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Abstract

Most reinforcement learning practitioners evalu-
ate their policies with online Monte Carlo estima-
tors for either hyperparameter tuning or testing
different algorithmic design choices, where the
policy is repeatedly executed in the environment
to get the average outcome. Such massive in-
teractions with the environment are prohibitive
in many scenarios. In this paper, we propose
novel methods that improve the data efficiency
of online Monte Carlo estimators while maintain-
ing their unbiasedness. We first propose a tai-
lored closed-form behavior policy that provably
reduces the variance of an online Monte Carlo
estimator. We then design efficient algorithms to
learn this closed-form behavior policy from previ-
ously collected offline data. Theoretical analysis
is provided to characterize how the behavior pol-
icy learning error affects the amount of reduced
variance. Compared with previous works, our
method achieves better empirical performance in
a broader set of environments, with fewer require-
ments for offline data.

1. Introduction

Reinforcement Learning (RL, Sutton & Barto (2018)) has
recently demonstrated great success in solving sequen-
tial decision-making problems. For example, AlphaStar
(Vinyals et al., 2019) defeats the best human StarCraft II
players and is ranked at the GrandMaster level in the Star-
Craft ladder. The canonical RL paradigm behind the success,
however, requires massive active interactions with the en-
vironment to obtain data (Sutton, 1988; Watkins & Dayan,
1992; Sutton et al., 1999; Mnih et al., 2015). Those data are
called online data, and this paradigm is called online RL.
Requiring massive online data is, however, prohibitive in
many scenarios. First, obtaining massive online data can
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be both expensive and slow in the real world (Li, 2019;
Zhang, 2023). Second, even if a simulator is available, ob-
taining massive online data can still be prohibitively slow
for high-fidelity simulation (Chervonyi et al., 2022).

Offline RL (Ernst et al., 2005; Lange et al., 2012; Fujimoto
et al., 2019; Levine et al., 2020) attacks this issue using ex-
isting, previously logged data, called offline data. Compared
with online data, offline data is cheaper and safer (Li, 2019;
Zhang, 2023). Offline RL also demonstrates great success.
For example, Mathieu et al. (2023) train an offline AlphaS-
tar, which uses only existing human replays without any
interaction with the StarCraft II simulator during training.
The offline AlphaStar obtains over 90% win rates against
the supervised learning agent in Vinyals et al. (2019).

However, most RL practitioners, even offline RL practi-
tioners, still heavily rely on online Monte Carlo estimators.
For example, Mathieu et al. (2023) repeatedly execute their
trained offline AlphaStar agents in the StartCraft II simulator
and use the win rates as the performance metric for hyperpa-
rameter tuning and evaluating different algorithmic design
choices. This evaluation practice is the straightforward on-
line Monte Carlo evaluation and requires massive online
data. There are indeed offline evaluation methods, most of
which, however, still rely on online Monte Carlo evaluation
for hyperparameter tuning and testing different algorithmic
design choices (see, e.g., Fu et al. (2020); Giilgehre et al.
(2020); Schrittwieser et al. (2021); Mathieu et al. (2023)).

Improving the sample efficiency of online Monte Carlo
estimators while maintaining their unbiasedness is thus
a need for both online and offline RL practitioners. We em-
phasize unbiasedness because it is arguably one of the key
reasons that make Monte Carlo estimators so dominating.
In this paper, we make three contributions toward fulfilling
this need. First, we propose tailored closed-form behavior
policies that provably reduce the variance of online Monte
Carlo estimators. Second, we design efficient algorithms
to learn the closed-form behavior policies from offline data.
Theoretical analysis is provided to characterize how the be-
havior policy learning error affects the amount of reduced
variance. Notably, this learning error does not introduce
any bias in the estimation. Third, we conduct thorough
empirical studies in a broad set of environments. Compared
with previous works, our method achieves better empirical
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performance while being less restrictive on offline data.

2. Background

We consider a finite horizon Markov Decision Process
(MDP, Puterman (2014)) with a finite state space S, a fi-
nite action space A, a reward function r : S x A — R,
a transition probability functionp : S x § x A — [0,1],
an initial distribution pg : S — [0, 1], and a constant hori-
zon length T'. Without loss of generality, we consider the
undiscounted setting for simplifying notations. Our results
naturally apply to the discounted setting (Puterman, 2014)
as long as the horizon is fixed and finite. For any integer
n, we define as shorthand [n] = {0,1,...,n}. At time
step 0, an initial state Sy is sampled from py. At time
stept € [T — 1], an action A; is sampled according to
m¢(- | S¢) where 7 : A X § — [0, 1] is the policy at time
step ¢. A finite reward R;y1; = r(S, A¢) is then emitted
and a successor state Sy is sampled from p(- | St, Ay).
We define abbreviations m;.; = {m;,mit1,...,7;} and
T = mgr—1. The return at time step ¢ is defined as
Gy = ZiT:t 41 R, which allows defining the state- and
action-value functions as v, (s) = E; [G; | S¢ = s] and
qrt(s,a) = E [Gy ] St =s,Ar = a]. We use the total
rewards performance metric (Puterman, 2014) to mea-
sure the performance of the policy m, which is defined
as J(m) = > po(s)vro(s). In this paper, we focus on
Monte Carlo methods introduced by Kakutani (1945) to es-
timate the total rewards J (7). Among its variants, the most
straightforward and widely used way is to draw samples
of J(m) by executing the policy 7 online. As the number
of samples increases, the empirical average of the sampled
returns converges to J (7). This idea is called on-policy
learning (Sutton 1988) because it estimates a policy 7 by
executing itself.

From now on, we consider off-policy learning, where we
estimate the total rewards J(7) of an interested policy 7,
called the target policy, by executing a different policy u,
called the behavior policy. In off-policy learning, each
trajectory {So, Ao, R1,51, A1, Ra, ..., Sr—1,Ar_1, Rr}
is generated by a behavior policy p with Sy ~ pg, Ay ~
we(|Se), t € [T —1]. Let

Mt:T—1
Tt;’}‘fl = {St7AtaRt+17 ce -7ST711AT717RT}

be a shorthand for a segment of a random trajectory gen-
erated by the behavior policy i from the time step ¢ to the
time step 1" — 1 inclusively. In off-policy learning, we use
the importance sampling ratio to reweight rewards collected
by w in order to give an estimate of J(7). The importance
sampling ratio at time step t is defined as p; = %.
The product of importance sampling ratios from time ¢ to

t' > tis defined as py.p = ngt %ﬁ‘lgzg. There are vari-

ous ways to use the importance sampling ratios in off-policy

learning (Geweke, 1988; Hesterberg, 1995; Koller & Fried-
man, 2009; Thomas, 2015). We start with the per-decision
importance sampling estimator (PDIS, Precup et al. (2000))
in this work and leave the investigation of others for future
work. The PDIS Monte Carlo estimator is defined as

GPPIS (727 ) = S0 ) pr R (1)

and is unbiased for any behavior policy p that covers target
policy 7 (Precup et al., 2000). In other words, when Vs, Va,
ue(als) =0 = m(als) = 0, we have Vi, Vs,

E[G™ (r/517) | St = 8] = vra(s).

We intensively use the recursive form of the PDIS estimator:

GPDIS (TtM}T—EI) (2)
_ ) (Ri1 + GPPB(rf{17)) te [T -2,
pth+1 t=T-—1.

Since the PDIS estimator is unbiased, reducing its variance
is sufficient for improving its sample efficiency. We achieve
this variance reduction by designing and learning proper
behavior policies.

3. Variance Reduction in Statistics

In this section, we provide the mathematical foundation for
variance reduction with importance sampling ratios. The
notations here are independent of the rest of this paper. We
use similar notations only for easy interpretation in later
sections. Consider a discrete random variable A taking val-
ues from a finite space .4 according to a probability mass
function 7 : A — [0, 1] and a function ¢ : A — R mapping
a value in A to a real number. We are interested in estimat-
ing E4~~[q(A)]. The ordinary Monte Carlo methods then
sample {A;,..., Ay} from 7 and use the empirical aver-
age + Zf\il q(A4;) as the estimate. In statistics, importance
sampling is introduced as a variance reduction technique
for Monte Carlo methods (Rubinstein 1981). The main
idea is to sample {A;, ..., Ay} from a different distribu-
tion 4 and use & vazl p(A;)q(A;) as the estimate, where

p(A) = ZEQ; is the importance sampling ratio. Assuming
14 covers T, i.e.,

Va,p(a) =0 = =(a) =0, (3)

the importance sampling ratio weighted empirical average
is then unbiased, i.e.,

Eanr[q(A)] = Eavulp(A)g(A)].

If the sampling distribution p is carefully designed, the
variance can also be reduced. To adapt this idea for RL,
we relax the condition (3) in this section. We formulate



Efficient Policy Evaluation with Offline Data Informed Behavior Policy Design

this problem of searching a variance-reducing sampling
distribution as an optimization problem:

Varu(p(A)g(A)). )

Here A, denotes the set of all the policies that give unbiased
estimations, i.e.,

Ay ={p e AA) [Eany [p(A)q(A)] = Eanr [q(A)]},

where A(X') denotes the set of all probability distributions
on the set X'. Solving (4) is actually very challenging. To see
this, consider a concrete example where A = {a1, az, a3}
and

mingeca

q(a1) =-10 m(a1) =0.1 p(ar) =0

qlaz) =2 m(az) = 0.5, plaz) =0.

q(asz) =2 m(az) = 0.4 p(as) =1
4)

It can be computed that Eg..[¢(4)] = 0.8 and
Ea~u [p(A)g(A)] = 0.8. In other words, we could sample
A from p and use p(A)q(A) as an estimator. This estima-
tor is unbiased. But apparently, this x4 does not cover 7.
Moreover, since y is deterministic, the variance of this es-
timator is 0. Then p is an optimal sampling distribution.
However, p is hand-crafted based on the knowledge that
g(a1)m(ar) + q(az)m(az) = 0. Without such knowledge,
we argue that there is little hope to find this x. This example
suggests that searching over the entire A might be too am-
bitious. One natural choice presented by Rubinstein (1981)
is to restrict the search to

A ={peA(A) |Va,ula) =0 = 7(a) =0}.(6)

In other words, we aim to find a variance-minimizing sam-
pling distribution among all distributions that cover 7. Be-
cause coverage implies unbiasedness, we have A_ C A.
In this work, we enlarge A_ to A defined as

A= {ue A(A) | Va, pula) =0 = (a)gla) = 0}.(7)

following Owen (2013). The space A weakens the assump-
tion in (6). Owen (2013) proves that any distribution g in A
gives unbiased estimation, though p may not cover .

Lemmal. Vi e A,Ea, [p(A)g(A)] = Eavr [q(4)].

For completeness, its proof is in Appendix A.1. We now
consider the variance minimization problem on A, i.e.,

minuEA VANN (p(A)q(A)). 3)
The following lemma from Owen (2013) gives an optimal
solution p* to the optimization problem (8).

Lemma 2. Define p*(a) x m(a)|q(a)l.
optimal solution to (8).

Then p* is an

For completeness, its proof is detailed in Appendix A.2.
Here by

p(a) oc w(a)w(a)

with some non-negative w(a), we mean

pla) = m(a)w(a)/ 32, m(b)w(b).

The reader may notice that if m(a)w(a) = 0 for all a, the
above “reweighted” distribution is not well defined. We
then use the convention to interpret i (a) as a uniform dis-
tribution, i.e., u(a) = 1/|.A|. We adopt this convention in
using  in the rest of the paper to simplify the presentation.
The following lemma gives intuition on the optimality of
w*, whose proof is in Appendix A.3.

Lemma 3. IfVa € A,q(a) > 0orVa € A, q(a) <0,
then A = A, and the p* defined in Lemma 2 gives a zero
variance, i.e., V 5.+ (p(A)q(A)) = 0.

An optimal sampling distribution proportional to 7 (a)|g(a)]
dates back to Kahn & Marshall (1953); Rubinstein (1981);
Benjamin Melamed (1998) and is commonly used in RL
(Carpentier et al., 2015; Mukherjee et al., 2022). We, how-
ever, make two remarks. First, we show such a sampling
distribution can be suboptimal in A . For (5), such a sam-
pling distribution incurs strictly positive variance, but p
in (5) has a zero variance and is also unbiased. Second,
different from existing literature in RL (Carpentier et al.,
2015; Sutton & Barto, 2018; Mukherjee et al., 2022), our p*
defined in Lemma 2 does not need to cover 7. Nevertheless,
we note that Lemma 1 still ensures that p* gives unbiased
estimation (Owen, 2013) and extend unbiasedness to RL
settings in Theorem 1.

4. Variance Reduction in Reinforcement
Learning

We now apply the techniques in Section 3 in RL. In particu-
lar, we seek to reduce the variance V (GFPS (75571 by
designing a proper behavior policy u. Of course, we need
to ensure that the PDIS estimator with this behavior policy

is unbiased. In other words, ideally we should search over
Ay ={pe A" |E [GPB(r5T)] = J(m)}

As discussed in Section 3, this is too ambitious without
domain-specific knowledge. Instead, we can search over all
policies that cover 7, i.e.,

A ={u| Vi, s,a,pi(als) =0 = m(als) = 0}.

The set A_ contains all policies that satisfy the policy cover-
age constraint in off-policy learning (Sutton & Barto 2018).
Similar to (7), we can also enlarge A_ to

A={u|Vt, s, a,pu(als) =0 = m(als)qr.i(s,a) =0}.
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The following theorem ensures the desired unbiasedness,
which is proved in Appendix A.4.

Theorem 1 (Unbiasedness). Vu € A, Vi, Vs,
]E I:GPDIS(TtIf;i_ll) | St = S] = U‘n’,t(s)-
One immediate consequence of Theorem 1 is that Vi €
AE [GPPB(r51")] = J(x). In this paper, we consider
a set A* such that A_ C A* C A. This A* inherits the
unbiasedness property of A and is less restrictive than A _,
the classical search space of behavior policies. This A* will
be defined shortly. We now formulate our problem as
V(G () ©
By the law of total variance, for any 1 € A*, we decompose
the variance of the PDIS estimator as

A\ (GPDIS( é—L(,}T 11 ))

s, [V (G557 | 50)
+ Vs, (B[G (7571 | So)

=Es, [V (G™®(70577") | So)] + Vs, (vx,0(S0)) -
(by Theorem 1)

min,, e~

The second term Vg, (v, 0(So)) is a constant given a target
policy 7 and is unrelated to the choice of . In the first term,
the expectation is taken over Sy that is determined by the
initial probability distribution py. Consequently, to solve

the problem (9), it is sufficient to solve for each s,
V (GPDIS( NOT 1) | SO _ S) (10)

ming, e

Denote the variance of the state value for the next state given
the current state-action pair (s, a) as v, (s, a). We have
Vr(s,a) = 0fort =T — 1 and otherwise

=Vs,,, (Ur,i41(Se41) | St = 5, Ay = a). (11)
We now construct a behavior policy p* as
pi (als) o< mi(als)\/un (s, a), (12)

where ur (s, a) = ¢ ;(s,a) for t = T — 1 and otherwise

vr (s, a)

Uri(s,0) = g2 4(5,a) + Vr4(s,a) (13)
+2 g p(s'|s,a)V (GPDIS( tMJTTT 7)) | Sty = S/>-

Notably, p; and wu,; are defined backwards and al-
ternatively, i.e., they are defined in the order of
Ur, T—1, N’?—la Ur T—2, /‘;‘—27 <oy Um0, NB We prove p*
is optimal in the following sense.

Theorem 2 (Optimal Behavior Policy). For any t and s,
the behavior policy p;(a|s) defined above is an optimal
solution to the following problem

min (GPDIS( t“’TT 1S = s) ,

where Ay = {py € A(A) | Vs, a, pi(als) =0 =
mi(als)ur (s, a) = 0}.

Its proof is in Appendix A.5. We are now ready to define
A* = Ag x -+ X Ap_y. Theorem 2 indicates that p*
achieves optimality for the optimization problem (10). Since
Urt(s,a) =0 = ¢r.(s,a) = 0 by the non-negativity
of the summands in (13), we have A* C A. If p(als) =
0 = m(als) = 0, it follows immediately that p;(a|s) =
0 = m(a|ls)urs(s,a) = 0. This indicates A_ C
A*. This means that the set of policies A* considered in
Theorem 2 are unbiased and includes at least all the policies
that cover the target policy, which is the classical behavior
policy search space A_ (Precup et al., 2000; Maei, 2011;
Sutton et al., 2016; Zhang, 2022).

Unfortunately, empirically implementing p; requires knowl-
edge of u, ; (13) that contains the transition function p. Ap-
proximating the transition function is very challenging in
MDPs with large stochasticity and function approximation
(cf. model-based RL (Sutton, 1990; Sutton et al., 2008;
Deisenroth & Rasmussen, 2011; Chua et al., 2018)). Thus,
we seek to build another policy /i that can be easily imple-
mented without direct knowledge of the transition function
p (cf. model-free RL (Sutton, 1988; Watkins, 1989)).

We achieve this by aiming at one-step optimality instead
of global optimality. We try to find the best p; assum-
ing in the future we follow m;41,...,mr_1, instead of
Miy1s- -5 Mp_q. Werefer to this one-step optimal behavior
policy as fi;. Similarly, to define optimality, we first need to
specify the set of policies we are concerned about. To this
end, we define

dri(s,a) = q2 (s, 0) (14)

for t = T — 1 and otherwise

Gri(s,0) = ¢2 ,(5,0) + vri(s,a) (15)
+ 2o p(s']s,a)V (GPDIS( ZFHITT 7)1 S = S/) .

Notably, §.(s,a) is always non-negative since all the
summands are non-negative. Accordingly, we define for
te[T—1], Ay = {1 € A(A) | Vs,a, ue(als) =0 =
7¢(al$)Gr 1 (s,a) = 0}. Comparing (13) and (15), the op-
timality of p* implies that Vs, a,t, we have §r (s, a) >
Urt(s,a) > 0. As aresult, if p1; € A, we have

ue(als) =0 = m(als)gne(als
= m(a|s)uny

indicating p; € A;. In other words, we have Ay C Ay To
search for fig.p_1, we work on A=Ay x--x AT 1. To
summarize, we have A_ C A CA*CA g A, . Recall
that A is the set of all behavior policies such that the
corresponding PDIS estimator is unbiased. A is a sufficient
but not necessary condition to ensure such unbiasedness
(Theorem 1). A* is a restriction of A such that we are able
to find an optimal solution. We restrict A* to A, aiming for a
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sub-optimal but implementable policy. A is still larger than
A_, which is the space with the coverage assumption (3)
that previous works (Precup et al., 2000; Maei, 2011; Sutton
et al., 2016; Sutton & Barto, 2018; Zhang, 2022) consider.

After confirming the space of behavior policies, we for-
mulate the optimization problem for designing an efficient
behavior policy to achieve one-step optimality as

v (GPDIS(Tt{:?t;thrlv“"”T*l}) | Sy = s) .(16)

min
s

According to the recursive expression of the variance in
Lemma 4 in Appendix A.5, we rewrite (16) as

min B v, [P} (Bs,, [V (G (5 | Sen)
M t

| St, A¢] + v t(St, A¢) + qi,t(St,At)) | S¢], (17)
where the objective can be further simplified as

EAt"’Mt [pf (Est+l [V (GPDIS (T:-iiJlr:IY:"T—ill) l St""l)
| St, A¢] + vz t(St, Ar) + qﬁ,t(St,At)) \ St]
=Eaympy [PP0rt(St, Ar) | St (By (15))

ZVAtwm (Pt\/ﬂfw,t(st,At) | St)

_Ei&tw'n—t [ qAW,t(St;At) ‘ St:| .
(Lemma 1 and p; € Ay)

Since the second term is unrelated to ., it is equivalent to

solving
VAtN,U«t (Pt\/ Qw,t(st,At) ‘ St) .

According to Lemma 2,

fie(als) o< m(als)\/dri(s,a). (18)

is an optimal solution to (17). We now present our main
result that fi provably reduces variance.

min
€Ay

Theorem 3 (Variance Reduction). For any t and s,
v (G | S =)
<V (GPD’S(TE;ZI) | Sy = s) — et(s).

To define €,(s), first define c,(s) =

2
Za '/Tt(a‘s)@'r,t(sﬂa) - (Za ﬂ-t(a|s) (jﬂ,t(saa))
Then we define €,(s) = c;(s) fort =T — 1 and otherwise

et(s) = ci(s) + Ea,mp, [P7Es, ., [e141(Seq1)s, Ad]] .(19)

Its proof is in Appendix A.6. Notably, this ¢, is always non-
negative by Jensen’s inequality, ensuring the non-negativity
of ¢; and thus the variance reduction property. Moreover,
¢i(s) = 0 occurs only when all actions have the same ¢, ;
on the state s. It is reasonable to conjecture that this is rare
in practice. So, ¢;(s) is likely to be strictly positive. This
shows the variance of the PDIS estimator with /i at a state s
is provably smaller than or equal to that with , the straight-
forward on-policy Monte Carlo estimator, by at least € (s).
The magnitude of €;(s) depends on a specific target policy
and the environment. We empirically show the variance
reduction is significant in commonly used benchmarks in
Section 7.

5. Learning Closed-Form Behavior Policies

We now present efficient algorithms to learn the closed-form
behavior policy fi. Despite that ¢, ; in (15) has a compli-
cated definition, we prove that it has a concise representation.
It is exactly the action value function of the policy 7 with the
same transition function p but a different reward function 7.

Theorem 4. Define
Prt(s,a) = 2r(s,a)qri(s,a) —r%(s,a).  (20)
Then Gr +(S,a) = Tr1(s,a) fort =T — 1 and otherwise

drt(s,a) 21
=Trt(8,0) + 200 0 P(8']8; )41 (']8) G 41 (87, ).

Its proof is in Appendix A.7. This observation makes it
possible to apply any off-the-shelf offline policy evalua-
tion methods to learn §, after which the behavior policy
can be computed easily with (18). For generality, we con-
sider the behavior policy agnostic offline learning setting
(Nachum et al., 2019), where the offline data in the form
of {(t;, si, ai, 74, s}) .-, consists of m previously logged
data tuples. In the i-th data tuple, ¢; is the time step, s; is
the state at time step ¢;, a; is the action executed on state
S4, T; 1s the sampled reward, and sg is the successor state.
Those tuples can be generated by one or more, known or
unknown behavior policies. Those tuples do not need to
form a complete trajectory.

In this paper, we choose Fitted (Q-Evaluation (FQE, Le et al.
(2019)) as a demonstration, but our framework is ready
to incorporate any state-of-the-art offline policy evaluation
methods to approximate ¢. To learn 7, it is sufficient to
learn r and q. FQE can be used to learn ¢, and learning r
is a simple regression problem. FQE is then invoked again
w.r.t. the learned 7 to learn an approximation of §. We
refer the reader to Algorithm 1 for a detailed exposition
of our algorithm. We split the offline data into training
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Algorithm 1 Offline Data Informed (ODI) algorithm

1: Input: Estimators 7(s, a), ¢x (s, a), Gr¢(s,a),
a target policy T,
an offline dataset D = {(¢;, s;, a;, 74, $i) } ey

2: Qutput: a behavior policy /i

3: Approximate r from D using supervised learning

4: Approximate g, ; from D using any offline RL method
(e.g. Fitted Q-Evaluation)

5: Compute 7; by (20) for each data pair in D

6: Construct D; = {(t;, si, ai, 74, 8;) }i, by plugging 7;
into D

7: Approximate ¢ ; from D; by (21) using any offline RL
method (e.g. Fitted Q-Evaluation)

8: Return: fi;(als) o< m(als)\/qr (s, a)

sets and test sets to tune all the hyperparameters offline
in Algorithm 1, based on the supervised learning loss or
the FQE loss on the test set. We remark that FQE loss on
the test set is known to be an inaccurate signal (Fujimoto
et al., 2022) so our ¢ estimation would be poorly tuned
in this sense. We, however, notice that even with such a
poorly tuned estimation, the variance reduction in the tested
environments is still significant. This suggests that ¢;(s)
in Theorem 3 is likely to be large and demonstrates the
robustness of our approach. Since §r (s, a) is proved to
be always non-negative (cf. (15)), we use positive function
class for FQE in approximating ¢, e.g., a neural network
with softplus as the last activation function.

In the following, we theoretically analyze how the error in
approximating ¢ affects the amount of reduced variance in
Theorem 3. We assume § . (s, a) is not only non-negative
but also positive. Given its non-negative summands in (15),
we argue that this positivity assumption is not restrictive at
all. We use q;r’ +(s,a) > 0 to denote our approximation to
Gr (8, a). The approximation error can then be captured by

Nre(s,a) = cjj{,t(s,a)/dﬂ}t(s, a) > 0. (22)

If (s, @) is 1, there is no approximation error for (s, a, t).
The actual learned behavior policy is then denoted by

fui (als) oc mi(als)\/ 7 (s, a). (23)

Then, we generalize Theorem 3 to the following theorem.

Theorem 5. For anyt and s,

1+
V(GPS(1571") | S =)
<V(G™P(r7T) | S,

|
»
~—~
I
)
“4
—
»
~—

To define ¢/ (s), first define

CJ(S) => . mt(als)dn,i(s,a)—

(2. me(alS)y/1ra (81 @) V/r (52 0))
X (Za Wt(a|St)\/ﬁ\/cjmt(St, a)> .

Then we define €; (s) = c; (s) for t = T — 1 and otherwise

e (s) (24)
= (8) + By, ot [P7Es,p [e551 (Sen)]5, A

Its proof is in Appendix A.8. When there is no estimation
error, i.e., Ny +(s,a) = 1, ¢/ and ¢/ reduce to ¢; and €; in
Theorem 3, which is non-negative by Jensen’s inequality.
As discussed earlier, it is reasonable to conjecture that c;(s)
is likely to be strictly positive. This leaves room to tolerate
estimation errors such that ¢, (s) can still be positive even
if (s, a) # 1. Because the sign of ¢ only depends on the
current 7, ¢, the estimation error in the future step does not
affect current ¢;. Notably, even if some €/, ;(S;11) < 0,
€ (S;) can still be positive. This is because ¢, (s) depends
on the expectation of the €, ; (S¢+1), not a single value, and
cj' can still be positive. This makes our approach robust
to the approximation error. It is important to note that the
PDIS estimator with [i;(a|s) is always unbiased, regardless
of the approximation error 1.

Theorem 5 makes it straightforward to analyze how the
offline data affects the amount of the reduced variance. For
example, if FQE is used, one can resort to Munos (2003);
Antos et al. (2008); Munos & Szepesvari (2008); Chen &
Jiang (2019) to connect offline data and the approximation
error 7. Theorem 5 then directly relays the approximation
error to the amount of reduced variance. We, however, omit
such analysis since it deviates from our main contribution.

6. Related Work

Monte Carlo methods. Reducing the variance of Monte
Carlo estimators via learning a proper behavior policy has
been explored before. Hanna et al. (2017) model the prob-
lem of finding a variance-reducing behavior policy as an
optimization problem and thus rely on stochastic gradient
descent to update a parameterized behavior policy. In partic-
ular, Hanna et al. (2017) consider the ordinary importance
sampling. By contrast, we consider the per-decision impor-
tance sampling, which is fundamentally better (Precup et al.,
2000). Moreover, Hanna et al. (2017) require new online
data to learn this behavior policy. By contrast, our method
works with offline data and does not need any online data for
behavior policy learning. Hanna et al. (2017) also require
the online data to be complete trajectories. By contrast, our
method copes well with incomplete offline tuples. Mukher-
jee et al. (2022) also investigate variance-reducing behavior
policies for the per-decision importance sampling estimator.
Their results, however, apply to only tree-structured MDPs,
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MDP Data to learn v Parameterization of 7 Gridworld size  Other environments
Ours general offline data no assumption 27,000 MuJoCo robotics
BPS (Hanna et al., 2017) general online data need to be known 1,600 CartPole, Acrobot
ROS (Zhong et al., 2022) general online data need to be known 1,600 CartPole
ReVar (Mukherjee et al., 2022) tree offline data no assumption 1,600 15 states tree-MDP

Table 1. Our methods impose weaker assumptions on the data, and our empirical study covers more challenging tasks.

which is rather restrictive because many MDPs of interest
are not tree-structured. For example, in finite horizon MDPs
considered in this paper, if two states at time ¢ can transit to
the same successor state at time ¢ + 1, then this MDP is not
tree-structured. Moreover, Mukherjee et al. (2022) require
to directly approximate the transition function of the MDP
by counting, making it essentially a model-based approach.
Mukherjee et al. (2022), therefore, suffer from all canonical
challenges in model learning (Sutton, 1990; Sutton et al.,
2008; Deisenroth & Rasmussen, 2011; Chua et al., 2018).
By contrast, we work on general MDPs without making any
assumption regarding their underlying structures, and we
do not need to approximate the transition function. Our
approach is model-free. Zhong et al. (2022) adjust the be-
havior policy by encouraging under-sampled data. Their
offline data, however, has to be complete trajectories gen-
erated by known policies. In their experiments, they also
require the policies for generating offline data to be similar
to the target policy since they do not have any importance
sampling. By contrast, our method copes well with offline
data in the form of incomplete segments from probably un-
known behavior policies that can be arbitrarily different
from the target policy. Moreover, there is no theoretical
guarantee that the estimates made by Zhong et al. (2022) are
unbiased or consistent. By contrast, our estimate is always
provably unbiased.

Other attempts for variance reduction in Monte Carlo evalu-
ation mostly use control variates based on value functions
(Zinkevich et al., 2006; White & Bowling, 2009; Jiang & Li,
2016). Such control variates can be integrated into our esti-
mator, which we, however, save for future work. Notably,
our work differs from the doubly robust method in Jiang &
Li (2016) in that they assume the behavior policy is fixed
and given while we use the fact that we have the freedom
to choose a behavior policy in many settings. Moreover, to
account for the stochasticity from the transition function,
they require to learn a model of the MDP accurately, while
we achieve this in a model-free way. Finally, they do not
confirm a reduced variance compared with the on-policy
estimator while we do.

Model-based offline evaluation. One straightforward way
to exploit offline data for policy evaluation is to learn a
model of the MDP first, probably with supervised learning
(Jiang & Li, 2016; Paduraru, 2013; Zhang et al., 2021), and

then execute Monte Carlo methods inside the learned model.
Learning a high-fidelity model is, however, sometimes even
more challenging than evaluating the policy itself (Li, 2019).
And the model prediction error can easily compound over
time steps during model rollouts (Wan et al., 2019). Nev-
ertheless, if a good model could somehow be learned, our
work still helps reduce the required rollouts when Monte
Carlo is applied within the learned model.

Model-free offline evaluation. Model-free offline evalu-
ation methods rely on learning other quantities for policy
evaluation, including density ratio (a.k.a. marginalized im-
portance sampling ratio, Liu et al. (2018); Nachum et al.
(2019); Li (2019); Xie et al. (2019); Zhang et al. (2020);
Mousavi et al. (2020); Uehara et al. (2020); Yang et al.
(2020)) and state-action value function (Harutyunyan et al.,
2016; Munos et al., 2016; Farajtabar et al., 2018; Le et al.,
2019; Precup et al., 2000). But those learning processes
bring in bias, either due to the misspecification of the func-
tion class or due to the complexity of optimization. Conse-
quently, the estimation they make is biased, and it is hard
to quantify such bias without restrictive assumptions. 7o
our knowledge, the only practical way in general settings to
certify that their estimation is indeed accurate is to compare
those estimations with Monte Carlo estimations.

Furthermore, those learning algorithms also have hyper-
parameters to tune (i.e., model selection), for which most
offline RL practitioners (see, e.g., Liu et al. (2018); Nachum
et al. (2019); Li (2019); Xie et al. (2019); Mousavi et al.
(2020); Uehara et al. (2020); Yang et al. (2020); Zhang et al.
(2020)) usually use Monte Carlo with online data. The on-
line data comes from either a simulator or a learned model.
As a result, our work helps reduce the online data used
in model selection by those model-free offline evaluation
methods.

Efforts have been made to perform model selection with
only offline data without explicitly learning a model as well
(Paine et al., 2020; Kumar et al., 2021; Xie & Jiang, 2021;
Zhang & Jiang, 2021). Those offline model selection meth-
ods, however, rarely have a correctness guarantee without
restrictive assumptions. To summarize, if obtaining online
data is entirely impossible, existing offline evaluation meth-
ods without using any online data might be the only choices.
These include model-based methods and model-free meth-
ods augmented by offline model selection. However, in
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many scenarios, it is practical to assume that a small amount
of online data is available. If, in addition, evaluation cor-
rectness should be honored, then the improved Monte Carlo
method in this work might be a better choice. Using offline
data to help online model selection is previously explored
by Konyushova et al. (2021). In particular, they use offline
data to decide which policy, among a given set of policies,
should be given priority to evaluate. When it comes to the
actual online evaluation, Konyushova et al. (2021) still uses
the ordinary online Monte Carlo methods. Konyushova et al.
(2021), therefore, again benefit from the improved Monte
Carlo method in this paper.

7. Empirical Results

In this section, we present empirical results comparing our
methods against three baselines: (1) the canonical on-policy
Monte Carlo estimator, (2) off-policy Monte Carlo estimator
with behavior policy search (BPS, Hanna et al. (2017)), and
(3) robust on-policy sampling (ROS, Zhong et al. (2022)).
We do not implement ReVar (Mukherjee et al., 2022) be-
cause it will incur infinite loops if the MDP is not tree-
structured. Our method first learns a behavior policy with
given offline data using Algorithm 1, then the PDIS Monte
Carlo estimator (1) is used to estimate the performance of
the target policy, where the learned behavior policy is used
to interact with the environment. We call our method Of-
fline Data Informed (ODI) algorithm. Our implementation
is made publicly available to facilitate future research'. Our
method is superior in data requirements and applicability as
summarized in Table 1.

Gridworld: We first conduct experiments with linear func-
tion approximation in Gridworld with n? states, i.e., it is an
n X n grid with the time horizon also being n. Specifically,
we use Gridworld with n3 = 1,000 and n3 = 27, 000. We
use randomly generated reward functions with 30 randomly
generated target policies. The offline data is generated by
selecting random actions on uniformly random state distri-
bution. We report the normalized estimation error of the

"https://github.com/ShuzeLiu/Behavior-Policy-Design-for-
Policy-Evaluation

four methods against the number of environment interac-
tions (steps). Intuitively, this normalized estimation error
is the estimation error of an estimator normalized by that
of the on-policy Monte Carlo estimator. Precisely speak-
ing, define the estimation error at step t as the absolute
difference between an estimator and the ground truth di-
vided by the ground truth. The normalized estimation error
is then the estimation error divided by the average estima-
tion error of the on-policy Monte Carlo estimator after the
first episode. Thus, the normalized estimation error of the
on-policy Monte Carlo estimator starts from 1.

size =1,000 size =27,000
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Figure 1. Results on Gridworld. The curves are averaged over 900
trials (30 target policies, each having 30 independent runs). The
shaded regions denote standard errors and are invisible for some
curves because they are too small.

As shown in Figure 1, our method outperforms baselines by
a large margin. In particular, as shown by the dotted line,
in Gridworld with size 1, 000, to achieve the same estima-
tion error that the on-policy Monte Carlo estimator achieves
with 250 steps, our methods only need around 50 steps. In
Gridworld with size 27, 000, to achieve the same estimation
error that on-policy Monte Carlo estimator achieves with
750 steps, our methods only need around 400 steps, saving
more than 40% of online iteractions. The improvement in
environments with size = 27, 000 is smaller than environ-
ments with size = 1,000 because the amount of offline
data is the same for both environments, i.e., the offline data
coverage is worse for the Gridworld with size = 27, 000.
In fact, the offline data coverage for the Gridworld with
size = 1,000 and size = 27,000 are 62.5% and 2.3%,
respectively. More experiment details are in Appendix B.1.

On-policy MC ~ Ours with 2.3% Ours with 4.6% Ours with 18.4% BPG ROS
offline data coverage offline data coverage offline data coverage

300 150 90 60 300 300

600 330 180 120 540 540

1200 540 420 270 990 990

Table 2. The above table is an extension of Figure 1 by adding experiments with 4.6%/18.4% data coverage for our algorithm in
Gridworld with size = 27, 000. Each number is the number of steps needed to achieve the same estimation accuracy that the naive Monte
Carlo achieves with 300/600,/1200 steps. All numbers are averaged from 900 different runs over a wide range of policies. Standard
errors are visualized in Figure 1 of our paper and are invisible for some algorithm curves because they are too small.
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Figure 2. Results on Mujoco environments. Each curve is averaged over 900 trials (30 target policies, each having 30 independent runs).
The shaded regions denote standard errors and are invisible for some curves because they are too small.

On-policy MC Ours BPG ROS Improvement in Saved Episodes
Ant 100 81 91 103 (100-81)/(100-91)~211.1%
Hopper 100 54 89 100 (100-54)/(100-89)~418.2%
L. Pendulum 100 72 103 99 (100-72)/(100-99)=2800%
I. D. Pendulum 100 35 95 90 (100-35)/(100-90)=650%
Walker 100 70 92 91 (100-70)/(100-91)~333.3%

Table 3. Episodes needed to achieve the same of estimation accuracy that on-policy Monte Carlo achieves with 100 episodes.

We also show our algorithm scales with offline data. As
we increase the data coverage in the Gridwolrd with
size 27,000 by adding more offline data generated
from many different distributions, our method improves
the saved samples from 55% = (1200 — 540)/1200 to
77.5% = (1200 — 270) /1200 in the last row of Table 2. By
comparison, the best over all previous state-of-the-art algo-
rithms only saves 17.5% = (1200 — 990)/1200 samples
and do not have a mechanism to use offline data because
they can only utilize online trajectory.

MuJoCo: We then conduct experiments with neural net-
work function approximation in MuJoCo (Todorov et al.,
2012) robot simulation tasks. Since our methods are de-
signed for discrete action space, we discretize the MuJoCo
action space. Details about action space discretization, tar-
get policy generation, and offline data generation are pro-
vided in Appendix B.2. We report the normalized estimator
error in Figure 2, where our methods are consistently bet-
ter than baselines. In particular, as shown by the dotted
line in Figure 2 and Table 3, our methods need much fewer
episodes (save up to 65% episodes) to achieve the estima-
tion error that the on-policy Monte Carlo estimator achieves
with 100 episodes. Recognizing episodes may have differ-
ent lengths in MuJoCo, we also provide in Appendix B.2 a
version of Figure 2 with the z-axis being steps, where our
methods are still consistently better.

It is worth mentioning that all hyperparameters of our meth-
ods required to learn /i are tuned offline and are the same
across all MuJoCo and Gridworld experiments.

8. Conclusion

Monte Carlo methods are the most dominant approach for
evaluating a policy. The development and deployment of
almost all RL algorithms, including offline RL algorithms,
implicitly or explicitly depend on Monte Carlo methods
more or less. For example, when an RL researcher wants
to plot a curve of the agent performance against training
steps, Monte Carlo methods are usually the first choice. Our
method improves the online data efficiency of Monte Carlo
evaluation while maintaining its unbiasedness by learning
a tailored behavior policy from offline data. The two main
contributions are the provably better closed-form behavior
policy (Theorem 3) and its alternative representation (The-
orem 4). Extending them to temporal difference learning
(Sutton, 1988) is a possible future work.
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A. Proofs
A.1. Proof of Lemma 1
Proof.

Ean e = 3 (@ g

a€{alu(a)>0}

= Y mla)ala

ac{a|u(a)>0}

= Y w@e@+ Y w(a)ela) (ne )
a€{alp(a)>0} a€{alp(a)=0}

=Y _m(a)g(a)

=Ea~x[a(4)].
The intuition in the third equation is that the sample a where 1 does not cover ™ must satisfy g(a) = 0, i.e., this sample does
not contribute to the expectation anyway. O
A.2. Proof of Lemma 2
Proof.

For a given 7 and ¢, define
Ay = {a|7(a)g(a) # 0}.

For any p € A, we expand the variance as
Vans(p(A)g(4)
=Ea~ul(p(A)q(A)
=Ea~ul(p(A)q(4)

Wza
-y TOC@ g )

~—

)’] - Awu[p(A)Q(A)]
)2] A~7r [q(A)] (Lemma 1)

a€{alpu(a)>0} p(a)
— (a)g’(a) o B
= EA~71-[Q(A)] (ﬂ(a)q(a) =0,Va ¢ A+)
a€{alp(a)>0}NAL p(a)
_ZM_E [(A)]2 e
_aEA u(a) A~r |4 u

The second term is a constant and is unrelated to x. Solving the optimization problem (8) is, therefore, equivalent to solving
) 72(a)¢*(a
mines (zz)(). (25)
ac Ay K

Casel: |[A.|=0

In this case, the variance is always 0 so any p € A is optimal. In particular, p*(a) = i is optimal.
Case2: A | >0

The definition of A in (7) can be equivalently expressed, using contraposition, as

A={peA(A)|Va,a € Ay = pla) > 0}.
The optimization problem (25) can then be equivalently written as

. ’/T2 a 2 a
min, e A () Z 7°(a)q”(a) (26)
aEA+

13
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st. pla) >0 Vae Ay

If for some 1 we have 3 4, pu(a) < 1, then there must exist some ag & A such that yi(ag) > 0. Since ao does not
contribute to the summation in the objective function of (26), we can move the probability mass on ay to some other
a; € Ay toincrease p(aq) to further decrease the objective. In other words, any optimal solution 4 to (26) must put all its
mass on A . This motivates the following problem

2 2
Mitgeacay Y ”(Zzg)@ @7)
aE.A+

st. z(a) >0 Vae Ay

In particular, if z, is an optimal solution to (27), then an optimal solution to (26) can be constructed as

ia(a) = {g*(“) @ €At (28)

otherwise.
Let R++ = (0, +OO)
According to the Cauchy-Schwarz inequality, for any z € ]R‘fj ‘, we have

2

a;\; 0 a;% )| > a§+ NED) Vz(a) ag; (a)lq(a)|

It can be easily verified that the equality holds for

) = @)
22 m(0)lg(b)|
Since Za€A+ z*(a) = 1, we conclude that z* is an optimal solution to (27). An optimal solution 1. to (8) can then be

constructed according to (28). Making use of the fact that 7w(a)|g(a)| = 0 for a ¢ A, this p. can be equivalently expressed
as

> 0.

 r(@)lg(a)
He(0) = = )

which completes the proof. O

A.3. Proof of Lemma 3

Proof. We start by showing A = A . Lemma 1 ensures that y € A = p € A;. Wenowshowthaty € Ay = p €A
For any 1 € A4, we have

> )@ = S n(aa(a)

ac{alp(a)>0}

This indicates that

ac{a|p(a)=0}

Since 7(a) > 0 and all ¢(a) has the same sign, we must have

r(a)q(a) = 0, Va € {a | u(a) = 0}.

This is exactly p(a) =0 = m(a)q(a) = 0, yielding ;1 € A. This completes the proof of A = A.

14
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We now show the zero variance. When Va € A, g(a) > 0, if Jag, mo(ao)g(ag) # 0, we have Va € A

_ n(a)lg(a)

Cc

p(a)
and ¢ > 0 is a normalizing constant. Plugging p* to p(A)q(A), we get Va € A

p(@ala) =~ ga) = -9 ga) =

This means in this setting, with the optimal distribution 1*, the random variable p(-)q(+) is a constant function. Thus,

V anpe (p(A)a(A)) = 0.

When Va € A, g(a) > 0, if Yag, mo(ao)g(ag) = 0, we have Va € A

(@) = L
Plugging p* to p(A)g(A), we getVa € A
) wlaala)
pla)q(a) = /ﬁ(a)q( ) o 0

This shows p(A)g(A) is also a constant. Thus,
Vanu (p(A)g(A)) = 0.

The proof is similar for Va € A, ¢(a) < 0 and is thus omitted.

]
A.4. Proof of Theorem 1
Proof. We proceed via induction. For ¢ =T — 1, we have
E [G™P(r577) | St] =E [peRis1 | St] = E [pedn,t(Se, Ae) | Si]
:EAmeSt) [qTr,t(St7At) | St] (Lemma 1)

:’Uﬂ-’t(st).
Fort € [T — 2|, we have

E GPDIS tM;Tll |St]

[p Ry + ptGPDIS(Tt,:lerlTT 11) | St]
E[pRit1 | St +E [p G (1) | 8]

B [peResn | S+ B 1500 S0seont 5 []E I:ptGPDIS(TtliJlrlTT ) | St’At,StH] | St} (Law of total expectation)
[

=E [peRes1 | St] 4 Ea i (180,501 ~p150.40) [PE [GPP (R T770) | Sea] | 94]
(Conditional independence and Markov property)

=E [pth+1 | St] + EAt"‘#t('|St)7st+1NP('|St,At) [thﬂ—JH,] (St+1) | St] (IndU.CtiVe hypOtheSiS)
=E A e (150) [Pt G, (St, Ae) | St (Definition of gr ¢)
=E A ~r(150) [r,t(St, A¢) | St] (Lemma 1)
va,t(St)7

which completes the proof. O
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A.5. Proof of Theorem 2

To prove Theorem 2, we rely on a recursive expression of the PDIS Monte Carlo estimator summarized by the following
lemma.

Lemma 4 (Recursive Expression of Variance). Forany p € A, fort =T — 1,
V(GBI | Se) = By, [0747,4(St, Ar) | Si] —v2 (),
forte [T —2]
V(@) | )
=Ea,~pi, [P (Bsiy [V(G™PP (T 70) | Se) | St Ab] + vme(Se, Ae) + a2 4(Se, Av)) | St
- v,zr’t(St).

Proof. Whent € [T — 2], we have

V(G | S) =
=E,4, [ (GPDIS( tﬂ%Tll) | St,At) | St] + Va4, (]E [GPDIS(T“%Tll) | St,At] | St) (Law of total variance)
=Ea, [p{V (r(St, Ar) + GPPS ({50 | Si, Ar) | 4]

+Va, (0B [r(Se, Ar) + GPB ({170 | Si, Ad] | Sh) (Using (2))

=Ea, [0}V (G (i 15730) | S, Ad) | Se] + Va, (0B [r(Se, Ag) + G ({1570 | Sty Ae] | Se)
(Deterministic reward r)

:EA, [ V (GPDIS( tﬂfflTT 11) | St,At) | St] JFVA,, (Pth,t(St,At) | St)~

Further decomposing the first term, we have

V(G | Si, Ay (30)
=Es,,, [V (G50 | Si, Av, Sevn) | Sty Ad]

+ Vs, (E[GPPS(rTH0) | S, Ary Sev] | S, Ar) (Law of total variance)
=Es,., [V(G™P (0700 | Siea) | S A + Vs, (B [GPPP (75 | Sen] |81, Ar) - (Markov property)
=Es,,, [ (GPDIS( t“f{lTT ol St+1) | St,At} + Vs, ) (Ure41(Seq1) | Se, Ar). (Theorem 1)

With v ; defined in (11), plugging (30) back to (29) yields

V(GPDIS( Ht:T— 1) | St)
B [ (s [V (GPS AT | Sin) | S0 A + (S, A) | 1]
+Va, (pear (St Ar) | St)
=Ea, [0} (Bs,py [V (GBI | Sia) | S Ar] + (S, Ap) | S
+Ea, [p?¢2,(Se, Ae) | St] — (Ea, [pear,e(St, Ar) | Si))?
=Ea, [p] (Esppn [V (G (5 [ Se1) | Sy Ad] +14(Si, Ar)) | S¢]
+Eq, [pfq?nt(st’At) | S] - UTr,t(St)' (Lemma 1)
Whent =T — 1, we have

V(GBI 18 =V (per(Se, An) | 50)
:V(thTK‘ t(St7At> | St)
=E4, [ptqw +(St, Ar) | St] — 7 +(5t),

which completes the proof. O
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We restate and present the main proof of Theorem 2.

Theorem 2 (Optimal Behavior Policy). For any t and s, the behavior policy i} (a|s) defined above is an optimal solution to
the following problem

VG | 5= ).

min
wi €Aty 1 E€EAT 1
where Ay = {py € A(A) | Vs, a, pi(als) =0 =
mi(a|s)ur (s, a) = 0}.
Proof. We proceed via induction. When ¢ = T — 1, we have
V(G™PB (L) | Sre1 = 5)
=Var_, (pr—17(s, Ar—1) | ST—1 = 5)
=Var_ , (pr-1¢rr-1(8,Ar_1) | S7—1 =5).

The definition of ;7. ; in (12) and Lemma 2 ensure that 7., is an optimal solution to

min V(G () [ Sroa =),

Now, suppose for some t € [T' — 2], p17, ;.p_, is an optimal solution to

. PDIS (_fit41:T -1 —
#t+1€At+1?}{2T_1€AT_1 v (G (Tt-‘rl:T—l ) | St1 = S) :

To complete induction, we proceed to proving that p}.-_; is an optimal solution to

min V(G (rffT 1) [ Se=s) . 31)

pe €Aty pr—1E€EAT 1
In the rest of this proof, we omit the domain Ay, ..., Ap_; for simplifying notations. For any p;.7_1, we have
V(G | )
=Ea, [0} (Es,, [V (G™P(FT5 ) | Sean) | Sey As] 4+ vi(Se, Ae) + 2.4 (Se, Ae)) | St]

- ”i,t(st) (By Lemma 4)
(a) /
>Ea, lpf (Esm iV (GPDIS(T:H;?T—T) | St+1) | St, Av| + (St Ay) +q721-,t(St7At)> | St]

t+1:T—1

- Ufr,t(st) (Monotonically non-increasing in V(-))
=Ea, [PtZ (Esm [V (GPDIS(T:LH:?T_T) \ 5t+1) | Stht} + v (St, Ar) +q721-,t(St’At)> \ St}

- U'f2r,t (St) (Inductive hypothesis)
=Ea, [p{ure(Se; Ar) | Si] —v71(Sh) (By (13))

2
=Va, (Pt Ur t(St, At) | St) + Ea, [Pt U, (Se, Ar) | St:l - U?:,t(St) (Definition of variance)
2

=Vyu, <Pt\/ Ut (S, Ar) | St) +E A, om([50) [\/uﬂ,t(st,At) | St} — vfryt(St) (Lemma 1 and u; € Ay)
® 2
>Ea,~m, (150) [ Ur t(St, A) | St:| — 02 (S). (Non-negativity of variance)

According to the inductive hypothesis, the equality in (a) can be achieved when pi;1.7—1 = 1}, .7_,. According to the
construction of 47 in (12) and Lemma 3, the equality in (b) can be achieved when p; = pf. This suggests that (1},
achieves the lower bound and is thus an optimal solution to (31), which completes the induction and thus completes the
proof. O
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A.6. Proof of Theorem 3

To prove the variance reduction property of /i, we express V (GPDIS (Thm ) | Se = s), the variance of the on-policy Monte
Carlo estimator, in the form of a Bellman equation (Tamar et al., 2016; O’Donoghue et al., 2018; Sherstan et al., 2018).
Define

Trt(s,a) =vri(s,a) + qiﬁt(s, a) — vit(s) vt e [T —1], (32)
(S, - s, "s") G 'a ifte|T -2

oy 2 [0 b5 (@) it [T .
Trt(S,a) ift=T-1

We have
Lemma 5 (Variance Equality).

V(GPPB (][5 | Sy = s) Zwt (als)Gr,t(s,a) Vi,s.

Proof. We proceed via induction. When ¢t = T' — 1, we have

V(G () | 5)
=Va, (per(Se, Ar) | St)
=Va, (r(Se; Ar) | St) (By on-policy)
=Va, (qrt(St; At) | St)
_]EAt [qﬂ—t(staAt) | St] - U (St)
= m(alS1)dr.1(St, a). (By (33) and vy 11 (s, a) = 0)

Fort € [T — 2], we have
V(G | 5)

=Ea, [Es,, [V(G™P(5 ) | Ser) | Se, Ad] + @2 4(Se, Ar) + v 1 (Se, Ar) | Si] — 02 4(Sh)
(Lemma 4 and on-policy)

:Z?Tt(a|st (Zp ‘Sh GPDIS( ;:J{ITT 11) ‘ St+1 = 8/) + F(St,(l))

— Z me(alSt) <Zp IS¢, a Z Ter1(a’[8) G p41(8" a’) + 7(Se, )) (Inductive hypothesis)
=Y m(alSi)Gr+ (S, a), (By (33))

which completes the proof. O

Here, this q is exactly the state-action value function of the target policy 7 in the MDP w.r.t. to a new reward function 7.
Manipulating (15) then yields

Gri(s,a) Zp '|s,a) Z'ﬂ'tJrl 1) Gra41(5" a") + vi(s,a) + 42 (s, a)
a1+ 42,). GY

Now, we restate and present the main proof of Theorem 3.

Theorem 3 (Variance Reduction). For any t and s,
v (GPS(efny) | S = s)

18
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<V (GPPB(7]57 1) | Se = s) — e(s).
To define €,(s), first define c;(s) =
R _ 2
5 milals)in(s.0) = (2, milals)\/ari(s,0)) -
Then we define €:(s) = c(s) fort =T — 1 and otherwise

€1(s) = cr(s) + Ea,mp, [P7Es, €141 (Seq1)]s, Ad] - (19)
Proof. We proceed via induction. For ¢ =T — 1, we have

V(G (T |5
2

=Ex,~p, [pf +(St, As) | St] — 2 +(St) (Lemma 4)
=Ea,~ji; [P7Grt (St Ab) | Si] — 02 () (Definition of § (14))

_VAWM (pt r, t St7 At)St> AtN,lt [P G, t(St7 At)|St:| - U (St)
(Definition of variance and non-negativity of §)

2
VAt"’#t <Pt r, t SnAt St) (Z 7Tt \St Qw,t(sma)) - Uiyt(st) (Lemma 1)
2

= (Z m(alSe)\/ G (St, a)) —vZ 1 (5) (Definition of /i (18) and Lemma 3)

2
727& alSy)dr 1 (S, a) (Zm alS;) qﬂ,t(st,co) = (alSt)dr t(Sr,a) — v2 ,(Sy)

2
—V (GPPS () | 8) + (Z m(al 1) qw,xst,a)) — > mi(alS)dri(Siia)  (By (34) and Lemma 5)
v (GPDIS( tmTT ol St) — &(S)). (Definition of € (19))

Fort € [T — 2], we have
V(PS5 | 8)
=B~ [Pf (Esm [V (GPDIS(TfiTITT 1) | 5t+1) | Stw‘q + v t(Se, Ar) + q72r,t(5t>At)) | St}
- ”fr,t(st) (Lemma 4)
<EA,~p, [ptz (ESHI [Z Te1(a’[St41) G t4+1(Se1,a") | Sty At] + v 1 (St, Ay)

+ a2 (St At)) \ St} =02 (St) = Eaympiy [P7ES,2y [€41(Se41) | St A¢]]  (Inductive hypothesis and Lemma 5)

=Ea,~p. [07 (Gr,t(St, Ar) + 02, (Se)) | Se] — 02 (Se) —Ea, i, [PPES, o [€041(Set1) | S, Ad]
(Definition of ¢ (33))

=B, ~ji, [P7Gr,t (St Ab) | St] — 02 ,(St) — Ea,mp, [P7Es sy [€e41(Sit1) | Se, Adl] (Definition of § (34))
=Va,~p (Pt (iw,t(St»AtNSt) +E% {Pt Gr t(StaAt)|St:| —vZ ,(S)
—Ea,~ [PPEs, . [€41(Ses1) | Si, Ad]] (Definition of variance and non-negativity of §)

2
ZVAwm (Pt qTrt(St7At |St> (Zﬂ't G|St Cfmt(St,(l)) —Ufr’t(St)

19
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—Eaomi, [P7ES, 4, [€041(Seq1) | Sty Adl] (Lemma 1)

2
St)\/ﬁw,t(5t7a)> — 02 ,(St) = Eapmpi, [PPEs, ., lee41(Seq1) | Sty Ad]
)

¢ (al
(Definition of f (18) and Lemma 3)
(

2
Zzﬂ't alSt)Gr,t(St, a) — U?r,t(st) + (Z Wt(a\St)\/ @w,t(&tﬂ)) - Zﬂt(a\st)dw,t(staa)

- EAt“’ﬂt I:prSt+l [6t+1(st+1) | St7AtH

2
(GPDIS( tmTTf |St <Z Tt a|5t \/Qw,t(st,a)> - Zﬂ't(a|5t)(jﬂ,t(stva')

—Ea,~ [PPEs,,, [e41(Ses1) | Si, Ad]] (By (34) and Lemma 5)
=V (GPPB(r[477) | St) — €(S). (Definition of € (19))
O
A.7. Proof of Theorem 4

Proof. Fort =T — 1, we have

Gri(s,a) = qut(s, a) (Definition of ¢, ; (14))
= Fri(s,a). By ¢z, 7-1(8,a) = r(s,a) and Theorem 4)
For t € [T — 2], we have
dw,t(sa CL)
=Gn(s,0) + 7 4 (5) (By (34))
=Fr4(s,a) + 02 ,(s) + Z p(s'|s, a)mip1(a’|8")Gr 41 (8", a) (Definition of g (33))
=i(5,0) + 07 () + D p(5|s, @)1 (a'|8) (@1 (55 @) + 03 11 (8) = 03 410 (5))
=iz (s,0) + 02 ,(5) + Z p(s'ls, )1 (@|8) (G 11 (5, @) = 02 141 (8))) (By (34))
=vr4(s,a) + ¢ (s, q) Zp (s'|s,a)v2 41 (s) + Z p(s]s,a)mi41(a'|8")Gr i1 (8", a") (Definition of 7 (32))
= — (E[vr41(Seq1) | St = s, A4s = a])® + ¢2 ,(s,a) + Z p(s'|s,a)mi1(a’|s")Gr+1(s",a")  (Definition of v (11))
— (ra(5,0) = (5,00 + 215, 0) + 3 (715,011 (@)1 (5 @)
s’,a’
=2r(s,a)qx+(s,a) — r*(s,a) + Z p(s']s,a)mis1(a’|s")Gr 1 (8", a")
=i i(s,0) + Y p(s'|s, a)ms1(d|s)dr i1 (s, '), (By Theorem 4)
which completes the proof. O
A.8. Proof of Theorem 5

Proof. We first derive an important equality. V¢,
2,
Bppmat [pt* Grt (S, Ar) | S
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)
2
=> mi@l%) g (s.,0) (by (23))

m(alS)\/aF ,(Se.a)
S, e (bl S0) /a5, (Se,b)

lZm alSy) \/qﬂt (St,a ] |:Z7Tt alSt) q”t(St’)}

dr t(St7 )

= 7(alSe)\/ Mt (St, @)\/ Gt (St, @) mi(alS, Gr,t(St,a) |- By 22)) (35
lgt<|t¢t(t¢” 2 tm\/tm
We proceed via induction. For t = T — 1, we have

AV (GPDIS(T:L}Tll) ‘ St>

=Byt [0 @ 0(S0 A0 | Si] = 02, () (Lemma 4)

=By, [0 (S0 A | )] = 02,4(50) (Definition of § (14))
1
= lz Wt(a|5t)\/777r,t(5tv a)\/q},t(St, a) lz 7Tt@‘ﬁz‘)m\/ Gr,t(Se,a) | — 07 4(Sh) (By (35))
a a T, Pt

1 /
Zﬂt a|St \/nﬂ't St7 \/qﬂ't St, [; 7Tt(a|5t)m q},t(St,a)]
- Zﬂ—t a|St Qﬂ,t(Stva) - Uw,t(st)

(GPD‘S( 1) | S)

<Z7Tf alSt) Gr.t (St a) [Zﬂ't alSt) \/7771'1‘ (St,a) \/Qﬂ't (St,a)

a

—Zﬂ a|5t Gt St7

1 A

(By (34) and Lemma 5)
=V (G™PB(r[577) | Se) — e (Se). (Definition of €™ (24))

Fort € [T — 2], we have
v(emsetiny 1)

:EAwﬂi [pf (ESM [ (GPDIS( tﬂﬂlTT ) St+1> | Stht} + Vi (St, Ag) + qur,t(Stht)> | St]
- vi’t(St) (Lemma 4)
SE,ont [Pf (EStH [Z To41(0'[St41) G041 (Se1,.0") | S, At:| + vt (St, At)

t

=E 4t [0F (@re(Ses Ar) + 07 1(50)) | Se] =072 o(S) —E o, opr [PFEs,p0 [€51(Ses1) | Si, Al ]
(Definition of ¢ (33))

:EAtNﬂj— [th(jﬂ—’t(St, At) | St] — v,zrvt(St) — EAtNﬂj— [[)?ES’Hr1 [6;L+1(St+1) | St, At]] (Deﬁnition Of(j (15))

1
= me(alSy 7wt (Stya Irt(St,a me(a]St) ———=—=1/Grt(St,a —Uitst
[Z (@) /1.1 (St: )y )] [Z (@l$1) (S 0)| = 12.(50)

21
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Byt [PPEs,py [671(Sia) | Si, Al (By (35))
= Z 7Tt(a|St)qA7r,t(St7 CL) - U72T,t(St)

1
e (alSy (S, a Gr .t (St,a e (a]St) ——=—=1/Grt(St,a) | — e (a]St) Gt (Se, a
3 5 S 5| | et fat| - S ot (5.0

_]EAtN[L:r [prSt+l [ej_+1(st+1) | SthtH

A 1 /-
za: Wt(a‘St)\/nﬂ',t(Sta a’)\/qﬂ',t(stv a)} [2@: Wt(a\St)\/W qﬂ‘,t(Stv a)}

+

=V (G () | S +

- Z 71(alSt)qr,t (St a) — ]EAtNﬂ;r [P?Estﬂ [E;Zrl(stﬂ) | St, At”] (By (34) and Lemma 5)
=V (G"PS(r[57) | Si) — € (Sh). (Definition of €+ (24))
O

22



Efficient Policy Evaluation with Offline Data Informed Behavior Policy Design

B. Experiment Details
B.1. GridWorld

For a Gridworld with size n, its width, height, and time horizon 7" are all set to n. There are four possible actions: up, down,
left, and right. After taking an action, the agent has a 0.9 probability of moving accordingly and a 0.1 probability of moving
uniformly at random. If the agent runs into a boundary, the agent stays in its current location. The reward function r(s, a) is
randomly generated and fixed after generation. We normalize the rewards across all (s, a) such that max, , 7(s,a) = 1. We
consider a set of randomly generated target policies. The ground truth policy performance is estimated using the on-policy
Monte Carlo method by running each target policy for 10° episodes. We test two different sizes of the Gridworld with a
number of 1, 000 and 27, 000 states. The offline dataset contains m = 10° randomly generated tuples. For a Gridworld of
size n, the total amount of possible (s,t,a,r,s’) tuplesis n x n X n x 4 x 4 = 16n>. The offline data coverages for the
Gridworld of size 1,000 and 27, 000 are then 62.5% and 2.3%.

We use a one-hot vector representing the position of the agent and a real number representing the current time step as
features for the state. We execute Algorithm 1 to approximate function 7, g, and 4. As shown in Algorithm 1, we train
r using supervised learning by batch stochastic gradient descent. We train ¢ and ¢ using fitted (Q-learning. We split the
offline data into a training set and a test set. We tune all hyperparameters offline based on the supervised learning loss
and fitted Q-learning loss on the test set. With the Adam optimizer (Kingma & Ba, 2015), we search the learning rates
in {2*207 2718 L., 20} to minimize the loss on the offline data and use the learning rate 2~ '° on all learning processes.
For the behavior policy search (BPS, Hanna et al. (2017)) and robust on-policy sampling (ROS, Zhong et al. (2022))
algorithms, we use the reported parameters from Hanna et al. (2017) and Zhong et al. (2022), since it is not clear how to do
hyperparameter turning for BPS and ROS with only offline data.

B.2. MuJoCo

Figure 3. MuJoCo (Todorov et al., 2012) robot simulation tasks. MuJoCo is a physics engine for robotics simulation and contains various
stochastic environments. The goal in each environment is to control a robot to achieve different behaviors such as walking, jumping,
and balancing. Environments from the left to the right are Ant, Hopper, InvertedDoublePendulum, InvertedPendulum, and Walker. We
conducted experiments on those five environments with results reported in Section 7.

Figure 3 is an introduction to the MuJoCo environments. We construct 150 policies (30 policies in each environment) with a
wide range of performance using the proximal policy optimization (PPO) algorithm (Schulman et al., 2017) and the default
PPO implementation in Huang et al. (2022). Since our methods are designed for discrete action space, we discretize the first
dimension of MuJoCo action space in our experiments. The remaining dimensions are controlled by the PPO policy and are
deemed as part of the environment. We run each compared algorithm 30 times for each policy and compute the average
and standard error to plot curves in Figure 2. To generate offline data, we add different levels of noise to the target policy
and run noisy target policies for 2000 episodes. The noise is in the form of a uniformly random policy, and its weight is
uniformly randomly sampled from (0, 0.1]. This data generation process simulates the data generated during the training of
a policy. Notably, compared with previous works, we do not need data to be complete trajectories or generated by known
policies. We leave the investigation of entirely irrelevant offline data in the MuJoCo domain for future work. Our algorithm
is robust on hyperparameters. All learning rates in Algorithm 1 are tuned offline and are the same 2~ across all MuJoCo
and Gridworld experiments.

In MuJcCo, the episode length varies because of stochasticity in policies and environments. Because the length of each
episode is not fixed, episodes in off-policy estimation may be longer than episodes in on-policy estimation. In the main text,
we use episodes instead of steps as the z-axis mainly to improve readability. Because after running 100 steps, we might
already have a good estimate for a target policy with a length of 10 but may still not finish a single episode for a target
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policy with a length of 250. Due to the diversity of our target policies, averaging using steps as the z-axis makes the plot
conceptually hard to interpret.

Ant-v4 Hopper-v4 InvertedDoublePendulum-v4 InvertedPendulum-v4 Walker2d-v4
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Figure 4. MuJoCo results using steps as the x-axis. We draw each curve from step 100 because some policies need more than 100 steps
to finish the first episode. All curves are averaged over 900 trials (30 target policies, each having 30 independent runs). The shaded
regions denote standard errors and are invisible because they are too small.

We anyway show the figure with steps as the z-axis in Figure 4. Setting steps as the x-axis, we linearly interpolate the
estimation error across episodes. At each step, we average the estimation error for all tests that have completed the first
episode and, thus, have an estimate. The estimation error is divided by the first estimate of the on-policy estimation to get
the normalized estimation error. Although the normalized estimation error for the on-policy estimation starts from 1, it may
be unstable until around 1000 steps because different policies get the first estimate at different steps. However, it is still clear
that our off-policy estimator achieves the same accuracy with fewer online steps.
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