence, the training was stopped at that epoch. These models were trained on a
robust 94GB RAM, Intel Xeon Silver @2.2GHz processor machine, with each model using a
training time from 20 to 30 mins. We utilized the TensorFlow and Keras libraries in the Python
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platform to execute the model training and testing.
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Figure 9: lllustrating steps in training the Vision Transformer (ViT) model using sUAS images to identify crop growth
stages as classification and regression tasks.

We achieved an overall accuracy of 67% for the classification model and 87% for the regression
model (Figure 10). These results demonstrate the significant impact of the model selection
process on achieving better results. As continuous data better represent crop growth stages, we
observed that the regression model produced superior results.
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Figure 10: Confusion matrices representing ViT classification and regression model results with precision, recall, and
overall accuracy values for each of the crop growth stages for a corn field in Northwest Ohio.

7. Data Visualization

In the past decade, we have seen Al and machine learning make an impact on a myriad of data
rich application areas. As this trend continues, there is a growing need for tools that help
practitioners gain a better understanding and trust of the data and insights presented by these
technologies (Beauxis-Aussalet et al. 2021). Cultivating trust is critical for success in data-driven

Proceedings of the 16" International Conference on Precision Agriculture 12
21-24 July 2024, Manhattan, Kansas, United States



and sustainable agriculture (Raturi et al. 2022). Farmers, especially, need validation that data-
driven Al and ML tools will be able to achieve their envisioned goals of environmental and
economic sustainability (Gardezi et al. 2024). One such tool to improve trust and provide
validation is the creation of interactive data visualizations (Beauxis-Aussalet et al. 2021).

7.1 Dashboard

An interactive data visualization dashboard was created with the cleaned, wrangled data from this
study. Visualization methods at this stage in the ML pipeline are generally used to explore
interesting subgroups and pinpoint particular outliers. The purpose of this dashboard is to
visualize the collected data at the plot level, providing specific insights for each plot and comparing
them to other plots in the field. This provides the user with a reference to see if a particular plot
has characteristics that are significantly different from the norm (i.e., out of distribution), enabling
better understanding of the data. Figure 11 shows a screenshot of the dashboard.

CropFusion Analytica

S sxage

May 2023

NDVI Value
o o o
Y Y @

Figure 11. Dashboard Screenshot

The dashboard was created with Plotly Dash, an open-source Python framework that enables the
creation of interactive, data-driven dashboards. The top left of the dashboard contains a pane
with a map focused on a specific field [A]. A 3D geospatial layer is rendered on top of the field
using the plot boundaries from the created orthomosaic files (.geojson files). This rendering is
created with DeckGL, a WebGL-powered visualization framework. Each plot is outlined and has
its own 3D layer. The height and color of the cross section represents the current growth stage of
the plot. To view the exact growth stage value of a specific plot, the user may hover over the
specific plot.

Below the map, there is a time slider and a series of dropdown menus to select field, crop type,
and plot number, respectively [B]. This collection of inputs can be used to update the dashboard
figures [C] on the right side of the screen that provide information based on the different modalities
of tabular data collected in the study. Table Il provides a summary of the figures in the dashboard.
The position of the time slider can be altered to update the geospatial visualization and figures
across different time periods across the growing season. A drone image of the selected plot at
the specific time selected by the time slider is populated at the bottom left of the screen [D].

Perhaps the most significant feature in the dashboard is the interactivity provided in the
geospatial visualization. The user may click on a specific plot on the 3D geospatial layer to
populate the figures with information about the selected plot, enabling the user to derive plot-
specific insights in an interactive, intuitive manner. This interactivity, combined with the time-slider
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enables the user to explore multimodal data across both spatial and temporal dimensions.

Table Il: Summary of Dashboard Elements

Chart Description

NDVI Values over Time NDVI values for a specific plot are reported over the
growing season.

Yield Estimation The yield component information for a specific plot is
displayed.

Actual vs Predicted Growth Stage Tracks crop growth stage over the growing season
alongside a predicted line using the machine learning
models.

Precipitation and Soil Moisture Soil moisture, precipitation, and temperature at the

crop location over the growing season.

Overall, these figures, driven by plot-clicks and the time-slider, provide a valuable view for users
that enable further understanding of the collected data.

7.2 Early User Feedback

A user feedback session was conducted shortly after an initial prototype of the dashboard was
developed. Participants were faculty and students from OSU’s HCS who interacted with the
dashboard to evaluate its features and data presentation. Users highlighted the necessity for
clearer visual representations of crop growth stages on the geomap, and requested more robust
capabilities for comparing crop yields not only by location but also by planting date and crop hybrid
in the case of corn. Additionally, there was a demand for integrating growth stage data with
weather data on the dashboard, with options for toggling different data layers. The feedback also
highlighted the importance of certified crop advisors as a potentially important user group for the
dashboard.

8. Conclusion

In summary, we articulate the importance of Al applications in agriculture and highlight a data-
centric approach to building Al-centric Cl. We provide an example of how multimodal data can
be leveraged for yield estimation that combines UAS imagery with climate sensing. Given that
one drawback of Al is that it can be a black box to users, we highlight the importance of visual
interfaces that can build understanding and trust in the system.

While this paper seeks to present a broad view of Al applications in agriculture, each component
represented is at a relatively early stage of research. Furthermore, there is integration work
needed for each of the components to function in a unified system.

Direct georeferencing techniques show promise to retain original UAS image quality while
drastically reducing compute requirements. Further work will be aimed at parallel computing to
reduce processing time and improvements to geospatial accuracy. Additional work is also needed
for error detection to ensure plot tile images are correctly generated.

The user interface shows promise, but more user research is needed to tailor the interface to the
needs of unique stakeholders. The prototype was built using prior year’'s data. A valuable next
step will be to enable it to show data from the current growing season within a few days after data
is collected.

Additional areas of improvement include making use of standardized Al dataset formats that can
promote aggregation of larger datasets across institutions. Additionally, the various data types
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currently exist in an ad hoc folder structure. Organizing the data into a database schema is likely
an important next step to improve the system.

The work outlined in this paper is intended to spark discussion and collaboration among various
stakeholders (e.g., researchers, crop consultants, farmers) such that the promise of Al in
agriculture can be more fully realized.
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