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Abstract

The advent of generative AI (GenAI) technol-

ogy produces a transformative impact on the con-

tent creation landscape, offering alternative ap-

proaches to produce diverse, good-quality content

across media, thereby reshaping online ecosys-

tems but also raising concerns about market over-

saturation and the potential marginalization of

human creativity. Our work introduces a competi-

tion model generalized from the Tullock contest to

analyze the tension between human creators and

GenAI. Our theory and simulations suggest that

despite challenges, a stable equilibrium between

human and AI-generated content is possible. Our

work contributes to understanding the compet-

itive dynamics in the content creation industry,

offering insights into the future interplay between

human creativity and technological advancements

in GenAI.

1. Introduction

Humanity is facing increasing competition from AI in vari-

ous domains of content creation. Recently, Large Language

Models (LLMs) such as ChatGPT (Brown et al., 2020) and

Llama (Touvron et al., 2023) have been extensively used to

create social media posts (TikTok, 2023; Meta, 2024). In

January 2024, a novel fully generated by ChatGPT, ªThe

Tokyo Tower of Sympathyº, won Japan’s prestigious Akuta-

gawa Prize (Choi & Annio, 2024). Besides their impressive

text generation capabilities, LLMs also facilitate the cre-

ation of high-quality multimedia content, including images
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and videos (Ho et al., 2020), through user-friendly tools

like Midjourney and DALL-E (Ramesh et al., 2022). These

advancements signify a new era of content creation compe-

tition between humans and generative AI (GenAI). GenAI

tools can quickly produce large volumes of tailored content,

challenging human content creators in terms of speed and

cost-efficiency. This potential threat not only revolutionizes

the online content-sharing industry but also impacts our

lives and society as a whole. Specifically, GenAI lowers

the entry barrier for individuals lacking technical skills or

resources to produce high-quality content, potentially giving

them a competitive edge in the market. This shift has led

to a surge in content creation and sharing, fostering new

dynamics in online content ecosystems (Epstein et al., 2023;

Wahid et al., 2023).

However, this AI-driven transformation also brings signifi-

cant challenges and concerns (Wach et al., 2023). The ease

of generating content with AI can potentially lead to an over-

saturated market, making it harder for individual creators

to stand out or leaving truly creative human creators under

appreciated (Doshi & Hauser, 2023). A most recent event is

that Universal Music Group pulls songs from TikTok and

accuses the platform of being ªflooded with AI-generated

recordingsº that diluted the royalty pool for real, human

musicians (Sisario, 2024). This echos the Gresham’s Law

that ªbad money drives out goodº (Selgin, 2020).

On the other hand, GenAI models are not omniscient. A

key limitationÐor perhaps a defining characteristicÐof

these models is their dependency on extensive and diverse

datasets of high-quality, human-generated content for train-

ing (Bertrand et al., 2023; Briesch et al., 2023). Should

GenAIs inadvertently marginalize productive, high-quality

human content creators, the resultant decline in the qual-

ity of model-generated content is inevitable. Drawing an

analogy to biological interactions, the dynamics between

GenAI-based creators and human creators could evolve into

either symbiosis, leading to a mutually beneficial equilib-

rium, or antagonistic conflict, perpetuating rivalry and po-

tentially destabilizing the market. Therefore, an urgent and

scientifically interesting question to ask is, whether human

creators will be driven out of the market when competing

against AI-generated content, or is there a path toward a
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stable, symbiotic relationship?

In this paper, we propose a stylized model to depict the ri-

valry between traditional human content creators and those

utilizing GenAI technology. Our framework expands on the

Tullock contest model (Tullock, 1980), a model extensively

applied in econometrics to analyze competitive scenarios.

We first explore the impact of GenAI as an external influ-

encer on the equilibrium state of human creators, and then

delve into scenarios where creators have the autonomy to

either adopt or refrain from using GenAI tools when making

their content. Our theoretical results and empirical find-

ings deliver a promising outlook: despite GenAI’s potential

to disrupt the human content generation market, a stable

equilibrium with desirable characteristics is attainable.

Our contributions lie in three aspects: (a) modeling-wise,

we are the first to formally propose a mathematical model

to characterize the competition between human and GenAI,

including an exclusive competition context where GenAI

acts as an exogenous source and an inclusive context where

each creator can strategically decide to use GenAI or not;

(b) conceptually, our theories and experiments provide en-

couraging answers to important questions regarding human-

vs-AI competition, derive new insights and offer prediction

about future online content markets in the coming era; and

(c) technique-wise, our model not only generalizes the clas-

sic Tullock contest but also derives several novel attributes

concerning the equilibrium of the competition, enriching

the existing literature with new theoretical advancements.

2. Related Work

An emerging line of work focuses on online content econ-

omy and the modeling of content creator competitions (Ben-

Porat & Tennenholtz, 2017; 2018; Yao et al., 2023b;a; Zhu

et al., 2023; Hu et al., 2023; Jagadeesan et al., 2023; Hron

et al., 2022). In these models, content creators strategically

choose their production strategies, e.g., the quality (Hu et al.,

2023; Hron et al., 2022) or type (Jagadeesan et al., 2023) of

their content, and compete for different objectives such as

traffic (Hron et al., 2022; Ben-Porat & Tennenholtz, 2017),

user engagement (Yao et al., 2023a), or platform provided

incentives (Zhu et al., 2023; Yao et al., 2023b). Some of

them aim to understand the property of creator side equi-

librium, for example, how creators will specialize at the

equilibrium (Jagadeesan et al., 2023), how creators’ strate-

gic behavior affects social welfare (Yao et al., 2023a), and

how to design optimization method for long-term welfare

considering content creators’ strategic behaviors (Ben-Porat

& Tennenholtz, 2017; 2018; Yao et al., 2023b; Zhu et al.,

2023; Hu et al., 2023; Immorlica et al., 2024; Mladenov

et al., 2020). Our competition model introduces GenAI

creators into the arena for the first time and we investigate

the impact of GenAI technology to human creators through

analyzing the properties of the competition equilibrium.

In Tullock contest (Tullock, 1980), also known as lottery

contest, the probability of each player winning a fixed prize

is the ratio between the effort she spends and the total ef-

fort exerted by all players. The Nash equilibrium of one-

dimensional Tullock contest with homogeneous cost is well

understood (Ewerhart, 2015; 2017) and some natural exten-

sions have been well studied, for example, the prize value

is a linear function (Chowdhury & Sheremeta, 2011), play-

ers are equipped with convex loss (Ghosh, 2023). Recent

works employ game-theoretical models similar to Tullock

contest (Hron et al., 2022; Yao et al., 2023a) to model con-

tent creator competition. Our model extends the scope of

Tullock contest by introducing GenAI players and properties

of such players based on the up-to-date understandings of

foundation models behind such technology, and considering

heterogeneous cost functions.

3. Modeling the Content Creation Competition

between Humans and GenAI

In this section, we formally introduce our model for hu-

man and GenAI content creation competition. Our model is

rooted in and strictly generalizes the textbook model of the

Tullock contest (Tullock, 1980), which is perhaps the most

widely adopted paradigm to model contests (Dechenaux

et al., 2015; Szymanski, 2003; Mueller, 2003) and has re-

cently been used to model competitions among content cre-

ators (Hron et al., 2022; Yao et al., 2023a) and bitcoin miners

(Leshno & Strack, 2020; Arnosti & Weinberg, 2022).

Modeling human creators. There are n human content

creators competing over K topics. Throughout, we use the

notation [n] = {1, 2, · · · , n} for any integer n. In practice,

each topic k ∈ [K] can be viewed as either an explicit sub-

ject (e.g., a trending tag) or a latent theme associated with a

user preference group. Each creator competes for user atten-

tion by generating content for different topics. Formally, let

xik ∈ [0,∞) denote the calibrated body of content on topic

k generated by creator i, where calibration accounts for both

the quality and quantity of content. In words, xik captures

creator i’s level of competitiveness on topic k, and is re-

ferred to as the body of content. Following game-theoretic

conventions, we refer to the (deterministic) effort allocation

vector xi = (xik)
K
k=1 ∈ R

K
≥0 as a pure strategy of creator

i ∈ [n]. Naturally, content creation is costly, and we use

ci(xi) to denote creator i’s cost resulting from her effort

allocation xi. Throughout the paper, we assume the cost

functions to be convex and twice-differentiable, as widely

adopted in recent literature for modeling content creation

competition (Jagadeesan et al., 2023; Yao et al., 2023b),

previous literature on contest modeling (Szymanski, 2003;

Mueller, 2003) and in general models of production by firms

(Shephard, 2015). This assumption captures the feature that
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it can be easy to create some content, but continuously creat-

ing high-quality content becomes significantly more costly.

Remark 1. Our model mainly targets at understanding cre-

ators in online content platforms (e.g., Instagram, Tiktok,

Youtube). These creators typically produce content at a

high frequency with relatively low effort per piece, given

the large volume of user-generated content on these plat-

forms. Such characteristics make the adoption of GenAI

technologies particularly appealing and this is also why we

assume creators’ costs share the same form but only differ in

parameters. However, our model might be less applicable to

creators in a broader sense who exhibit different traits. For

example, creators in arts and humanities domains typically

produce content at a lower frequency and engage in higher

intellectual effort, with a greater emphasis on human innova-

tion. While an in-depth study of content creation behaviors

in the arts and humanities is a fascinating topic, it is beyond

the scope of this work.

GenAIs as a new type of content creators. The core

novelty introduced by our modeling, both conceptually and

technically, is the integration of the GenAI into the content

creation competition. The competitiveness of GenAI on

each topic k depends on two major factors: (a) the total

body of content that human creators have generated for

topic k, i.e., the source of training data for GenAI; and (b)

the learning capability of the GenAI model. Formally, given

all human creators’ strategies {xi}
n
i=1, the total body of

created content on topic k is sk =
∑n

j=1 xjk. We assume

that the calibrated body of content that GenAI creates for

topic k can be described by function

gk(sk) = αk ·
(

sk
)β̃k , (1)

where αk captures the efficiency of data usage by the GenAI

model whereas β̃k captures its convergence rate. Guided by

a folklore in the ML community, we assume all convergence

rates β̃k ∈ [0, 1] and αk > 0. Our assumption here echos

the ªscaling lawº in recent studies of large language models

(Kaplan et al., 2020), where it is observed that the test loss

scales as a power-law with model size and data size.

3.1. Context: Exclusive and Inclusive Competitions

Human creators and GenAI compete for user attention on

each topic k. To be most general, we assume the total user

attention/traffic on each topic k is governed by the function

user traffic at topic k: µk · (sk)
γ̃k , (2)

which depends on the trendiness of topic k, described by

a scalar µk(> 0), as well as the total body of content sk
under topic k with a growth rate γ̃k ∈ [0, 1]. The rate γ̃k
is introduced to capture the fact that more user traffic will

be attracted as the total volume of content increases, but it

will gradually saturate as the volume becomes extremely

large (Butler et al., 2014; Tafesse & Dayan, 2023). In the

content creation competition, this total user attention of (2)

will be split between human and GenAI creators. Next, we

consider two different situations of the competition, which

are motivated by the different stages of GenAI technology

adoption in the market.

Exclusive human-vs-GenAI competition. In this case, we

assume GenAI is a standalone creator who competes with

the n human creators. This models the situation at the early

stage of GenAI adoption in a new market, where only few

pioneering people/companies have the capability/resource

to use the technology whereas majority of the creators are

still counting on traditional approaches for content creation.

Following the standard Tullock competition model, we as-

sume human creator i will attract xik

αk(sk)
β̃k+sk

fraction of

the total user traffic, and hence derive the following utility

ui(xi,x−i) =

K
∑

k=1

xik · µk · (sk)
γ̃k

αk(sk)β̃k + sk
− ci(xi)

=
K
∑

k=1

xik · µk

αk(sk)βk + (sk)γk
− ci(xi), (3)

where βk = β̃k − γ̃k ∈ [−1, 1] and γk = 1 − γ̃k ∈ [0, 1]
are more convenient notations and will be used henceforth.

Let µ = (µ1, · · · , µK), and we denote the game above as

GEX(α,β,γ,µ, {ci}
n
i=1).

1 Following the convention in

the game theory literature, we study the pure Nash equilib-

rium (PNE) of this game (Nash Jr, 1950), as defined below.

Definition 1. A profile of human creator strategies {x∗
i }

n
i=1

forms a pure Nash equilibrium (PNE), if for every creator i,
x∗
i is a best response strategy; formally,

ui(x
∗
i ,x

∗
−i) ≥ ui(xi,x

∗
−i) for every xi ∈ R

K
≥0. (4)

As widely known, the PNE does not need to always exist,

though it is often viewed as a good prediction about players’

behaviors whenever it exists and is unique (Debreu, 1952;

Fan, 1952; Glicksberg, 1952). Thus, a significant portion

of the contest analysis literature focuses on studying the

existence and uniqueness of PNE. Our analysis in this paper

focuses on the behavior of human players. GenAI in our

model is non-strategic and derives the body of content under

each topic based on the production of all human creators as

defined in (1). Thus it is not a strategic player. We believe

it is an interesting future direction to study the incentive of

GenAI creators and how that affects the competition.

1A mild technical assumption we make about the game is that
ui(xi,x−i) < 0 when any xik → +∞. This means the growth
of cost of making infinite volume of content always outweighs the
user traffic growth, and is needed for technical reasons.
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Remark 2. The special case K = 1, αk = 0 or βk = 0
of our model corresponds to the classic Tullock contest

(Tullock, 1980). However, this model cannot serve our pur-

pose of studying human-vs-GenAI competition, and thus

we propose the strictly more general model above. To our

knowledge, this model is novel and has not be examined in

the previous literature, despite extensive works in Tullock

contest in the past 40 years. This is partially due to the fact

that in standard economic environments, there is seldom a

player whose competitiveness depends on the accumulated

competitiveness of all other players, which we believe is a

novel and unique feature of content creation by GenAIs.

Inclusive human-vs-GenAI competition. As GenAI

technology becomes more mature and universally accessible

at a later stage, every human creator can opt to use it for

content creation. This motivates our analysis of another

competition context where, besides creating their own body

of content xi, every creator i now has an additional option

to use GenAI for content creation. We assume the cost of

GenAI content is significantly lower than that of genuine

content and thus simply normalize the former to 0.

Formally, the inclusive human-vs-GenAI competition aug-

ments each creator’s action space to Y = R
K
≥0∪{⊥}, where

⊥ denotes the action of using GenAI for content creation

and its cost is set to 0 (when compared to ci(xi)). To dis-

tinguish creators’ strategies in this different competition

context, we use yi ∈ Y to denote each creator i’s strategy.

Given strategy profile {yi}
n
i=1, the utility of creator i is

ui(yi,y−i) = (5)
{
∑K

k=1
xik·µk

n⊥·αk(sk)
βk+(sk)

γk
− ci(xi), if yi = xi ∈ R

K
≥0

∑K
k=1

αk(sk)
βk ·µk

n⊥·αk(sk)
βk+(sk)

γk
, if yi = ⊥

where n⊥ = |{i : yi = ⊥}| is the number of GenAI cre-

ators and sk is the total body of content created by (only)

humans ± that is, content created by GenAIs do not con-

tribute to sk.2 The PNE of this new game is defined similarly

as Definition 1, by revising (4) to allow ⊥ as an additional

action. We denote this game as GIN (α,β,γ,µ, {ci}
n
i=1).

3.2. The Case of Separable Costs and 1-D Competition

To analyze asymptotic properties of the equilibrium, a use-

ful structural assumptions about the creators’ cost func-

tions is that the cost is separable across different topics, i.e.,

ci(x) =
∑K

k=1 cik(xik) for some convex cik : R → R

function. Since a creator’s utility from user traffic is also

separable (see (3) and (5)), separable costs effectively ªdis-

2Recent studies show that while a small amount of synthetic
data could help improve the GenAI model, too much synthetic data
(e.g., more than half) will lead to model collapse (Bertrand et al.,
2023). This is why we assume GenAI’s capability only depends
on the total body of human created content.

entangleº the competition at different topics. Hence, our

analysis can simply focus on the competition along each

single topic, leading us to study the following 1-dimensional

(1-D) competition where each creator i’s action is simplified

to a scalar xi ∈ [0,∞). This can be alternatively viewed as

a special case of our general model with K = 1. We remark

that studying competition with 1-dimensional effort value

is not as restrictive as one might first think Ð in fact, most

previous studies of Tullock contests, including the seminal

work by Tullock (1980), have 1-dimensional efforts.

The 1-D Competition. In order to analyze how the content

creation capability of human affects their strategies and

GenAI’s level of dominance at equilibrium, for such 1-D

competition, we consider cost function with the form

ci(xi) = ci · (xi)
ρ,

where parameter ci(> 0) captures creator i’s capability of

creating content whereas ρ(≥ 1) is a common parameter to

all players. This cost function form has been widely adopted

in previous literature for modeling creator economy (Ja-

gadeesan et al., 2023; Hu et al., 2023). Let c = (c1, · · · , cn).
Without loss of generality, we assume c1 ≤ c2 · · · ≤ cn; that

is, creators are indexed from the most to the least efficient.

Utilities and equilibria are inherited from our definitions in

Section 3.1, by simply setting K = 1. We denote this 1-D

exclusive competition as G
(1)
EX(α, β, γ, µ, ρ, {ci}

n
i=1).

4. Exclusive Human-vs-GenAI Competitions

To study the exclusive competition game GEX , the most

fundamental question is, perhaps, whether this competition

among human content creators will ever reach a certain

stable outcome and, if so, which outcome. We answer this

question by studying the pure Nash equilibrium (PNE) of

the game, as described in Definition 1.

Our first main result establishes that, under mild assump-

tions, GEX always admits a unique PNE.

Theorem 1. Consider any GEX(α,β,γ,µ, (ci)
n
i=1). If

β ∈ [0, 1]K , then the game is a strictly monotone game

hence admits a unique pure Nash Equilibrium.

Note that the primary challenge in proving Theorem 1 is

to show GEX is a strictly monotone game, whereas the

existence and uniqueness of PNE in such games is a classic

result of Rosen (1965). It is known that standard Tullock

contest is monotone (Even-Dar et al., 2009), and we show

that the extended version of our proposed GEX preserves

the monotonicity property. Recall from (3) that βk = β̃k −
γ̃k ∈ [−1, 1], which is the difference between GenAI’s

convergence rate and the growth rate of the total user traffic

on topic k resulted from the volume of content under this

topic. Thus the assumption of β ∈ [0, 1]K in Theorem 1
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means that the GenAI algorithm’s convergence rate needs

to be larger than user growth rate for each topic k.

Theorem 1 is interesting from multiple perspectives. First,

it strictly generalizes previous equilibrium existence results

in classic Tullock contest (PÂerez-Castrillo & Verdier, 1992;

Cornes & Hartley, 2005), which corresponds to the spe-

cial case with K = 1,α = 0 and γ = 1. To the best of

our knowledge, both the model we develop and the equilib-

rium uniqueness result in Theorem 1 are new. Second, the

fact that GEX is a strictly monotone game is significant be-

cause it is well-known that the PNE of monotone games can

be found efficiently. In fact, many natural multi-agent on-

line learning dynamics such as mirror descent (Bravo et al.,

2018), accelerated optimistic gradient (Cai & Zheng, 2023),

and payoff-based learning (Tatarenko & Kamgarpour, 2020)

guarantee the last-iterate convergence to the unique PNE

in strictly monotone games, even when players have mere

bandit feedback information about their utility functions.

These results suggest that the PNE of GEX is achievable if

all creators use a reasonable update rule in their strategies.

This observation not only makes this equilibrium a plausi-

ble prediction of real-world competition but also paves the

way to our simulation-based studies in our experiments of

Section 6, where we use multi-agent mirror descent with

perfect gradient to numerically solve the PNE of GEX .

Our proof of Theorem 1 starts from a classic characterization

of strictly monotone games by Rosen (1965), known as the

diagonal strict concavity (DSC). We analyze the spectrum

of the Hessian matrix of GEX via quadratic decomposition,

and show that DSC is satisfied when γk, βk ∈ [0, 1], αk ≥ 0,

and αk > 0 for some k. Full proof is given in Appendix A.

4.1. Equilibrium Properties of the 1-D Competition

We now take a closer look at the properties of the unique

PNE. At the micro-level, we are interested in how the human

content creators’ behaviors and utilities change with their

content creation capabilities. At the macro-level, we are

interested in how the total body of content evolves as the

total user traffic and total creator creation efficiency change.

To theoretically study these questions 3, we turn to the 1-D

competition game G
(1)
EX described in Section 3.2. The fol-

lowing theorem illustrates multiple micro-level equilibrium

properties at the unique PNE in the 1-D competition.

Theorem 2 (Micro-level Equilibrium Properties). The

unique PNE x∗ = (x∗
1, · · · , x

∗
n) of the game

G
(1)
EX(α, β, γ, µ, ρ, {ci}

n
i=1) satisfies following properties:

1. Monotonicity of action and utility in creator capabil-

ity: x∗
1 ≥ · · · ≥ x∗

n and u1(x
∗) ≥ · · · ≥ un(x

∗);

2. Monotonicity of utility in costs: if the n-th creator’s

3We will also revisit these questions empirically in Section 6.

cost increases from cn to c̃n while all other game pa-

rameters remain unchanged, then the new PNE x̃∗

satisfies un(x̃
∗) < un(x

∗);

3. Monotonicity of total creation in competition: sup-

pose a new player with cost cn+1 joins the competi-

tion and x′ = (x′
1, · · · , x

′
n, x

′
n+1) is the new PNE of

G
(1)
EX(α, β, γ, µ, ρ, {ci}

n+1
i=1 ), it holds that

n
∑

i=1

x′
i <

n
∑

i=1

x∗
i . (6)

Theorem 2 reveals three basic facts about the PNE of G
(1)
EX .

First, a creator with higher creation cost tends to generate

less content and receive lower utility at the PNE. Second,

if one creator suffers from an increased cost, her utility

decreases at the new equilibrium. The third property states

that whenever a new creator joins and induces a new PNE,

the volume of the original n creators’ content creation would

decrease in response to the more competitive environment.

All these properties are quite intuitive and insightful in a

real-world competition environment and they will serve as

technical tools in the proof of our main results. The proof

of Theorem 2 is shown in Appendix B.

Our next proposition predicts how an individual creator

balances her gain from the traffic and the creation cost.

Proposition 1 (Utility±cost balance at equilibrium).

Let x∗ = (x∗
1, · · · , x

∗
n) be the unique PNE of

G
(1)
EX(α, β, γ, µ, ρ, {ci}

n
i=1) and s∗ =

∑n
i=1 x

∗
i be the total

body of content. For each creator i, her cost at this PNE

satisfies the following inequalities:

1

2ρ

x∗
i · µ

(s∗)γ + α(s∗)β
< ci(x

∗
i )

ρ <
1

ρ

x∗
i · µ

(s∗)γ + α(s∗)β
. (7)

Note that in (7), the term
x∗
i ·µ

(s∗)γ+α(s∗)β
is creator i’s gain

from the traffic and ci(x
∗
i )

ρ is her creation cost. Lemma 1

shows that at the PNE each creator will balance between

their gain from user traffic and creation cost such that they

only differ by a multiplicative factor between 1/(2ρ) and

1/ρ. Moreover, (7) also suggests that when the marginal

cost of creation increases (i.e., larger ρ), creators tend to

choose a strategy xi that incurs a smaller cost compared to

the gain, which is commonly observed in reality.

Our next main result is at the macro-level and reveals how

the total calibrated body of content s∗ =
∑n

i=1 x
∗
i created

at the PNE x∗ = (x∗
1, · · · , x

∗
n) is affected by the game pa-

rameters (α, β, γ, µ, ρ, {ci}
n
i=1). The following Hadamard

inverse of the cost vector c turns out to organically appear

in our characterization: c−1 = (c−1
1 , · · · , c−1

n ) ∈ R
n
+.

Since c are the costs, c−1 can be naturally interpreted as

the creation efficiency of each creator, hence the larger the
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better. For any vector c, we use ∥c∥ρ = (
∑n

i=1 c
ρ
i )

1/ρ
to

denote its Lρ-norm. It turns out that s∗ depends on the total

user traffic µ and a particular norm of the Hadamard inverse

of the cost vector c−1, as formalized below.

Theorem 3 (Macro-level Equilibrium Properties). For any

sufficiently large µ and n, the total calibrated body of

human-created content s∗ at the PNE of G
(1)
EX satisfies

Cρ

2α+ 2
<

(s∗)γ+ρ−1

µ · ∥c−1∥ 1
ρ−1

< Cρ (8)

where Cρ is a constant depending on ρ (but not on β).

Note that both the lower and upper bounds in (8) are con-

stants, and the cost function cix
ρ is convex, as ρ−1 ≥ 0. In

real-world online content market, the total amount of traffic

µ and the number of creators n are indeed formidably large,

hence usually satisfy the requirements of Theorem 3. (8)

quantifies how the total body of created content s∗ are deter-

mined by two macro-level factors: 1) the overall trendiness

of the topic µ; and 2) the total creation efficiency of all hu-

man creators ∥c−1∥ 1
ρ−1

, which is precisely the ℓ 1
ρ−1

-norm

of the production efficiency vector c−1. In particular, the

order of their product has to be exactly (s∗)γ+ρ−1, with

lower and upper bound constants specified in (8). Hence the

larger any factor is, the larger s∗ is. 4

A few important insights can be learned from Theorem 3.

First, note that GenAI’s learning rate β did not show up

in (8) whereas the GenAI’s data efficiency parameter α
does, though it only mildly effects the denominator of the

lower bound term. We view this as encouraging message

to human creators, as even though GenAI may potentially

outperform any individual human creator (i.e., volume of

content created by GenAI can be significantly larger than

any xi), on the macro-level they will only affect the total

body of created content by up to a constant factor. From the

macro perspective, we view this observation as a symbio-

sis rather than fundamental conflicts between GenAI and

human creators, answering the question raised in the Intro-

duction section. However, we remark that this macro-level

characterizations do not rule out the possibility that, at the

individual level, some creators may do significantly worse.

Second, Theorem 3 helps us understand how the total body

of content evolves as either creator popularity or total plat-

form user traffic change. The term ∥c−1∥ 1
ρ−1

(recall ρ ≥ 1)

increases when either (a) any individual creator’s cost de-

creases or (b) more creators join the competition. These

situations will always lead to more human-created con-

tent. Moreover, Theorem 3 offers additional insights about

how the total content creation scales with respect to the

trendiness of the topic µ and human production efficiency

4This is also why c
−1 (not c) organically arrives in the result.

characterized by ∥c−1∥ 1
ρ−1

. For more insight, a useful

special case to consider is when every creator’s cost ci is

around some constant c, then the total creation efficiency

∥c∥−1
1

1−ρ

is around c−1nρ−1 and (8) can be simplified to

s∗ = O
(

(µc )
ωn1−γω

)

= O
(

( µ
cnγ )

ωn
)

, where ω = 1
ρ+γ−1 .

An interesting observation is that, as creation cost rate ρ
decreases, ω increases; the total body of content s∗ will

increase when the overall trendiness µ outweighs certain

competition level cnγ of the population, but will decrease

when µ becomes smaller than cnγ . This shows an intrigu-

ing double-edged effect of human creation efficiency on the

total body of content Ð better efficiency increases content

creation when there is sufficient user demand but, somewhat

surprisingly, it will reduce content creation when the user

demand is not sufficient. Moreover, when ρ(≥ 1) decreases

to approach 1, ω → 1/γ and s∗ will become almost linear

in the total user traffic µ.

5. Inclusive Human-vs-GenAI Competitions

In this section, we turn to the study of inclusive competi-

tion GIN , in which GenAI will now serve as an accessible

action to each creator rather than a special agent with ex-

clusive power. We similarly start by studying the PNE of

the competition. Unfortunately, unlike the case of exclusive

competition, the PNE of GIN may not exist in general if the

cost functions are non-separable, as shown below.

Theorem 4. The pure Nash equilibrium of GIN needs not

exist when K > 1, even when {ci}
n
i=1 are strongly convex.

To prove this theorem, we explicitly construct an instance

of GIN in Appendix E, and show that this game does not

admit any PNE. Our constructed instance also illustrates

an interesting tension of competition in practical scenarios.

The instance has two players, A and B, who are constantly

switching between adopting GenAI technology and using

traditional content creation method. When creator A switchs

to GenAI, it prompts the human creator B to reduce her

effort, in response to the intensified competition. However,

as B reduces her effort, the available training data for A’s

GenAI deteriorate, leading A to eventually forego GenAI

usage. This shift creates an opportunity for B to adopt

GenAI by herself, adversely affecting A’s competitiveness.

Hence A alters her strategy, which then causes B to abandon

GenAI and revert to traditional content creation. This cycle

results in an endless loop of best responses, thereby negating

the possibility of any possible PNE. By viewing the A and

B above as representative groups of human creators, we

believe that the tension revealed in this constructed instance

also presents the real-world scenario.
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5.1. Equilibrium Properties of the 1-D competition

Given the non-existence of PNE in general GIN game, we

naturally turn our attention to the separable-cost case hence

1-D competition, with the hope of restoring existence of

PNE in this special case. Fortunately, this indeed turns out

to be possible, as shown in the following theorem. Recall

that we assume the cost function has the form cix
ρ, and the

creators are sorted so that 0 < c1 ≤ · · · ≤ cn. Then we can

denote the resultant game as G
(1)
IN (α, β, γ, µ, ρ, {ci}

n
i=1).

Theorem 5. Suppose β̃ + γ̃ ≥ 1, then G
(1)
IN always ad-

mits a pure Nash equilibrium (PNE) with form y∗ =
(x1, · · · , xn−m,⊥, · · · ,⊥). That is, the creators using

GenAI action ⊥ at PNE are those with top-m highest costs.

Moreover, for large enough n, µ, the fraction of GenAI cre-

ators at this PNE has the following asymptotic lower bound:

m

n
> 1− C ·

µ
γ−β

γ+ρ−1

αn1−
(γ−β)(ρ−1)

γ+ρ−1

, (9)

where C is a constant depending on (β, γ, ρ, c1).

Theorem 5 delivers several important messages. First, it

restores the existence of pure Nash equilibria in G
(1)
IN for

the 1-D competition case and postulates that those with the

larger costs (i.e., less efficiency in human content creation)

would switch to GenAI. Although we are not able to charac-

terize all the PNEs of G
(1)
IN rigorously, we will show in our

experiments that multiple PNEs can exist but they all seem

to share a similar property as we identified theoretically in

Theorem 5: creators with higher costs are more likely to

resort to GenAI technology at equilibria.

Second, Theorem 5 offers predictions about the conditions

under which GenAI players may dominate the content mar-

ket. It is easy to verify that the RHS of (9) is increasing w.r.t.

α, β and n. Therefore, when GenAI becomes increasingly

powerful or the number of creators is very large, more cre-

ators will switch from the traditional human content creation

to simply adopting the GenAI content creation. In addition,

(9) shows how the proportion of GenAI creators is affected

by the ratio between the size (n) and capacity (µ) of the con-

tent market: when n→ +∞ or the growth of n1−
(γ−β)(ρ−1)

γ+ρ−1

dominates µ
γ−β

γ+ρ−1 , the RHS of (9) approaches 1. This obser-

vation suggests that when the growth of total user traffic is

diluted by an even more rapidly growing number of content

creators, GenAI may become the better choice for almost

every creator. In this case, only the very few top creators

with the best efficiency will still generate authentic content.

6. Experiments

Since GEX always has a unique PNE and multi-agent mir-

ror descent (Bravo et al., 2018) provably achieves such a

101 102 103
100

101

102

s*

Total human creation at PNE

n= 5
n= 10
n= 20
n= 50
n= 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4

6

8

10

12

14

16

18

s*

Total human creation at PNE

= 0
= 0.5
= 1.0
= 2.0
= 5.0

Figure 1. The total body of content creation s∗ at the PNE as a

function of µ, n (Left) and α, β (Right).

PNE, we can empirically analyze its properties which is

otherwise difficult to do theoretically. In our experiments,

we instantiate concrete games and find their PNEs using

simulations to observe how the rise of GenAI affect human

content creators. Three types of games are considered: the

exclusive competition G
(1)
EX , the inclusive competition G

(1)
IN ,

and exclusive competition under non separable cost GEX .

Simulation Environment. The cost function for G
(1)
IN and

G
(1)
EX is set to ci(x) = cix

ρ (for non-separable cost function,

we use ci(x) = ci∥x∥
ρ
1). For G

(1)
EX and G

(1)
IN , the default pa-

rameters are set to n = 10, α = 1.0, β = 0.5, γ = 0.9, ρ =
1.5, µ = 100, and {ci}

n
i=1 are randomly sampled from uni-

form distribution U [1, 10]. For GEX , the default K = 10
and αk, βk, γk, ρk are set to the same values as α, β, γ, ρ.

More results with heterogeneous parameters are presented

in appendix. The cost {ci}
n
i=1 are randomly sampled from

U [1, 10]. In the subsequent experiments, when we investi-

gate the sensitivity of the PNE on a certain parameter, we

use the specified values to replace the default ones. Other-

wise, we use default parameters to construct independent

game instances and aggregate statistics from the resulting

stochastic environments. The error bars in all results are ob-

tained from 10 independent game instances. The details of

the PNE solvers are given in Appendix G. In the following,

we study an array of interesting and important questions

for understanding creators’ collective behaviors under the

influence of GenAI, and connect our theoretical results with

the empirical findings.

Q1: How will the market size and GenAI’s ability affect

content creation volume?

Figure 1 illustrates how the total human content generation

at PNE changes w.r.t the market size (µ, n) and GenAI’s

ability (α, β). The log-log plot in left panel indicates that

the total content creation volume s∗ grows polynomially

to µ for different n, when the engagement level of GenAI

in the content market is fixed, which validates Theorem 3.

However, the right panel shows that if the GenAI’s ability

increases with a larger α or β, the total effort from human

players shrinks. Interestingly, the total utilities (usually

referred as the social welfare) shares the same trend as

s∗ in terms of α, β and n, which means a more extensive

7
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Figure 2. The percentage of GenAI creators at PNE of G
(1)
IN

under

different α, β or µ, n.

usage of GenAI not only adversely affects existing human

creators’ productivity but also their total welfare. Results

are presented in Appendix H.

Q2: When there is an option, how many human creators

would switch to GenAI and who are they?

We simulate the PNEs of G
(1)
IN to answer this question. First,

we fix n = 100, µ = 1000 and investigate how the ability

of GenAI affects the number of creators who switch at the

equilibrium. To solve the PNE guaranteed by Theorem 5,

we start with an equilibrium where no one use GenAI and

then take advantage of its ordered cost structure by itera-

tively determining the set of GenAI creators. Specifically,

we rank all creators in terms of their cost from high to low,

and examine whether the human creator currently with the

highest cost wants to switch to ⊥. If so, we update the

remaining human creators’ strategies by solving a resulting

G
(1)
EX instance and start the next round by examining the

next human creator, until we find a state where no one wants

to update her strategy. This PNE solver is summarized in

Algorithm 2 in Appendix H. From the results shown in Fig-

ure 2, at the PNE the proportion of GenAI creators grows as

α, β, n increases and declines when µ grows, which aligns

with the prediction in Theorem 5.

Since the PNE of G
(1)
IN is not unique, it is also interesting

to examine whether other PNEs of G
(1)
IN share similar char-

acteristics as the one predicted by Theorem 5. To obtain

an arbitrary PNE of G
(1)
IN , we adapt the PNE solver in Al-

gorithm 2: at each iteration we pick a random creator to

examine her type instead of always choosing the one with

the highest cost, and apply an equilibrium checker to verify

we arrive at a PNE. The detailed algorithm is summarized

in Algorithm 3 and 4 in Appendix G. We randomly generate

100 G
(1)
IN instances with their cost vectors c independently

sampled from U [1, 10]. For each instance, We grouped 100

creators into ten categories based on their costs and applied

the revised algorithm to determine an arbitrary PNE, subse-

quently analyzing the distribution of GenAI creators across

these groups. Our findings, as illustrated in Figure 3, con-

firm our anticipated trend that creators with higher costs

are more inclined to adopt GenAI. This indicates a cost-

dependent threshold influencing creators’ choice of strategy.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentile in {ci}

0.0

0.2

0.4

0.6

0.8

1.0

Ge
nA

I C
re

at
or

s(
%

)

Percentage of creates switching to GenAI

= 0.1
= 0.3
= 0.5
= 0.7
= 0.9

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentile in {ci}

0.0

0.2

0.4

0.6

0.8

1.0

Ge
nA

I C
re

at
or

s(
%

)

Percentage of creates switching to GenAI

n= 20
n= 50
n= 100
n= 200
n= 500

Figure 3. How likely a creator with cost ranked at different per-

centiles tend to switch to GenAI at an arbitrary PNE of G
(1)
IN

.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

1000

M
et

ric
s

Human vs GenAI: total creation and utilities
Human utility
GenAI utility
Human creation
GenAI creation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

M
et

ric
s

Human vs GenAI: average creation and utilities
Human utility
GenAI utility
Human creation
GenAI creation

Figure 4. Left/Right: Total/average utility and content creation of

human creators vs GenAI creators.

However, the choice becomes less predictable in the middle

of cost range, which varies according to specific conditions

and the stochastic nature of reaching equilibrium.

Q3: Does the rise of GenAI-based creators discourage

the productivity and utility of human creators?

We compare the total content creation volume and the gained

utility by both human and GenAI creators at the PNE of G
(1)
IN

obtained by Algorithm 2. The left panel of Figure 4 illus-

trates a clear trend: with an increase in GenAI’s capabilities

(larger β), the total utility and content generation by human

creators decrease, while those by GenAI creators see an

uptick. Intriguingly, the average utility and content output

per human creator actually improve and may even exceed

those of GenAI creators as β approaches 1. This is because

a more potent GenAI pushes higher-cost human creators

out of the market, leaving behind a select group of effi-

cient human creators who thrive due to reduced competition.

This scenario suggests a likely future where the widespread

adoption of GenAI substitutes less efficient content creators,

capturing a significant share of viewer engagement. Never-

theless, a small, professional group of human creators will

not only persist but flourish, producing more and higher-

quality content. This scenario highlights the dual impact

of GenAI: it eliminates the need for humans to perform

monotonous tasks and fosters a more vibrant and rewarding

ecosystem for the remaining, highly skilled creators.

Q4: How would creators allocate efforts in different

topics with non-separable costs?

Now we investigate how GenAIs influence creators to strate-

gically balance their effort on different domains. We use

GEX with K = 5 and Algorithm 1 to simulate its PNE

given µ = (200, 100, 50, 20, 10) with a fixed α = 1.0 and
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Figure 5. α = 1.0. Left: occupation ratio on each topic. Right:

average per-topic gain. Cost uniformly sampled from U [1.0, 10.0].

different β. Here we can view a topic with larger µk as a

popular domain with higher total traffic, while topic with

smaller µk represents a niche domain. To measure each

human creator’s inclination to different topics, we introduce

the concept of ªoccupation ratioº to quantify human cre-

ators’ engagement in a topic relative to its popularity, and

we also analyze the creator’s average utility gained from

each topic.

Our findings illustrated in Figure 5 reveal a notable shift in

human creators’ strategies as GenAI becomes more power-

ful. Initially, when GenAI is weak, humans tend to focus on

popular domains, where the potential for traffic and utility

is higher. However, as GenAI’s strength increases (i.e., as β
grows larger), we observe gains in both content creation vol-

ume and average utility in niche topics. This suggests a shift

in human creators’ preferences towards these niche topics.

This strategic shift can be attributed to GenAI’s heightened

competitiveness in popular domains, which increases the

volume of human-created content and prompts humans to

seek better opportunities in less contested areas. A similar

trend can be observed in Figure 6, where human creators

have lower costs. The only difference is that the average

utilities of human players in niche topics now decrease as β
increases. This is because lower production costs lead to a

larger volume of content creation, causing GenAI to grow

faster and pose a greater threat to human creators. Never-

theless, even though the absolute values of utility drop, the

relative gain in niche topics continues to increase as GenAI

becomes more powerful. This aligns with the observation

in Figure 6.

Such a trend suggests a future where GenAI dominates in

easily accessible content areas, encouraging human creators

to specialize in niche topics that GenAI is less equipped to

handle. Such a shift not only alleviates the competitive pres-

sure on human creators but also potentially enhances their

average utility by focusing on areas where they can offer

unique value. This outcome underscores a positive dynamic:

GenAI’s proliferation in general content domains may lead

to a more diversified and specialized content ecosystem,

where human creativity is directed towards challenges that

GenAI cannot easily replicate.
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Figure 6. α = 1.0. Left: occupation ratio on each topic. Right:

average per-topic gain. Cost uniformly sampled from U [0.1, 1.0].

7. Conclusion

In this study, we introduce a competition model that captures

the competition between human and GenAI creators. Our

model examines how GenAI influences the equilibrium of

content creation, including scenarios where creators can

choose whether to incorporate GenAI tools. Our analysis

reveals that despite the disruptive potential of GenAI, a

balanced and desirable equilibrium in the content creation

market could be achieved. Our work is the first attempt in

providing a game-theoretic framework for understanding

the dynamics between human and GenAI creators, offering

positive insights into the future of the online content market

and shedding light on the evolving landscape of human-AI

competition in content creation.
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A. Proof of Theorem 1

Proof. For simplicity we denote gk(s) = sγk + αk · s
βk . Then the utility function can be expressed as ui(xi,x−i) =

∑K
k=1

xikµk

gk(sk)
− ci(xi). According to (Rosen, 1965), a game satisfies the diagonal strict concavity (DSC) condition should

have convex strategy sets and there exists parameter λ = (λ1, · · · , λn) such that the Hessian matrix given by

Hij(x;λ) ≜
λi

2

∂2ui(x)

∂xi∂xj
+

λj

2

∂2uj(x)

∂xj∂xi

is strictly negative-definite. And any game satisfying λ-DSC condition is called monotone and has a unique pure Nash

equilibrium (PNE). First of all, since any arbitrarily large xik would result in a negative utility which is strictly less than the

utility obtained at 0, we may without loss of generality let each creator’s strategy set be a large hypercube in R
K , which is a

convex set. Next we show our game G is 1-DSC under the specified conditions. Direct calculation shows that

−[Hij(x)] =

K
∑

k=1

µkg
−3
k











(

g′′kgk
2
− (g′k)

2

)







2x1 x1 + x2 . . .
x1 + x2 2x2 . . .

...
...

. . .






+ (g′kgk)







2 1 . . .
1 2 . . .
...

...
. . .

















+









∂2c1
∂x2

1
0 . . .

0 ∂2c2
∂x2

2
. . .

...
...

. . .









≜

K
∑

k=1

µkHk +H0, (10)

where gk denotes gk(sk). We can see that if all the cost functions are strictly convex, the second diagonal matrix H0 in the

RHS of Eq (10) is strictly positive-definite (PD). Therefore, it suffices to show that: 1. Hk is always positive semi-definite

(PSD), and 2. if αk > 0 for some k ∈ [n], Hk is PD.

Next we omit the subscript k and show that for any function g(s) satisfying 0 ≤ 2s(g′)2 − sg′′g ≤ 2g′g, the following

matrix H is PSD, and if further we have 2s(g′)2 − sg′′g < 2g′g, H is PD.

H =

(

g′′g

2
− (g′)2

)







2x1 x1 + x2 . . .
x1 + x2 2x2 . . .

...
...

. . .






+ (g′g)







2 1 . . .
1 2 . . .
...

...
. . .







=

(

−
g′′g

2
+ (g′)2

)







2
∑

i ̸=1 xi

∑

i/∈{1,2} xi . . .
∑

i/∈{1,2} xi 2
∑

i ̸=2 xi . . .
...

...
. . .






+

(

g′g

s
+

g′′g

2
− (g′)2

)

(

n
∑

i=1

xi

)







2 1 . . .
1 2 . . .
...

...
. . .






,

≜

(

−
g′′g

2
+ (g′)2

)

M1(x) +

(

g′g

s
+

g′′g

2
− (g′)2

)

(

n
∑

i=1

xi

)

M2. (11)

To proceed, we need the following Lemma:

Lemma 1. Matrices M1,M2 defined in Eq (11) are positive semi-definite (PSD), and λmin(M2) = 1.

Proof. To show M1(x) is PSD, it suffices to show that for any y = (y1, · · · , yn) ∈ R
n, y⊤M1(x)y ≥ 0. In fact,

12
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y⊤M1(x)y = 2

n
∑

i=1

y2i





∑

j ̸=i

xj



+ 2
∑

i<j

yiyj





∑

k/∈{i,j}

xk





=

n
∑

i=1

y2i





∑

j ̸=i

xj



+





n
∑

i=1

y2i





∑

j ̸=i

xj



+ 2
∑

i<j

yiyj





∑

k/∈{i,j}

xk









=

n
∑

i=1

y2i





∑

j ̸=i

xj



+

n
∑

k=1

xk





∑

j ̸=k

y2j + 2
∑

i<j,i ̸=k,j ̸=k

yiyj





=

n
∑

i=1

y2i





∑

j ̸=i

xj



+

n
∑

i=1

xi





∑

j ̸=i

yj





2

≥ 0.

On the other hand, M2 = I + 1 · 1⊤ and therefore λmin(M2) = 1.

Based on Lemma 1, we can see that a sufficient condition for H to be PSD is

{

− g′′g
2 + (g′)2 ≥ 0,

g′g
s + g′′g

2 − (g′)2 ≥ 0,
(12)

which is equivalent to

0 ≤ 2s(g′)2 − sg′′g ≤ 2g′g. (13)

When g(s) = sγ + α · sβ , we have g′ = γsγ−1 + αβsβ−1, g′′ = γ(γ − 1)sγ−2, and condition (13) is equivalent to

{

γ(γ + 1)s2γ−2 + α2β(β + 1)s2β−2 + α(4βγ − β2 + β − γ2 + γ)sγ+β−2 ≥ 0,
γ(γ − 1)s2γ−2 + α2β(β − 1)s2β−2 + α(4βγ − β2 − β − γ2 − γ)sγ+β−2 ≤ 0.

(14)

Clearly, the first equation above always holds because β ≥ β2, γ ≥ γ2. The second equation holds because γ ≤ 1, β ≤ 1,

α ≥ 0 and

β2 + β + γ2 + γ ≥ 2β2 + 2γ2 ≥ 4γβ.

In addition, if α is strictly positive, it holds that g′g
s + g′′g

2 − (g′)2 > 0 and H is PD.

B. Proof of Theorem 2

We recapitulate Theorem 2 in the following statement: when each creator i is equipped with the following cost function

ui(xi,x−i) =
xi · µ

α(
∑n

j=1 xj)β + (
∑n

j=1 xj)γ
− cix

ρ
i , xi ∈ R≥0, (15)

where µ, α ≥ 0, 0 ≤ β ≤ γ ≤ 1, ρ > 1, and 0 < c1 ≤ · · · ≤ cn. x∗ = (x1, · · · , xn) is the PNE of the game (necessarily

unique). Then, the following statements hold:

1. x∗
1 ≥ · · · ≥ x∗

n, and u1(x
∗) ≥ · · · ≥ un(x

∗).

2. if the n-th creator’s cost increases from cn to c̃n > cn and the new PNE is x̃∗, we have un(x̃
∗) < un(x

∗).

3. if a new player with cost cn+1 joins the competition and x′ = (x′
1, · · · , x

′
n, x

′
n+1) is the new PNE, it holds that

∑n
i=1 x

′
i <

∑n
i=1 x

∗
i .
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The proof of Theorem 2 relies on the following Lemma 2, 3, 4 and 5. Lemma 2 gives the first-order characterization of

the PNE of G
(1)
EX and will be used extensively in our analysis. Lemma 3 and 4 point out monotone properties of different

components of the utility functions and their derivatives, and Lemma 5 describes a property of the best response function of

any players in G
(1)
EX .

Lemma 2. The PNE x∗ (necessarily unique) of the game G specified by utility functions given in Eq (15) satisfies the

following first-order condition

∂ui

∂xi

∣

∣

∣

∣

x=x∗

=
µ

(s∗)γ + α · (s∗)β
−

µx∗
i · [γ · (s

∗)γ−1 + αβ · (s∗)β−1]

[(s∗)γ + α · (s∗)β ]2
− ciρ · (x

∗
i )

ρ−1 = 0, ∀i ∈ [n], (16)

where s∗ =
∑n

i=1 x
∗
i .

Proof. We prove the ªifº and ªonly ifº directions separately:

1. Suppose x∗ is the PNE of G. Since ∂ui

∂xi
is strictly positive when xi = 0, we have x∗

i > 0, ∀i ∈ [n]. Theorem 1 suggests

that G is a strictly monotone game and thus ui is strictly concave in xi given any fixed x−i. Hence, fixed x∗
−i, we know

x∗
i is the unique maximizer of a strictly concave function ui(xi,x

∗
−i), which yields the first-order condition Eq (16).

2. Suppose x∗ is a solution of Eq (16), we show x∗ must be the unique PNE of G. First of all, the solution of Eq (16)

must exist since we already showed that the unique PNE of G satisfies Eq (16). If there x̃∗ is another solution of Eq

(16), since ui is strictly concave in xi, from the first-order condition we have x̃i is the maximizer of ui given x̃−i,

which means x̃∗ is also a PNE of G, contradicting the uniqueness of x∗.

Lemma 3. For any constants α ≥ 0, c0 > 0 and β, γ ∈ [0, 1], the following function is monotonically decreasing when

s > 2c0:

f(s) =
1

sγ + αsβ
−

c0 · [γs
γ−1 + αβsβ−1]

[sγ + αsβ ]2
, s > 2c0.

Proof. We compute the first-order derivative of f directly.

(sγ + αsβ)3f ′(s) =γs2γ−2(c0γ + c0 − s) + α2βs2β−2(c0β + c0 − s)

+ αsγ+β−2
[

γ(c0γ + c0 − s) + β(c0β + c0 − s)− 2c0(β − γ)2
]

. (17)

Since β, γ ≤ 1 and s > 2c0, it holds that c0γ + c0 − s < 0 and c0β + c0 − s < 0. Therefore, each term of the RHS of Eq

(17) is strictly negative. Hence, we conclude f ′(s) < 0, ∀s > 2c0 and the claim holds true.

Lemma 4. For any constants α ≥ 0, B > 0 and β, γ ∈ [0, 1], the following two functions are both monotonically increasing

w.r.t. x:

h1(x) =
x

(B + x)γ + α(B + x)β
, x ∈ R+,

h2(x) =
x2(γ(B + x)γ−1 + αβ(B + x)β−1)

[(B + x)γ + α(B + x)β ]2
, x > 1−B.

Proof. Direct calculation shows that

h′
1(x) = [(B + x)γ + α(B + x)β ]−2 ·

(

(B + x)γ−1(B + (1− γ)x) + α(B + x)β−1(B + (1− β)x)
)

> 0,

and

x−1[(B + x)γ + α(B + x)β ]3h′
2(x)

=γ [2B + (1− γ)x] · (B + x)2γ−2

+ α
[

(β + γ)(2B + 2x− 1) + β2 + γ2 − 4βγ
]

· (B + x)γ+β−2

+ α2β [2B + 2x− β − 1] · (B + x)2β−2 (18)

14
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Since B + x > 1, β, γ ≤ 1, we have

(β + γ)(2B + 2x− 1) + β2 + γ2 − 4βγ

≥(β + γ) + β2 + γ2 − 4βγ

≥2
√

βγ + 2βγ − 4βγ ≥ 0, because βγ ≤ 1

and 2B + 2x− β − 1 > 1− β ≥ 0. Therefore, the RHS of Eq (18) is strictly positive and it holds that h′
2(x) > 0.

Lemma 5. In any G
(1)
EX(α, β, γ, µ, ρ, {ci}), if we fix the n-th player’s pure strategy xn = yn, then

1. the sub-game for the remaining n− 1 players admit a unique PNE (y1, · · · , yn−1);

2. when n, µ are sufficiently large and 1 < ρ ≤ 2, it holds that maxn−1
i=1 {yi} <

1
2

∑n−1
i=1 yi.

3. let BR(yn) =
∑n−1

i=1 yi be the function that maps player n’s arbitrary strategy yn to the sum of other players’

equilibrium strategies. Then BR(·) is strictly decreasing in R+.

Proof. The first claim is a corollary of Theorem 1. In the proof of Theorem 1, we know that the n-player game

G
(1)
EX(α, β, γ, µ, ρ, {ci}

n
i=1) is strictly monotone and satisfies 1-DSC, i.e., the game Hessian

Hij(x;1) ≜
1

2

∂2ui(x)

∂xi∂xj
+

1

2

∂2uj(x)

∂xj∂xi

is strictly negative-definite. When the n-th player’s strategy is fixed, the Hessian of the sub-game for the remaining (n− 1)
players is given by the (n− 1)× (n− 1) submatrix of Hij(x;1) by excluding its n-th row and n-th column and therefore

is still strictly negative-definite. Hence, the sub-game is also 1-DSC and admits a unique PNE.

Now we show the second claim. Since we without loss of generality assume 0 < c1 ≤ c2 ≤ · · · ≤ cn, from the first-order

condition Eq (16) it follows that y1 ≥ y2 ≥ · · · ≥ yn−1. Let s =
∑n−1

i=1 yi, it suffices to show s > 2y1.

From the definition of PNE we have

µy1
(s+ yn)γ + α(s+ yn)β

− c1y
ρ
1 = u1(y1,y−1) ≥ u1(0,y−1) = 0, (19)

Since 1 < ρ ≤ 2, Eq (19) implies

y1 ≤

(

µ

c1((s+ yn)γ + α(s+ yn)β)

)1/(ρ−1)

<

(

µ

c1sγ

)1/(ρ−1)

.

Hence, it is sufficient to show s > 2
(

µ
c1sγ

)1/(ρ−1)

, which is equivalent to

s > 2
ρ−1

ρ+γ−1 ·

(

µ

c1

)
1

ρ+γ−1

, (20)

We prove Eq (20) by contradiction. Suppose s ≤ 2
ρ−1

ρ+γ−1 ·
(

µ
c1

)
1

ρ+γ−1

and denote s0 = s+ yn. Since yn is a fixed constant

and µ is sufficiently large, we have s0 ≤ 3
ρ−1

ρ+γ−1 ·
(

µ
c1

)
1

ρ+γ−1

. Then from y1 ≥ y2 ≥ · · · ≥ yn−1 we have

yn−1 ≤
s

n− 1
≤

2
ρ−1

ρ+γ−1

n− 1
·

(

µ

c1

)
1

ρ+γ−1

. (21)
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Since (y1, · · · , yn−1) is the PNE of the sub-game, it also satisfies Eq (16) in Lemma 2. For player n− 1 we have

0 =
∂un−1

∂xn−1

∣

∣

∣

xn−1=yn−1

=
µ

sγ0 + αsβ0
−

µyn−1(γs
γ−1
0 + αβsβ−1

0 )

(sγ0 + αsβ0 )
2

− ρcn−1y
ρ−1
n−1

≥
µ

γ
0 + αβ

0

−
µs0(

γ−1
0 +αβ−1

0 )

(n− 1)(sγ0 + αsβ0 )
2
− ρcn−1y

ρ−1
n−1 because γ, β ≤ 1

≥
µ

sγ0 + αsβ0

(

1−
1

n− 1

)

−
ρcn−1 · 2

(ρ−1)2

ρ+γ−1

(n− 1)ρ−1
·

(

µ

c1

)
ρ−1

ρ+γ−1

because of Eq (21)

≥
µ

sγ0(1 + α)

(

1−
1

n− 1

)

−
ρcn−1 · 2

(ρ−1)2

ρ+γ−1

(n− 1)ρ−1c
ρ−1

ρ+γ−1

1

· µ
ρ−1

ρ+γ−1 because β ≤ γ ≤ 1

≥





3
−γ(ρ−1)
ρ+γ−1 c

γ
ρ+γ−1

n−1

1 + α

(

1−
1

n− 1

)

−
ρcn−1 · 2

(ρ−1)2

ρ+γ−1

(n− 1)ρ−1c
ρ−1

ρ+γ−1

1



 · µ
ρ−1

ρ+γ−1 because s0 ≤ 3
ρ−1

ρ+γ−1 ·
(

µ
c1

)
1

ρ+γ−1

(22)

> 0. (23)

The last Eq (23) holds because when n → +∞, 1/nρ−1 → 0 and therefore the expression in the brackets of Eq (22)

is strictly positive when n is large enough. Eq (23) draws a contradiction to the first-order equilibrium condition which

completes the proof.

Next we prove the Third claim. Let y′n > yn be another strategy of player n and we show that BR(y′n) < BR(yn). Define

variable s =
∑n−1

i=1 xi, and constants s∗ = BR(yn) =
∑n−1

i=1 yi, s
′ = BR(y′n) =

∑n−1
i=1 y′i. From Lemma 2 we know

(y1, · · · , yn−1) is the unique solution of

µ

(s+ yn)γ + α(s+ yn)β
−

µxi · [γ(s+ yn)
γ−1 + αβ(s+ yn)

β−1]

[(s+ yn)γ + α(s+ yn)β ]2
− ciρx

ρ−1
i = 0, i = 1, 2, · · · , n− 1, (24)

and (y′1, · · · , y
′
n−1) is the unique solution of

µ

(s+ y′n)
γ + α(s+ y′n)

β
−

µxi · [γ(s+ y′n)
γ−1 + αβ(s+ y′n)

β−1]

[(s+ y′n)
γ + α(s+ y′n)

β ]2
− ciρx

ρ−1
i = 0, i = 1, 2, · · · , n− 1, (25)

Next we prove the claim by contradiction. If the claim is not true, i.e., s′ ≥ s∗. Then there must exist j ∈ [n− 1] such that

y′j ≥ yj . And also from the second claim of Lemma 5 we have s∗ > 2yj , s
′ > 2y′j when n is large. As a result, it holds that

cjρy
ρ−1
j =

µ

(s∗ + yn)γ + α(s∗ + yn)β
−

µyj · [γ(s
∗ + yn)

γ−1 + αβ(s∗ + yn)
β−1]

[(s∗ + yn)γ + α(s∗ + yn)β ]2
because of Eq (24)

≥
µ

(s′ + yn)γ + α(s′ + yn)β
−

µyj · [γ(s
′ + yn)

γ−1 + αβ(s′ + yn)
β−1]

[(s′ + yn)γ + α(s′ + yn)β ]2
because of Lemma 3

≥
µ

(s′ + yn)γ + α(s′ + yn)β
−

µy′j · [γ(s
′ + yn)

γ−1 + αβ(s′ + yn)
β−1]

[(s′ + yn)γ + α(s′ + yn)β ]2
because y′j ≥ yj

>
µ

(s′ + y′n)
γ + α(s′ + y′n)

β
−

µy′j · [γ(s
′ + y′n)

γ−1 + αβ(s′ + y′n)
β−1]

[(s′ + y′n)
γ + α(s′ + y′n)

β ]2
because of Lemma 3

=cjρ(y
′
j)

ρ−1. because of Eq (25)

Therefore, from ρ > 1 we obtain yj > y′j , which contradicts the fact that y′j ≥ yj . Hence, our third claim in Lemma 5 holds.
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Now we are prepared to prove Theorem 2. For simplicity we omit the superscript ∗ and simply use x∗ = (x1, · · · , xn) to

refer to G’s PNE. Let s =
∑n

i=1 xi.

Proof. 1. Claim-1: For any 1 ≤ i < j ≤ n, if xi < xj , we have

0 =

(

∂ui

∂xi
−

∂uj

∂xj

) ∣

∣

∣

∣

x=x∗

=
µ(xj − xi) · [γs

γ−1 + αβsβ−1]

[sγ + αsβ ]2
+ ρ(cjx

ρ−1
j − cix

ρ−1
i ) > 0,

which is a contradiction. As a result, for any 1 ≤ i < j ≤ n it holds that xi ≥ xj . Moreover, from Eq (16) we have

ciρx
ρ−1
i =

µ

sγ + αsβ
−

µxi · [γs
γ−1 + αβsβ−1]

[sγ + αsβ ]2
. (26)

Substitute Eq (26) into Eq (15) we obtain

ui(xi,x−i) =
xi · µ

sγ + αsβ

(

1−
1

ρ

)

+
µx2

i · [γs
γ−1 + αβsβ−1]

ρ[sγ + αsβ ]2
. (27)

Therefore, for any 1 ≤ i < j ≤ n we have

ui(xi,x−i)− uj(xj ,x−j) = (xi − xj) ·

(

µ

sγ + αsβ

(

1−
1

ρ

)

+
µ(xi + xj) · [γs

γ−1 + αβsβ−1]

ρ[sγ + αsβ ]2

)

≥ 0,

because xi ≥ xj and ρ ≥ 1.

2. Claim-2: Let s0 =
∑n

i=1 x̃i. From Eq (16) we have

µ

sγ + αsβ
−

µxn · [γs
γ−1 + αβsβ−1]

[sγ + αsβ ]2
− cnρx

ρ−1
n = 0, (28)

µ

sγ0 + αsβ0
−

µx̃n · [γs
γ−1
0 + αβsβ−1

0 ]

[sγ0 + αsβ0 ]
2

− c̃nρx̃
ρ−1
n = 0. (29)

First we show x̃n < xn. From Lemma 5 we know if we define (y1, · · · , yn−1) as the best-response mapping of

player from 1 to n− 1 given player n’s pure strategy yn, the function F (yn) =
∑n−1

i=1 yi is well-defined and strictly

decreasing. Note that s = F (xn) + xn, the LHS of Eq (28) can be rewritten as

G(xn; cn) ≜
µ

(F (xn) + xn)γ + α(F (xn) + xn)β
−
µxn · [γ(F (xn) + xn)

γ−1 + αβ(F (xn) + xn)
β−1]

[(F (xn) + xn)γ + α(F (xn) + xn)β ]2
−cnρx

ρ−1
n .

(30)

From the existence and uniqueness of G’s PNE we know that x = xn is the unique root of equation G(x; cn) = 0 and

x = x̃n is the unique root of equation G(x; c̃n) = 0.

Next, we show x̃n < xn. On the one hand, since F (·) > 0, it holds that G(0; c̃n) > 0. On the other hand, since

c̃n > cn, it holds that

G(xn; c̃n) = G(xn; cn) + cnρx
ρ−1
n − c̃nρx

ρ−1
n < 0. (31)

As a result, the continuous function G(x; c̃n) has a root within the interval (0, xn). Since x̃n is its unique root, we

obtain x̃n < xn.

From Eq (27) we have

un(xn,x−n) =
xn · µ

sγ + αsβ

(

1−
1

ρ

)

+
µx2

n · [γs
γ−1 + αβsβ−1]

ρ[sγ + αsβ ]2
, (32)

un(x̃n, x̃−n) =
x̃n · µ

sγ0 + αsβ0

(

1−
1

ρ

)

+
µx̃2

n · [γs
γ−1
0 + αβsβ−1

0 ]

ρ[sγ0 + αsβ0 ]
2

. (33)

17



Human-vs-GenAI Content Creation Competition

From Eq (32) and (33), a sufficient condition for un(xn,x−n) > un(x̃n, x̃−n) to hold is the following two inequalities:

xn

sγ + αsβ
>

x̃n

sγ0 + αsβ0
, (34)

(

xn

sγ + αsβ

)2

· [γsγ−1 + αβsβ−1] >

(

x̃n

sγ0 + αsβ0

)2

· [γsγ−1
0 + αβsβ−1

0 ]. (35)

Next we prove Eq (34) and (35). Let A = F (xn), B = F (x̃n) and from Lemma 5 we have 0 < A < B. Then it holds

that

xn

sγ + αsβ
=

xn

(A+ xn)γ + α(A+ xn)β

>
xn

(B + xn)γ + α(B + xn)β
because A < B

>
x̃n

(B + x̃n)γ + α(B + x̃n)β
because of Lemma 4

=
x̃n

sγ0 + αsβ0
.

Similarly, we can obtain

(

xn

sγ + αsβ

)2

· [γsγ−1 + αβsβ−1]

=
x2
n(γ(A+ xn)

γ−1 + αβ(A+ xn)
β−1)

[(A+ xn)γ + α(A+ xn)β ]2

≥
x2
n(γ(B + xn)

γ−1 + αβ(B + xn)
β−1)

[(B + xn)γ + α(B + xn)β ]2
because A ≤ B, and β, γ ≤ 1

>
x̃2
n(γ(B + xn)

γ−1 + αβ(B + x̃n)
β−1)

[(B + x̃n)γ + α(B + x̃n)β ]2
because of Lemma 4

=

(

x̃n

sγ0 + αsβ0

)2

· [γsγ−1
0 + αβsβ−1

0 ].

Hence, we conclude un(xn,x−n) > un(x̃n, x̃−n).

3. Claim-3: Define variable s =
∑n

i=1 xi, and constants s∗ =
∑n

i=1 x
∗
i , s

′ =
∑n

i=1 x
′
i. From Lemma 2 we know

(x∗
1, · · · , x

∗
n) is the unique solution of the following equation system

µ

sγ + αsβ
−

µxi · [γs
γ−1 + αβsβ−1]

[sγ + αsβ ]2
− ciρx

ρ−1
i = 0, i = 1, 2, · · · , n. (36)

Obviously, for any i, xi > 0, x′
i > 0 must hold because the LHS of Eq (36) is strictly positive when xi = 0. Denote

the constant ϵ = x′
n+1 > 0, then similarly we have that (x′

1, · · · , x
′
n) is the unique solution of

µ

(s+ ϵ)γ + α(s+ ϵ)β
−

µxi · [γ(s+ ϵ)γ−1 + αβ(s+ ϵ)β−1]

[(s+ ϵ)γ + α(s+ ϵ)β ]2
− ciρx

ρ−1
i = 0, i = 1, 2, · · · , n. (37)

Next we prove the claim by contradiction. Suppose Eq (6) is not true, i.e., s′ ≥ s∗. Then there must exist j ∈ [n] such

that x′
j ≥ x∗

j . And also from Lemma 6 we have s∗ > 2x∗
j , s

′ > 2x′
j when n is large. As a result, it holds that
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cjρ(x
∗
j )

ρ−1 =
µ

(s∗)γ + α(s∗)β
−

µx∗
j · [γ(s

∗)γ−1 + αβ(s∗)β−1]

[(s∗)γ + α(s∗)β ]2
because of Eq (36)

≥
µ

(s′)γ + α(s′)β
−

µx∗
j · [γ(s

′)γ−1 + αβ(s′)β−1]

[(s′)γ + α(s′)β ]2
because of Lemma 3

≥
µ

(s′)γ + α(s′)β
−

µx′
j · [γ(s

′)γ−1 + αβ(s′)β−1]

[(s′)γ + α(s′)β ]2
because x′

j ≥ x∗
j

>
µ

(s′ + ϵ)γ + α(s′ + ϵ)β
−

µx′
j · [γ(s

′ + ϵ)γ−1 + αβ(s′ + ϵ)β−1]

[(s′ + ϵ)γ + α(s′ + ϵ)β ]2
because of Lemma 3

=cjρ(x
′
j)

ρ−1. because of Eq (37)

Therefore, from ρ > 1 we obtain x∗
j > x′

j , which contradicts the fact that x′
j ≥ x∗

j . Hence, Eq (6) holds.

C. Proof of Proposition 1

Proof. From Eq (16) in Lemma 2 it holds that

ciρ

µ
· xρ−1

i =
1

sγ + αsβ
−

xi · [γs
γ−1 + αβsβ−1]

[sγ + αsβ ]2
<

1

sγ + αsβ
.

Hence,

cix
ρ
i <

1

ρ
·

xiµ

sγ + αsβ
.

On the other hand, from Theorem 2 we know x1 ≥ x2 · · · ≥ xn and therefore xi ≥
s
i . Therefore, for any 1 < i ≤ n we

have

ciρ

µ
· xρ−1

i =
1

sγ + αsβ
−

xi · [γs
γ−1 + αβsβ−1]

[sγ + αsβ ]2

≥
1

sγ + αsβ
−

xi · [s
γ−1 + αsβ−1]

[sγ + αsβ ]2
because β, γ ≤ 1

>
1

sγ + αsβ
−

s · [sγ−1 + αsβ−1]

i · [sγ + αsβ ]2

=
i− 1

i
·

1

sγ + αsβ
≥

1

2(sγ + αsβ)
. (38)

For i = 1, Lemma 6 suggests that x1 > s
2 holds for sufficiently large n and µ. In this case, Eq (38) also holds for i = 1. As

a result, we obtain that for any i,
1

2ρ
·

xi · µ

sγ + αsβ
< cix

ρ
i <

1

ρ
·

xi · µ

sγ + αsβ
.

D. Proof of Theorem 3

As a preparation, we need the following technical lemma:

Lemma 6. If n, µ are sufficiently large and 1 < ρ ≤ 2, it holds that maxni=1{xi} <
s
2 .

Proof. Since we without loss of generality assume 0 < c1 ≤ c2 ≤ · · · ≤ cn, from the first-order condition Eq (16) it follows

that x1 ≥ x2 ≥ · · · ≥ xn. Therefore it suffices to show s > 2x1.
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From the definition of PNE we have

µx1

sγ + αsβ
− c1x

ρ
1 = u1(x1,x−1) ≥ u1(0,x−1) = 0, (39)

Since 1 < ρ ≤ 2, Eq (39) implies

x1 ≤

(

µ

c1(sγ + αsβ)

)1/(ρ−1)

.

Hence, it is sufficient to show s > 2
(

µ
c1sγ

)1/(ρ−1)

, which is equivalent to

s > 2
ρ−1

ρ+γ−1 ·

(

µ

c1

)
1

ρ+γ−1

, (40)

We prove Eq (40) by contradiction. Suppose s ≤ 2
ρ−1

ρ+γ−1 ·
(

µ
c1

)
1

ρ+γ−1

, then from x1 ≥ x2 ≥ · · · ≥ xn we have

xn ≤
s

n
≤

2
ρ−1

ρ+γ−1

n
·

(

µ

c1

)
1

ρ+γ−1

. (41)

Take i = n in Eq (16) we have

0 =
∂un

∂xn

∣

∣

∣

xn=x∗
n

=
µ

sγ + αsβ
−

µxn(γs
γ−1 + αβsβ−1)

(sγ + αsβ)2
− ρcnx

ρ−1
n

≥
µ

sγ + αsβ
−

µs(sγ−1 + αsβ−1)

n(sγ + αsβ)2
− ρcnx

ρ−1
n because γ, β ≤ 1

≥
µ

sγ + αsβ

(

1−
1

n

)

−
ρcn · 2

(ρ−1)2

ρ+γ−1

nρ−1
·

(

µ

c1

)
ρ−1

ρ+γ−1

because of Eq (41)

≥
µ

sγ(1 + α)

(

1−
1

n

)

−
ρcn · 2

(ρ−1)2

ρ+γ−1

nρ−1c
ρ−1

ρ+γ−1

1

· µ
ρ−1

ρ+γ−1 because β ≤ γ ≤ 1

≥





2
−γ(ρ−1)
ρ+γ−1 c

γ
ρ+γ−1
n

1 + α

(

1−
1

n

)

−
ρcn · 2

(ρ−1)2

ρ+γ−1

nρ−1c
ρ−1

ρ+γ−1

1



 · µ
ρ−1

ρ+γ−1 because s ≤ 2
ρ−1

ρ+γ−1 ·
(

µ
c1

)
1

ρ+γ−1

(42)

> 0. (43)

The last Eq (43) holds because when n → +∞, 1/nρ−1 → 0 and therefore the expression in the brackets of Eq (42)

is strictly positive when n is large enough. Eq (43) draws a contradiction to the first-order equilibrium condition which

completes the proof.

Now we are ready to prove Theorem 3. Recall that x∗ = (x∗
1, · · · , x

∗
n) is the unique PNE of the game

G
(1)
EX(α, β, γ, µ, ρ, {ci}

n
i=1), and s∗ =

∑n
i=1 x

∗
i is the total content creation among all creators at the PNE. First of

all, we argue that (0, · · · , 0) is not an equilibrium because when µ is larger than maxni=1{ci}, we have ∂ui

∂xi
|xi=0 > 0,

meaning each creator i can increase xi and gain a higher utility. To simplify the notations in the following analysis, we omit

the superscript ∗ when there is no ambiguity.

Proof. From the first-order condition Eq (16)

∂ui

∂xi
=

µ

sγ + αsβ
−

µxi(γs
γ−1 + αβsβ−1)

(sγ + αsβ)2
− ciρx

ρ−1
i = 0, ∀i ∈ [n], (44)
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we have
µ

sγ + αsβ
− ciρx

ρ−1
i > 0. (45)

On the other hand, from Lemma 6 and γ, β ≤ 1 we have

0 =
µ

sγ + αsβ
−

µxi(γs
γ−1 + αβsβ−1)

(sγ + αsβ)2
− ciρx

ρ−1
i

>
µ

sγ + αsβ
−

µs(sγ−1 + αsβ−1)

2(sγ + αsβ)2
− ciρx

ρ−1
i

=
µ

2(sγ + αsβ)
− ciρx

ρ−1
i . (46)

Combining Eq (45) and (46) we have

(

µ

2ciρ(sγ + αsβ)

)1/(ρ−1)

< xi <

(

µ

ciρ(sγ + αsβ)

)1/(ρ−1)

. (47)

Taking summation over both sides of Eq (47) for 1 ≤ i ≤ n and then taking exponential to (ρ− 1) we obtain

µ

2ρ(sγ + αsβ)
<

sρ−1

∥c−1∥1/(ρ−1)
<

µ

ρ(sγ + αsβ)
, (48)

where ∥c−1∥1/(ρ−1) =
(

∑n
i=1 c

−1/(ρ−1)
i

)ρ−1

is the L1/(ρ−1)-norm of c−1 = (c−1
1 , · · · , c−1

n ). Hence, we obtain

µ

2ρ
∥c−1∥1/(ρ−1) < sγ+ρ−1 + αsβ+ρ−1 <

µ

ρ
∥c−1∥1/(ρ−1).

When β ≤ γ, we also have

sγ+ρ−1 < sγ+ρ−1 + αsβ+ρ−1 < (1 + α)sγ+ρ−1.

Therefore, we conclude that

(2(1 + α)ρ)−1µ∥c−1∥ 1
ρ−1

< sγ+ρ−1 < ρ−1µ∥c−1∥ 1
ρ−1

, (49)

which yields Eq (8) with the constant Cρ = ρ−1.

E. Proof of Theorem 4

Consider a GIN instance GIN (α,β,γ,µ, {ci}
n
i=1) with n = K = 2, where α = (0.25, 0.25),β = (0.5, 0.5),γ =

(1.0, 1.0),µ = (3.0, 2.0), and the cost functions for two players are given by

c1(x1) = 7(x11 + x12)
2, c2(x2) = 7(x21 + x22)

2.

Next we show that the PNE of GIN (α,β,γ,µ, {ci}
n
i=1) does not exist. Suppose it has an PNE y = (y1,y2), we enumerate

all the possibilities and draw contradictions accordingly. First of all, by definition (⊥,⊥) cannot be an PNE as both players

get negative utility at (⊥,⊥). In this case, either player can change her strategy to yi = (0, 0) and increase her utility to

zero. Since our constructed instance is symmetric, we only need to further exclude the possibility of the following two types

of PNEs:

1. If y1 ̸= ⊥,y2 ̸= ⊥, GIN degenerates to GEX with the same parameters but α = (0, 0). According to Theorem 1, such

GEX instance has a unique PNE. Using Algorithm 1 we can computationally pin down its PNE: y1 = (x11, x12) =
y2 = (x21, x22) = (0.179, 0.120). And the utilities for both players at (y1,y2) is

u1(y1,y2) =
3x11

x11 + x21
+

2x12

x12 + x22
− 7(x11 + x12)

2 = 1.875.

21



Human-vs-GenAI Content Creation Competition

If we let the first player change her strategy from (0.179, 0.120) to ⊥, her utility will be

u1(⊥,y2) =
3× 0.25x0.5

21

x21 + 0.25x0.5
21

+
2× 0.25x0.5

22

x22 + 0.25x0.5
22

= 1.953 > 1.875 = u1(y1,y2).

As a result, ((0.179, 0.120), (0.179, 0.120)) is not a PNE of GIN and thus GIN cannot have any PNE satisfying

y1 ̸= ⊥,y2 ̸= ⊥.

2. if GIN has a PNE of the form (⊥, (x21, x22)), then we have

(x21, x22) = argmax
y2

{u2(y2,⊥)} = arg max
(x21,x22)∈R

2
≥0

{
x21µ1

x21 + αxβ
21

+
x22µ2

x22 + αxβ
22

− c2(x21 + x22)
ρ}.

By plugging in the game parameters and solving the RHS convex optimization problem, we obtain (x21, x22) =
(0.124, 0.085). Solving the following convex optimization we have

argmax
y1

{u1(y1, (x21, x22))} = (0.176, 0.118),

and we can verify that

u1((0.176, 0.118), (0.124, 0.085)) = 2.316 > 2.168 = u1(⊥, (0.124, 0.085)).

Hence, player 1 would change her strategy from ⊥ to (0.176, 0.118). Then we can verify given player 1’s strategy

(0.176, 0.118), player 2’s best response excluding ⊥ is (0.179, 0.120). However,

u2((0.179, 0.120), (0.176, 0.118)) = 1.894 < 1.962 = u2(⊥, (0.176, 0.118)),

which means conditioned on player 1’s strategy (0.176, 0.118), player 2 would switch to ⊥. Hence, starting from any

PNE of the form (⊥, (x21, x22)), we have the following best-response chain:

(⊥, (x21, x22))→ ((0.176, 0.118), (x21, x22))→ ((0.176, 0.118),⊥).

Denote (0.176, 0.118) = (x∗
11, x

∗
12) and (0.124, 0.085) = (x∗

21, x
∗
22). Since the constructed GIN instance is symmetric,

starting from ((x∗
11, x

∗
12),⊥) we also have the following best-response chain

((x∗
21, x

∗
22),⊥)→ ((x∗

21, x
∗
22), (x

∗
11, x

∗
12))→ (⊥, (x∗

11, x
∗
12))→ (⊥, (x∗

21, x
∗
22)).

Therefore, starting from any PNE (⊥, (x∗
21, x

∗
22)), an alternative best response update from both players would form

the following loop

(⊥, (x∗
21, x

∗
22))→ ((x∗

11, x
∗
12), (x

∗
21, x

∗
22))→ ((x∗

11, x
∗
12),⊥)→ ((x∗

21, x
∗
22),⊥)

→ ((x∗
21, x

∗
22), (x

∗
11, x

∗
12))→ (⊥, (x∗

11, x
∗
12))→ (⊥, (x∗

21, x
∗
22)).

Hence, any PNE of the form (⊥, (x21, x22)) does not exist.

3. By symmetry, any PNE of the form ((x11, x12),⊥) does not exist as well.

Therefore, we conclude that the PNE of our constructed instance GIN does not exist.

Our example shows that the PNE of GIN need not exist even when n = K = 2 and ci are strongly convex func-

tions. We should note that this example can be easily extend to GINwith arbitrarily large n. To see this, consider an

instance GIN (α,β,γ,µ, {ci}
n
i=1) with K = 2, n > 2, where α = (0.25/(n − 1), 0.25/(n − 1)),β = (0.5, 0.5),γ =

(1.0, 1.0),µ = (3.0, 2.0), and the cost functions for the first two players are

c1(x1) = 7(x11 + x12)
2, c2(x2) = 7(x21 + x22)

2,

while the cost for the remaining players are

c1(x1) = M(xi1 + xi2)
2, i ≥ 3,

where M > 0 is a large number. In this game, we can choose sufficiently large M such that as long as there are still human

players in the game, ⊥ is the best strategy of player i for any i ≥ 3. In this case, conditioned on the other n− 2 players’

strategies, the sub-game of the first two players is the same as the 2-player counterexample we have shown and we can

similarly identify the best-response loop starting from any potential PNE.
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F. Proof of Theorem 5

The formal proof of Theorem 5 relies on Proposition 1, Lemma 2 and Theorem 3. Before diving into the details, we

point out a simple fact: for any G
(1)
IN (α, β, γ, µ, ρ, {ci}), if a group of players commits to strategy ⊥ while the remaining

players (of size m) decide not to use ⊥, G
(1)
IN degrades to a standard game G

(1)
EX(α′, β, γ, µ, ρ, {ci}) with the new parameter

α′ = α(n−m) and therefore still admits a unique PNE. In the following analysis, we will use yi to refer to any strategy in

Yi = Xi ∪ {⊥}, and use zi to refer to player i’s human strategy in Xi ⊂ R≥0, and reserve the notation xi to denote the PNE

strategy of player i given that the identities of players who use ⊥ are known.

Proof. The proof is organized by a mathematical induction argument. We will prove the following claim:

The Induction Claim: For k = 0, 1, · · · , n− 1, if (x1, · · · , xn−k,⊥, · · · ,⊥) is not an PNE, then the (n− k)-th player

can unilaterally deviate her strategy to ⊥ to increase her utility.

The Base Case: When k = 0, we need to show that if y = (x1, · · · , xn) is not an PNE of G
(1)
IN , then the n-th player can

switch to⊥ to increase her utility. Since (x1, · · · , xn) is not an PNE, there exists a player j ∈ [n] such that her utility strictly

increases when switching to ⊥. If j = n, our claim is true; otherwise, for player j it holds that uj(⊥,x−j) > uj(xj ,x−j),
i.e.,

α(s− xj)
β−γ+1

(s− xj)γ + α(s− xj)β
· µ >

xj

sγ
· µ− cjx

ρ
j , (50)

where s =
∑n

i=1 xi.

Now we show that if Eq (50) holds for some j < n, it also holds for j = n and thus the n-th player’s best response is ⊥.

To see this, note that the function f(s) = sβ−γ+1

sγ+αsβ
= 1

s2γ−β−1+αsγ−1 is non-decreasing in s, because γ − 1 ≤ 0 and from

β̃+γ̃ ≥ 1 we have γ−1 ≤ 0, 2γ−β−1 ≤ 0. On the other hand, from Theorem 2 we also have uj(xj ,x−j) ≥ un(xn,x−n)
and xj ≥ xn. As a result, we obtain

α(s− xn)
β−γ+1

(s− xn)γ + α(s− xn)β
· µ ≥

α(s− xj)
β−γ+1

(s− xj)γ + α(s− xj)β
· µ >

xj

sγ
· µ− cjx

ρ
j ≥

xn

sγ
· µ− cnx

ρ
n,

which suggests un(⊥,x−n) > un(xn,x−n).

The Induction Argument: Suppose the induction claim holds for any i ≤ k − 1. Consider the case i = k, we only need to

show that if y = (x1, · · · , xn−k,⊥, · · · ,⊥) is not an PNE, the following two statements holds:

1. Statement-1: If there exists a player j ≤ n− k who can deviate to ⊥ to increase her utility, then player n− k can also

deviate to ⊥ to increase her utility.

2. Statement-2: For any j ≥ n− k + 1, player i does not want to deviate from ⊥ to any zj ∈ Xj .

First we prove statement-1. s =
∑n−k

i=1 xi. For such a player j, it holds that uj(⊥,y−j) > uj(xj ,y−j), i.e.,

α(s− xj)
β−γ+1

(s− xj)γ + α(k + 1)(s− xj)β
· µ >

xj

sγ + αksβ
· µ− cjx

ρ
j . (51)

Now we can see that the argument we want to make here is exactly the same as the one in the base case if we replace the

parameter α with α(k+1) in the base case. Therefore, we can also show that 51 holds for j = n− k. Hence, statement-1 is

true.

Now we prove Statement-2. We will show that if there exists j ≥ n − k + 1 who can deviate from ⊥ to some zj ∈ Xj

to increase her utility, then at y′ = (x′
1, · · · , x

′
n−k, x

′
n−k+1,⊥, · · · ,⊥), the (n − k + 1)-th player would not have

switched to ⊥ and therefore contradicting the induction claim for i = k − 1. Here we use (x′
1, · · · , x

′
n−k, x

′
n−k+1) to

denote the human players’ PNE given that the remaining (k − 1) players are using ⊥. For such a player j we have

uj(⊥,y−j) < maxzj∈Xj
uj(zj ,y−j), i.e.,

αsβ−γ+1

sγ + αksβ
· µ < max

zj

{

zj
(s+ zj)γ + α(k − 1)(s+ zj)β

· µ− cjz
ρ
j

}

. (52)
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By the induction claim we also know at y′ = (x′
1, · · · , x

′
n−k, x

′
n−k+1,⊥, · · · ,⊥), the (n− k + 1)-th player can deviate to

⊥ to increase her utility, which means

α(s′)β−γ+1

(s′)γ + αk(s′)β
· µ >

x′
n−k+1

(s′ + x′
n−k+1)

γ + α(k − 1)(s′ + x′
n−k+1)

β
· µ− cn−k+1(x

′
n−k+1)

ρ, (53)

where s′ =
∑n−k

i=1 x′
i. From Lemma 2 we have s′ < s. On the one hand, by the definition of PNE we have

RHS of Eq (53) = max
z

{

z

(s′ + z)γ + α(k − 1)(s′ + z)β
· µ− cn−k+1z

ρ

}

> max
z

{

z

(s+ z)γ + α(k − 1)(s+ z)β
· µ− cn−k+1z

ρ

}

because s′ < s

≥ max
z

{

z

(s+ z)γ + α(k − 1)(s+ z)β
· µ− cjz

ρ

}

because cn−k+1 ≤ cj

= RHS of Eq (52).

On the other hand, because f(s) = sβ−γ+1

sγ+αsβ
= 1

s2γ−β−1+αsγ−1 is non-decreasing in s, when β̃ + γ̃ ≥ 1, we also have

LHS of Eq (53) ≤ LHS of Eq (52).

As a result, we obtain

LHS of Eq (52) ≥ LHS of Eq (53) > RHS of Eq (53) > RHS of Eq (52),

which contradicts Eq (52). Hence, statement-2 holds and we complete the induction argument.

The induction argument implies that either there exists an m such that (x1, · · · , xn−m,⊥, · · · ,⊥) is an PNE of G
(1)
IN , or the

remaining human player with the highest cost can always switch to ⊥ to increase her utility until all players will finally

switch to ⊥. Clearly, the second scenario cannot happen because when there is only one human player left in the game,

switching to ⊥ is not her best response as it renders a zero utility. Therefore, we prove that G
(1)
IN must possess a PNE with

the form (x1, · · · , xn−m,⊥, · · · ,⊥).

Finally we derive the condition for the threshold m. According to the induction argument, (x1, · · · , xn−m,⊥, · · · ,⊥) is

a PNE if and only if: 1. at y′ = (x′
1, · · · , x

′
n−m, x′

n−m+1,⊥, · · · ,⊥), the (n−m+ 1)-th player can increase her utility

when switching to ⊥; and 2. at y = (x1, · · · , xn−m,⊥, · · · ,⊥), the (n −m)-th player cannot increase her utility when

switching to ⊥. These two conditions translate to

α(s′)β−γ+1

(s′)γ + αm(s′)β
· µ ≥

x′
n−m+1

(s′ + x′
n−m+1)

γ + α(m− 1)(s′ + x′
n−m+1)

β
· µ− cn−m+1(x

′
n−m+1)

ρ, (54)

α(s− xn−m)β−γ+1

(s− xn−m)γ + α(m+ 1)(s− xn−m)β
· µ ≤

xn−m

sγ + αmsβ
· µ− cn−m(xn−m)ρ. (55)

From Theorem 3, Eq (55) implies

α(s− xn−m)β−γ+1

(s− xn−m)γ + α(m+ 1)(s− xn−m)β
· µ ≤

xn−m

sγ + αmsβ
· µ ·

(

1−
1

2ρ

)

(56)

<
xn−m

sγ + α(m+ 1)sβ
·
m+ 1

m
· µ ·

(

1−
1

2ρ

)

<
xn−m

(s− xn−m)γ + α(m+ 1)(s− xn−m)β
·
m+ 1

m
· µ ·

(

1−
1

2ρ

)

,

24



Human-vs-GenAI Content Creation Competition

where Eq (56) holds because Theorem 3 tells us cn−m(xn−m)ρ > 1
2ρ ·

xn−mµ
sγ+αmsβ

. Hence, we obtain

α(s− xn−m)β−γ+1 < xn−m ·
m+ 1

m
·

(

1−
1

2ρ

)

. (57)

Theorem 2 guarantees xn−m ≤
s

n−m , and s− xn−m ≥
n−m−1
n−m · s. Therefore, Eq (57) can be further simplified to

αsβ−γ+1 ·

(

n−m− 1

n−m

)β−γ+1

<
s

n−m
·
m+ 1

m
·

(

1−
1

2ρ

)

. (58)

Since β − γ + 1 < 1, n−m
n−m−1 ≤ 2, m+1

m ≤ 2, from Eq (58) we can derive

n−m <
2(2ρ− 1)

αρ
· sγ−β , (59)

which implies

m

n
> 1−

2(2ρ− 1)

αρn
· sγ−β

> 1−
2(2ρ− 1)

αρn
·

(

C0µ
1

γ+ρ−1 ∥c−1
n−m∥

1
γ+ρ−1
1

ρ−1

)γ−β

By Theorem 3 (60)

= 1−
2(2ρ− 1)

αρn
·



C0µ
1

γ+ρ−1 ·

(

n−m
∑

i=1

c
−1/(ρ−1)
i

)

ρ−1
γ+ρ−1





γ−β

(61)

≥ 1−
2(2ρ− 1)

αρn
·

(

C0µ
1

γ+ρ−1 ·
(

nc
−1/(ρ−1)
1

)
ρ−1

γ+ρ−1

)γ−β

(62)

= 1− C ·
µ

γ−β
γ+ρ−1

αn1−
(γ−β)(ρ−1)

γ+ρ−1

, (63)

where C0 = ρ−
1

γ+ρ−1 is a constant depending on ρ, γ (From Eq (49)), and C = 2(2ρ−1)
ρ · (ρc1)

− γ−β
γ+ρ−1 is a constant

depending on (β, γ, ρ, c1).

G. Equilibrium Solver in Experiments

G.1. PNE solver for GEX

Algorithm 1 Multi-agent Mirror Descent (MMD) with perfect gradient

Input: Maximum iteration number T , step size η, each player i’s utility function ui, error tolerance ϵ, initial strategy

xi = x
(0)
i .

repeat

Compute the exact gradient gi = ∇iui(xi,x−i), ∀i ∈ [n],
Update xi ← ProjXi

(xi + ηgi), ∀i ∈ [n].
until Maximum iteration number is reached or ∥(g1, · · · , gn)∥2 < ϵ.
Output: (x1, · · · ,xn).

Since the strategy set Xi = [0,+∞), we can simply choose a projection mapping ProjXi
(x) = (max(xi, 0))

n
i=1. The

utility functions of GEX is differentiable and has closed forms so we can explicitly implement their gradients. Through

our experiment, the default T = 1000, η = 0.05, ϵ = 1e− 4,x
(0)
i = (0.1, · · · , 0.1). Algorithm 1 is a simplified version of

Algorithm 1 in (Bravo et al., 2018) where we replace the gradient estimation to the exact gradient. According to Theorem

5.1 in (Bravo et al., 2018), Algorithm 1 converges to the unique PNE of GEX with probability 1.
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G.2. PNE solver for G
(1)
IN

Since the PNE of G
(1)
IN might not be unique, we present two PNE solvers for G

(1)
IN . The first Algorithm 2 is to pin down

the PNE of the form (x1, · · · , xn−m,⊥, · · · ,⊥) guaranteed by Theorem 5, and the second Algorithm 4 is for finding an

arbitrary PNE. Both of them use Algorithm 1 as a subroutine. For the ease of notation, we denote G
(1)
EX(m) as the subgame

for the first n−m players when the remaining m players with the top-m highest costs are commited to strategy ⊥.

Algorithm 2 Solving for a targeted PNE of G
(1)
IN

Input: Each player i’s utility function ui.

Initialization: Use Algorithm 1 to solve x(0) = MMD(G
(1)
EX(0)), and set x = x(0).

for i = n to 1 do

Compute ui(⊥,x−i) and ui(xi,x−i).
if ui(⊥,x−i) > ui(xi,x−i) then

Set xi = ⊥.

Update x−i = MMD(G
(1)
EX(n+ 1− i)).

else

Break.

end if

end for

Output: x.

To find an arbitrary PNE of G
(1)
IN , first we need a PNE checker as a subroutine, as shown in the following Algorithm 3.

Algorithm 3 takes as input the game instance G
(1)
IN and an arbitrary joint strategy profile x ∈ ∪ni=1Yi. To verify whether x

is an PNE of G
(1)
IN , it checks for every player whether their is a better response: for a human player i, it simply compares

i’s current utility and the utility if adopting ⊥; for a GenAI player i, it needs to compare i’s current utility and the best

possible human strategy, which requires solving an optimization problem with ui as the objective function. Thanks to the

monotonicity of G
(1)
IN , we know ui is concave so this optimization is tractable. If no one would like to deviate, x passes

the checker and Algorithm 3 returns True and the same x meaning x is an PNE; otherwise 3 returns False and the new x

incorporating some player’s best response. Algorithm 4 works by shuffling players’ indices first, and call the PNE checker 3

at each iteration to allow an arbitrary player to improve her utility until achieving a PNE. We note that although there is no

finite time convergence guarantee for Algorithm 4, but we can be sure as long as it terminates it must return an PNE of G
(1)
IN .

In our experiments it always converge within 5000 iterations.

Algorithm 3 PNE checker for G
(1)
IN

Input: Each player i’s utility function ui and x = (x1, · · · , xn).
for i = 1 to n do

if xi ̸= ⊥ and ui(⊥,x−i) > ui(xi,x−i) then

Set xi = ⊥.

Update other human players’ strategy by solving the new PNE of players excluding xi.

Return False, xi.

else if xi = ⊥ and maxyi∈R≥0
ui(yi,x−i) > ui(⊥,x−i) then

Set xi = argmaxyi∈R≥0
ui(yi,x−i).

Update other human players’ strategy by solving the new PNE of players excluding xi.

Return False, xi.

else

Continue;

end if

end for

Return True, xi.
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Algorithm 4 Solving for an arbitrary PNE of G
(1)
IN

Input: Each player i’s utility function ui and x = (x1, · · · , xn).
Initialization: Shuffle (c1, · · · , cn), PNE FLAG=False.

while PNE FLAG is False do

PNE FLAG, x = PNE checker(G
(1)
IN , x).

end while

Output: x.

H. Additional Experiments

How social welfare is affected by the market size and GenAI’s ability

Interestingly, if we define the social welfare as the total creator utilities W =
∑

i ui, W shares the same trend as s∗ in terms

of α, β, which means a more extensive usage of GenAI not only adversely affects existing human creator’s productivity but

also their utilities. Results are put in Appendix H. Interestingly, the left panel of Figure 7 shows the welfare does not rely on

n that much when fixing α, β, γ, µ.

Figure 1 illustrates how the total human content generation at PNE changes w.r.t the market size (µ, n) and GenAI’s ability

(α, β). The log-log plot in left panel indicates that the total content creation volume s∗ grows polynomially to µ for different

n, when the engagement level of GenAI in the content market is fixed, which validates Theorem 3. However, the right panel

shows that if the GenAI’s ability increases with a larger α or β, the total effort from human players shrinks. Interestingly,

the total utilities (usually referred as the social welfare) shares the same trend as s∗ in terms of α, β and n, which means a

more extensive usage of GenAI not only adversely affects existing human creators’ productivity but also their total welfare.

Results are presented in Appendix H.

Figure 7 and 8 show how the social welfare (defined as the sum of creators’ utilities) changes with respect to parameter

µ, n, α, β. Similar to the result illustrated in Figure 1, the social welfare displays the same trend: it decreases as α, β increase

and increases when µ increases. Notably, the left panel of Figure 7 shows the welfare does not rely on n significantly when

fixing other parameters, which means when the competition environment is set (including the strength of GenAI power/usage

and the total user traffic), all human creators as a whole can neither benefit nor suffer from their magnitude of populations.
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Figure 7. The total human utilities W =
∑

i
ui at the PNE as a function of µ, n (Left) and α, β (Right). Default (α, β) = (1.0, 0.5).
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Figure 8. The total human utilities W =
∑

i
ui at the PNE as a function of µ, n (Left) and α, β (Right). Default (α, β) = (1.0, 0.5).

The left panel shows results when β ∈ {0.1, 0.5, 0.9} and the right panel shows results when when α ∈ {0.1, 1.0, 10.0}.

Human creators’ allocation of efforts in different topics under non-separable costs

Figure 9, 10 illustrate the same trend as shown in Figure 5, 6 under a different α = 0.1. It also shows human creators’

preference over topics shifts from popularity to niche as GenAI becomes more powerful.
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Figure 9. α = 10.0. Left: occupation ratio on each topic. Right: average per-topic gain. Cost uniformly sampled from U [0.1, 1.0].
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Figure 10. α = 10.0. Left: occupation ratio on each topic. Right: average per-topic gain. Cost uniformly sampled from U [1.0, 10.0].
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