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Abstract

We present a novel dataset for animal behavior recogni-

tion collected in-situ using video from drones flown over the

Mpala Research Centre in Kenya. Videos from DJI Mavic

2S drones flown in January 2023 were acquired at 5.4K

resolution in accordance with IACUC protocols, and pro-

cessed to detect and track each animal in the frames. An

image subregion centered on each animal was extracted

and combined in sequence to form a “mini-scene”. Be-

haviors were then manually labeled for each frame of

each mini-scene by a team of annotators overseen by an

expert behavioral ecologist. The resulting labeled mini-

scenes form our resulting behavior dataset, consisting of

more than 10 hours of annotated videos of reticulated gi-

raffes, plains zebras, and Grevy’s zebras, and encompass-

ing seven types of animal behavior and an additional cate-

gory for occlusions. Benchmark results for state-of-the-art

behavioral recognition architectures show labeling accu-

racy of 61.9% for macro-average (per class), and 86.7% for

micro-average (per instance). Our dataset complements re-

cent larger, more diverse animal behavior sets and smaller,

more specialized ones by being collected in-situ and from

drones, both important considerations for the future of an-

imal behavior research. The dataset can be accessed at

https://dirtmaxim.github.io/kabr.

1. Introduction

Behavior, in the context of animal studies, is broadly

defined as the way an animal acts or reacts in response to

*kholim@rpi.edu

certain stimuli or situations. It encapsulates a wide range

of activities and interactions that take place in an animal’s

life. Understanding animal behavior is vital not only for

ecological and conservation reasons [1], but also because it

provides insights into how different species adapt to their

environment, how they communicate, and how they social-

ize [2]. This knowledge can have implications for a vari-

ety of fields, from wildlife management and conservation to

agriculture and veterinary medicine.

Studying animal behavior in natural habitats, while

clearly important, is extremely challenging. Just finding

animals and getting in a position to observe their behav-

iors in an unobscured and clear way is often quite diffi-

cult. Traditionally, two methods are used to observe an-

imal behaviors: focal sampling [3] records the behavior

of a selected individual for a fixed period of time, while

scan sampling records the behaviors of multiple individu-

als within a time interval as the observer gradually sweeps

their line of sight through a field of view. These methods

capture only a small fraction of the actual behaviors. These

twin challenges — limited access and limited observations

— can potentially be addressed through a combination of

an aerial-based (such as drone) video capture to reach and

record more animals, and automatic, computer vision-based

behavior analysis to find each animal and determine its be-

havior.

Crucial to the development of modern computer vision

technologies for animal behavior studies is the construction

of well-curated datasets. Several large-scale datasets have

been proposed recently for studying animal behavior recog-

nition [4, 5]. These are generally sourced from online plat-

forms like YouTube, allowing for the collection of a wide

31

2024 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)

2690-621X/24/$31.00 ©2024 IEEE
DOI 10.1109/WACVW60836.2024.00011

20
24

 IE
EE

/C
VF

 W
in

te
r C

on
fe

re
nc

e 
on

 A
pp

lic
at

io
ns

 o
f C

om
pu

te
r V

isi
on

 W
or

ks
ho

ps
 (W

AC
VW

) |
 9

79
-8

-3
50

3-
70

28
-7

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

W
AC

VW
60

83
6.

20
24

.0
00

11

Authorized licensed use limited to: The Ohio State University. Downloaded on September 20,2024 at 21:58:40 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1. Examples of the behavior of giraffes, plains zebras, and Grevy’s zebras from our dataset. It includes a total of eight distinct

categories: “Walk”, “Graze”, “Browse”, “Head-Up”, “Auto-Groom”, “Trot”, “Run”, and “Occluded”.

range of species and behaviors. Complementing this work,

there is a clear need for behavior recognition datasets that

are collected in-situ and therefore form a more natural rep-

resentation of behaviors. If drones are to become an im-

portant source of animal behavior information there is an

equally important need to have experimental datasets that

represent the properties of studying behaviors from drone

video.

Our work represents an initial stride toward addressing

these needs. By introducing a novel dataset collected from

drone videos in the natural habitats of Kenyan wildlife, we

aim to enrich the current pool of resources available for

the study of animal behavior. This dataset, specifically de-

signed to reflect in-situ scenarios, is a pioneering effort to

bring the nuances of real-world animal behavior to the fore-

front of this field of study.

This paper presents a novel dataset for animal behavior

recognition collected in-situ from drone videos. Specifi-

cally focused on Kenyan wildlife, it contains behaviors of

giraffes, plains zebras, and Grevy’s zebras. The methodol-

ogy is extensible to other species and environments. The

current dataset includes a total of eight categories that de-

scribe various animal behaviors. Examples of selected be-

haviors are shown in Fig. 1. We make several significant

contributions to the study of animal behavior recognition:

1. We introduce a novel technique for building a dataset

for behavior recognition from drone videos. See Fig. 2.

We detect and track each individual animal in each

high-resolution video, and link the results into track-

lets. For each tracklet, we create a separate video,

called a mini-scene, by extracting a sub-image cen-

tered on each detection in a video frame. This allows

us to compensate for the movement of the drone and

provides a stable and zoomed-in representation of the

animal. This also preserves fine-grained details of ani-

mal behavior, such as auto-grooming.

2. We present a new dataset for animal behavior recogni-

tion collected in-situ and from drones, focused specif-

ically on Kenyan wildlife. The dataset, referred to as

Kenyan Animal Behavior Recognition (KABR), com-

prises over 10 hours of annotated mini-scenes and pro-

vides a natural view of animal behavior in the wild,

resulting in 54.2 GB of annotated image sequences in

the Charades [6] format.

3. We present baseline behavior recognition results using

several state-of-the-art, deep learning models for video

classification. These show approximately 62% clas-

sification rate, indicating the challenge of the KABR

dataset. This serves as a starting point for future re-

search.

Our contributions provide a valuable resource for re-

searchers studying animal behavior and ecology, particu-

larly in the context of wildlife conservation efforts in Kenya.

By accurately categorizing and analyzing animal behaviors,

we can better understand their natural patterns and inform

conservation strategies to protect endangered animals.
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Figure 2. A mini-scene is a sub-image cropped from the drone video footage, centered on and surrounding a single animal. Mini-scenes

simulate the camera as well-aligned with each individual animal in the frame, compensating for the movement of the drone, and ignoring

everything in the large field of view but the animal’s immediate surroundings. The KABR dataset consists of mini-scenes and their frame-

by-frame behavior annotation.

2. Related Work

Action classification and action detection are two differ-

ent tasks in the field of behavior recognition [7]. While both

tasks involve analyzing and understanding actions, they dif-

fer in their objectives and methodologies. The objective of

action classification [8–10] is to assign a single category to

a given video, indicating the action being performed in the

scene. It aims to identify the overall action without speci-

fying the temporal extent or location of the action. Action

detection [11] aims to not only recognize the action cate-

gory but also detect and localize the temporal extent of the

action within a video. We use our concept of mini-scenes to

bridge the gap between action detection and recognition.

Action recognition datasets, such as Charades [6] and

UCF [4, 12, 13] have been crucial in advancing the field of

behavior recognition. However, these datasets are mainly

focused on human actions, and may not be suitable for

studying animal behavior.

Animal Kingdom [5] and MammalNet [14] are both

prominent large-scale datasets for animal behavior recog-

nition. These datasets offer comprehensive collections of

annotated video footage featuring a wide range of animal

species over 50 and 539 hours, respectively. These datasets

primarily rely on videos sourced from online platforms such

as YouTube and therefore lack the in-situ aspect of data col-

lection where observations occur directly in animals’ nat-

ural habitats. APT-36K [15], also sourced from YouTube

videos, further pushes to bridge the gap between behavior

recognition and animal detection, with a collection of 80

video clips for each of the 30 species represented. In our

paper, we contribute to bridging this gap by introducing a

novel in-situ dataset specifically centered around Kenyan

wildlife.

Prior research has explored the potential of drone videos

in addressing challenges related to animal behavior recogni-

tion. Notably, Koger et al. [16] introduced a deep learning

method focused on reconstructing landscapes from drone

videos, enabling the recognition of animal body postures

and the ecological context in which they reside. In con-

trast to the proposed approach, our method is focused on

recognizing animal behavior at the individual level rather

than understanding the relationship between animals and

their landscapes. Additionally, the authors of [17] employed

drones to study spatial positioning within groups of feral

horses, while [18] used drones to track sharks, unveiling

their movement patterns. Furthermore, drone technology

was harnessed by [19] for wildlife detection. These diverse

applications underscore the potential of drone videos in ad-

vancing our understanding of animal behaviors and ecolog-

ical dynamics.

Several other substantial datasets have been meticulously

assembled with a strong focus on recognizing animals, esti-

mating their poses from images [20, 21], or generating new

views of images with animals [22]. For instance, the iNat-

uralist dataset [23] contains over 859,000 images of more

than 5,000 different types of plants and animals. Similarly,

the iWildCam [24] dataset contains 263,528 images from
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Figure 3. Overview of the pipeline for KABR dataset preparation.

323 locations of camera traps. These datasets provide a

plethora of sample images, but they are designed to clas-

sify species and count individual animals in images rather

than study their behavior.

Some works have proposed targeted solutions for rec-

ognizing the behavior of certain animals. These solutions

are often based on specific characteristics of the animal’s

behavior, which may not apply to other species. For in-

stance, a study may focus on recognizing the behavior of

primates [25–27], pigs [28–30], goats [31], cows [32, 33],

meerkats [34], dogs [35], cats [36], or mice [37–40].

Though these specialized solutions are useful for studying

particular animal behaviors, they are typically smaller and

may not generalize well to other species or contexts. There-

fore, it is important to consider the scope and limitations of

these targeted approaches when using them to study animal

behavior.

In contrast, our dataset offers a distinctive, valuable con-

tribution to the field of animal behavior recognition, as

it focuses specifically on in-situ drone videos of Kenyan

wildlife. Our innovative approach provides numerous ben-

efits over traditional video analysis methods and supplies

a valuable resource for researchers studying animal behav-

ior and ecology, particularly within the critical context of

wildlife conservation efforts in Kenya.

3. Dataset

3.1. Data Collection

The drone videos used in our dataset were collected by

our research team at Mpala Research Centre, Kenya. The

data collection period spanned from January 6, 2023, to

January 21, 2023. During this time, our team conducted

multiple expeditions to different locations within the re-

search center’s vicinity. The drone flights were strategically

planned to capture the behaviors of giraffes, plains zebras,

and Grevy’s zebras. These species were selected based on

their ecological importance and conservation status in the

region.

The dataset consists of 1,139,893 individual frames:

488,638 featuring Grevy’s zebras, 492,507 of plains ze-

bras, and 158,748 frames featuring giraffes. In total, there

are 14,764 distinct sets of behaviors. To ensure high-

quality footage, our team utilized DJI Mavic 2S drones

equipped with advanced camera capabilities. The videos

were recorded in 5.4K resolution at a speed of 29.97 frames

per second, providing a smooth and accurate representation

of the animals’ behaviors. The drones were flown at varying

altitudes and distances from the animals to capture a diverse

range of perspectives. The distances maintained during the

flights ranged from 10 meters to 50 meters away from the

animals, depending on the specific circumstances and safety

34
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Figure 4. The distribution of classes in the KABR dataset.

regulations. The diversity in recording distances allows us

to observe behaviors at different scales, and will eventually

allow us to consider social dynamics within animal groups.

During the flights, the pilot carefully maneuvered the

drones to capture the behaviors of the animals. The pilot

employed a variety of flight paths, including vertical ascents

and descents, circular orbits, and linear trajectories, depend-

ing on the specific behavior being recorded. The maneuvers

were executed with precision and consideration for the ani-

mals’ well-being, maintaining a safe and non-intrusive dis-

tance.

3.2. Ethical Considerations

Two important categories of ethical considerations were

addressed in our work. First, no humans appeared in the

videos, and all participants were faculty, students, or em-

ployees of the Mpala Research Centre. Second, our re-

search was conducted under the authority of a Nacosti Re-

search License. This license confirms our adherence to the

regulations in place and allows us to collect drone footage

of animals in their natural habitats. We followed a data col-

lection protocol that strictly complies with the guidelines set

forth by the Institutional Animal Care and Use Committee

(IACUC). These guidelines are designed to ensure the eth-

ical and humane treatment of animals involved in research

activities. We also followed the guidelines laid out in [41].

One particular instance of this is that we consistently ap-

proached the animals from downwind, allowing the noise

to dissipate before reaching the animals.

3.3. Data Curation — Mini-Scenes

The raw drone video data typically contains multiple an-

imals in each frame with each animal occupying a small

fraction of the image. In our case, the maximum number of

animals visible in the frame at one time is 13. Attempting

to directly analyze these to extract behavior is impractical.

Instead, we extract mini-scenes, which are sub-videos of

the full-resolution video, each of which is centered on an

animal as it moves through the scene, and cropped to the

animal and its immediate surroundings. The use of mini-

scenes allows us to compensate for much of the movement

of the drone and provides a stable, zoomed-in representation

of the animal’s behavior. This approach allows for accurate

tracking of individual animals within a group. We antici-

pate that in future work this will be particularly useful for

studying social dynamics among animals.

To implement our mini-scenes approach, we utilized

YOLOv8 [42] to detect the animals in each frame and the

SORT [43] tracking algorithm to follow their movement.

We then extract a window of size 400 pixels wide and 300

tall, values determined empirically based on the character-

istics of the animals observed and the surrounding environ-

ment, and properties of the drone.

We have developed a set of tools to facilitate the data

annotation process. One of the tools we used extensively

was the interpolation tool, which filled in any missing detec-

tions within a track, thereby improving the overall tracking

quality. The tool uses a linear interpolation algorithm that

estimates an animal’s location based on its previous move-

ments, helping fill in gaps where automatic detection may

have failed. Our data processing pipeline is illustrated in

Fig. 3. We considered a mini-scene to be inappropriate if it

did not satisfy the length criterion. If the total length of the

behaviors in a mini-scene was less than 90 frames, we filter

it out.

The mini-scenes we extracted using our pipeline are a
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Method All Giraffes Plains Zebras Grevy’s Zebras

I3D (16x5) 53.41 61.82 58.75 46.73

SlowFast (16x5, 4x5) 52.92 61.15 60.60 47.42

X3D (16x5) 61.9 65.1 63.11 51.16

Table 1. The results of the I3D, SlowFast, and X3D models on our dataset. I3D and X3D were trained with 16 input frames with a sampling

rate of 5. For SlowFast, the Slow branch was trained with 16 input frames with a sampling rate of 5, and the Fast branch was trained with

4 input frames with a sampling rate of 5. The results reflect the macro (per class) average metric.

crucial component of the manual annotation process for be-

havior recognition. These mini-scenes provide a zoomed-in

and stable view of individual animals’ behavior, making it

easier for human annotators to accurately identify and label

their behavior.

3.4. Behaviors and Annotation

Our dataset contains a total of eight behavior categories,

including “Walk”, “Graze”, “Browse”, “Head Up”, “Auto-

Groom”, “Trot”, “Run”, and “Occluded” as determined by

our expert behavioral ecologist looking at the properties

of the videos. These include three locomotion behaviors,

“Walk”, “Trot” and “Run”, each representing a different

gait. “Run” could have been split into canter and gallop,

but these were too infrequent and indistinguishable. Two

of the other behaviors refer to eating: “Graze” refers to

the behavior of an animal when they are eating grass or

other vegetation, while “Browse” describes the behavior of

animals feeding on trees and bushes. For the remaining

categories, “Head Up” refers to the behavior of an animal

when it lifts its head to look around or observe its surround-

ings, typically, these are different types of vigilance, and

“Auto-Groom” describes the behavior of animals when they

groom themselves, which can include licking, scratching,

or rubbing their bodies. Finally, the category of “Occluded”

is used when the animal is not fully visible in the video

footage. This can occur due to obstructions such as trees or

other animals blocking the view, or due to technical limita-

tions of the camera or drone.

To ensure accurate behavior annotation in our dataset,

we employed a team of 10 individuals, all of whom were

trained in the process. The team was led by an experi-

enced expert behavioral ecologist who oversaw the anno-

tation process. We utilized CVAT [44], a powerful tool for

collaborative video annotation, to enable the team to work

together remotely and efficiently. Once the initial annota-

tions were complete, we took an additional step to ensure

quality control by having all videos manually reviewed by

a designated annotator. Finally, we utilized an automatic

filtering process to split the annotated videos into conve-

nient training iterations based on their resulting length. This

ensured that the training data was properly organized and

could be effectively used in the development of deep learn-

ing models. Overall, our comprehensive annotation process

and quality control measures ensure that our dataset is ac-

curate, reliable, and suitable for a wide range of research

applications.

3.5. Class Distribution

Our dataset exhibits a long-tailed distribution, signify-

ing a considerable disparity in the count of samples across

the categories. This is expected since certain behaviors

are considerably more frequent in animals’ natural settings

compared to other behaviors. The distribution of classes is

shown in Fig. 4. Similar imbalances occur in recent larger

datasets [5, 14, 15] scraped from YouTube.

3.6. Data Split

We provide a train-test split of the mini-scenes for eval-

uation purposes, with 75% for train and 25% for testing.

No mini-scene was divided by the split. The splits en-

sured a stratified representation of giraffes, plains zebras,

and Grevy’s zebras.

4. Experiments

To comprehensively assess the performance of differ-

ent models on our dataset, we conduct evaluations using

three well-known architectures: I3D [45], SlowFast [46],

and X3D [47]. The results are summarized in Tab. 1, where

we report the Top-1 accuracy scores for all species, giraffes,

plains zebras, and Grevy’s zebras.

The model was trained for 120 epochs. During training,

we use a batch size of 5. To improve the model’s perfor-

mance and reduce the risk of overfitting, we apply data aug-

mentation techniques during training. Specifically, we use

flip augmentation to randomly mirror the input frames hor-

izontally, and color augmentations to randomly modify the

brightness, contrast, and saturation of the input frames.

To address the issue of long-tailed distribution, we em-

ploy the EQL [48] loss function. The proposed loss func-

tion selectively ignores gradients for frequent categories,

enabling the learning of rare categories during network pa-

rameter updates.

The confusion matrix depicted in Fig. 6 demonstrates

the performance of the X3D model. The model performs
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Figure 5. A bar plot representation of the three most frequently predicted classes from the X3D model for each category within the KABR

dataset.

Figure 6. This confusion matrix showcases the performance of

the X3D model, which has been determined as the top-performing

model on the KABR dataset based on our evaluation.

quite well for the most frequent behaviors in our dataset:

“Walk”, “Graze”, “Browse”, and “Head Up”. The imbal-

ance seen here is reflected in the difference between the

macro and micro average Top-1 accuracy scores. The macro

(per class) average, reported in Tab. 1 peaks at 61.9%, but

the micro (per instance) average is 86.7%. The model also

demonstrates good performance for “Trot” and “Run” de-

spite fewer instances in the dataset for these categories.

Interestingly, “Trot” is most frequently confused with the

other locomotion behaviors, “Walk” and “Run”. The same

applies to the “Run” behavior.

Further insight can be gained from Fig. 5 which shows

the three most frequently occurring predictions made by the

X3D model for each category. This illustrates again that, in

most cases, the correct category showcases a dominant fre-

quency, noticeably higher than the frequencies of the sec-

ond and third most common predictions. This highlights

the ability of the model to learn from the KABR dataset to

predict the correct behavior.

This also highlights some interesting challenge cases:

“Browse” (a giraffe behavior) is frequently confused with

“Head Up”, which is quite intuitive. “Auto-Grooming”, a

very rare behavior in the KABR dataset, is often misclas-

sified with similar looking behaviors, “Graze” and “Head

Up”. Finally, the “Occluded” category is often confused

with “Grazing”, most likely due to the subjectivity of

what constitutes an occlusion when looking at video from

Mpala’s ecosystems. Interestingly, within the “Occluded”

category, the model has a tendency to factor in surround-

ing elements like shrubs and trees (visible in the on-line

videos). We anticipate addressing these issues through fur-

ther data collection and analysis, as enabled by the pipeline

developed here.

5. Discussion

The benchmark results using state-of-the-art video clas-

sification algorithms indicate that the dataset is both inter-

esting and challenging. Though it is necessarily smaller

than recent Animal Kingdom and MammalNet datasets and

captures a more focused set of behaviors, it represents an

important step in the evolution of animal behavior data col-
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Figure 7. Grad-CAM visualization for different behaviors in the dataset.

lection and analysis because the videos were collected in-

situ and from drones. As such it is closer to, and more rep-

resentative of, how behavioral analysis can be carried out

in the field in the future. One limitation of the dataset as it

currently exists is that some rare behaviors are either cap-

tured infrequently or not at all. The complete set of tools

for KABR that we have developed and shared openly form

a powerful framework to support searching for examples of

these behaviors.

The mini-scenes approach provides a means of rapidly

processing high-resolution videos into a form that can be

analyzed for individual behaviors. The next step would be

to augment the behavior classification approaches to facil-

itate anomaly detection. An interesting question is the po-

tential integration of KABR with MammalNet or Animal

Kingdom for exactly this purpose.

The proposed pipeline has several important advantages.

By applying detection and tracking algorithms, we can ex-

tract zoomed-in footage that is stabilized on the animal

of interest. Consequently, the animal remains consistently

centered in the frame throughout the mini-scene, enhancing

the accuracy of subsequent analysis. This is unlike typi-

cal action recognition where the animal could be moving

across a fixed frame. Consequently, if an object moves

from one side of the frame to the opposite side, the resulting

bounding box may fail to accurately reflect the object’s ac-

tual position. In contrast, our approach avoids this issue by

maintaining the animal of interest at the center of the frame

throughout the extracted mini-scene, allowing for more pre-

cise localization of the moving object over a longer period

of time.

Another important future step is using the mini-scenes

approach to analyze complex social behaviors, such as dom-

inance, aggression, mating, and grooming. Behaviors can

be analyzed in isolation within each mini-scene, in the over-

lap between the bounding regions of mini-scenes, and in a

graphical representation of a neighborhood of mini-scenes.

A final justification of the efficacy of the mini-scenes

approach can be seen in a Grad-CAM analysis [49] of the

mini-scene classification activation, as shown in Fig. 7. This

demonstrates that the neural network indeed prioritizes the

region covered by the animal in the center of the frame and

even the body part. In the case of the Occluded category,

where the animal is not visible within the frame, the net-

work shifts its attention to focus on other objects present. In

the case of Run, the background changes very rapidly, es-

pecially in the region that is being newly occluded in each

frame as the animal moves. This allows the network to iden-

tify it as Run.

6. Conclusion

This paper has presented a new in-situ dataset for ani-

mal behavior recognition from drone videos, with a focus

on Kenyan wildlife, including giraffes, plains zebras, and

Grevy’s zebras. We introduced a novel technique for build-

ing this dataset, which compensates for the movement of the

drone and allows us to capture fine-grained details of animal

behavior. Our dataset contains eight categories that describe

various animal behaviors, providing a comprehensive view

of animal behavior in their natural habitat. Our baseline

solution demonstrates the effectiveness of our dataset for

training conventional deep-learning models for video clas-

sification. Our contributions provide a valuable resource for

researchers studying animal behavior and ecology, particu-

larly in the context of wildlife conservation efforts in Kenya.

Our work represents an important step forward in the field

of animal behavior recognition and provides a solid founda-

tion for future research in this area.
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