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Abstract

Most reinforcement learning practitioners evalu-

ate their policies with online Monte Carlo estima-

tors for either hyperparameter tuning or testing

different algorithmic design choices, where the

policy is repeatedly executed in the environment

to get the average outcome. Such massive in-

teractions with the environment are prohibitive

in many scenarios. In this paper, we propose

novel methods that improve the data efficiency

of online Monte Carlo estimators while maintain-

ing their unbiasedness. We first propose a tai-

lored closed-form behavior policy that provably

reduces the variance of an online Monte Carlo

estimator. We then design efficient algorithms to

learn this closed-form behavior policy from previ-

ously collected offline data. Theoretical analysis

is provided to characterize how the behavior pol-

icy learning error affects the amount of reduced

variance. Compared with previous works, our

method achieves better empirical performance in

a broader set of environments, with fewer require-

ments for offline data.

1. Introduction

Reinforcement Learning (RL, Sutton & Barto (2018)) has

recently demonstrated great success in solving sequen-

tial decision-making problems. For example, AlphaStar

(Vinyals et al., 2019) defeats the best human StarCraft II

players and is ranked at the GrandMaster level in the Star-

Craft ladder. The canonical RL paradigm behind the success,

however, requires massive active interactions with the en-

vironment to obtain data (Sutton, 1988; Watkins & Dayan,

1992; Sutton et al., 1999; Mnih et al., 2015). Those data are

called online data, and this paradigm is called online RL.

Requiring massive online data is, however, prohibitive in

many scenarios. First, obtaining massive online data can
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be both expensive and slow in the real world (Li, 2019;

Zhang, 2023). Second, even if a simulator is available, ob-

taining massive online data can still be prohibitively slow

for high-fidelity simulation (Chervonyi et al., 2022).

Offline RL (Ernst et al., 2005; Lange et al., 2012; Fujimoto

et al., 2019; Levine et al., 2020) attacks this issue using ex-

isting, previously logged data, called offline data. Compared

with online data, offline data is cheaper and safer (Li, 2019;

Zhang, 2023). Offline RL also demonstrates great success.

For example, Mathieu et al. (2023) train an offline AlphaS-

tar, which uses only existing human replays without any

interaction with the StarCraft II simulator during training.

The offline AlphaStar obtains over 90% win rates against

the supervised learning agent in Vinyals et al. (2019).

However, most RL practitioners, even offline RL practi-

tioners, still heavily rely on online Monte Carlo estimators.

For example, Mathieu et al. (2023) repeatedly execute their

trained offline AlphaStar agents in the StartCraft II simulator

and use the win rates as the performance metric for hyperpa-

rameter tuning and evaluating different algorithmic design

choices. This evaluation practice is the straightforward on-

line Monte Carlo evaluation and requires massive online

data. There are indeed offline evaluation methods, most of

which, however, still rely on online Monte Carlo evaluation

for hyperparameter tuning and testing different algorithmic

design choices (see, e.g., Fu et al. (2020); Gülçehre et al.

(2020); Schrittwieser et al. (2021); Mathieu et al. (2023)).

Improving the sample efficiency of online Monte Carlo

estimators while maintaining their unbiasedness is thus

a need for both online and offline RL practitioners. We em-

phasize unbiasedness because it is arguably one of the key

reasons that make Monte Carlo estimators so dominating.

In this paper, we make three contributions toward fulfilling

this need. First, we propose tailored closed-form behavior

policies that provably reduce the variance of online Monte

Carlo estimators. Second, we design efficient algorithms

to learn the closed-form behavior policies from offline data.

Theoretical analysis is provided to characterize how the be-

havior policy learning error affects the amount of reduced

variance. Notably, this learning error does not introduce

any bias in the estimation. Third, we conduct thorough

empirical studies in a broad set of environments. Compared

with previous works, our method achieves better empirical
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performance while being less restrictive on offline data.

2. Background

We consider a finite horizon Markov Decision Process

(MDP, Puterman (2014)) with a finite state space S, a fi-

nite action space A, a reward function r : S × A → R,

a transition probability function p : S × S × A → [0, 1],
an initial distribution p0 : S → [0, 1], and a constant hori-

zon length T . Without loss of generality, we consider the

undiscounted setting for simplifying notations. Our results

naturally apply to the discounted setting (Puterman, 2014)

as long as the horizon is fixed and finite. For any integer

n, we define as shorthand [n]
.
= {0, 1, . . . , n}. At time

step 0, an initial state S0 is sampled from p0. At time

step t ∈ [T − 1], an action At is sampled according to

πt(· | St) where πt : A × S → [0, 1] is the policy at time

step t. A finite reward Rt+1
.
= r(St, At) is then emitted

and a successor state St+1 is sampled from p(· | St, At).
We define abbreviations πi:j

.
= {πi, πi+1, . . . , πj} and

π
.
= π0:T−1. The return at time step t is defined as

Gt
.
=
∑T

i=t+1 Ri, which allows defining the state- and

action-value functions as vπ,t(s)
.
= Eπ [Gt | St = s] and

qπ,t(s, a)
.
= Eπ [Gt | St = s,At = a] . We use the total

rewards performance metric (Puterman, 2014) to mea-

sure the performance of the policy π, which is defined

as J(π)
.
=
∑

s p0(s)vπ,0(s). In this paper, we focus on

Monte Carlo methods introduced by Kakutani (1945) to es-

timate the total rewards J(π). Among its variants, the most

straightforward and widely used way is to draw samples

of J(π) by executing the policy π online. As the number

of samples increases, the empirical average of the sampled

returns converges to J(π). This idea is called on-policy

learning (Sutton 1988) because it estimates a policy π by

executing itself.

From now on, we consider off-policy learning, where we

estimate the total rewards J(π) of an interested policy π,

called the target policy, by executing a different policy µ,

called the behavior policy. In off-policy learning, each

trajectory {S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT }
is generated by a behavior policy µ with S0 ∼ p0, At ∼
µt(·|St), t ∈ [T − 1]. Let

τ
µt:T−1

t:T−1
.
= {St, At, Rt+1, . . . , ST−1, AT−1, RT }

be a shorthand for a segment of a random trajectory gen-

erated by the behavior policy µ from the time step t to the

time step T − 1 inclusively. In off-policy learning, we use

the importance sampling ratio to reweight rewards collected

by µ in order to give an estimate of J(π). The importance

sampling ratio at time step t is defined as ρt
.
= πt(At|St)

µt(At|St)
.

The product of importance sampling ratios from time t to

t′ ≥ t is defined as ρt:t′
.
=
∏t′

k=t
πk(Ak|Sk)
µk(Ak|Sk)

. There are vari-

ous ways to use the importance sampling ratios in off-policy

learning (Geweke, 1988; Hesterberg, 1995; Koller & Fried-

man, 2009; Thomas, 2015). We start with the per-decision

importance sampling estimator (PDIS, Precup et al. (2000))

in this work and leave the investigation of others for future

work. The PDIS Monte Carlo estimator is defined as

GPDIS(τ
µt:T−1

t:T−1 )
.
=
∑T−1

k=t ρt:kRk+1 (1)

and is unbiased for any behavior policy µ that covers target

policy π (Precup et al., 2000). In other words, when ∀s, ∀a,

µt(a|s) = 0 =⇒ πt(a|s) = 0, we have ∀t, ∀s,

E[GPDIS(τ
µt:T−1

t:T−1 ) | St = s] = vπ,t(s).

We intensively use the recursive form of the PDIS estimator:

GPDIS(τ
µt:T−1

t:T−1 ) (2)

=

{

ρt
(

Rt+1 +GPDIS(τ
µt+1:T−1

t+1:T−1 )
)

t ∈ [T − 2],

ρtRt+1 t = T − 1.

Since the PDIS estimator is unbiased, reducing its variance

is sufficient for improving its sample efficiency. We achieve

this variance reduction by designing and learning proper

behavior policies.

3. Variance Reduction in Statistics

In this section, we provide the mathematical foundation for

variance reduction with importance sampling ratios. The

notations here are independent of the rest of this paper. We

use similar notations only for easy interpretation in later

sections. Consider a discrete random variable A taking val-

ues from a finite space A according to a probability mass

function π : A → [0, 1] and a function q : A → R mapping

a value in A to a real number. We are interested in estimat-

ing EA∼π[q(A)]. The ordinary Monte Carlo methods then

sample {A1, . . . , AN} from π and use the empirical aver-

age 1
N

∑N
i=1 q(Ai) as the estimate. In statistics, importance

sampling is introduced as a variance reduction technique

for Monte Carlo methods (Rubinstein 1981). The main

idea is to sample {Ai, . . . , AN} from a different distribu-

tion µ and use 1
N

∑N
i=1 ρ(Ai)q(Ai) as the estimate, where

ρ(A)
.
= π(A)

µ(A) is the importance sampling ratio. Assuming

µ covers π, i.e.,

∀a, µ(a) = 0 =⇒ π(a) = 0, (3)

the importance sampling ratio weighted empirical average

is then unbiased, i.e.,

EA∼π[q(A)] = EA∼µ[ρ(A)q(A)].

If the sampling distribution µ is carefully designed, the

variance can also be reduced. To adapt this idea for RL,

we relax the condition (3) in this section. We formulate

2
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this problem of searching a variance-reducing sampling

distribution as an optimization problem:

minµ∈Λ+
VA∼µ(ρ(A)q(A)). (4)

Here Λ+ denotes the set of all the policies that give unbiased

estimations, i.e.,

Λ+
.
= {µ ∈ ∆(A) | EA∼µ [ρ(A)q(A)] = EA∼π [q(A)]},

where ∆(X ) denotes the set of all probability distributions

on the set X . Solving (4) is actually very challenging. To see

this, consider a concrete example where A = {a1, a2, a3}
and










q(a1) = −10

q(a2) = 2

q(a3) = 2

,











π(a1) = 0.1

π(a2) = 0.5

π(a3) = 0.4

,











µ(a1) = 0

µ(a2) = 0

µ(a3) = 1

.

(5)

It can be computed that EA∼π [q(A)] = 0.8 and

EA∼µ [ρ(A)q(A)] = 0.8. In other words, we could sample

A from µ and use ρ(A)q(A) as an estimator. This estima-

tor is unbiased. But apparently, this µ does not cover π.

Moreover, since µ is deterministic, the variance of this es-

timator is 0. Then µ is an optimal sampling distribution.

However, µ is hand-crafted based on the knowledge that

q(a1)π(a1) + q(a2)π(a2) = 0. Without such knowledge,

we argue that there is little hope to find this µ. This example

suggests that searching over the entire Λ+ might be too am-

bitious. One natural choice presented by Rubinstein (1981)

is to restrict the search to

Λ−
.
= {µ ∈ ∆(A) | ∀a, µ(a) = 0 =⇒ π(a) = 0}. (6)

In other words, we aim to find a variance-minimizing sam-

pling distribution among all distributions that cover π. Be-

cause coverage implies unbiasedness, we have Λ− ⊆ Λ+.

In this work, we enlarge Λ− to Λ defined as

Λ
.
= {µ ∈ ∆(A) | ∀a, µ(a) = 0 =⇒ π(a)q(a) = 0}. (7)

following Owen (2013). The space Λ weakens the assump-

tion in (6). Owen (2013) proves that any distribution µ in Λ
gives unbiased estimation, though µ may not cover π.

Lemma 1. ∀µ ∈ Λ,EA∼µ [ρ(A)q(A)] = EA∼π [q(A)] .

For completeness, its proof is in Appendix A.1. We now

consider the variance minimization problem on Λ, i.e.,

minµ∈Λ VA∼µ(ρ(A)q(A)). (8)

The following lemma from Owen (2013) gives an optimal

solution µ∗ to the optimization problem (8).

Lemma 2. Define µ∗(a) ∝ π(a)|q(a)|. Then µ∗ is an

optimal solution to (8).

For completeness, its proof is detailed in Appendix A.2.

Here by

µ(a) ∝ π(a)w(a)

with some non-negative w(a), we mean

µ(a)
.
= π(a)w(a)/

∑

b π(b)w(b).

The reader may notice that if π(a)w(a) = 0 for all a, the

above “reweighted” distribution is not well defined. We

then use the convention to interpret µ(a) as a uniform dis-

tribution, i.e., µ(a) = 1/|A|. We adopt this convention in

using ∝ in the rest of the paper to simplify the presentation.

The following lemma gives intuition on the optimality of

µ∗, whose proof is in Appendix A.3.

Lemma 3. If ∀a ∈ A, q(a) ≥ 0 or ∀a ∈ A, q(a) ≤ 0,

then Λ = Λ+, and the µ∗ defined in Lemma 2 gives a zero

variance, i.e., VA∼µ∗(ρ(A)q(A)) = 0.

An optimal sampling distribution proportional to π(a)|q(a)|
dates back to Kahn & Marshall (1953); Rubinstein (1981);

Benjamin Melamed (1998) and is commonly used in RL

(Carpentier et al., 2015; Mukherjee et al., 2022). We, how-

ever, make two remarks. First, we show such a sampling

distribution can be suboptimal in Λ+. For (5), such a sam-

pling distribution incurs strictly positive variance, but µ
in (5) has a zero variance and is also unbiased. Second,

different from existing literature in RL (Carpentier et al.,

2015; Sutton & Barto, 2018; Mukherjee et al., 2022), our µ∗

defined in Lemma 2 does not need to cover π. Nevertheless,

we note that Lemma 1 still ensures that µ∗ gives unbiased

estimation (Owen, 2013) and extend unbiasedness to RL

settings in Theorem 1.

4. Variance Reduction in Reinforcement

Learning

We now apply the techniques in Section 3 in RL. In particu-

lar, we seek to reduce the variance V
(

GPDIS(τ
µ0:T−1

0:T−1 )
)

by

designing a proper behavior policy µ. Of course, we need

to ensure that the PDIS estimator with this behavior policy

is unbiased. In other words, ideally we should search over

Λ+
.
=
{

µ ∈ ∆(A)T | E
[

GPDIS(τ
µ0:T−1

0:T−1 )
]

= J(π)
}

.

As discussed in Section 3, this is too ambitious without

domain-specific knowledge. Instead, we can search over all

policies that cover π, i.e.,

Λ−
.
= {µ | ∀t, s, a, µt(a|s) = 0 =⇒ πt(a|s) = 0}.

The set Λ− contains all policies that satisfy the policy cover-

age constraint in off-policy learning (Sutton & Barto 2018).

Similar to (7), we can also enlarge Λ− to

Λ
.
={µ | ∀t, s, a, µt(a|s) = 0 =⇒ πt(a|s)qπ,t(s, a) = 0}.

3
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The following theorem ensures the desired unbiasedness,

which is proved in Appendix A.4.

Theorem 1 (Unbiasedness). ∀µ ∈ Λ, ∀t, ∀s,

E
[

GPDIS(τ
µt:T−1

t:T−1 ) | St = s
]

= vπ,t(s).

One immediate consequence of Theorem 1 is that ∀µ ∈
Λ,E

[

GPDIS(τ
µ0:T−1

0:T−1 )
]

= J(π). In this paper, we consider

a set Λ∗ such that Λ− ⊆ Λ∗ ⊆ Λ. This Λ∗ inherits the

unbiasedness property of Λ and is less restrictive than Λ−,

the classical search space of behavior policies. This Λ∗ will

be defined shortly. We now formulate our problem as

minµ∈Λ∗ V
(

GPDIS(τ
µ0:T−1

0:T−1 )
)

. (9)

By the law of total variance, for any µ ∈ Λ∗, we decompose

the variance of the PDIS estimator as

V
(

GPDIS(τ
µ0:T−1

0:T−1 )
)

=ES0

[

V
(

GPDIS(τ
µ0:T−1

0:T−1 ) | S0

)]

+ VS0

(

E
[

GPDIS(τ
µ0:T−1

0:T−1 ) | S0

])

=ES0

[

V
(

GPDIS(τ
µ0:T−1

0:T−1 ) | S0

)]

+ VS0
(vπ,0(S0)) .

(by Theorem 1)

The second term VS0
(vπ,0(S0)) is a constant given a target

policy π and is unrelated to the choice of µ. In the first term,

the expectation is taken over S0 that is determined by the

initial probability distribution p0. Consequently, to solve

the problem (9), it is sufficient to solve for each s,

minµ∈Λ∗ V
(

GPDIS(τ
µ0:T−1

0:T−1 ) | S0 = s
)

. (10)

Denote the variance of the state value for the next state given

the current state-action pair (s, a) as νπ,t(s, a). We have

νπ,t(s, a) = 0 for t = T − 1 and otherwise

νπ,t(s, a)
.
= VSt+1

(vπ,t+1(St+1) | St = s,At = a) . (11)

We now construct a behavior policy µ∗ as

µ∗
t (a|s) ∝ πt(a|s)

√

uπ,t(s, a), (12)

where uπ,t(s, a)
.
= q2π,t(s, a) for t = T − 1 and otherwise

uπ,t(s, a) = q2π,t(s, a) + νπ,t(s, a) (13)

+
∑

s′ p(s
′|s, a)V

(

GPDIS(τ
µ∗

t+1:T−1

t+1:T−1 ) | St+1 = s′
)

.

Notably, µ∗
t and uπ,t are defined backwards and al-

ternatively, i.e., they are defined in the order of

uπ,T−1, µ
∗
T−1, uπ,T−2, µ

∗
T−2, . . . , uπ,0, µ

∗
0. We prove µ∗

is optimal in the following sense.

Theorem 2 (Optimal Behavior Policy). For any t and s,

the behavior policy µ∗
t (a|s) defined above is an optimal

solution to the following problem

min
µt∈Λt,...,µT−1∈ΛT−1

V
(

GPDIS(τ
µt:T−1

t:T−1 ) | St = s
)

,

where Λt
.
= {µt ∈ ∆(A) | ∀s, a, µt(a|s) = 0 =⇒

πt(a|s)uπ,t(s, a) = 0}.

Its proof is in Appendix A.5. We are now ready to define

Λ∗ .
= Λ0 × · · · × ΛT−1. Theorem 2 indicates that µ∗

achieves optimality for the optimization problem (10). Since

uπ,t(s, a) = 0 =⇒ qπ,t(s, a) = 0 by the non-negativity

of the summands in (13), we have Λ∗ ⊆ Λ. If µt(a|s) =
0 =⇒ πt(a|s) = 0, it follows immediately that µt(a|s) =
0 =⇒ πt(a|s)uπ,t(s, a) = 0. This indicates Λ− ⊆
Λ∗. This means that the set of policies Λ∗ considered in

Theorem 2 are unbiased and includes at least all the policies

that cover the target policy, which is the classical behavior

policy search space Λ− (Precup et al., 2000; Maei, 2011;

Sutton et al., 2016; Zhang, 2022).

Unfortunately, empirically implementing µ∗
t requires knowl-

edge of uπ,t (13) that contains the transition function p. Ap-

proximating the transition function is very challenging in

MDPs with large stochasticity and function approximation

(cf. model-based RL (Sutton, 1990; Sutton et al., 2008;

Deisenroth & Rasmussen, 2011; Chua et al., 2018)). Thus,

we seek to build another policy µ̂ that can be easily imple-

mented without direct knowledge of the transition function

p (cf. model-free RL (Sutton, 1988; Watkins, 1989)).

We achieve this by aiming at one-step optimality instead

of global optimality. We try to find the best µt assum-

ing in the future we follow πt+1, . . . , πT−1, instead of

µ∗
t+1, . . . , µ

∗
T−1. We refer to this one-step optimal behavior

policy as µ̂t. Similarly, to define optimality, we first need to

specify the set of policies we are concerned about. To this

end, we define

q̂π,t(s, a)
.
= q2π,t(s, a) (14)

for t = T − 1 and otherwise

q̂π,t(s, a)
.
= q2π,t(s, a) + νπ,t(s, a) (15)

+
∑

s′ p(s
′|s, a)V

(

GPDIS(τ
πt+1:T−1

t+1:T−1 ) | St+1 = s′
)

.

Notably, q̂π,t(s, a) is always non-negative since all the

summands are non-negative. Accordingly, we define for

t ∈ [T − 1], Λ̂t
.
= {µt ∈ ∆(A) | ∀s, a, µt(a|s) = 0 =⇒

πt(a|s)q̂π,t(s, a) = 0}. Comparing (13) and (15), the op-

timality of µ∗ implies that ∀s, a, t, we have q̂π,t(s, a) ≥
uπ,t(s, a) ≥ 0. As a result, if µt ∈ Λ̂t, we have

µt(a|s) = 0 =⇒ πt(a|s)q̂π,t(a|s) = 0

=⇒ πt(a|s)uπ,t(a|s) = 0,

indicating µt ∈ Λt. In other words, we have Λ̂t ⊆ Λt. To

search for µ̂0:T−1, we work on Λ̂
.
= Λ̂0 × · · · × Λ̂T−1. To

summarize, we have Λ− ⊆ Λ̂ ⊆ Λ∗ ⊆ Λ ⊆ Λ+. Recall

that Λ+ is the set of all behavior policies such that the

corresponding PDIS estimator is unbiased. Λ is a sufficient

but not necessary condition to ensure such unbiasedness

(Theorem 1). Λ∗ is a restriction of Λ such that we are able

to find an optimal solution. We restrict Λ∗ to Λ̂, aiming for a

4
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sub-optimal but implementable policy. Λ̂ is still larger than

Λ−, which is the space with the coverage assumption (3)

that previous works (Precup et al., 2000; Maei, 2011; Sutton

et al., 2016; Sutton & Barto, 2018; Zhang, 2022) consider.

After confirming the space of behavior policies, we for-

mulate the optimization problem for designing an efficient

behavior policy to achieve one-step optimality as

min
µt∈Λ̂t

V

(

GPDIS(τ
{µt,πt+1,...,πT−1}
t:T−1 ) | St = s

)

. (16)

According to the recursive expression of the variance in

Lemma 4 in Appendix A.5, we rewrite (16) as

min
µt∈Λ̂t

EAt∼µt

[

ρ2t
(

ESt+1

[

V
(

GPDIS(τ
πt+1:T−1

t+1:T−1 ) | St+1

)

| St, At] + νπ,t(St, At) + q2π,t(St, At)
)

| St

]

, (17)

where the objective can be further simplified as

EAt∼µt

[

ρ2t
(

ESt+1

[

V
(

GPDIS(τ
πt+1:T−1

t+1:T−1 ) | St+1

)

| St, At] + νπ,t(St, At) + q2π,t(St, At)
)

| St

]

=EAt∼µt

[

ρ2t q̂π,t(St, At) | St

]

(By (15))

=VAt∼µt

(

ρt

√

q̂π,t(St, At) | St

)

− E
2
At∼πt

[

√

q̂π,t(St, At) | St

]

.

(Lemma 1 and µt ∈ Λ̂t)

Since the second term is unrelated to µt, it is equivalent to

solving

min
µt∈Λ̂t

VAt∼µt

(

ρt

√

q̂π,t(St, At) | St

)

.

According to Lemma 2,

µ̂t(a|s) ∝ πt(a|s)
√

q̂π,t(s, a). (18)

is an optimal solution to (17). We now present our main

result that µ̂ provably reduces variance.

Theorem 3 (Variance Reduction). For any t and s,

V

(

GPDIS(τ
µ̂t:T−1

t:T−1 ) | St = s
)

≤V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St = s
)

− ϵt(s).

To define ϵt(s), first define ct(s) =

∑

a πt(a|s)q̂π,t(s, a)−
(

∑

a πt(a|s)
√

q̂π,t(s, a)
)2

.

Then we define ϵt(s)
.
= ct(s) for t = T − 1 and otherwise

ϵt(s)
.
= ct(s) + EAt∼µ̂t

[

ρ2tESt+1
[ϵt+1(St+1)|s,At]

]

.(19)

Its proof is in Appendix A.6. Notably, this ct is always non-

negative by Jensen’s inequality, ensuring the non-negativity

of ϵt and thus the variance reduction property. Moreover,

ct(s) = 0 occurs only when all actions have the same q̂π,t
on the state s. It is reasonable to conjecture that this is rare

in practice. So, ct(s) is likely to be strictly positive. This

shows the variance of the PDIS estimator with µ̂ at a state s
is provably smaller than or equal to that with π, the straight-

forward on-policy Monte Carlo estimator, by at least ϵt(s).
The magnitude of ϵt(s) depends on a specific target policy

and the environment. We empirically show the variance

reduction is significant in commonly used benchmarks in

Section 7.

5. Learning Closed-Form Behavior Policies

We now present efficient algorithms to learn the closed-form

behavior policy µ̂. Despite that q̂π,t in (15) has a compli-

cated definition, we prove that it has a concise representation.

It is exactly the action value function of the policy π with the

same transition function p but a different reward function r̂.

Theorem 4. Define

r̂π,t(s, a)
.
= 2r(s, a)qπ,t(s, a)− r2(s, a). (20)

Then q̂π,t(s, a) = r̂π,t(s, a) for t = T − 1 and otherwise

q̂π,t(s, a) (21)

=r̂π,t(s, a) +
∑

s′,a′ p(s′|s, a)πt+1(a
′|s′)q̂π,t+1(s

′, a′).

Its proof is in Appendix A.7. This observation makes it

possible to apply any off-the-shelf offline policy evalua-

tion methods to learn q̂, after which the behavior policy µ̂
can be computed easily with (18). For generality, we con-

sider the behavior policy agnostic offline learning setting

(Nachum et al., 2019), where the offline data in the form

of {(ti, si, ai, ri, s′i)}
m

i=1 consists of m previously logged

data tuples. In the i-th data tuple, ti is the time step, si is

the state at time step ti, ai is the action executed on state

si, ri is the sampled reward, and s′i is the successor state.

Those tuples can be generated by one or more, known or

unknown behavior policies. Those tuples do not need to

form a complete trajectory.

In this paper, we choose Fitted Q-Evaluation (FQE, Le et al.

(2019)) as a demonstration, but our framework is ready

to incorporate any state-of-the-art offline policy evaluation

methods to approximate q̂. To learn r̂, it is sufficient to

learn r and q. FQE can be used to learn q, and learning r
is a simple regression problem. FQE is then invoked again

w.r.t. the learned r̂ to learn an approximation of q̂. We

refer the reader to Algorithm 1 for a detailed exposition

of our algorithm. We split the offline data into training

5
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Algorithm 1 Offline Data Informed (ODI) algorithm

1: Input: Estimators r(s, a), qπ,t(s, a), q̂π,t(s, a),
a target policy π,

an offline dataset D = {(ti, si, ai, ri, si)}mi=1

2: Output: a behavior policy µ̂
3: Approximate r from D using supervised learning

4: Approximate qπ,t from D using any offline RL method

(e.g. Fitted Q-Evaluation)

5: Compute r̂i by (20) for each data pair in D
6: Construct Dr̂

.
= {(ti, si, ai, r̂i, si)}mi=1 by plugging r̂i

into D
7: Approximate q̂π,t from Dr̂ by (21) using any offline RL

method (e.g. Fitted Q-Evaluation)

8: Return: µ̂t(a|s) ∝ πt(a|s)
√

q̂π,t(s, a)

sets and test sets to tune all the hyperparameters offline

in Algorithm 1, based on the supervised learning loss or

the FQE loss on the test set. We remark that FQE loss on

the test set is known to be an inaccurate signal (Fujimoto

et al., 2022) so our q̂ estimation would be poorly tuned

in this sense. We, however, notice that even with such a

poorly tuned estimation, the variance reduction in the tested

environments is still significant. This suggests that ϵt(s)
in Theorem 3 is likely to be large and demonstrates the

robustness of our approach. Since q̂π,t(s, a) is proved to

be always non-negative (cf. (15)), we use positive function

class for FQE in approximating q̂, e.g., a neural network

with softplus as the last activation function.

In the following, we theoretically analyze how the error in

approximating q̂ affects the amount of reduced variance in

Theorem 3. We assume q̂π,t(s, a) is not only non-negative

but also positive. Given its non-negative summands in (15),

we argue that this positivity assumption is not restrictive at

all. We use q+π,t(s, a) > 0 to denote our approximation to

q̂π,t(s, a). The approximation error can then be captured by

ηπ,t(s, a)
.
= q̂+π,t(s, a)/q̂π,t(s, a) > 0. (22)

If ηπ,t(s, a) is 1, there is no approximation error for (s, a, t).
The actual learned behavior policy is then denoted by

µ̂+
t (a|s) ∝ πt(a|s)

√

q̂+π,t(s, a). (23)

Then, we generalize Theorem 3 to the following theorem.

Theorem 5. For any t and s,

V(GPDIS(τ
µ̂+

t:T−1

t:T−1 ) | St = s)

≤V(GPDIS(τ
πt:T−1

t:T−1 ) | St = s)− ϵ+t (s).

To define ϵ+t (s), first define

c+t (s)
.
=
∑

a πt(a|s)q̂π,t(s, a)−

(

∑

a πt(a|St)
√

ηπ,t(St, a)
√

q̂π,t(St, a)
)

×
(

∑

a πt(a|St)
1√

ηπ,t(St,a)

√

q̂π,t(St, a)

)

.

Then we define ϵ+t (s)
.
= c+t (s) for t = T − 1 and otherwise

ϵ+t (s) (24)
.
=c+t (s) + EAt∼µ̂+

t
[ρ2tESt+1

[ϵ+t+1(St+1)|s,At]].

Its proof is in Appendix A.8. When there is no estimation

error, i.e., ηπ,t(s, a) = 1, c+t and ϵ+t reduce to ct and ϵt in

Theorem 3, which is non-negative by Jensen’s inequality.

As discussed earlier, it is reasonable to conjecture that ct(s)
is likely to be strictly positive. This leaves room to tolerate

estimation errors such that c+t (s) can still be positive even

if ηt(s, a) ̸= 1. Because the sign of c+t only depends on the

current ηπ,t, the estimation error in the future step does not

affect current ct. Notably, even if some ϵ+t+1(St+1) < 0,

ϵ+t (St) can still be positive. This is because ϵ+t (s) depends

on the expectation of the ϵ+t+1(St+1), not a single value, and

c+t can still be positive. This makes our approach robust

to the approximation error. It is important to note that the

PDIS estimator with µ̂t(a|s) is always unbiased, regardless

of the approximation error η.

Theorem 5 makes it straightforward to analyze how the

offline data affects the amount of the reduced variance. For

example, if FQE is used, one can resort to Munos (2003);

Antos et al. (2008); Munos & Szepesvári (2008); Chen &

Jiang (2019) to connect offline data and the approximation

error η. Theorem 5 then directly relays the approximation

error to the amount of reduced variance. We, however, omit

such analysis since it deviates from our main contribution.

6. Related Work

Monte Carlo methods. Reducing the variance of Monte

Carlo estimators via learning a proper behavior policy has

been explored before. Hanna et al. (2017) model the prob-

lem of finding a variance-reducing behavior policy as an

optimization problem and thus rely on stochastic gradient

descent to update a parameterized behavior policy. In partic-

ular, Hanna et al. (2017) consider the ordinary importance

sampling. By contrast, we consider the per-decision impor-

tance sampling, which is fundamentally better (Precup et al.,

2000). Moreover, Hanna et al. (2017) require new online

data to learn this behavior policy. By contrast, our method

works with offline data and does not need any online data for

behavior policy learning. Hanna et al. (2017) also require

the online data to be complete trajectories. By contrast, our

method copes well with incomplete offline tuples. Mukher-

jee et al. (2022) also investigate variance-reducing behavior

policies for the per-decision importance sampling estimator.

Their results, however, apply to only tree-structured MDPs,

6
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MDP Data to learn µ Parameterization of π Gridworld size Other environments

Ours general offline data no assumption 27,000 MuJoCo robotics
BPS (Hanna et al., 2017) general online data need to be known 1,600 CartPole, Acrobot
ROS (Zhong et al., 2022) general online data need to be known 1,600 CartPole
ReVar (Mukherjee et al., 2022) tree offline data no assumption 1,600 15 states tree-MDP

Table 1. Our methods impose weaker assumptions on the data, and our empirical study covers more challenging tasks.

which is rather restrictive because many MDPs of interest

are not tree-structured. For example, in finite horizon MDPs

considered in this paper, if two states at time t can transit to

the same successor state at time t+ 1, then this MDP is not

tree-structured. Moreover, Mukherjee et al. (2022) require

to directly approximate the transition function of the MDP

by counting, making it essentially a model-based approach.

Mukherjee et al. (2022), therefore, suffer from all canonical

challenges in model learning (Sutton, 1990; Sutton et al.,

2008; Deisenroth & Rasmussen, 2011; Chua et al., 2018).

By contrast, we work on general MDPs without making any

assumption regarding their underlying structures, and we

do not need to approximate the transition function. Our

approach is model-free. Zhong et al. (2022) adjust the be-

havior policy by encouraging under-sampled data. Their

offline data, however, has to be complete trajectories gen-

erated by known policies. In their experiments, they also

require the policies for generating offline data to be similar

to the target policy since they do not have any importance

sampling. By contrast, our method copes well with offline

data in the form of incomplete segments from probably un-

known behavior policies that can be arbitrarily different

from the target policy. Moreover, there is no theoretical

guarantee that the estimates made by Zhong et al. (2022) are

unbiased or consistent. By contrast, our estimate is always

provably unbiased.

Other attempts for variance reduction in Monte Carlo evalu-

ation mostly use control variates based on value functions

(Zinkevich et al., 2006; White & Bowling, 2009; Jiang & Li,

2016). Such control variates can be integrated into our esti-

mator, which we, however, save for future work. Notably,

our work differs from the doubly robust method in Jiang &

Li (2016) in that they assume the behavior policy is fixed

and given while we use the fact that we have the freedom

to choose a behavior policy in many settings. Moreover, to

account for the stochasticity from the transition function,

they require to learn a model of the MDP accurately, while

we achieve this in a model-free way. Finally, they do not

confirm a reduced variance compared with the on-policy

estimator while we do.

Model-based offline evaluation. One straightforward way

to exploit offline data for policy evaluation is to learn a

model of the MDP first, probably with supervised learning

(Jiang & Li, 2016; Paduraru, 2013; Zhang et al., 2021), and

then execute Monte Carlo methods inside the learned model.

Learning a high-fidelity model is, however, sometimes even

more challenging than evaluating the policy itself (Li, 2019).

And the model prediction error can easily compound over

time steps during model rollouts (Wan et al., 2019). Nev-

ertheless, if a good model could somehow be learned, our

work still helps reduce the required rollouts when Monte

Carlo is applied within the learned model.

Model-free offline evaluation. Model-free offline evalu-

ation methods rely on learning other quantities for policy

evaluation, including density ratio (a.k.a. marginalized im-

portance sampling ratio, Liu et al. (2018); Nachum et al.

(2019); Li (2019); Xie et al. (2019); Zhang et al. (2020);

Mousavi et al. (2020); Uehara et al. (2020); Yang et al.

(2020)) and state-action value function (Harutyunyan et al.,

2016; Munos et al., 2016; Farajtabar et al., 2018; Le et al.,

2019; Precup et al., 2000). But those learning processes

bring in bias, either due to the misspecification of the func-

tion class or due to the complexity of optimization. Conse-

quently, the estimation they make is biased, and it is hard

to quantify such bias without restrictive assumptions. To

our knowledge, the only practical way in general settings to

certify that their estimation is indeed accurate is to compare

those estimations with Monte Carlo estimations.

Furthermore, those learning algorithms also have hyper-

parameters to tune (i.e., model selection), for which most

offline RL practitioners (see, e.g., Liu et al. (2018); Nachum

et al. (2019); Li (2019); Xie et al. (2019); Mousavi et al.

(2020); Uehara et al. (2020); Yang et al. (2020); Zhang et al.

(2020)) usually use Monte Carlo with online data. The on-

line data comes from either a simulator or a learned model.

As a result, our work helps reduce the online data used

in model selection by those model-free offline evaluation

methods.

Efforts have been made to perform model selection with

only offline data without explicitly learning a model as well

(Paine et al., 2020; Kumar et al., 2021; Xie & Jiang, 2021;

Zhang & Jiang, 2021). Those offline model selection meth-

ods, however, rarely have a correctness guarantee without

restrictive assumptions. To summarize, if obtaining online

data is entirely impossible, existing offline evaluation meth-

ods without using any online data might be the only choices.

These include model-based methods and model-free meth-

ods augmented by offline model selection. However, in
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A. Proofs

A.1. Proof of Lemma 1

Proof.

EA∼µ [ρ(A)q(A)] =
∑

a∈{a|µ(a)>0}

µ(a)
π(a)

µ(a)
q(a)

=
∑

a∈{a|µ(a)>0}

π(a)q(a)

=
∑

a∈{a|µ(a)>0}

π(a)q(a) +
∑

a∈{a|µ(a)=0}

π(a)q(a) (µ ∈ Λ)

=
∑

a

π(a)q(a)

=EA∼π [q(A)] .

The intuition in the third equation is that the sample a where µ does not cover π must satisfy q(a) = 0, i.e., this sample does

not contribute to the expectation anyway.

A.2. Proof of Lemma 2

Proof.

For a given π and q, define

A+
.
= {a | π(a)q(a) ̸= 0}.

For any µ ∈ Λ, we expand the variance as

VA∼µ(ρ(A)q(A))

=EA∼µ[(ρ(A)q(A))
2]− E

2
A∼µ[ρ(A)q(A)]

=EA∼µ[(ρ(A)q(A))
2]− E

2
A∼π[q(A)] (Lemma 1)

=
∑

a∈{a|µ(a)>0}

π2(a)q2(a)

µ(a)
− E

2
A∼π[q(A)]

=
∑

a∈{a|µ(a)>0}∩A+

π2(a)q2(a)

µ(a)
− E

2
A∼π[q(A)] (π(a)q(a) = 0, ∀a /∈ A+)

=
∑

a∈A+

π2(a)q2(a)

µ(a)
− EA∼π[q(A)]2 (µ ∈ Λ)

The second term is a constant and is unrelated to µ. Solving the optimization problem (8) is, therefore, equivalent to solving

minµ∈Λ

∑

a∈A+

π2(a)q2(a)

µ(a)
. (25)

Case 1: |A+| = 0
In this case, the variance is always 0 so any µ ∈ Λ is optimal. In particular, µ∗(a) = 1

A is optimal.

Case 2: |A+| > 0
The definition of Λ in (7) can be equivalently expressed, using contraposition, as

Λ = {µ ∈ ∆(A) | ∀a, a ∈ A+ =⇒ µ(a) > 0}.
The optimization problem (25) can then be equivalently written as

minµ∈∆(A)

∑

a∈A+

π2(a)q2(a)

µ(a)
(26)

13
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s.t. µ(a) > 0 ∀a ∈ A+.

If for some µ we have
∑

a∈A+
µ(a) < 1, then there must exist some a0 /∈ A+ such that µ(a0) > 0. Since a0 does not

contribute to the summation in the objective function of (26), we can move the probability mass on a0 to some other

a1 ∈ A+ to increase µ(a1) to further decrease the objective. In other words, any optimal solution µ to (26) must put all its

mass on A+. This motivates the following problem

minz∈∆(A+)

∑

a∈A+

π2(a)q2(a)

z(a)
(27)

s.t. z(a) > 0 ∀a ∈ A+.

In particular, if z∗ is an optimal solution to (27), then an optimal solution to (26) can be constructed as

µ∗(a) =

{

z∗(a) a ∈ A+

0 otherwise.
(28)

Let R++
.
= (0,+∞).

According to the Cauchy-Schwarz inequality, for any z ∈ R
|A+|
++ , we have





∑

a∈A+

π2(a)q2(a)

z(a)









∑

a∈A+

z(a)



 ≥





∑

a∈A+

π(a)|q(a)|
√

z(a)

√

z(a)





2

=





∑

a∈A+

π(a)|q(a)|





2

.

It can be easily verified that the equality holds for

z∗(a)
.
=

π(a)|q(a)|
∑

b π(b)|q(b)|
> 0.

Since
∑

a∈A+
z∗(a) = 1, we conclude that z∗ is an optimal solution to (27). An optimal solution µ∗ to (8) can then be

constructed according to (28). Making use of the fact that π(a)|q(a)| = 0 for a /∈ A+, this µ∗ can be equivalently expressed

as

µ∗(a) =
π(a)|q(a)|

∑

b∈A π(b)q(b)
,

which completes the proof.

A.3. Proof of Lemma 3

Proof. We start by showing Λ = Λ+. Lemma 1 ensures that µ ∈ Λ =⇒ µ ∈ Λ+. We now show that µ ∈ Λ+ =⇒ µ ∈ Λ.

For any µ ∈ Λ+, we have

∑

a∈{a|µ(a)>0}

µ(a)
π(a)

µ(a)
q(a) =

∑

a

π(a)q(a).

This indicates that

∑

a∈{a|µ(a)=0}

π(a)q(a) = 0.

Since π(a) ≥ 0 and all q(a) has the same sign, we must have

π(a)q(a) = 0, ∀a ∈ {a | µ(a) = 0}.

This is exactly µ(a) = 0 =⇒ π(a)q(a) = 0, yielding µ ∈ Λ. This completes the proof of Λ+ = Λ.
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We now show the zero variance. When ∀a ∈ A, q(a) ≥ 0, if ∃a0, π0(a0)q(a0) ̸= 0, we have ∀a ∈ A

µ∗(a) =
π(a)|q(a)|

c

and c > 0 is a normalizing constant. Plugging µ∗ to ρ(A)q(A), we get ∀a ∈ A

ρ(a)q(a) =
π(a)

µ∗(a)
q(a) =

π(a)
π(a)|q(a)|

c

q(a) = c.

This means in this setting, with the optimal distribution µ∗, the random variable ρ(·)q(·) is a constant function. Thus,

VA∼µ∗(ρ(A)q(A)) = 0.

When ∀a ∈ A, q(a) ≥ 0, if ∀a0, π0(a0)q(a0) = 0, we have ∀a ∈ A

µ∗(a) =
1

|A| .

Plugging µ∗ to ρ(A)q(A), we get ∀a ∈ A

ρ(a)q(a) =
π(a)

µ∗(a)
q(a) =

π(a)q(a)
1

|A|

= 0.

This shows ρ(A)q(A) is also a constant. Thus,

VA∼µ∗(ρ(A)q(A)) = 0.

The proof is similar for ∀a ∈ A, q(a) ≤ 0 and is thus omitted.

A.4. Proof of Theorem 1

Proof. We proceed via induction. For t = T − 1, we have

E
[

GPDIS(τ
µt:T−1

t:T−1 ) | St

]

=E [ρtRt+1 | St] = E [ρtqπ,t(St, At) | St]

=EAt∼πt(·|St) [qπ,t(St, At) | St] (Lemma 1)

=vπ,t(St).

For t ∈ [T − 2], we have

E
[

GPDIS(τ
µt:T−1

t:T−1 ) | St

]

=E
[

ρtRt+1 + ρtG
PDIS(τ

µt+1:T−1

t+1:T−1 ) | St

]

=E [ρtRt+1 | St] + E
[

ρtG
PDIS(τ

µt+1:T−1

t+1:T−1 ) | St

]

=E [ρtRt+1 | St] + EAt∼µt(·|St),St+1∼p(·|St,At)

[

E
[

ρtG
PDIS(τ

µt+1:T−1

t+1:T−1 ) | St, At, St+1

]

| St

]

(Law of total expectation)

=E [ρtRt+1 | St] + EAt∼µt(·|St),St+1∼p(·|St,At)

[

ρtE
[

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St+1

]

| St

]

(Conditional independence and Markov property)

=E [ρtRt+1 | St] + EAt∼µt(·|St),St+1∼p(·|St,At) [ρtvπ,t+1(St+1) | St] (Inductive hypothesis)

=EAt∼µt(·|St) [ρtqπ,t(St, At) | St] (Definition of qπ,t)

=EAt∼πt(·|St) [qπ,t(St, At) | St] (Lemma 1)

=vπ,t(St),

which completes the proof.

15



Efficient Policy Evaluation with Offline Data Informed Behavior Policy Design

A.5. Proof of Theorem 2

To prove Theorem 2, we rely on a recursive expression of the PDIS Monte Carlo estimator summarized by the following

lemma.

Lemma 4 (Recursive Expression of Variance). For any µ ∈ Λ, for t = T − 1,

V
(

GPDIS(τ
µt:T−1

t:T−1 ) | St

)

= EAt∼µt

[

ρ2t q
2
π,t(St, At) | St

]

− v2π,t(St),

for t ∈ [T − 2],

V
(

GPDIS(τ
µt:T−1

t:T−1 ) | St

)

=EAt∼µt

[

ρ2t
(

ESt+1

[

V
(

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St

)

| St, At

]

+ νπ,t(St, At) + q2π,t(St, At)
)

| St

]

− v2π,t(St).

Proof. When t ∈ [T − 2], we have

V
(

GPDIS(τ
µt:T−1

t:T−1 ) | St

)

(29)

=EAt

[

V
(

GPDIS(τ
µt:T−1

t:T−1 ) | St, At

)

| St

]

+ VAt

(

E
[

GPDIS(τ
µt:T−1

t:T−1 ) | St, At

]

| St

)

(Law of total variance)

=EAt

[

ρ2tV
(

r(St, At) +GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St, At

)

| St

]

+ VAt

(

ρtE
[

r(St, At) +GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St, At

]

| St

)

(Using (2))

=EAt

[

ρ2tV
(

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St, At

)

| St

]

+ VAt

(

ρtE
[

r(St, At) +GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St, At

]

| St

)

(Deterministic reward r)

=EAt

[

ρ2tV
(

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St, At

)

| St

]

+ VAt
(ρtqπ,t(St, At) | St) .

Further decomposing the first term, we have

V
(

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St, At

)

(30)

=ESt+1

[

V
(

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St, At, St+1

)

| St, At

]

+ VSt+1

(

E
[

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St, At, St+1

]

| St, At

)

(Law of total variance)

=ESt+1

[

V
(

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St+1

)

| St, At

]

+ VSt+1

(

E
[

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St+1

]

| St, At

)

(Markov property)

=ESt+1

[

V
(

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St+1

)

| St, At

]

+ VSt+1
(vπ,t+1(St+1) | St, At) . (Theorem 1)

With νπ,t defined in (11), plugging (30) back to (29) yields

V
(

GPDIS(τ
µt:T−1

t:T−1 ) | St

)

=EAt

[

ρ2t
(

ESt+1

[

V
(

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St+1

)

| St, At

]

+ νt(St, At)
)

| St

]

+ VAt
(ρtqπ,t(St, At) | St)

=EAt

[

ρ2t
(

ESt+1

[

V
(

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St+1

)

| St, At

]

+ νt(St, At)
)

| St

]

+ EAt

[

ρ2t q
2
π,t(St, At) | St

]

− (EAt
[ρtqπ,t(St, At) | St])

2

=EAt

[

ρ2t
(

ESt+1

[

V
(

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St+1

)

| St, At

]

+ νt(St, At)
)

| St

]

+ EAt

[

ρ2t q
2
π,t(St, At) | St

]

− v2π,t(St). (Lemma 1)

When t = T − 1, we have

V
(

GPDIS(τ
µt:T−1

t:T−1 ) | St

)

=V (ρtr(St, At) | St)

=V (ρtqπ,t(St, At) | St)

=EAt

[

ρ2t q
2
π,t(St, At) | St

]

− v2π,t(St),

which completes the proof.
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We restate and present the main proof of Theorem 2.

Theorem 2 (Optimal Behavior Policy). For any t and s, the behavior policy µ∗
t (a|s) defined above is an optimal solution to

the following problem

min
µt∈Λt,...,µT−1∈ΛT−1

V
(

GPDIS(τ
µt:T−1

t:T−1 ) | St = s
)

,

where Λt
.
= {µt ∈ ∆(A) | ∀s, a, µt(a|s) = 0 =⇒

πt(a|s)uπ,t(s, a) = 0}.

Proof. We proceed via induction. When t = T − 1, we have

V
(

GPDIS(τ
µT−1:T−1

T−1:T−1 ) | ST−1 = s
)

=VAT−1
(ρT−1r(s,AT−1) | ST−1 = s)

=VAT−1
(ρT−1qπ,T−1(s,AT−1) | ST−1 = s) .

The definition of µ∗
T−1 in (12) and Lemma 2 ensure that µ∗

T−1 is an optimal solution to

min
µT−1∈ΛT−1

V
(

GPDIS
(

τ
µT−1

T−1

)

| ST−1 = s
)

.

Now, suppose for some t ∈ [T − 2], µ∗
t+1:T−1 is an optimal solution to

min
µt+1∈Λt+1,...,µT−1∈ΛT−1

V
(

GPDIS
(

τ
µt+1:T−1

t+1:T−1

)

| St+1 = s
)

.

To complete induction, we proceed to proving that µ∗
t:T−1 is an optimal solution to

min
µt∈Λt,...,µT−1∈ΛT−1

V
(

GPDIS
(

τ
µt:T−1

t:T−1

)

| St = s
)

. (31)

In the rest of this proof, we omit the domain Λt, . . . ,ΛT−1 for simplifying notations. For any µt:T−1, we have

V
(

GPDIS(τ
µt:T−1

t:T−1 ) | St

)

=EAt

[

ρ2t
(

ESt+1

[

V
(

GPDIS(τ
µt+1:T−1

t+1:T−1 ) | St+1

)

| St, At

]

+ νt(St, At) + q2π,t(St, At)
)

| St

]

− v2π,t(St) (By Lemma 4)

(a)

≥EAt

[

ρ2t

(

ESt+1

[

min
µ′

t+1:T−1

V

(

GPDIS(τ
µ′

t+1:T−1

t+1:T−1 ) | St+1

)

| St, At

]

+ νt(St, At) + q2π,t(St, At)

)

| St

]

− v2π,t(St) (Monotonically non-increasing in V(·))

=EAt

[

ρ2t

(

ESt+1

[

V

(

GPDIS(τ
µ∗

t+1:T−1

t+1:T−1 ) | St+1

)

| St, At

]

+ νt(St, At) + q2π,t(St, At)
)

| St

]

− v2π,t(St) (Inductive hypothesis)

=EAt

[

ρ2tuπ,t(St, At) | St

]

− v2π,t(St) (By (13))

=VAt

(

ρt

√

uπ,t(St, At) | St

)

+ EAt

[

ρt

√

uπ,t(St, At) | St

]2

− v2π,t(St) (Definition of variance)

=VAt

(

ρt

√

uπ,t(St, At) | St

)

+ EAt∼πt(·|St)

[

√

uπ,t(St, At) | St

]2

− v2π,t(St) (Lemma 1 and µt ∈ Λt)

(b)

≥EAt∼πt(·|St)

[

√

uπ,t(St, At) | St

]2

− v2π,t(St). (Non-negativity of variance)

According to the inductive hypothesis, the equality in (a) can be achieved when µt+1:T−1 = µ∗
t+1:T−1. According to the

construction of µ∗
t in (12) and Lemma 3, the equality in (b) can be achieved when µt = µ∗

t . This suggests that µ∗
t:T−1

achieves the lower bound and is thus an optimal solution to (31), which completes the induction and thus completes the

proof.
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A.6. Proof of Theorem 3

To prove the variance reduction property of µ̂, we express V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St = s
)

, the variance of the on-policy Monte

Carlo estimator, in the form of a Bellman equation (Tamar et al., 2016; O’Donoghue et al., 2018; Sherstan et al., 2018).

Define

r̃π,t(s, a)
.
= νπ,t(s, a) + q2π,t(s, a)− v2π,t(s) ∀t ∈ [T − 1], (32)

q̃π,t(s, a)
.
=

{

r̃π,t(s, a) +
∑

s′,a′ p(s′|s, a)πt+1(a
′|s′)q̃π,t+1(s

′, a′) if t ∈ [T − 2]

r̃π,t(s, a) if t = T − 1
. (33)

We have

Lemma 5 (Variance Equality).

V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St = s
)

=
∑

a

πt(a|s)q̃π,t(s, a) ∀t, s.

Proof. We proceed via induction. When t = T − 1, we have

V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St

)

=VAt
(ρtr(St, At) | St)

=VAt
(r(St, At) | St) (By on-policy)

=VAt
(qπ,t(St, At) | St)

=EAt

[

q2π,t(St, At) | St

]

− v2π,t(St)

=
∑

a

πt(a|St)q̃π,t(St, a). (By (33) and νπ,T−1(s, a) = 0)

For t ∈ [T − 2], we have

V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St

)

=EAt

[

ESt+1

[

V
(

GPDIS(τ
πt+1:T−1

t+1:T−1 ) | St+1

)

| St, At

]

+ q2π,t(St, At) + νπ,t(St, At) | St

]

− v2π,t(St)

(Lemma 4 and on-policy)

=
∑

a

πt(a|St)

(

∑

s′

p(s′|St, a)V
(

GPDIS(τ
πt+1:T−1

t+1:T−1 ) | St+1 = s′
)

+ r̃(St, a)

)

=
∑

a

πt(a|St)

(

∑

s′

p(s′|St, a)
∑

a′

πt+1(a
′|s′)q̃π,t+1(s

′, a′) + r̃(St, a)

)

(Inductive hypothesis)

=
∑

a

πt(a|St)q̃π,t(St, a), (By (33))

which completes the proof.

Here, this q̃ is exactly the state-action value function of the target policy π in the MDP w.r.t. to a new reward function r̃.

Manipulating (15) then yields

q̂π,t(s, a) =
∑

s′

p(s′|s, a)
∑

a′

πt+1(a
′|s′)q̃π,t+1(s

′, a′) + νt(s, a) + q2π,t(s, a)

=q̃π,t(s, a) + v2π,t(s). (34)

Now, we restate and present the main proof of Theorem 3.

Theorem 3 (Variance Reduction). For any t and s,

V

(

GPDIS(τ
µ̂t:T−1

t:T−1 ) | St = s
)
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≤V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St = s
)

− ϵt(s).

To define ϵt(s), first define ct(s) =

∑

a πt(a|s)q̂π,t(s, a)−
(

∑

a πt(a|s)
√

q̂π,t(s, a)
)2

.

Then we define ϵt(s)
.
= ct(s) for t = T − 1 and otherwise

ϵt(s)
.
= ct(s) + EAt∼µ̂t

[

ρ2tESt+1
[ϵt+1(St+1)|s,At]

]

. (19)

Proof. We proceed via induction. For t = T − 1, we have

V

(

GPDIS(τ
µ̂t:T−1

t:T−1 ) | St

)

=EAt∼µ̂t

[

ρ2t q
2
π,t(St, At) | St

]

− v2π,t(St) (Lemma 4)

=EAt∼µ̂t

[

ρ2t q̂π,t(St, At) | St

]

− v2π,t(St) (Definition of q̂ (14))

=VAt∼µ̂t

(

ρt

√

q̂π,t(St, At)|St

)

+ E
2
At∼µ̂t

[

ρt

√

q̂π,t(St, At)|St

]

− v2π,t(St)

(Definition of variance and non-negativity of q̂)

=VAt∼µ̂t

(

ρt

√

q̂π,t(St, At)|St

)

+

(

∑

a

πt(a|St)
√

q̂π,t(St, a)

)2

− v2π,t(St) (Lemma 1)

=

(

∑

a

πt(a|St)
√

q̂π,t(St, a)

)2

− v2π,t(St) (Definition of µ̂ (18) and Lemma 3)

=
∑

a

πt(a|St)q̂π,t(St, a) +

(

∑

a

πt(a|St)
√

q̂π,t(St, a)

)2

−
∑

a

πt(a|St)q̂π,t(St, a)− v2π,t(St)

=V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St

)

+

(

∑

a

πt(a|St)
√

q̂π,t(St, a)

)2

−
∑

a

πt(a|St)q̂π,t(St, a) (By (34) and Lemma 5)

=V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St

)

− ϵt(St). (Definition of ϵ (19))

For t ∈ [T − 2], we have

V

(

GPDIS(τ
µ̂t:T−1

t:T−1 ) | St

)

=EAt∼µ̂t

[

ρ2t

(

ESt+1

[

V

(

GPDIS(τ
µ̂t+1:T−1

t+1:T−1 ) | St+1

)

| St, At

]

+ νπ,t(St, At) + q2π,t(St, At)
)

| St

]

− v2π,t(St) (Lemma 4)

≤EAt∼µ̂t

[

ρ2t

(

ESt+1

[

∑

a′

πt+1(a
′|St+1)q̃π,t+1(St+1, a

′) | St, At

]

+ νπ,t(St, At)

+ q2π,t(St, At)
)

| St

]

− v2π,t(St)− EAt∼µ̂t

[

ρ2tESt+1
[ϵt+1(St+1) | St, At]

]

(Inductive hypothesis and Lemma 5)

=EAt∼µ̂t

[

ρ2t
(

q̃π,t(St, At) + v2π,t(St)
)

| St

]

− v2π,t(St)− EAt∼µ̂t

[

ρ2tESt+1
[ϵt+1(St+1) | St, At]

]

(Definition of q̃ (33))

=EAt∼µ̂t

[

ρ2t q̂π,t(St, At) | St

]

− v2π,t(St)− EAt∼µ̂t

[

ρ2tESt+1
[ϵt+1(St+1) | St, At]

]

(Definition of q̂ (34))

=VAt∼µ̂t

(

ρt

√

q̂π,t(St, At)|St

)

+ E
2
At∼µ̂t

[

ρt

√

q̂π,t(St, At)|St

]

− v2π,t(St)

− EAt∼µ̂t

[

ρ2tESt+1
[ϵt+1(St+1) | St, At]

]

(Definition of variance and non-negativity of q̂)

=VAt∼µ̂t

(

ρt

√

q̂π,t(St, At)|St

)

+

(

∑

a

πt(a|St)
√

q̂π,t(St, a)

)2

− v2π,t(St)
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− EAt∼µ̂t

[

ρ2tESt+1
[ϵt+1(St+1) | St, At]

]

(Lemma 1)

=

(

∑

a

πt(a|St)
√

q̂π,t(St, a)

)2

− v2π,t(St)− EAt∼µ̂t

[

ρ2tESt+1
[ϵt+1(St+1) | St, At]

]

(Definition of µ̂ (18) and Lemma 3)

=
∑

a

πt(a|St)q̂π,t(St, a)− v2π,t(St) +

(

∑

a

πt(a|St)
√

q̂π,t(St, a)

)2

−
∑

a

πt(a|St)q̂π,t(St, a)

− EAt∼µ̂t

[

ρ2tESt+1
[ϵt+1(St+1) | St, At]

]

=V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St

)

+

(

∑

a

πt(a|St)
√

q̂π,t(St, a)

)2

−
∑

a

πt(a|St)q̂π,t(St, a)

− EAt∼µ̂t

[

ρ2tESt+1
[ϵt+1(St+1) | St, At]

]

(By (34) and Lemma 5)

=V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St

)

− ϵt(St). (Definition of ϵ (19))

A.7. Proof of Theorem 4

Proof. For t = T − 1, we have

q̂π,t(s, a) = q2π,t(s, a) (Definition of q̂π,t (14))

= r̂π,t(s, a). (By qπ,T−1(s, a) = r(s, a) and Theorem 4)

For t ∈ [T − 2], we have

q̂π,t(s, a)

=q̃π,t(s, a) + v2π,t(s) (By (34))

=r̃π,t(s, a) + v2π,t(s) +
∑

s′,a′

p(s′|s, a)πt+1(a
′|s′)q̃π,t+1(s

′, a′) (Definition of q̃ (33))

=r̃π,t(s, a) + v2π,t(s) +
∑

s′,a′

p(s′|s, a)πt+1(a
′|s′)(q̃π,t+1(s

′, a′) + v2π,t+1(s
′)− v2π,t+1(s

′))

=r̃π,t(s, a) + v2π,t(s) +
∑

s′,a′

p(s′|s, a)πt+1(a
′|s′)(q̂π,t+1(s

′, a′)− v2π,t+1(s
′)) (By (34))

=νπ,t(s, a) + q2π,t(s, a)−
∑

s′

p(s′|s, a)v2π,t+1(s
′) +

∑

s′,a′

p(s′|s, a)πt+1(a
′|s′)q̂π,t+1(s

′, a′) (Definition of r̃ (32))

=− (E[vπ,t+1(St+1) | St = s,At = a])2 + q2π,t(s, a) +
∑

s′,a′

p(s′|s, a)πt+1(a
′|s′)q̂π,t+1(s

′, a′) (Definition of ν (11))

=− (qπ,t(s, a)− r(s, a))2 + q2π,t(s, a) +
∑

s′,a′

p(s′|s, a)πt+1(a
′|s′)q̂π,t+1(s

′, a′)

=2r(s, a)qπ,t(s, a)− r2(s, a) +
∑

s′,a′

p(s′|s, a)πt+1(a
′|s′)q̂π,t+1(s

′, a′)

=r̂π,t(s, a) +
∑

s′,a′

p(s′|s, a)πt+1(a
′|s′)q̂π,t+1(s

′, a′), (By Theorem 4)

which completes the proof.

A.8. Proof of Theorem 5

Proof. We first derive an important equality. ∀t,

EAt∼µ̂+

t

[

ρ+t
2
q̂π,t(St, At) | St

]
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=
∑

a

π2
t (a|St)

µ̂+
t (a|St)

q̂π,t(St, a)

=
∑

a

π2
t (a|St)

πt(a|St)
√

q̂+π,t(St,a)

∑

b
πt(b|St)

√

q̂+π,t(St,b)

q̂π,t(St, a) (by (23))

=

[

∑

a

πt(a|St)
√

q̂+π,t(St, a)

]





∑

a

πt(a|St)
q̂π,t(St, a)
√

q̂+π,t(St, a)





=

[

∑

a

πt(a|St)
√

ηπ,t(St, a)
√

q̂π,t(St, a)

][

∑

a

πt(a|St)
1

√

ηπ,t(St, a)

√

q̂π,t(St, a)

]

. (By (22)) (35)

We proceed via induction. For t = T − 1, we have

V

(

GPDIS(τ
µ̂
+

t:T−1

t:T−1 ) | St

)

=EAt∼µ̂
+

t

[

ρ+t
2
q2π,t(St, At) | St

]

− v2π,t(St) (Lemma 4)

=EAt∼µ̂
+

t

[

ρ+t
2
q̂π,t(St, At) | St

]

− v2π,t(St) (Definition of q̂ (14))

=

[

∑

a

πt(a|St)
√

ηπ,t(St, a)
√

q̂π,t(St, a)

][

∑

a

πt(a|St)
1

√

ηπ,t(St, a)

√

q̂π,t(St, a)

]

− v2π,t(St) (By (35))

=
∑

a

πt(a|St)q̂π,t(St, a) +

[

∑

a

πt(a|St)
√

ηπ,t(St, a)
√

q̂π,t(St, a)

][

∑

a

πt(a|St)
1

√

ηπ,t(St, a)

√

q̂π,t(St, a)

]

−
∑

a

πt(a|St)q̂π,t(St, a)− v2π,t(St)

=V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St

)

−
(

∑

a

πt(a|St)q̂π,t(St, a)−
[

∑

a

πt(a|St)
√

ηπ,t(St, a)
√

q̂π,t(St, a)

][

∑

a

πt(a|St)
1

√

ηπ,t(St, a)

√

q̂π,t(St, a)

])

(By (34) and Lemma 5)

=V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St

)

− ϵ+t (St). (Definition of ϵ+ (24))

For t ∈ [T − 2], we have

V

(

GPDIS(τ
µ̂+

t:T−1

t:T−1 ) | St

)

=EAt∼µ̂+

t

[

ρ2t

(

ESt+1

[

V

(

GPDIS(τ
µ̂+

t+1:T−1

t+1:T−1 ) | St+1

)

| St, At

]

+ νπ,t(St, At) + q2π,t(St, At)

)

| St

]

− v2π,t(St) (Lemma 4)

≤EAt∼µ̂
+

t

[

ρ2t

(

ESt+1

[

∑

a′

πt+1(a
′|St+1)q̃π,t+1(St+1, a

′) | St, At

]

+ νπ,t(St, At)

+ q2π,t(St, At)
)

| St

]

− v2π,t(St)− EAt∼µ̂+

t

[

ρ2tESt+1

[

ϵ+t+1(St+1) | St, At

]]

(Inductive hypothesis and Lemma 5)

=EAt∼µ̂
+

t

[

ρ2t
(

q̃π,t(St, At) + v2π,t(St)
)

| St

]

− v2π,t(St)− EAt∼µ̂
+

t

[

ρ2tESt+1

[

ϵ+t+1(St+1) | St, At

]]

(Definition of q̃ (33))

=EAt∼µ̂+

t

[

ρ2t q̂π,t(St, At) | St

]

− v2π,t(St)− EAt∼µ̂+

t

[

ρ2tESt+1

[

ϵ+t+1(St+1) | St, At

]]

(Definition of q̂ (15))

=

[

∑

a

πt(a|St)
√

ηπ,t(St, a)
√

q̂π,t(St, a)

][

∑

a

πt(a|St)
1

√

ηπ,t(St, a)

√

q̂π,t(St, a)

]

− v2π,t(St)
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− EAt∼µ̂+

t

[

ρ2tESt+1

[

ϵ+t+1(St+1) | St, At

]]

(By (35))

=
∑

a

πt(a|St)q̂π,t(St, a)− v2π,t(St)

+

[

∑

a

πt(a|St)
√

ηπ,t(St, a)
√

q̂π,t(St, a)

][

∑

a

πt(a|St)
1

√

ηπ,t(St, a)

√

q̂π,t(St, a)

]

−
∑

a

πt(a|St)q̂π,t(St, a)

− EAt∼µ̂
+

t

[

ρ2tESt+1

[

ϵ+t+1(St+1) | St, At

]]

=V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St

)

+

[

∑

a

πt(a|St)
√

ηπ,t(St, a)
√

q̂π,t(St, a)

][

∑

a

πt(a|St)
1

√

ηπ,t(St, a)

√

q̂π,t(St, a)

]

−
∑

a

πt(a|St)q̂π,t(St, a)− EAt∼µ̂+

t

[

ρ2tESt+1

[

ϵ+t+1(St+1) | St, At

]]

] (By (34) and Lemma 5)

=V
(

GPDIS(τ
πt:T−1

t:T−1 ) | St

)

− ϵ+t (St). (Definition of ϵ+ (24))
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B. Experiment Details

B.1. GridWorld

For a Gridworld with size n, its width, height, and time horizon T are all set to n. There are four possible actions: up, down,

left, and right. After taking an action, the agent has a 0.9 probability of moving accordingly and a 0.1 probability of moving

uniformly at random. If the agent runs into a boundary, the agent stays in its current location. The reward function r(s, a) is

randomly generated and fixed after generation. We normalize the rewards across all (s, a) such that maxs,a r(s, a) = 1. We

consider a set of randomly generated target policies. The ground truth policy performance is estimated using the on-policy

Monte Carlo method by running each target policy for 106 episodes. We test two different sizes of the Gridworld with a

number of 1, 000 and 27, 000 states. The offline dataset contains m = 105 randomly generated tuples. For a Gridworld of

size n, the total amount of possible (s, t, a, r, s′) tuples is n× n× n× 4× 4 = 16n3. The offline data coverages for the

Gridworld of size 1, 000 and 27, 000 are then 62.5% and 2.3%.

We use a one-hot vector representing the position of the agent and a real number representing the current time step as

features for the state. We execute Algorithm 1 to approximate function r, q, and q̂. As shown in Algorithm 1, we train

r using supervised learning by batch stochastic gradient descent. We train q and q̂ using fitted Q-learning. We split the

offline data into a training set and a test set. We tune all hyperparameters offline based on the supervised learning loss

and fitted Q-learning loss on the test set. With the Adam optimizer (Kingma & Ba, 2015), we search the learning rates

in
{

2−20, 2−18, · · · , 20
}

to minimize the loss on the offline data and use the learning rate 2−10 on all learning processes.

For the behavior policy search (BPS, Hanna et al. (2017)) and robust on-policy sampling (ROS, Zhong et al. (2022))

algorithms, we use the reported parameters from Hanna et al. (2017) and Zhong et al. (2022), since it is not clear how to do

hyperparameter turning for BPS and ROS with only offline data.

B.2. MuJoCo

Figure 3. MuJoCo (Todorov et al., 2012) robot simulation tasks. MuJoCo is a physics engine for robotics simulation and contains various

stochastic environments. The goal in each environment is to control a robot to achieve different behaviors such as walking, jumping,

and balancing. Environments from the left to the right are Ant, Hopper, InvertedDoublePendulum, InvertedPendulum, and Walker. We

conducted experiments on those five environments with results reported in Section 7.

Figure 3 is an introduction to the MuJoCo environments. We construct 150 policies (30 policies in each environment) with a

wide range of performance using the proximal policy optimization (PPO) algorithm (Schulman et al., 2017) and the default

PPO implementation in Huang et al. (2022). Since our methods are designed for discrete action space, we discretize the first

dimension of MuJoCo action space in our experiments. The remaining dimensions are controlled by the PPO policy and are

deemed as part of the environment. We run each compared algorithm 30 times for each policy and compute the average

and standard error to plot curves in Figure 2. To generate offline data, we add different levels of noise to the target policy

and run noisy target policies for 2000 episodes. The noise is in the form of a uniformly random policy, and its weight is

uniformly randomly sampled from (0, 0.1]. This data generation process simulates the data generated during the training of

a policy. Notably, compared with previous works, we do not need data to be complete trajectories or generated by known

policies. We leave the investigation of entirely irrelevant offline data in the MuJoCo domain for future work. Our algorithm

is robust on hyperparameters. All learning rates in Algorithm 1 are tuned offline and are the same 2−10 across all MuJoCo

and Gridworld experiments.

In MuJcCo, the episode length varies because of stochasticity in policies and environments. Because the length of each

episode is not fixed, episodes in off-policy estimation may be longer than episodes in on-policy estimation. In the main text,

we use episodes instead of steps as the x-axis mainly to improve readability. Because after running 100 steps, we might

already have a good estimate for a target policy with a length of 10 but may still not finish a single episode for a target
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