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Abstract

The advent of generative Al (GenAl) technol-
ogy produces a transformative impact on the con-
tent creation landscape, offering alternative ap-
proaches to produce diverse, good-quality content
across media, thereby reshaping online ecosys-
tems but also raising concerns about market over-
saturation and the potential marginalization of
human creativity. Our work introduces a competi-
tion model generalized from the Tullock contest to
analyze the tension between human creators and
GenAl. Our theory and simulations suggest that
despite challenges, a stable equilibrium between
human and Al-generated content is possible. Our
work contributes to understanding the compet-
itive dynamics in the content creation industry,
offering insights into the future interplay between
human creativity and technological advancements
in GenAl

1. Introduction

Humanity is facing increasing competition from Al in vari-
ous domains of content creation. Recently, Large Language
Models (LLMs) such as ChatGPT (Brown et al., 2020) and
Llama (Touvron et al., 2023) have been extensively used to
create social media posts (TikTok, 2023; Meta, 2024). In
January 2024, a novel fully generated by ChatGPT, “The
Tokyo Tower of Sympathy”, won Japan’s prestigious Akuta-
gawa Prize (Choi & Annio, 2024). Besides their impressive
text generation capabilities, LLMs also facilitate the cre-
ation of high-quality multimedia content, including images
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and videos (Ho et al., 2020), through user-friendly tools
like Midjourney and DALL-E (Ramesh et al., 2022). These
advancements signify a new era of content creation compe-
tition between humans and generative Al (GenAl). GenAl
tools can quickly produce large volumes of tailored content,
challenging human content creators in terms of speed and
cost-efficiency. This potential threat not only revolutionizes
the online content-sharing industry but also impacts our
lives and society as a whole. Specifically, GenAl lowers
the entry barrier for individuals lacking technical skills or
resources to produce high-quality content, potentially giving
them a competitive edge in the market. This shift has led
to a surge in content creation and sharing, fostering new
dynamics in online content ecosystems (Epstein et al., 2023;
Wahid et al., 2023).

However, this Al-driven transformation also brings signifi-
cant challenges and concerns (Wach et al., 2023). The ease
of generating content with Al can potentially lead to an over-
saturated market, making it harder for individual creators
to stand out or leaving truly creative human creators under
appreciated (Doshi & Hauser, 2023). A most recent event is
that Universal Music Group pulls songs from TikTok and
accuses the platform of being “flooded with Al-generated
recordings” that diluted the royalty pool for real, human
musicians (Sisario, 2024). This echos the Gresham’s Law
that “bad money drives out good” (Selgin, 2020).

On the other hand, GenAl models are not omniscient. A
key limitation—or perhaps a defining characteristic—of
these models is their dependency on extensive and diverse
datasets of high-quality, human-generated content for train-
ing (Bertrand et al., 2023; Briesch et al., 2023). Should
GenAls inadvertently marginalize productive, high-quality
human content creators, the resultant decline in the qual-
ity of model-generated content is inevitable. Drawing an
analogy to biological interactions, the dynamics between
GenAl-based creators and human creators could evolve into
either symbiosis, leading to a mutually beneficial equilib-
rium, or antagonistic conflict, perpetuating rivalry and po-
tentially destabilizing the market. Therefore, an urgent and
scientifically interesting question to ask is, whether human
creators will be driven out of the market when competing
against Al-generated content, or is there a path toward a
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stable, symbiotic relationship?

In this paper, we propose a stylized model to depict the ri-
valry between traditional human content creators and those
utilizing GenAl technology. Our framework expands on the
Tullock contest model (Tullock, 1980), a model extensively
applied in econometrics to analyze competitive scenarios.
We first explore the impact of GenAl as an external influ-
encer on the equilibrium state of human creators, and then
delve into scenarios where creators have the autonomy to
either adopt or refrain from using GenAl tools when making
their content. Our theoretical results and empirical find-
ings deliver a promising outlook: despite GenAI’s potential
to disrupt the human content generation market, a stable
equilibrium with desirable characteristics is attainable.

Our contributions lie in three aspects: (a) modeling-wise,
we are the first to formally propose a mathematical model
to characterize the competition between human and GenAl,
including an exclusive competition context where GenAl
acts as an exogenous source and an inclusive context where
each creator can strategically decide to use GenAl or not;
(b) conceptually, our theories and experiments provide en-
couraging answers to important questions regarding human-
vs-Al competition, derive new insights and offer prediction
about future online content markets in the coming era; and
(c) technique-wise, our model not only generalizes the clas-
sic Tullock contest but also derives several novel attributes
concerning the equilibrium of the competition, enriching
the existing literature with new theoretical advancements.

2. Related Work

An emerging line of work focuses on online content econ-
omy and the modeling of content creator competitions (Ben-
Porat & Tennenholtz, 2017; 2018; Yao et al., 2023b;a; Zhu
etal., 2023; Hu et al., 2023; Jagadeesan et al., 2023; Hron
et al., 2022). In these models, content creators strategically
choose their production strategies, e.g., the quality (Hu et al.,
2023; Hron et al., 2022) or type (Jagadeesan et al., 2023) of
their content, and compete for different objectives such as
traffic (Hron et al., 2022; Ben-Porat & Tennenholtz, 2017),
user engagement (Yao et al., 2023a), or platform provided
incentives (Zhu et al., 2023; Yao et al., 2023b). Some of
them aim to understand the property of creator side equi-
librium, for example, how creators will specialize at the
equilibrium (Jagadeesan et al., 2023), how creators’ strate-
gic behavior affects social welfare (Yao et al., 2023a), and
how to design optimization method for long-term welfare
considering content creators’ strategic behaviors (Ben-Porat
& Tennenholtz, 2017; 2018; Yao et al., 2023b; Zhu et al.,
2023; Hu et al., 2023; Immorlica et al., 2024; Mladenov
et al., 2020). Our competition model introduces GenAl
creators into the arena for the first time and we investigate
the impact of GenAl technology to human creators through

analyzing the properties of the competition equilibrium.

In Tullock contest (Tullock, 1980), also known as lottery
contest, the probability of each player winning a fixed prize
is the ratio between the effort she spends and the total ef-
fort exerted by all players. The Nash equilibrium of one-
dimensional Tullock contest with homogeneous cost is well
understood (Ewerhart, 2015; 2017) and some natural exten-
sions have been well studied, for example, the prize value
is a linear function (Chowdhury & Sheremeta, 2011), play-
ers are equipped with convex loss (Ghosh, 2023). Recent
works employ game-theoretical models similar to Tullock
contest (Hron et al., 2022; Yao et al., 2023a) to model con-
tent creator competition. Our model extends the scope of
Tullock contest by introducing GenAl players and properties
of such players based on the up-to-date understandings of
foundation models behind such technology, and considering
heterogeneous cost functions.

3. Modeling the Content Creation Competition
between Humans and GenAl

In this section, we formally introduce our model for hu-
man and GenAlI content creation competition. Our model is
rooted in and strictly generalizes the textbook model of the
Tullock contest (Tullock, 1980), which is perhaps the most
widely adopted paradigm to model contests (Dechenaux
et al., 2015; Szymanski, 2003; Mueller, 2003) and has re-
cently been used to model competitions among content cre-
ators (Hron et al., 2022; Yao et al., 2023a) and bitcoin miners
(Leshno & Strack, 2020; Arnosti & Weinberg, 2022).

Modeling human creators. There are n human content
creators competing over K topics. Throughout, we use the
notation [n] = {1,2,--- ,n} for any integer n. In practice,
each topic k € [K] can be viewed as either an explicit sub-
ject (e.g., a trending tag) or a latent theme associated with a
user preference group. Each creator competes for user atten-
tion by generating content for different topics. Formally, let
x;k € [0, 00) denote the calibrated body of content on topic
k generated by creator 7, where calibration accounts for both
the quality and quantity of content. In words, x;; captures
creator ¢’s level of competitiveness on topic k, and is re-
ferred to as the body of content. Following game-theoretic
conventions, we refer to the (deterministic) effort allocation
vector z; = (zix)1_, € RE as a pure strategy of creator
i € [n]. Naturally, content creation is costly, and we use
¢i(x;) to denote creator i’s cost resulting from her effort
allocation x;. Throughout the paper, we assume the cost
functions to be convex and twice-differentiable, as widely
adopted in recent literature for modeling content creation
competition (Jagadeesan et al., 2023; Yao et al., 2023b),
previous literature on contest modeling (Szymanski, 2003;
Mueller, 2003) and in general models of production by firms
(Shephard, 2015). This assumption captures the feature that
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it can be easy to create some content, but continuously creat-
ing high-quality content becomes significantly more costly.

Remark 1. Our model mainly targets at understanding cre-
ators in online content platforms (e.g., Instagram, Tiktok,
Youtube). These creators typically produce content at a
high frequency with relatively low effort per piece, given
the large volume of user-generated content on these plat-
forms. Such characteristics make the adoption of GenAl
technologies particularly appealing and this is also why we
assume creators’ costs share the same form but only differ in
parameters. However, our model might be less applicable to
creators in a broader sense who exhibit different traits. For
example, creators in arts and humanities domains typically
produce content at a lower frequency and engage in higher
intellectual effort, with a greater emphasis on human innova-
tion. While an in-depth study of content creation behaviors
in the arts and humanities is a fascinating topic, it is beyond
the scope of this work.

GenAls as a new type of content creators. The core
novelty introduced by our modeling, both conceptually and
technically, is the integration of the GenAl into the content
creation competition. The competitiveness of GenAl on
each topic k depends on two major factors: (a) the total
body of content that human creators have generated for
topic k, i.e., the source of training data for GenAl; and (b)
the learning capability of the GenAl model. Formally, given
all human creators’ strategies {x;}?_;, the rotal body of
created content on topic k is sy = >, ;5. We assume
that the calibrated body of content that GenAl creates for
topic k can be described by function

gr(sk) = ag - (Sk)Bk, (D

where «; captures the efficiency of data usage by the GenAl
model whereas /3, captures its convergence rate. Guided by
a folklore in the ML community, we assume all convergence
rates Oy, € [0,1] and a; > 0. Our assumption here echos
the “scaling law” in recent studies of large language models
(Kaplan et al., 2020), where it is observed that the test loss
scales as a power-law with model size and data size.

3.1. Context: Exclusive and Inclusive Competitions

Human creators and GenAl compete for user attention on
each topic k. To be most general, we assume the total user
attention/traffic on each topic k is governed by the function

user traffic at topic k: k- (sk)7", 2

which depends on the trendiness of topic k, described by
a scalar p(> 0), as well as the total body of content sy,
under topic k& with a growth rate 7, € [0, 1]. The rate 4
is introduced to capture the fact that more user traffic will
be attracted as the total volume of content increases, but it

will gradually saturate as the volume becomes extremely
large (Butler et al., 2014; Tafesse & Dayan, 2023). In the
content creation competition, this total user attention of (2)
will be split between human and GenAl creators. Next, we
consider two different situations of the competition, which
are motivated by the different stages of GenAl technology
adoption in the market.

Exclusive human-vs-GenAl competition. In this case, we
assume GenAl is a standalone creator who competes with
the n human creators. This models the situation at the early
stage of GenAl adoption in a new market, where only few
pioneering people/companies have the capability/resource
to use the technology whereas majority of the creators are
still counting on traditional approaches for content creation.
Following the standard Tullock competition model, we as-

sume human creator ¢ will attract mig fraction of
ok (sk)k +sg

the total user traffic, and hence derive the following utility

K ~
wi (s, ;) = w — i)
= on(sk)P + s
K
=T ), ()
ak(sk)ﬁk + (Sk)’)’k

k=1

where B, = By — A € [~1,1] and v, = 1 — 33, € [0,1]
are more convenient notations and will be used henceforth.
Let p = (i1, -+ , 1K), and we denote the game above as
Gex(a, 8,7, {c;}*,).! Following the convention in
the game theory literature, we study the pure Nash equilib-
rium (PNE) of this game (Nash Jr, 1950), as defined below.

Definition 1. A profile of human creator strategies {x} }?_,
forms a pure Nash equilibrium (PNE), if for every creator 1,
x; is a best response strategy; formally,

ui(x], ;) > ui(x;, x* ;) foreveryx; € RIZ(O. (@)

As widely known, the PNE does not need to always exist,
though it is often viewed as a good prediction about players’
behaviors whenever it exists and is unique (Debreu, 1952;
Fan, 1952; Glicksberg, 1952). Thus, a significant portion
of the contest analysis literature focuses on studying the
existence and uniqueness of PNE. Our analysis in this paper
focuses on the behavior of human players. GenAl in our
model is non-strategic and derives the body of content under
each topic based on the production of all human creators as
defined in (1). Thus it is not a strategic player. We believe
it is an interesting future direction to study the incentive of
GenAl creators and how that affects the competition.

'A mild technical assumption we make about the game is that
u; (s, ®—;) < 0 when any z;; — +o0o. This means the growth
of cost of making infinite volume of content always outweighs the
user traffic growth, and is needed for technical reasons.
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Remark 2. The special case K = 1, a, = 0 or B, =0
of our model corresponds to the classic Tullock contest
(Tullock, 1980). However, this model cannot serve our pur-
pose of studying human-vs-GenAl competition, and thus
we propose the strictly more general model above. To our
knowledge, this model is novel and has not be examined in
the previous literature, despite extensive works in Tullock
contest in the past 40 years. This is partially due to the fact
that in standard economic environments, there is seldom a
player whose competitiveness depends on the accumulated
competitiveness of all other players, which we believe is a
novel and unique feature of content creation by GenAls.

Inclusive human-vs-GenAl competition. As GenAl
technology becomes more mature and universally accessible
at a later stage, every human creator can opt to use it for
content creation. This motivates our analysis of another
competition context where, besides creating their own body
of content x;, every creator ¢ now has an additional option
to use GenAl for content creation. We assume the cost of
GenAl content is significantly lower than that of genuine
content and thus simply normalize the former to 0.

Formally, the inclusive human-vs-GenAl competition aug-
ments each creator’s action space to ) = RE U{ L}, where
1 denotes the action of using GenAl for content creation
and its cost is set to 0 (when compared to ¢;(x;)). To dis-
tinguish creators’ strategies in this different competition
context, we use y; € ) to denote each creator ¢’s strategy.
Given strategy profile {y;}"_,, the utility of creator i is

uwi(Yi, y—i) = 5)
K i .
{Zk—l nL~ak(sk};ﬁili§-(sk)vk - ci(wi)v ify,=x; € RIZ(O
K ag(sg)k- .
Zk:l nL-a:((s:))ﬁk +lzlsck)w ) ify, =1

where nt = |{i : y; = L}| is the number of GenAl cre-
ators and sy, is the total body of content created by (only)
humans — that is, content created by GenAls do not con-
tribute to s5.> The PNE of this new game is defined similarly
as Definition 1, by revising (4) to allow L as an additional
action. We denote this game as Grn (e, 3, v, i, {ci }7q)-

3.2. The Case of Separable Costs and 1-D Competition

To analyze asymptotic properties of the equilibrium, a use-

ful structural assumptions about the creators’ cost func-

tions is that the cost is separable across different topics, i.e.,
K

ci(x) = Y, cik(xix) for some convex ¢;, : R — R

function. Since a creator’s utility from user traffic is also

separable (see (3) and (5)), separable costs effectively “dis-

“Recent studies show that while a small amount of synthetic
data could help improve the GenAl model, too much synthetic data
(e.g., more than half) will lead to model collapse (Bertrand et al.,
2023). This is why we assume GenAlI’s capability only depends
on the total body of human created content.

entangle” the competition at different topics. Hence, our
analysis can simply focus on the competition along each
single topic, leading us to study the following 1-dimensional
(1-D) competition where each creator ¢’s action is simplified
to a scalar z; € [0, c0). This can be alternatively viewed as
a special case of our general model with K = 1. We remark
that studying competition with 1-dimensional effort value
is not as restrictive as one might first think — in fact, most
previous studies of Tullock contests, including the seminal
work by Tullock (1980), have 1-dimensional efforts.

The 1-D Competition. In order to analyze how the content
creation capability of human affects their strategies and
GenAT’s level of dominance at equilibrium, for such 1-D
competition, we consider cost function with the form

C’L('T'L) =G (%‘)p’

where parameter ¢;(> 0) captures creator ¢’s capability of
creating content whereas p(> 1) is a common parameter to
all players. This cost function form has been widely adopted
in previous literature for modeling creator economy (Ja-
gadeesan et al., 2023; Hu et al., 2023). Letc = (¢, -+ , ¢p).
Without loss of generality, we assume ¢; < ¢3 - -+ < ¢,,; that
is, creators are indexed from the most to the least efficient.
Utilities and equilibria are inherited from our definitions in
Section 3.1, by simply setting K = 1. We denote this 1-D

exclusive competition as 91(51))( (o, By vy oy py{Ci} ).

4. Exclusive Human-vs-GenAlI Competitions

To study the exclusive competition game Gg x, the most
fundamental question is, perhaps, whether this competition
among human content creators will ever reach a certain
stable outcome and, if so, which outcome. We answer this
question by studying the pure Nash equilibrium (PNE) of
the game, as described in Definition 1.

Our first main result establishes that, under mild assump-
tions, Gg x always admits a unique PNE.

Theorem 1. Consider any Grx (o, 3,7, p, (¢i))iy). If
B € [0,1]%, then the game is a strictly monotone game
hence admits a unique pure Nash Equilibrium.

Note that the primary challenge in proving Theorem 1 is
to show Gpx is a strictly monotone game, whereas the
existence and uniqueness of PNE in such games is a classic
result of Rosen (1965). It is known that standard Tullock
contest is monotone (Even-Dar et al., 2009), and we show
that the extended version of our proposed G x preserves
the monotonicity property. Recall from (3) that 5, = S —
A € [—1,1], which is the difference between GenAI’s
convergence rate and the growth rate of the total user traffic
on topic k resulted from the volume of content under this
topic. Thus the assumption of 3 € [0,1]% in Theorem 1
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means that the GenAl algorithm’s convergence rate needs
to be larger than user growth rate for each topic k.

Theorem 1 is interesting from multiple perspectives. First,
it strictly generalizes previous equilibrium existence results
in classic Tullock contest (Pérez-Castrillo & Verdier, 1992;
Cornes & Hartley, 2005), which corresponds to the spe-
cial case with K = 1, = 0 and v = 1. To the best of
our knowledge, both the model we develop and the equilib-
rium uniqueness result in Theorem 1 are new. Second, the
fact that G x is a strictly monotone game is significant be-
cause it is well-known that the PNE of monotone games can
be found efficiently. In fact, many natural multi-agent on-
line learning dynamics such as mirror descent (Bravo et al.,
2018), accelerated optimistic gradient (Cai & Zheng, 2023),
and payoff-based learning (Tatarenko & Kamgarpour, 2020)
guarantee the last-iterate convergence to the unique PNE
in strictly monotone games, even when players have mere
bandit feedback information about their utility functions.
These results suggest that the PNE of Gg x is achievable if
all creators use a reasonable update rule in their strategies.
This observation not only makes this equilibrium a plausi-
ble prediction of real-world competition but also paves the
way to our simulation-based studies in our experiments of
Section 6, where we use multi-agent mirror descent with
perfect gradient to numerically solve the PNE of G x.

Our proof of Theorem 1 starts from a classic characterization
of strictly monotone games by Rosen (1965), known as the
diagonal strict concavity (DSC). We analyze the spectrum
of the Hessian matrix of Ggx via quadratic decomposition,
and show that DSC is satisfied when ¢, B € [0, 1], o, > 0,
and oy, > 0 for some k. Full proof is given in Appendix A.

4.1. Equilibrium Properties of the 1-D Competition

We now take a closer look at the properties of the unique
PNE. At the micro-level, we are interested in how the human
content creators’ behaviors and utilities change with their
content creation capabilities. At the macro-level, we are
interested in how the total body of content evolves as the
total user traffic and total creator creation efficiency change.
To theoretically study these questions >, we turn to the 1-D
competition game g,(;))( described in Section 3.2. The fol-
lowing theorem illustrates multiple micro-level equilibrium
properties at the unique PNE in the 1-D competition.

Theorem 2 (Micro-level Equilibrium Properties). The
unique PNE x* = (z7,---,2)) of the game

Q(El))( (o, By, ity py { i} ) satisfies following properties:
1. Monotonicity of action and utility in creator capabil-
ity: oy > - > ak and uy () > - > up(x*);
2. Monotonicity of utility in costs: if the n-th creator’s

3We will also revisit these questions empirically in Section 6.

cost increases from c,, to ¢, while all other game pa-
rameters remain unchanged, then the new PNE x*
satisfies wn (T*) < up(x*);

3. Monotonicity of total creation in competition: sup-
pose a new player with cost ¢, joins the competi-
tion and ' = (x'y,--- ,x,, 2, ) is the new PNE of

g(El))( (Oé, 67 Vs s Ps {Ci}:?:—i_]l)v it holds that
> ai<) ai ©
i=1 i=1

Theorem 2 reveals three basic facts about the PNE of QS)L
First, a creator with higher creation cost tends to generate
less content and receive lower utility at the PNE. Second,
if one creator suffers from an increased cost, her utility
decreases at the new equilibrium. The third property states
that whenever a new creator joins and induces a new PNE,
the volume of the original n creators’ content creation would
decrease in response to the more competitive environment.
All these properties are quite intuitive and insightful in a
real-world competition environment and they will serve as
technical tools in the proof of our main results. The proof
of Theorem 2 is shown in Appendix B.

Our next proposition predicts how an individual creator
balances her gain from the traffic and the creation cost.

Proposition 1 (Utility—cost balance at equilibrium).
Let x* = (x},---,xz%) be the unique PNE of
Qg))( (e, By, s py {ci}iey) and s* = 37| @ be the total
body of content. For each creator i, her cost at this PNE
satisfies the following inequalities:

1 k. I 1 x¥. I

_ L <)< -t (7

2 5 +alp < < S rayr @
Note that in (7), the term W is creator 4’s gain

from the traffic and ¢;(z})” is her creation cost. Lemma 1
shows that at the PNE each creator will balance between
their gain from user traffic and creation cost such that they
only differ by a multiplicative factor between 1/(2p) and
1/p. Moreover, (7) also suggests that when the marginal
cost of creation increases (i.e., larger p), creators tend to
choose a strategy z; that incurs a smaller cost compared to
the gain, which is commonly observed in reality.

Our next main result is at the macro-level and reveals how
the total calibrated body of content s* = " | z} created
at the PNE z* = (z7,--- ,z}) is affected by the game pa-
rameters («, 8,7, (4, p, {¢; }_1). The following Hadamard
inverse of the cost vector ¢ turns out to organically appear
in our characterization: ¢~! = (cl_l, ceept) ERYL

Since c are the costs, ¢~! can be naturally interpreted as
the creation efficiency of each creator, hence the larger the
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1

better. For any vector ¢, we use ||c||, = (31, ¢?) ’? to
denote its L,-norm. It turns out that s* depends on the total
user traffic ¢ and a particular norm of the Hadamard inverse

of the cost vector ¢~ 1, as formalized below.

Theorem 3 (Macro-level Equilibrium Properties). For any
sufficiently large 1 and n, the total calibrated body of

human-created content s* at the PNE of gg))( satisfies

Cp (s*)rtet
<
Za+2 < et

<C, (8)

where C,, is a constant depending on p (but not on [3).

Note that both the lower and upper bounds in (8) are con-
stants, and the cost function c;x” is convex, as p—1 > 0. In
real-world online content market, the total amount of traffic
1 and the number of creators n are indeed formidably large,
hence usually satisfy the requirements of Theorem 3. (8)
quantifies how the total body of created content s* are deter-
mined by two macro-level factors: 1) the overall trendiness
of the topic p; and 2) the total creation efficiency of all hu-
man creators |c™!| 1 which is precisely the Eﬁ-norm

=1
of the production efficiency vector ¢~ !. In particular, the
order of their product has to be exactly (s*)YT*~1, with
lower and upper bound constants specified in (8). Hence the

larger any factor is, the larger s* is. *

A few important insights can be learned from Theorem 3.
First, note that GenAl’s learning rate 5 did not show up
in (8) whereas the GenAI’s data efficiency parameter o
does, though it only mildly effects the denominator of the
lower bound term. We view this as encouraging message
to human creators, as even though GenAl may potentially
outperform any individual human creator (i.e., volume of
content created by GenAl can be significantly larger than
any z;), on the macro-level they will only affect the total
body of created content by up to a constant factor. From the
macro perspective, we view this observation as a symbio-
sis rather than fundamental conflicts between GenAl and
human creators, answering the question raised in the Intro-
duction section. However, we remark that this macro-level
characterizations do not rule out the possibility that, at the
individual level, some creators may do significantly worse.

Second, Theorem 3 helps us understand how the total body
of content evolves as either creator popularity or total plat-
form user traffic change. The term ||¢ ™| _._ (recall p > 1)
increases when either (a) any individual creator’s cost de-
creases or (b) more creators join the competition. These
situations will always lead to more human-created con-
tent. Moreover, Theorem 3 offers additional insights about
how the total content creation scales with respect to the
trendiness of the topic p and human production efficiency

1
—1

“This is also why ¢! (not ¢) organically arrives in the result.

characterized by Hcil||%. For more insight, a useful
=

special case to consider is when every creator’s cost ¢; is
around some constant ¢, then the total creation efficiency
HCH; is around ¢~ 'n?~! and (8) can be simplified to
-P

s* =0 ((2)*n' =) = O ((:£)“n), where w = ﬁ.
An interesting observation is that, as creation cost rate p
decreases, w increases; the total body of content s* will
increase when the overall trendiness p outweighs certain
competition level cn” of the population, but will decrease
when p becomes smaller than cn”. This shows an intrigu-
ing double-edged effect of human creation efficiency on the
total body of content — better efficiency increases content
creation when there is sufficient user demand but, somewhat
surprisingly, it will reduce content creation when the user
demand is not sufficient. Moreover, when p(> 1) decreases
to approach 1, w — 1/~ and s* will become almost linear
in the total user traffic u.

5. Inclusive Human-vs-GenAI Competitions

In this section, we turn to the study of inclusive competi-
tion Gy, in which GenAl will now serve as an accessible
action to each creator rather than a special agent with ex-
clusive power. We similarly start by studying the PNE of
the competition. Unfortunately, unlike the case of exclusive
competition, the PNE of G; may not exist in general if the
cost functions are non-separable, as shown below.

Theorem 4. The pure Nash equilibrium of Gy needs not
exist when K > 1, even when {c;}7_, are strongly convex.

To prove this theorem, we explicitly construct an instance
of Gy in Appendix E, and show that this game does not
admit any PNE. Our constructed instance also illustrates
an interesting tension of competition in practical scenarios.
The instance has two players, A and B, who are constantly
switching between adopting GenAl technology and using
traditional content creation method. When creator A switchs
to GenAl, it prompts the human creator B to reduce her
effort, in response to the intensified competition. However,
as B reduces her effort, the available training data for A’s
GenAl deteriorate, leading A to eventually forego GenAl
usage. This shift creates an opportunity for B to adopt
GenAl by herself, adversely affecting A’s competitiveness.
Hence A alters her strategy, which then causes B to abandon
GenAl and revert to traditional content creation. This cycle
results in an endless loop of best responses, thereby negating
the possibility of any possible PNE. By viewing the A and
B above as representative groups of human creators, we
believe that the tension revealed in this constructed instance
also presents the real-world scenario.



Human-vs-GenAl Content Creation Competition

5.1. Equilibrium Properties of the 1-D competition

Given the non-existence of PNE in general Gy game, we
naturally turn our attention to the separable-cost case hence
1-D competition, with the hope of restoring existence of
PNE in this special case. Fortunately, this indeed turns out
to be possible, as shown in the following theorem. Recall
that we assume the cost function has the form ¢;z”, and the
creators are sorted so that 0 < ¢; < --- < ¢,,. Then we can
denote the resultant game as Q%),(a, By oy oy {eiq)-

Theorem 5. Suppose B+ 5 > 1, then QS\), always ad-
mits a pure Nash equilibrium (PNE) with form y* =
(1, yTp—m, L, -, L). That is, the creators using
GenAl action | at PNE are those with top-m highest costs.

Moreover, for large enough n, i, the fraction of GenAl cre-

ators at this PNE has the following asymptotic lower bound:
=8

pote—t

_GAGe1 ®

m
—>1-C-
n an vtp—1

where C'is a constant depending on (83,7, p,c1).

Theorem 5 delivers several important messages. First, it
restores the existence of pure Nash equilibria in gﬁ@ for
the 1-D competition case and postulates that those with the
larger costs (i.e., less efficiency in human content creation)
would switch to GenAl. Although we are not able to charac-
terize all the PNEs of Qg\), rigorously, we will show in our
experiments that multiple PNEs can exist but they all seem
to share a similar property as we identified theoretically in
Theorem 5: creators with higher costs are more likely to
resort to GenAl technology at equilibria.

Second, Theorem 5 offers predictions about the conditions
under which GenAl players may dominate the content mar-
ket. It is easy to verify that the RHS of (9) is increasing w.r.t.
a, B and n. Therefore, when GenAl becomes increasingly
powerful or the number of creators is very large, more cre-
ators will switch from the traditional human content creation
to simply adopting the GenAl content creation. In addition,
(9) shows how the proportion of GenAl creators is affected

by the ratio between the size (n) and capacity (u) of the con-

_(=B)=1)

tent market: when n — oo or the growth of n! = 7+,-1

dominates pm}r;ﬂfl , the RHS of (9) approaches 1. This obser-
vation suggests that when the growth of total user traffic is
diluted by an even more rapidly growing number of content
creators, GenAl may become the better choice for almost
every creator. In this case, only the very few top creators
with the best efficiency will still generate authentic content.

6. Experiments

Since Gpx always has a unique PNE and multi-agent mir-
ror descent (Bravo et al., 2018) provably achieves such a

Total human creation at PNE
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Figure 1. The total body of content creation s* at the PNE as a
function of u, n (Left) and «, 5 (Right).

PNE, we can empirically analyze its properties which is
otherwise difficult to do theoretically. In our experiments,
we instantiate concrete games and find their PNEs using
simulations to observe how the rise of GenAl affect human
content creators. Three types of games are considered: the
exclusive competition gg))( the inclusive competition g}}@
and exclusive competition under non separable cost Gg x .

Simulation Environment. The cost function for g}}\), and
gg))( is set to ¢;(z) = ¢;x” (for non-separable cost function,
we use ¢;(x) = ¢;||z||]). For Qg))( and Qg\),, the default pa-
rameters are set ton = 10,a = 1.0, =0.5,7y=0.9,p =
1.5, 4 = 100, and {¢; }?; are randomly sampled from uni-
form distribution U[1, 10]. For Ggx, the default K = 10
and oy, B, Yk, P are set to the same values as «, 3,7, p.
More results with heterogeneous parameters are presented
in appendix. The cost {¢;}_; are randomly sampled from
U[1,10]. In the subsequent experiments, when we investi-
gate the sensitivity of the PNE on a certain parameter, we
use the specified values to replace the default ones. Other-
wise, we use default parameters to construct independent
game instances and aggregate statistics from the resulting
stochastic environments. The error bars in all results are ob-
tained from 10 independent game instances. The details of
the PNE solvers are given in Appendix G. In the following,
we study an array of interesting and important questions
for understanding creators’ collective behaviors under the
influence of GenAl, and connect our theoretical results with
the empirical findings.

Q1: How will the market size and GenAI’s ability affect
content creation volume?

Figure 1 illustrates how the total human content generation
at PNE changes w.r.t the market size (1, n) and GenAI’s
ability (v, ). The log-log plot in left panel indicates that
the total content creation volume s* grows polynomially
to p for different n, when the engagement level of GenAl
in the content market is fixed, which validates Theorem 3.
However, the right panel shows that if the GenAI’s ability
increases with a larger « or 3, the total effort from human
players shrinks. Interestingly, the total utilities (usually
referred as the social welfare) shares the same trend as
s* in terms of «, 8 and n, which means a more extensive
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Figure 2. The percentage of GenAl creators at PNE of gﬁ\; under
different o, 5 or p, n.

usage of GenAl not only adversely affects existing human
creators’ productivity but also their total welfare. Results
are presented in Appendix H.

Q2: When there is an option, how many human creators
would switch to GenAl and who are they?

We simulate the PNEs of Qg\), to answer this question. First,
we fix n = 100, x = 1000 and investigate how the ability
of GenAl affects the number of creators who switch at the
equilibrium. To solve the PNE guaranteed by Theorem 5,
we start with an equilibrium where no one use GenAl and
then take advantage of its ordered cost structure by itera-
tively determining the set of GenAl creators. Specifically,
we rank all creators in terms of their cost from high to low,
and examine whether the human creator currently with the
highest cost wants to switch to L. If so, we update the
remaining human creators’ strategies by solving a resulting
Qg))( instance and start the next round by examining the
next human creator, until we find a state where no one wants
to update her strategy. This PNE solver is summarized in
Algorithm 2 in Appendix H. From the results shown in Fig-
ure 2, at the PNE the proportion of GenAl creators grows as
«, B, n increases and declines when g grows, which aligns
with the prediction in Theorem 5.

Since the PNE of Qg\), is not unique, it is also interesting

to examine whether other PNEs of g}}\), share similar char-
acteristics as the one predicted by Theorem 5. To obtain
an arbitrary PNE of Qg\),, we adapt the PNE solver in Al-
gorithm 2: at each iteration we pick a random creator to
examine her type instead of always choosing the one with
the highest cost, and apply an equilibrium checker to verify
we arrive at a PNE. The detailed algorithm is summarized
in Algorithm 3 and 4 in Appendix G. We randomly generate
100 g}}@ instances with their cost vectors ¢ independently
sampled from U[1, 10]. For each instance, We grouped 100
creators into ten categories based on their costs and applied
the revised algorithm to determine an arbitrary PNE, subse-
quently analyzing the distribution of GenAl creators across
these groups. Our findings, as illustrated in Figure 3, con-
firm our anticipated trend that creators with higher costs
are more inclined to adopt GenAl. This indicates a cost-
dependent threshold influencing creators’ choice of strategy.

Percentage of creates switching to GenAl Percentage of creates switching to GenAl

GenAl Creators(%)

GenAl Creators(%)

e —— —— 0.0
10% 20% 30% 40% 50% 60% 70% B80% 90% 100%
Percentile in {¢;}

10% 20% 30% 40% 50% 60% 70% B0% 90% 100%
Percentile in {c¢;}

Figure 3. How likely a creator with cost ranked at different per-
centiles tend to switch to GenAl at an arbitrary PNE of QS\),
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Figure 4. Left/Right: Total/average utility and content creation of
human creators vs GenAl creators.

However, the choice becomes less predictable in the middle
of cost range, which varies according to specific conditions
and the stochastic nature of reaching equilibrium.

Q3: Does the rise of GenAl-based creators discourage
the productivity and utility of human creators?

We compare the total content creation volume and the gained
utility by both human and GenAl creators at the PNE of QS\),
obtained by Algorithm 2. The left panel of Figure 4 illus-
trates a clear trend: with an increase in GenAI’s capabilities
(larger 3), the total utility and content generation by human
creators decrease, while those by GenAl creators see an
uptick. Intriguingly, the average utility and content output
per human creator actually improve and may even exceed
those of GenAl creators as 3 approaches 1. This is because
a more potent GenAl pushes higher-cost human creators
out of the market, leaving behind a select group of effi-
cient human creators who thrive due to reduced competition.
This scenario suggests a likely future where the widespread
adoption of GenAl substitutes less efficient content creators,
capturing a significant share of viewer engagement. Never-
theless, a small, professional group of human creators will
not only persist but flourish, producing more and higher-
quality content. This scenario highlights the dual impact
of GenAl it eliminates the need for humans to perform
monotonous tasks and fosters a more vibrant and rewarding
ecosystem for the remaining, highly skilled creators.

Q4: How would creators allocate efforts in different
topics with non-separable costs?

Now we investigate how GenAls influence creators to strate-
gically balance their effort on different domains. We use
Gpx with K = 5 and Algorithm 1 to simulate its PNE
given p = (200, 100, 50, 20, 10) with a fixed « = 1.0 and
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Figure 5. o = 1.0. Left: occupation ratio on each topic. Right:
average per-topic gain. Cost uniformly sampled from ¢/[1.0, 10.0].

different 5. Here we can view a topic with larger p as a
popular domain with higher total traffic, while topic with
smaller i, represents a niche domain. To measure each
human creator’s inclination to different topics, we introduce
the concept of “occupation ratio” to quantify human cre-
ators’ engagement in a topic relative to its popularity, and
we also analyze the creator’s average utility gained from
each topic.

Our findings illustrated in Figure 5 reveal a notable shift in
human creators’ strategies as GenAl becomes more power-
ful. Initially, when GenAl is weak, humans tend to focus on
popular domains, where the potential for traffic and utility
is higher. However, as GenAlI’s strength increases (i.e., as 3
grows larger), we observe gains in both content creation vol-
ume and average utility in niche topics. This suggests a shift
in human creators’ preferences towards these niche topics.
This strategic shift can be attributed to GenAI’s heightened
competitiveness in popular domains, which increases the
volume of human-created content and prompts humans to
seek better opportunities in less contested areas. A similar
trend can be observed in Figure 6, where human creators
have lower costs. The only difference is that the average
utilities of human players in niche topics now decrease as (3
increases. This is because lower production costs lead to a
larger volume of content creation, causing GenAl to grow
faster and pose a greater threat to human creators. Never-
theless, even though the absolute values of utility drop, the
relative gain in niche topics continues to increase as GenAl
becomes more powerful. This aligns with the observation
in Figure 6.

Such a trend suggests a future where GenAl dominates in
easily accessible content areas, encouraging human creators
to specialize in niche topics that GenAl is less equipped to
handle. Such a shift not only alleviates the competitive pres-
sure on human creators but also potentially enhances their
average utility by focusing on areas where they can offer
unique value. This outcome underscores a positive dynamic:
GenAT’s proliferation in general content domains may lead
to a more diversified and specialized content ecosystem,
where human creativity is directed towards challenges that
GenAl cannot easily replicate.

Total human creation on topics (a = 1.0)

Avg. human utility on topics (a =1.0)
B

0 01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09

Avg. u® over human creators

Figure 6. o = 1.0. Left: occupation ratio on each topic. Right:
average per-topic gain. Cost uniformly sampled from ¢/[0.1, 1.0].

7. Conclusion

In this study, we introduce a competition model that captures
the competition between human and GenAl creators. Our
model examines how GenAl influences the equilibrium of
content creation, including scenarios where creators can
choose whether to incorporate GenAl tools. Our analysis
reveals that despite the disruptive potential of GenAl, a
balanced and desirable equilibrium in the content creation
market could be achieved. Our work is the first attempt in
providing a game-theoretic framework for understanding
the dynamics between human and GenAl creators, offering
positive insights into the future of the online content market
and shedding light on the evolving landscape of human-Al
competition in content creation.
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A. Proof of Theorem 1

Proof. For simplicity we denote gi(s) = s + ay, - s%*. Then the utility function can be expressed as u;(x;, z_;) =

Zszl ;k’(‘fk f“) — ¢;(x;). According to (Rosen, 1965), a game satisfies the diagonal strict concavity (DSC) condition should

have convex strategy sets and there exists parameter A = (A1, - , A,,) such that the Hessian matrix given by

i O?ui(x)  Nj 0%uj(x)
Hi' 5 é i v 27 J
](.’13, /\) 2 8:1318% + 2 aiBjaCL'i

is strictly negative-definite. And any game satisfying A-DSC condition is called monotone and has a unique pure Nash
equilibrium (PNE). First of all, since any arbitrarily large x;; would result in a negative utility which is strictly less than the
utility obtained at 0, we may without loss of generality let each creator’s strategy set be a large hypercube in R¥, which is a
convex set. Next we show our game G is 1-DSC under the specified conditions. Direct calculation shows that

2
. § 21 T4 To ... 2 1 .. Gt 0
- 9r 9k %c
_[Hij(a»')]:z,ukgk?’ <k2(g§€)2) T1 + X2 2z9 4 (ghgr) 1 2 ... +1 0 8m§2
k=1 : : .. . ]
K
= Zﬂka + Ho, (10)
k=1

where g denotes g (s ). We can see that if all the cost functions are strictly convex, the second diagonal matrix Hy in the
RHS of Eq (10) is strictly positive-definite (PD). Therefore, it suffices to show that: 1. H}, is always positive semi-definite
(PSD), and 2. if ay; > 0 for some k € [n], H, is PD.

Next we omit the subscript & and show that for any function g(s) satisfying 0 < 2s(g’)? — sg”g < 2¢'g, the following
matrix H is PSD, and if further we have 2s(g’)? — sg” g < 2g’g, H is PD.

p 2331 xr1 + T2 2
H(gg(g’)z) mbm 2l (gg) |

J'g 20 m T Xigpr oy T o . 2 1 ...
(— 5 +(g’)2> Digliay T 2ip T - +<S+ 5 _(g’)2> (Z%> 12

(— g;g + (g')2> M () + (g;g + g;g - (9’)2> (Zn: 33) M. an

1>

To proceed, we need the following Lemma:

Lemma 1. Matrices My, M defined in Eq (11) are positive semi-definite (PSD), and Apin(Mz) = 1.

Proof. To show M, (z) is PSD, it suffices to show that for any y = (y1,--- ,yn) € R", y ' M;(x)y > 0. In fact,

12
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On the other hand, My = I +1- 1T and therefore Ay, (M) = 1. O

Based on Lemma 1, we can see that a sufficient condition for H to be PSD is

5 0) 20, (12)
L4 52— (¢)? >0,
which is equivalent to
0<2s(9")? —sg"g <24'g. (13)
O

When g(s) = 57 + a - 5%, we have ¢/ = ys7~! + aBs?~1, g = y(y — 1)s7~2, and condition (13) is equivalent to

(14)

Yy +1)s272 4+ a2B8(B+ 1)s?P 72 + a(4By — B2+ B — 42 +7)s7HP72 >0,
Yy = 1) 2+ a?B(8 — 1)s?P 72 4 a(4By — B2 — B — 42 —y)s7 A2 <.

Clearly, the first equation above always holds because g > ﬁz, v > 72. The second equation holds because v < 1,5 < 1,
« > 0 and
B2+ B+7+7 2282 +27° > 4B

’

In addition, if « is strictly positive, it holds that ngg + 4 ,29 —(¢")? > 0and H is PD.

B. Proof of Theorem 2
We recapitulate Theorem 2 in the following statement: when each creator 7 is equipped with the following cost function

Q(Z?:l z;)P + (Z?:l z;)7

where 1, > 0,0 <<y <1l,p>1l,and0< ¢y < -+ <¢,. x* = (21, -+ ,x,) is the PNE of the game (necessarily
unique). Then, the following statements hold:

ui(mi»a:—i) =

- Ciiﬂf,ffi € Ry, (15)

.2 > >z, andug (x*) > -+ > uy(x®).
2. if the n-th creator’s cost increases from ¢, to é, > ¢, and the new PNE is *, we have u,, (Z*) < u,(x*).

3. if a new player with cost ¢, joins the competition and @’ = (x7,---, ), ) is the new PNE, it holds that

Z?:l :E; < Z?:l ‘/E;k

13
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The proof of Theorem 2 relies on the following Lemma 2, 3, 4 and 5. Lemma 2 gives the first-order characterization of
the PNE of gg))( and will be used extensively in our analysis. Lemma 3 and 4 point out monotone properties of different
components of the utility functions and their derivatives, and Lemma 5 describes a property of the best response function of

any players in g};))(
Lemma 2. The PNE x* (necessarily unique) of the game G specified by utility functions given in Eq (15) satisfies the
following first-order condition

dui| p ey () 4 aB e (s1)0
OTi|yye  (s*)7 - (s7)7 [(s)7 + - (5%)7]?

—cip- ()P~ =0,Vi € [n], (16)

2
where s* =" |z}
Proof. We prove the “if” and “only if” directions separately:

1. Suppose x* is the PNE of G. Since % is strictly positive when z; = 0, we have 2} > 0,Vi € [n]. Theorem 1 suggests
that G is a strictly monotone game and thus w; is strictly concave in z; given any fixed «_;. Hence, fixed * ;, we know
a7 is the unique maximizer of a strictly concave function w;(z;, z* ;), which yields the first-order condition Eq (16).

2. Suppose x* is a solution of Eq (16), we show x* must be the unique PNE of G. First of all, the solution of Eq (16)
must exist since we already showed that the unique PNE of G satisfies Eq (16). If there £* is another solution of Eq
(16), since u; is strictly concave in x;, from the first-order condition we have Z; is the maximizer of u; given &_;,
which means &* is also a PNE of G, contradicting the uniqueness of x*.

O

Lemma 3. For any constants a > 0,cq > 0 and 8, € [0, 1], the following function is monotonically decreasing when
s > 2cq:

1 co-[ys7 "t +aBsP Y
7 + ash [s7 + asB]?

fls) =

,8 > 2¢q.

Proof. We compute the first-order derivative of f directly.

(s" + 0436)3f'(5) =752V 2(coy 4+ co — 8) + azﬁszﬁd(coﬁ +co—9)

+ asTP2 [y(coy + co — 8) + B(coB + co — 8) — 20 (B —7)?] - (17)
Since 8,7 < 1 and s > 2c¢, it holds that coy + cg — s < 0 and ¢ 8 + ¢g — s < 0. Therefore, each term of the RHS of Eq
(17) is strictly negative. Hence, we conclude f/(s) < 0,Vs > 2¢q and the claim holds true. O

Lemma 4. For any constants « > 0, B > 0 and 3, € [0, 1], the following two functions are both monotonically increasing

w.rt. x:
T

(B+ )Y+ a(B+x)8
2?2(y(B+z) '+ aB(B + )51
[(B+2)" + (B + )7

hl(ﬂl‘) =

71'ER+’

ho(x) = ,x>1—-B.

Proof. Direct calculation shows that
Wy(z) = [(B+a) +a(B+x)"] 2 (B+a) " (B+ (1 —v)a) +a(B+2)° (B + (1~ B)z)) >0,
and
27 (B +2)" + a(B + ) *hy(x)
=7[2B+ (1 = y)a] - (B +2)*7?
+a[(B+7)2B+2z—1)+ 7+ —4py] - (B+2) 02
+a?B2B+2x—3—1]- (B +x)%2 (18)

14
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Since B+ x > 1, 8,7 < 1, we have
(B+7)(2B+ 2z — 1)+ 52 ++° — 48y

>(B+7) + 8% +1% — 4By
>2/ By + 28y — 4By > 0, because Ay < 1

and 2B + 2z — f — 1 > 1 — 8 > 0. Therefore, the RHS of Eq (18) is strictly positive and it holds that h}(x) > 0.

Lemma 5. In any gf;; (a0, By, y py{¢i}), if we fix the n-th player’s pure strategy x.,, = yn, then

1. the sub-game for the remaining n — 1 players admit a unique PNE (y1,- -+ ,Yn—1);

n—1

2. when n, p are sufficiently large and 1 < p < 2, it holds that max— ' {y;} < 337"} ;.

3. let BR(yn) = E;:ll y; be the function that maps player n’s arbitrary strategy vy, to the sum of other players’
equilibrium strategies. Then BR(-) is strictly decreasing in R .

Proof. The first claim is a corollary of Theorem 1. In the proof of Theorem 1, we know that the n-player game

QS))( (v, By, y py {€i}1q) is strictly monotone and satisfies 1-DSC, i.e., the game Hessian

10%u;(z)  10%u,(x)
}ii‘ 01 éé - : - J
](QL ) 2 éktifktj 2 fktjf)d@

is strictly negative-definite. When the n-th player’s strategy is fixed, the Hessian of the sub-game for the remaining (n — 1)
players is given by the (n — 1) X (n — 1) submatrix of H,;(x; 1) by excluding its n-th row and n-th column and therefore
is still strictly negative-definite. Hence, the sub-game is also 1-DSC and admits a unique PNE.

Now we show the second claim. Since we without loss of generality assume 0 < ¢; < ¢cg < -+ < ¢y, from the first-order
condition Eq (16) it follows that y; > yo > --- > y,—1. Let s = Z?;ll i, it suffices to show s > 2y.

From the definition of PNE we have

HY1
(8 4+yn)? +als +yn)’

1/(p—1 1/(p—1
( 1 ) /(p )< ( [ ) /(p=1)
c1((s+yn) + als+yn)P) c187 '

)1/<p—1>

— 1yt = ui1(y1,y-1) > u1(0,y-1) =0, (19)

Since 1 < p < 2, Eq (19) implies

IN

Y1

Hence, it is sufficient to show s > 2 ( £ , which is equivalent to

c18Y

_ T
5> 27T . (”) , (20)
C1

1
We prove Eq (20) by contradiction. Suppose s < 2 T (f) *" and denote 5o = s + y,,. Since y,, is a fixed constant

—1 At~ —1
and y is sufficiently large, we have s < 37571 - (g) """ Then fromy; > y2 > -+ > y,_; we have

p—1 1

===t pFy—1

gp1 < —— <2 (£ . @1
n—1 n—1 c1

15
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Since (y1, -+ ,Yn—1) is the PNE of the sub-game, it also satisfies Eq (16) in Lemma 2. For player n — 1 we have
Oy,
0= JUn-1
8"'37171 Tn—1=Yn—-1
o iy (ysy ' +aBsy ') 1
T B v B T Pn—1Yn—1
So T asg (89 +asg)?
y—1 B—1
Z - M 5 _ MSO(O ’j_OCO ﬂ) . _ anflyZ:i because 7,5 S 1
gt+ap;  (n—1)(s§ +asy)
L\ pony 28R\
1 . pPty— PTY—
> a 7 (1 — > _ Pnot — <N> because of Eq (21)
s + asg n—1 (n—1) €
1 PYeers
Cp—1 * 2PT71 _p—=1_
> — H <1 — ) S el because § <y <1
s0(1+a) n—1 (n—1)p=1ef™ 7
== X (p—1)2
3Fr—1 ¢! 1 1 2PT7—1 p— _p=1 =
> - n—1 (1 N 1> N PCn—1 , — . uﬂ+711 because sg < 30+7i1 . (C%) Py =1 (22)
+« n (n_l)p,16f+w71
> 0. (23)

The last Eq (23) holds because when n — +00, 1/n~! — 0 and therefore the expression in the brackets of Eq (22)
is strictly positive when n is large enough. Eq (23) draws a contradiction to the first-order equilibrium condition which
completes the proof.

Next we prove the Third claim. Let y], > y,, be another strategy of player n and we show that BR(y,,) < BR(yy,). Define
variable s = 7~ ;, and constants s* = BR(y,) = >.i—; vi,s' = BR(y,,) = 3.'," ¢//. From Lemma 2 we know
(Y1, ,Yn—1) is the unique solution of

. 7—1 \B—1
p i [y(s+ ) +0‘6(3+y;) ] el =0i=1,2,- n—1, (24
(s +yn)7 + als + ya)? [(s + yn)7 + s + yn)”]
and (v}, - ,y.,_1) is the unique solution of
.. ryy—1 1\B—1
H _ HTs [7(S+yn) —‘rO[B(S—'-an) ] _Cipr_l :O,Z: 172’.“ 7n_l7 (25)
(s +un) +als +y,)° [(s +yn)" + als +y,)°]

Next we prove the claim by contradiction. If the claim is not true, i.e., s’ > s*. Then there must exist j € [n — 1] such that
Y > y;. And also from the second claim of Lemma 5 we have s* > 2y;, s’ > 2y when n is large. As a result, it holds that

cipy) = & _ s (s + ) T+ aB(s 4 ya) "] because of Eq (24)
L (st )Y Falst )P [(s* + yn)7 + als* +yn)P]?
. / ~y—1 / B—1
>— - H - 5 1Y, h(f +y"1 +C/¥ﬂ(8 Zy;) ] because of Lemma 3
(S +yn) +a(s +yn) [(s +yn) +a(s +yn) ]
> 1z _ uy§ V(S yn) T B8+ yn) P because v > v
_(5’+yn)7+a(5’+yn)ﬁ [(5’+yn)7+a(5’+yn)ﬂ]2 Y; = Y5
—1 / /\B—1
m pyy - (" +yn) T+ aB(s )
>— Y y NE T y Y y AVIE because of Lemma 3
(8" +yp)" +als' +y,,) (8" +yp)" + s’ +yp,)7]
=c;p(y;)’ " because of Eq (25)

Therefore, from p > 1 we obtain y; > yé, which contradicts the fact that y; > y;. Hence, our third claim in Lemma 5 holds.

O

16
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Now we are prepared to prove Theorem 2. For simplicity we omit the superscript * and simply use * = (z1,- -+ ,Z,) to
referto G’s PNE. Let s = >, @;.

Proof. 1. Claim-1: Forany 1 <i < j <mn,if z; < z;, we have

0= Qu; _ %
o ﬁxl 8xj .
u(os — i) - 7L + aBs? ]

_ =1 p—1
B [s7 + asf]? + (e} cay ) >0,

which is a contradiction. As a result, for any 1 < ¢ < j < n it holds that z; > x;. Moreover, from Eq (16) we have

. y—1 B-1
copatt = P i+ aBsT ] (26)
s7 + ash [s7 + asB]?
Substitute Eq (26) into Eq (15) we obtain
i 1 2 (g7l B-1
wilwsw_) = — b (1o L) e et toBs 27)
7+ asP p pls7 + asB]?
Therefore, for any 1 < ¢ < j7 < n we have
_ 0 1\ | plei + ) - [ys7 ' +aBs’
il @i) =gy, @g) = (s = ) (w <1 - p> * o5 + a2 20,
because x; > z; and p > 1.
2. Claim-2: Let sg = Z?Zl z;. From Eq (16) we have
i Uy - [y87 "+ aBsP o1
_ —cn =0, 28
s + asB [s7 + asf]? CnPTn (28)
= ~y—1 B—1
£ B bvsg +ﬁo‘550 | _ e par1 =0, (29)
sg + asg [sg + asg)?
First we show &,, < x,. From Lemma 5 we know if we define (y1,--- ,yn,—1) as the best-response mapping of

player from 1 to n — 1 given player n’s pure strategy y.,, the function F'(y,,) = Z?:_ll y; is well-defined and strictly
decreasing. Note that s = F'(x,,) + x,,, the LHS of Eq (28) can be rewritten as

H _ HTn - [Y(F(2zn) + xn)vil +aB(F(zn) + fn)ﬁil]

G(xn§ Cn) = (F(Ql‘n) + l‘n)’y T Oé(F($n) + .’L‘n)B [(F(.%‘n) + xn)’y + a(F(mn) + ‘rn)B]Q

_ p—1
Cnpxh .

(30)
From the existence and uniqueness of G’s PNE we know that « = x,, is the unique root of equation G(z; ¢, ) = 0 and
x = I, is the unique root of equation G(x; é,) = 0.
Next, we show Z,, < x,. On the one hand, since F'() > 0, it holds that G(0;¢,) > 0. On the other hand, since
Cpn > Cp, it holds that

G(2n;En) = G(Tn;cn) + cpprl™ — é,pxf~t < 0. 31

As a result, the continuous function G(x; ¢,) has a root within the interval (0, z,,). Since Z,, is its unique root, we
obtain T,, < x,,.

From Eq (27) we have

" 1 2, y—1 B-1
tn(imy ) = —2n (1LY pwa D7+ aBsT 32)
7+ asP p pls” + asP)?
v 1 2 1 -1 B-1
U Boy) = -2 (1 - ) ALY +BO‘5SU !, 33)
sg + asg p plsg + asg)?

17
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From Eq (32) and (33), a sufficient condition for w,, (z,, Z_,) > (&, £_,) to hold is the following two inequalities:

T Tn

> , (34)
sY+ash T g 4 s
5 B 2
<xn> s aBsP T > LI [ysg™' + aﬂsgfl]. (35)
s7 + asf ) + ash

Next we prove Eq (34) and (35). Let A = F(x,,), B = F (&) and from Lemma 5 we have 0 < A < B. Then it holds
that

Tn o Tn
sT+asf  (A+x,)7 +a(A+z,)°
Ty
B+x,)" + a(B+z,)P
Tn
>(B+£n)’Y Fa(B+ )P because of Lemma 4

Ty

because A < B

T

s +ash

Similarly, we can obtain

2
(xn) [y 4 aBs? ]

57 + asP
_ (YAt )T aB(A+ )
[(A+2n)Y + (A +2,)P)?
x5 (y(B 4 x,)""" + af(B + xn)ﬁ_l)
(B +n)Y +a(B + z,)7?
n (0
[

because A < B,and 5,7 <1

2(y(B+2,)" ' +aB(B+3,)"1)
(B + 3n)7 + (B + &p,)P]?

because of Lemma 4

2
Tn _ _

Y
Sp + asg
Hence, we conclude ., (T, T —p) > Up(Tp, E—p).

: . . _ n . ko n * o) n /
. Claim-3: Define variable s = > " | z;, and constants s* = » " «F, s’ = > ", «. From Lemma 2 we know

(2%, ,2%) is the unique solution of the following equation system
[ pri [yt +aBstY
57+a3[3 o [SFY+O[.55]2 _Cszi —072— 1,27... , M. (36)

Obviously, for any 4, z; > 0,2} > 0 must hold because the LHS of Eq (36) is strictly positive when 2; = 0. Denote

the constant e =z}, ; > 0, then similarly we have that (z7, - -, 27,) is the unique solution of
- y-1 -1
a i st v+ aBls +26) I cipr{ ™t =0,i=1,2,--- ,n. (37)
(s+e)"+a(s+e)b [(s+€)7 4+ a(s+ €)?]

Next we prove the claim by contradiction. Suppose Eq (6) is not true, i.e., s’ > s*. Then there must exist j € [n] such
that 2; > x}. And also from Lemma 6 we have s* > 2x7%, s’ > 2, when n is large. As a result, it holds that

18
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ot g~ S——
207 f e g [&( ))j;ajz a)ﬂ ](fl) | because of Lemma 3
T Sk because 2] > 23
LIS L
=c;p(a)’ 1. because of Eq (37)

Therefore, from p > 1 we obtain :cj > sc;», which contradicts the fact that :I:; > :cj Hence, Eq (6) holds.

C. Proof of Proposition 1
Proof. From Eq (16) in Lemma 2 it holds that

Cip p-1 1 z; - [ys7 7 4+ aBsP Y 1
—_ l’l g —_ 2 .
1 s7 + asB [s7 + ash] s7 + asP
Hence,
Tiph
cal < - ———.
T o s +asP

On the other hand, from Theorem 2 we know x; > x5 --- > x,, and therefore x; > f Therefore, forany 1 < ¢ < n we
have

Cip p1 1 xi - [ys77 L 4+ aBsP 1
LA el _
pwo s + asP [s7 + asB]?
1 x; - [s77 + asfY
T tasf [s7 + asf]? because 5,7 < 1
- 1 s-[s77 +asfY
s+ asP i [s7 + asP)?
1—1 1 1

= . > . 38
i s7+as? T 2(s7 + asf) (38)

For i = 1, Lemma 6 suggests that z; > 5 holds for sufficiently large n and . In this case, Eq (38) also holds for i = 1. As
a result, we obtain that for any 4,

LA [ S AT

2p 57+ asP Y p 87 +asP

D. Proof of Theorem 3

As a preparation, we need the following technical lemma:

Lemma 6. If n, p are sufficiently large and 1 < p < 2, it holds that maxj_ {x;} < §

Proof. Since we without loss of generality assume 0 < ¢; < ¢3 < -+ - < ¢, from the first-order condition Eq (16) it follows
that x1 > x9 > --- > x,,. Therefore it suffices to show s > 2x;.

19
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From the definition of PNE we have
2241

m - 0155/1) = Ul(xlvm—l) > U1(07$—1) =0, (39)
Since 1 < p < 2, Eq (39) implies
1/(p—1)
o< (— M :
~ \a(s?+ asP)
. . =1 . .
Hence, it is sufficient to show s > 2 (cl“s 7) , which is equivalent to
T
s> 2750 (”) , (40)
C1

1
—1 ot~ —1
We prove Eq (40) by contradiction. Suppose s < 25T . (%) ret , then from 1 > 2o > --- > x,, we have

p—1 1
2pFv—1 p+y—1
, <2< (“) _ (41)
n n c1
Take ¢ = n in Eq (16) we have
0= ou,

(’“)mn Tp=2}
S R 1 G A e L) WU
s +ash (7 + asf)? pentn

1 ps(s’t +as -
= s7 + ash B n(s” + asﬂ)2 T Penitn 1 because 7,/ = 1
1 2(1_71)? o
C, * 2PTY— -

> % (1 - > s — : (M> because of Eq (41)

sT + as n nr C1

1 Yeee
. = —1

2“(1_)_[“./“@1 because § <y <1

5’7(1 + O[) n np_lcf+»y_1

*’Y(P:l) ﬁ ) (p717)2 - B 1
L |27 e (1 B 1) B %  pr because s < 275527 - (£> T
1 + [0 n np_lc{”ﬁ 1

> 0. (43)

The last Eq (43) holds because when n — +o00, 1/n”~! — 0 and therefore the expression in the brackets of Eq (42)
is strictly positive when n is large enough. Eq (43) draws a contradiction to the first-order equilibrium condition which
completes the proof.

O

Now we are ready to prove Theorem 3. Recall that ** = (z7,---,2}) is the unique PNE of the game
gg))( (e, B,7,p, p, {ci}i=y), and s* = "1 a} is the total content creation among all creators at the PNE. First of
all, we argue that (0, --- ,0) is not an equilibrium because when p is larger than max}* ,{c;}, we have g—gj z;=0 > 0,
meaning each creator ¢ can increase ; and gain a higher utility. To simplify the notations in the following analysis, we omit
the superscript * when there is no ambiguity.

Proof. From the first-order condition Eq (16)

O 1 pai(ysTt + afs? 1) pe1 .
dr; T +asP (s7 + asP)? — ey =0.vie ) @
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we have

]
5t adP cpr; ~ > 0. 45)
On the other hand, from Lemma 6 and v, 8 < 1 we have
0— P pmi(ys T +aBshT) cipr? ™!
7+ asP (s7 + asP)? R
pooops( T asTh)
7+ asP 2(s7 + asP)? P
K cpath (46)

- 2(s7 + asP)

Combining Eq (45) and (46) we have

u 1/(p—1) 1 1/(p—1)
i _ . 47
(mp(swasﬁ)) Smis (cz-p<sv+asﬁ>> @0

Taking summation over both sides of Eq (47) for 1 < ¢ < n and then taking exponential to (p — 1) we obtain

1 s/~ p
< < ; (48)
20057 +05%) e yipn)  p(s7 +asP)
-1 no —~1/(-D\" . -1 —1 -1 .
where |[c™||1/(p—1) = (Z¢:1 ¢ ) is the Ly /(,—1)-normof ¢™' = (c¢; ,--- , ¢, ). Hence, we obtain
Ho—1 +p—1 B+p—1 _ Hy —1
—le™ H1/pe1y < TP+ as”TPT < Sle 10—y
2p /(p=1) P /(p—1)
When 5 < ~, we also have
s1tP=1 o gvte=l | fgBtr—l (1+ a)s’YJrP*l.
Therefore, we conclude that
2 +a)p)plle™ ML, <7< pThulle | 1, (49)
which yields Eq (8) with the constant C, = p~ .
O

E. Proof of Theorem 4

Consider a Gy instance Gry (o, 3,7, 1, {ci}?,) with n = K = 2, where a = (0.25,0.25),3 = (0.5,0.5),7 =
(1.0,1.0), p = (3.0, 2.0), and the cost functions for two players are given by

c1(x1) = T(z11 + 212)%, c2(x2) = T(T21 + T22)°.

Next we show that the PNE of G,y (e, 8,4, i, {¢;}7 ;) does not exist. Suppose it has an PNE y = (y1, y2), we enumerate
all the possibilities and draw contradictions accordingly. First of all, by definition (L, 1) cannot be an PNE as both players
get negative utility at (L, 1). In this case, either player can change her strategy to y; = (0, 0) and increase her utility to
zero. Since our constructed instance is symmetric, we only need to further exclude the possibility of the following two types
of PNEs:

1. Iffy; # L,ys # L, Grn degenerates to G x with the same parameters but a« = (0, 0). According to Theorem 1, such
Gpx instance has a unique PNE. Using Algorithm 1 we can computationally pin down its PNE: y; = (211, 212) =
Yz = (221, Z22) = (0.179,0.120). And the utilities for both players at (y1, y2) is

3 2
T11 n Li2 T(z11 + :L‘12)2 = 1.875.

U , =
1(y1y2) T11 + %21 T12 + To2
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If we let the first player change her strategy from (0.179,0.120) to L, her utility will be

3 x 0.2529 2 x 0.25295
To1 + 025$815 Too + 0251’825

Ul(L7y2) = =1.953 > 1.875 = ul(y17y2)-

As a result, ((0.179,0.120), (0.179,0.120)) is not a PNE of G;n and thus G;x cannot have any PNE satisfying
y1# Ly # L
2. if Grn has a PNE of the form (L, (x21, z22)), then we have
L2101 T2 [t2

(w1, T22) = arg max{us(ys2, L)} = arg max { 7 + 7~ ca(wa1 + @a2)’}.
Y2 (w21,m22)€RL ) o1 + 'y Too + QT5y

By plugging in the game parameters and solving the RHS convex optimization problem, we obtain (x21,Z22) =
(0.124,0.085). Solving the following convex optimization we have

arg max{ui (y1, (z21,222))} = (0.176,0.118),
Y1

and we can verify that
11((0.176,0.118), (0.124,0.085)) = 2.316 > 2.168 = uy (L, (0.124,0.085)).

Hence, player 1 would change her strategy from L to (0.176,0.118). Then we can verify given player 1’s strategy
(0.176,0.118), player 2’s best response excluding L is (0.179, 0.120). However,

u5((0.179,0.120), (0.176,0.118)) = 1.894 < 1.962 = uy(L, (0.176,0.118)),

which means conditioned on player 1’s strategy (0.176,0.118), player 2 would switch to L. Hence, starting from any
PNE of the form (L, (221, 222)), we have the following best-response chain:

(J_7 (1’21, (EQQ)) — ((0176, 0118), (iCQl, 1522)) — ((0176, 0118), J_)

Denote (0.176,0.118) = («7;, z7,) and (0.124,0.085) = (x5, x35). Since the constructed Gy v instance is symmetric,
starting from ((z3;, 235), L) we also have the following best-response chain

((Z‘;l,ng), J—) — ((x;17x;2)7 (IT17‘$>{2)) - (J-7 (]"Tlv‘xTQ)) — (J-v (33;1,.13;2))-

Therefore, starting from any PNE (L, (x5, x3,)), an alternative best response update from both players would form
the following loop

(L (231, 232)) = (271, 212), (231, 229)) = (271, 2712), L) = (221, 232), 1)
= (231, 25,), (211, 212)) = (L, (211, 212)) — (L, (251, 239)).
Hence, any PNE of the form (L, (z21, 222)) does not exist.

3. By symmetry, any PNE of the form ((x11,212), L) does not exist as well.

Therefore, we conclude that the PNE of our constructed instance G does not exist.

Our example shows that the PNE of G;n need not exist even when n = K = 2 and ¢; are strongly convex func-
tions. We should note that this example can be easily extend to Gyywith arbitrarily large n. To see this, consider an
instance Grn (o, 8,7, p, {c;}7-1) with K = 2,n > 2, where a = (0.25/(n — 1),0.25/(n — 1)),8 = (0.5,0.5),vy =
(1.0,1.0), . = (3.0,2.0), and the cost functions for the first two players are

c1(x1) = T(211 + 712)%, ca(®2) = T(T21 + T92),
while the cost for the remaining players are
c1(x1) = M(zi1 + xi2)?,1 > 3,

where M > 0 is a large number. In this game, we can choose sufficiently large M such that as long as there are still human
players in the game, L is the best strategy of player ¢ for any ¢ > 3. In this case, conditioned on the other n — 2 players’
strategies, the sub-game of the first two players is the same as the 2-player counterexample we have shown and we can
similarly identify the best-response loop starting from any potential PNE.
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F. Proof of Theorem 5

The formal proof of Theorem 5 relies on Proposition 1, Lemma 2 and Theorem 3. Before diving into the details, we
point out a simple fact: for any Ql(,}\),(a, By, p, py{ci}), if a group of players commits to strategy L while the remaining

players (of size m) decide not to use L, QEB degrades to a standard game gg))( (o, 8,7, 1, p, {c;i}) with the new parameter
o’ = a(n —m) and therefore still admits a unique PNE. In the following analysis, we will use y; to refer to any strategy in
Y; = X; U{L}, and use z; to refer to player i’s human strategy in X; C R>, and reserve the notation z; to denote the PNE
strategy of player ¢ given that the identities of players who use L are known.

Proof. The proof is organized by a mathematical induction argument. We will prove the following claim:

The Induction Claim: For k = 0,1,--- ,;n — 1, if (x1,- - , &k, L, -+, L) is not an PNE, then the (n — k)-th player
can unilaterally deviate her strategy to L to increase her utility.

The Base Case: When k& = 0, we need to show that if y = (z1,--- , ) is not an PNE of g}}@, then the n-th player can
switch to L to increase her utility. Since (x1, - - - , x,,) is not an PNE, there exists a player j € [n] such that her utility strictly
increases when switching to L. If j = n, our claim is true; otherwise, for player j it holds that w; (L, x_;) > u;(z;, x_;),
i.e.,

afs —z;)P—+t T,

. oy —eix” 50
(5 —xj)7 4+ a(s —x;)P B2y BT (50)

where s = Y7, ;.

Now we show that if Eq (50) holds for some j < n, it also holds for j = n and thus the n-th player’s best response is L.

. . B—v+1
To see this, note that the function f(s) = 55 = SQW,B,}JF&S%I

B+4 > 1wehavey—1 < 0,2y——1 < 0. On the other hand, from Theorem 2 we also have u;(zj, ;) > U (Zp, ©_,,)
and x; > x,. As aresult, we obtain

is non-decreasing in s, because v — 1 < 0 and from

a(s —x,)PrH1 afs —x;)P~rtt x; Ty
. > . > . —c.xl > =" _ 1’7
(s —xp)Y + s — x,)P f= (s —z;)" + afs — ;)P Bog R a% = T HT

which suggests u, (L, x_,) > up(zn, x_y).
The Induction Argument: Suppose the induction claim holds for any ¢ < k — 1. Consider the case ¢ = k, we only need to
show thatif y = (21, ,&,—g, L, -+, L) is not an PNE, the following two statements holds:

1. Statement-1: If there exists a player j < n — k who can deviate to L to increase her utility, then player n — k can also

deviate to L to increase her utility.

2. Statement-2: For any j > n — k + 1, player 7 does not want to deviate from L to any z; € X;.

First we prove statement-1. s = 57" ;. For such a player j, it holds that u; (L, y_;) > u;(z;,y_;), i..,

afs —z;)P—tt z; o
: N 51
(s =) +alk+1)(s — ;)8 e 57+ aks? H TG D

Now we can see that the argument we want to make here is exactly the same as the one in the base case if we replace the
parameter o with o(k + 1) in the base case. Therefore, we can also show that 51 holds for j = n — k. Hence, statement-1 is
true.

Now we prove Statement-2. We will show that if there exists j > n — k + 1 who can deviate from L to some z; € X;
to increase her utility, then at y' = (2, -~ ,2;,_,, 2, _, 1, L, -+, 1), the (n — k + 1)-th player would not have
switched to L and therefore contradicting the induction claim for i = k — 1. Here we use (z,--- ,2],_,, 2 _,. ) to
denote the human players’ PNE given that the remaining (k — 1) players are using 1. For such a player j we have
ui(L,y_j) <max; ex, uj(zj,y—j), ie.,

asb’*%rl zj
{ (s+2) +alk—1)(s+2)

st T C— P
S+ akss P ma g K CJZJ}' (52)
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By the induction claim we also know at y' = (2%,--- , ], _,, %), _;, 1,1, -+, 1), the (n — k + 1)-th player can deviate to
L to increase her utility, which means
a(s)' ! T ki1

) +ak(s)P M7 T ) Falk— )5 +al,_rp,

)5 i Cnfk+1(90;sz+1)p7 (53)

where s’ = Y7~ 2. From Lemma 2 we have s’ < s. On the one hand, by the definition of PNE we have

(s"+2)7+ak—1)(s+2)

RHS of Eq (53) = max { 5 H— cn_kHzp}

z o 0 ,
>mzax{(s—|—z)V+a(k— (s + 2)P W= Cp—ky1% because s’ < s
> o P b < ¢
> max G120 falk—1)s+2)? U= Ciz €Cause Cp—p4+1 < €
= RHS of Eq (52).
On the other hand, because f(s) = ;f;l;; = Sh,ﬂ,hasw,l is non-decreasing in s, when B + 74 > 1, we also have

LHS of Eq (53) < LHS of Eq (52).

As a result, we obtain
LHS of Eq (52) > LHS of Eq (53) > RHS of Eq (53) > RHS of Eq (52),

which contradicts Eq (52). Hence, statement-2 holds and we complete the induction argument.

The induction argument implies that either there exists an m such that (z1,- -+, Zp—m, L, -+, L) is an PNE of g}}@, or the
remaining human player with the highest cost can always switch to | to increase her utility until all players will finally
switch to L. Clearly, the second scenario cannot happen because when there is only one human player left in the game,
switching to L is not her best response as it renders a zero utility. Therefore, we prove that Qg\), must possess a PNE with
the form (21, -+, Zp—m, L, -, L).

Finally we derive the condition for the threshold m. According to the induction argument, (1, , Tp_m, L, -, L) is
aPNEif and only if: 1. aty’ = (z,--- ,2),_,,, %, _ 01, L, -, L), the (n —m + 1)-th player can increase her utility
when switching to L; and 2. aty = (1, ,Zn—m, L, -+, L), the (n — m)-th player cannot increase her utility when

switching to L. These two conditions translate to

a(s')Pt1 R ,
TN~ 7 B > e : - tn—m p, 54
7+ am ) 2 a7+ alm = O 2 yp * T ) G

04(5 - mnfm)ﬂi’7+1 Tn—m
: < M T Cn—m\dn—m L. 55
(s —Tp—m)? + a(m+1)(s — Tp_m)? B> o Tamss H7° (@n—m) (55)
From Theorem 3, Eq (55) implies
— B—y+1 1
a(s In—m) u< LTn—m w12 (56)
(s —Tp_m)? +a(m~+1)(s —zp_m)? s7 + amsP 2p

< Tn—m m—+1 1 i
sT+a(m+1)sf  m a 2p

< To—m m+1 1
(s —Tp_m)Y +a(m+1)(s—zp_m)® m K 20)"
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where Eq (56) holds because Theorem 3 tells us ¢,,—, (p—m)? > ﬁ . % Hence, we obtain
1 1
N [ m+l (1 — ) ) (57)
m 2p

Theorem 2 guarantees zp, ., < 72—, and s — Ty > "niml s. Therefore, Eq (57) can be further simplified to

B—y+1
asB—7T1. (n—m—l) 5 mtl (1_1)_ (58)
n—m n—m m 2p

Since f —y+1<1 <2, m“ < 2, from Eq (58) we can derive

> n—m— 1
2(2p — 1
n_m<M.sv—B7 (59)
ap
which implies
2(2p—1
m_,_2@p-1)
n apn
202p — 1 2 \"F
>1— 22p—1) <Col“+p Tt ||W+P 1) By Theorem 3 (60)
apn =
_7_711 y—8
29y — 1 ) n—m B B Y+o—
zl—L- CopFr=T - (Zci 1/(p 1)) 61)
apn —
-B
22p — 1 5 ’
>1- (2p—1) <Co/ﬂ+1f’—1 ) ( —1/(p— 1)) e 1> ©2)
apn
y—=8
/},“Hrpfl
=1-C- _G-Bp-1 (63)
an y+p—1

where Cy = p~ 77T is a constant depending on p,~ (From Eq (49)), and C = @ . (pcl)_vjr;él is a constant

depending on (8, v, p, ¢1). O

G. Equilibrium Solver in Experiments

G.1. PNE solver for Gg x

Algorithm 1 Multi-agent Mirror Descent (MMD) with perfect gradient
Input: Maximum iteration number 7, step size 7, each player ¢’s utility function u;, error tolerance ¢, initial strategy
T, = a:(o).
repeat
Compute the exact gradient g; = V,u;(x;, x_;), Vi € [n],
Update ; < Projy, (x; +n1gi), Vi € [n].
until Maximum iteration number is reached or ||(g1, -+ ,gn)|2 < €.
Output: (z, - ,z,).

Since the strategy set X; = [0, +oc), we can simply choose a projection mapping Proj . (x) = (max(z;,0))7_;. The
utility functions of Ggx is differentiable and has closed forms so we can explicitly implement their gradients. Through
our experiment, the default 7' = 1000, = 0.05,€ = le — 4, w(o) (0.1,---,0.1). Algorithm 1 is a simplified version of
Algorithm 1 in (Bravo et al., 2018) where we replace the gradlent estimation to the exact gradient. According to Theorem
5.1 in (Bravo et al., 2018), Algorithm 1 converges to the unique PNE of G x with probability 1.
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G.2. PNE solver for gﬁ@

Since the PNE of g}}v) might not be unique, we present two PNE solvers for QS\), The first Algorithm 2 is to pin down
the PNE of the form (z1, - ,Zp—m, L, -+, L) guaranteed by Theorem 3, and the second Algorithm 4 is for finding an
arbitrary PNE. Both of them use Algorithm 1 as a subroutine. For the ease of notation, we denote gf;;( (m) as the subgame
for the first n — m players when the remaining m players with the top-m highest costs are commited to strategy L.

Algorithm 2 Solving for a targeted PNE of G5
Input: Each player ¢’s utility function u;.
Initialization: Use Algorithm 1 to solve z(*) = MMD(Q](;))( (0)), and set & = (9,
fori =nto1ldo

Compute u; (L, x_;) and u;(x;, x_;).
if ui(J_, :E_i) > uz(a:l, .’B_i) then
Setx; = L.
Update #_; = MMD(G) (n + 1 — i)).
else
Break.
end if
end for
Output: x.

To find an arbitrary PNE of gﬁ@, first we need a PNE checker as a subroutine, as shown in the following Algorithm 3.
Algorithm 3 takes as input the game instance QS\), and an arbitrary joint strategy profile x € U, );. To verify whether

is an PNE of QS\),, it checks for every player whether their is a better response: for a human player ¢, it simply compares
1’s current utility and the utility if adopting L ; for a GenAl player i, it needs to compare ¢’s current utility and the best
possible human strategy, which requires solving an optimization problem with u; as the objective function. Thanks to the
monotonicity of gﬁ@, we know wu; is concave so this optimization is tractable. If no one would like to deviate, & passes
the checker and Algorithm 3 returns True and the same « meaning x is an PNE; otherwise 3 returns False and the new
incorporating some player’s best response. Algorithm 4 works by shuffling players’ indices first, and call the PNE checker 3
at each iteration to allow an arbitrary player to improve her utility until achieving a PNE. We note that although there is no
finite time convergence guarantee for Algorithm 4, but we can be sure as long as it terminates it must return an PNE of G
In our experiments it always converge within 5000 iterations.

(1)
IN"

Algorithm 3 PNE checker for g}}\),

Input: Each player 4’s utility function w; and @ = (21, , ).
fori =1tondo
if x; 75 1 and ui(J_7:c,i) > ui(xi, JC,Z') then
Setx; = L.
Update other human players’ strategy by solving the new PNE of players excluding z;.
Return False, x;.
elseif x; = L and maxy,cr., u;(yi, €—;) > u;(L, z_;) then
Set r; = arg maxy, e, i(Yi, i)
Update other human players’ strategy by solving the new PNE of players excluding z;.
Return False, x;.
else
Continue;
end if
end for
Return True, x;.
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Algorithm 4 Solving for an arbitrary PNE of g}}@
Input: Each player 4’s utility function u; and @ = (21, , ).
Initialization: Shuffle (ci,--- , ¢, ), PNE_LFLAG=False.
while PNE_FLAG is False do
PNE_FLAG, x = PNE_checker(G'Y., z).
end while
Output: x.

H. Additional Experiments

How social welfare is affected by the market size and GenAI’s ability

Interestingly, if we define the social welfare as the total creator utilities W = 3" u;, W shares the same trend as s* in terms
of «, B, which means a more extensive usage of GenAl not only adversely affects existing human creator’s productivity but
also their utilities. Results are put in Appendix H. Interestingly, the left panel of Figure 7 shows the welfare does not rely on
n that much when fixing «, 3, 7, p.

Figure 1 illustrates how the total human content generation at PNE changes w.r.t the market size (u, n) and GenAl’s ability
(a, B). The log-log plot in left panel indicates that the total content creation volume s* grows polynomially to u for different
n, when the engagement level of GenAl in the content market is fixed, which validates Theorem 3. However, the right panel
shows that if the GenAlI’s ability increases with a larger « or 3, the total effort from human players shrinks. Interestingly,
the total utilities (usually referred as the social welfare) shares the same trend as s* in terms of «, 5 and n, which means a
more extensive usage of GenAl not only adversely affects existing human creators’ productivity but also their total welfare.
Results are presented in Appendix H.

Figure 7 and 8 show how the social welfare (defined as the sum of creators’ utilities) changes with respect to parameter
1, n, «, B. Similar to the result illustrated in Figure 1, the social welfare displays the same trend: it decreases as «, /3 increase
and increases when i increases. Notably, the left panel of Figure 7 shows the welfare does not rely on n significantly when
fixing other parameters, which means when the competition environment is set (including the strength of GenAl power/usage
and the total user traffic), all human creators as a whole can neither benefit nor suffer from their magnitude of populations.
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Figure 7. The total human utilities W = 3. u, at the PNE as a function of y, n (Left) and «, 8 (Right). Default (o, ) = (1.0, 0.5).
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Figure 8. The total human utilities W = >~ u; at the PNE as a function of p, n (Left) and «, 8 (Right). Default (o, 5) = (1.0,0.5).
The left panel shows results when 8 € {0.1,0.5,0.9} and the right panel shows results when when « € {0.1,1.0,10.0}.

Human creators’ allocation of efforts in different topics under non-separable costs

’

Figure 9, 10 illustrate the same trend as shown in Figure 5, 6 under a different « = 0.1. It also shows human creators
preference over topics shifts from popularity to niche as GenAl becomes more powerful.

Total human creation on topics (a =1.0) Avg. human utility on topics (a=1.0)
+ H1= 200 1.4 1 + H1= 200
061 —4— =100 —4= H2=100
\ —4— u3=>50 §1.2- —4— p3=50
051 Sy 4+ w=20 | § 4 =20
_ S 1.0 .
Y \ —4— us=10 o —4— us=10
0.4 \ I
~ E 0.8 1
3 5
" 03 ™ £
” \ \' 9 06
Bl 3
0.2 <
3> 0.4
4
011 I o2
0.0 1 0.0 1
0 01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09
B B

Figure 9. a = 10.0. Left: occupation ratio on each topic. Right: average per-topic gain. Cost uniformly sampled from /0.1, 1.0].
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Total human creation on topics (a=1.0) Avg. human utility on topics (a =1.0)
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Figure 10. o = 10.0. Left: occupation ratio on each topic. Right: average per-topic gain. Cost uniformly sampled from ¢/[1.0, 10.0].
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