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Abstract—Image-to-Image translation in Generative Artificial
Intelligence (Generative AI) has been a central focus of re-
search, with applications spanning healthcare, remote sensing,
physics, chemistry, photography, and more. Among the numerous
methodologies, Generative Adversarial Networks (GANs) with
contrastive learning have been particularly successful. This
study aims to demonstrate that the Kolmogorov-Arnold Network
(KAN) can effectively replace the Multi-layer Perceptron (MLP)
method in generative AI, particularly in the subdomain of
image-to-image translation, to achieve better generative quality.
Our novel approach replaces the two-layer MLP with a two-
layer KAN in the existing Contrastive Unpaired Image-to-Image
Translation (CUT) model, developing the KAN-CUT model. This
substitution favors the generation of more informative features in
low-dimensional vector representations, which contrastive learn-
ing can utilize more effectively to produce high-quality images in
the target domain. Extensive experiments, detailed in the results
section, demonstrate the applicability of KAN in conjunction with
contrastive learning and GANs in Generative AI, particularly for
image-to-image translation. This work suggests that KAN could
be a valuable component in the broader generative AI domain.

Index Terms—Generative AI, Image-to-Image translation,
Generative Adversarial Networks (GANs), Contrastive Learning,
Multi-layer Perceptron, Kolmogorov-Arnold Networks (KANs),
PatchNCE Loss

I. INTRODUCTION

Generative AI is prevalent across various research fields, in-
cluding images, texts, videos, and more. It has been developed
to achieve generative outcomes such as text-to-text [1], text-to-
image [2], image-to-text [3], text-to-video [4], video-to-video
[5], and image-to-image generation or translation [6]. The
present study primarily focuses on image-to-image translation,
a subdomain of Generative AI.

The popularity and success of Generative AI can be largely
attributed to the flexibility and expressiveness of Multi-layer
Perceptrons (MLPs) [7]–[9]. Despite their significant contri-
butions to the field of Deep Learning (a branch of Generative
AI), MLPs have certain limitations, such as the inability
to optimize univariate functions effectively and their lower
accuracy compared to splines in low-dimensional spaces.

Recently, the Kolmogorov-Arnold Network (KAN) [10],
based on the Kolmogorov-Arnold representation theorem [11],
has been proposed as a potential replacement for MLPs.

KAN combines the strengths of MLPs and splines, offer-
ing improved accuracy and interpretability. The authors have
demonstrated KAN’s better performance compared to MLPs
in small-scale AI applications and suggested its potential in
broader applications.

Image-to-image translation is a well-researched domain
where images from domain A are translated to domain B
using generative mechanisms to achieve various outcomes
such as facial attribute manipulation [12], medical image
analysis [13], and geospatial analysis [14]. Among various
mechanisms like VAEs [15] and diffusion models [16], GANs
have been widely used to achieve image-to-image translation.
Initially, the Pix2Pix model [6] utilized paired images of
domains A and B in a supervised manner for image-to-image
translation. However, due to the impracticality of obtaining
paired images, the CycleGAN model [17] was introduced to
perform translation in an unsupervised manner. Several other
promising GANs equipped with unsupervised principles, such
as GCGAN [18], CUT [19], DCLGAN [20], and StarGAN
[21], have since been proposed. Among these, CUT is partic-
ularly notable for its accuracy, computational efficiency, and
time complexity due to its uni-directional training. This model
combines Generative Adversarial training with mutual infor-
mation maximization using contrastive learning to generate
high-quality images in the target domain.

A noteworthy aspect of this mechanism is its use of con-
trastive learning, inspired by the SIMCLR [22] framework,
where features processed from different layers of the generator
are fed into a two-layer MLP to enhance feature representation.
This process allows for high-quality image generation in the
target domain.

Understanding the importance of KAN, to demonstrate and
potentially prove the applicability of KAN in Generative AI,
specifically in image-to-image translation, we first propose a
novel customization of KAN and construct an efficient two-
layer KAN, which we then use to replace the two-layer MLP
in CUT, giving rise to the KAN-CUT model. Our overall
contributions in the present study are:

• Reformulated the KAN architecture to improve efficiency
by avoiding the expansion of the input tensor and remov-
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ing additional entropy regularization for L1 normaliza-
tion.

• Enhanced the KAN layer by implementing an activation
function that concatenates the basis function and spline
function, replacing the original addition operation, and
supplemented with additional processing using Gated
Linear Units (GLU).

• Innovatively replaced the two-layer MLP in the CUT
model with our efficient two-layer KAN, creating the
KAN-CUT model for unpaired image-to-image transla-
tion.

• This study marks the first integration of KAN in the
image-to-image translation domain (a subdomain of Gen-
erative AI), potentially paving the way for numerous
applications of KAN in different Generative AI domains
to achieve better outcomes.

II. RELATED WORK

In unpaired image-to-image translation within the GANs
domain, CycleGAN [17] was a foundational work where
images from domains A and B were trained on the cyclic
principle. This principle dictates that if b is an image generated
by generator G with a as an input, then we should be able
to obtain the original image a when we feed the generated
image b to another generator F . The ultimate goal is to obtain
a mapping of each instance from A and B in the absence of
paired images, so that a previously unseen instance image from
domain A can be accurately translated to another instance of
an image in domain B. While the model was very successful
and is still being applied in various research endeavors,
it has limitations such as being restrictive, computationally
expensive, and having high time complexity due to its cyclic
nature.

To address limitations related to time complexity and com-
putational expense, several different works in GANs have been
presented that make the training process single-directional,
thus eliminating the need for auxiliary generators and discrimi-
nators. Notable examples include GCGAN [18] and CUT [19].
GCGAN leverages geometric consistency to impose the struc-
tural correspondence between the input and output images,
ensuring that the generated image maintains the geometrical
structure of the input image.

Contrastive Learning, a methodology that favors achiev-
ing numerous Machine Learning (ML) and Deep Learning
tasks such as classification, segmentation, simulation, and
generation, operates with a self-supervised mechanism in the
absence of supervised data. SIMCLR, a contrastive framework
presented in [22], was a remarkable work in Contrastive
Learning based on image data that obtained better results
than previous semi-supervised and self-supervised tasks, and
comparable performance to well-known supervised models
like ResNet50 [23] in the ImageNet dataset. In their work, the
authors showcased that simple data augmentation and applying
contrastive learning to the patches of augmented images can
help determine similar features in embedding space, and
maximizing mutual information can lead to the final goal

without the need for human-labeled data. More importantly,
the authors of SIMCLR [22] found that instead of directly
applying contrastive learning to features or vectors in lower
dimensions, processing the features with a two-layer MLP
before applying contrastive learning yielded better results.

Inspired by SIMCLR, [19] proposed the CUT model, which
utilized contrastive learning at the patch level, integrated with
GAN in a uni-directional fashion, to address the limitations of
CycleGAN. This model successfully achieved better perfor-
mance based on quantitative evaluation along with lower time
complexity. The most important procedure in this method is
that during training, patches drawn from the input image and
target domain image are processed through network layers and
propagated to a two-layer MLP to obtain enriched features
or vectors, following [22]. In the obtained enriched vectors,
contrastive learning is carried out, and maximization of in-
formation among corresponding patches is done to maintain
qualitative and selective image generation. It can be seen
that the two-layer MLP is a crucial component that helps
generate enriched vectors or features used for image-to-image
translation.

Some subsequent works focused on improving the quality
of generation while still incorporating bi-directional training
with the need for two generators and two discriminators but
with additional changes in the principle. Examples of these
works include DualGAN [24] and DCLGAN [20]. DualGAN
introduced a dual learning mechanism inspired by natural lan-
guage translation. It utilizes a primary GAN to convert images
from the input domain to the output domain and a secondary
GAN to reverse this conversion. This architecture ensures
consistent and accurate mappings between domains by using
reconstruction loss, which enhances the quality and robustness
of the generated images. Similarly, DCLGAN [20] shows that
reverse mapping can be achieved without depending on the
generated images, leading to non-restrictive mapping, unlike
the mechanism of CycleGAN [17]. It aligns with CycleGAN
[17] by using two generators and two discriminators and bi-
directional training, additionally applying contrastive learning,
similar to CUT [19], by maximizing mutual information
among patches in both directions. DCLGAN can be considered
an upgraded version of CUT. These GANs, successful in
unpaired image-to-image translation, were mainly constructed
to function between two domains. However, there are scenarios
where generation is needed among multiple domains, such as
generating images from various attributes or styles. StarGAN
[21] was proposed to achieve multi-domain translation using
a single generator and discriminator. StarGAN [21] was pro-
posed to achieve translation across multiple domains using a
unified generator and discriminator. StarGAN acquires map-
pings among various domains by conditioning the generator on
domain labels, allowing it to flexibly translate an input image
to any desired target domain.

KANs [10], recently proposed, have been applied to various
Machine Learning and Deep Learning tasks, such as image
classification [25], image segmentation and generation [26],
time-series analysis [27], and graph-based learning [28]. Even



Fig. 1. Comparison of Embedding Visualizations of Simulated Data with Transformation by Simple MLP and KAN Models

though [26] presents a generative model called Diffusion U-
KAN, it only depicts generating images based on training
limited to one domain. Due to the lack of work in the gen-
eration or translation of images from one domain to another,
we propose to integrate KAN into the existing CUT model
[19] and present the new KAN-CUT model, capable of gen-
erating higher quality images across two domains. The code
is available at https://github.com/amaha7984/KAN-CUT.

III. PROPOSED APPROACH

In this section, we first detail the architecture of the
Kolmogorov-Arnold Network (KAN), followed by our novel
changes and enhancements to the architecture. We then pro-
ceed to integrate the customized efficient KAN into the
domain of image-to-image translation by replacing the two-
layer Multi-layer Perceptron (MLP) with a two-layer KAN in
the Contrastive Unpaired Image-to-Image Translation (CUT)
[19] model, resulting in the KAN-CUT model.

A. Kolmogorov-Arnold Networks (KAN)

Kolmogorov-Arnold Networks (KANs) have been discussed
as a significant advancement in machine learning, often re-
ferred to as Machine Learning 2.0 among researchers. At a
high level, our approach facilitates the generation of better-
informed features in lower dimensions where contrastive learn-
ing can be performed. Due to the lack of previous research on
KANs in representation learning, it is not straightforward to
deduce their relevance for understanding or generating feature
vectors in embedding space better than the well-established
MLPs. To build our initial confidence, we conducted a sim-
ulation where data had three different labels (categories)
with various features in a simulated embedding space. After
training simple MLP and KAN models separately on the given
simulated data, we visualized the results using t-SNE [29] and
observed that KANs performed better in clustering similar data
points in the feature representation, as depicted in Fig. 1.

Before exploring how KAN can be used in generative tasks,
we first discuss the fundamentals of KAN. Unlike MLP, which
is based on the Universal Approximation Theorem, KAN is
based on the Kolmogorov-Arnold Representation Theorem
[11]. This theorem states that if f is a multivariate continuous

function on a bounded domain, then f can be simplified into a
finite composition of continuous single-variable functions and
the binary operation of addition:

f(x) = f(x1, · · · , xn) =
2n+1∑
q=1

Φq

(
n∑

p=1

φq,p(xp)

)
(2.1)

where φq,p : [0, 1] → R and Φq : R → R.
Our main goal is to translate or generate images from one

domain, say domain A, to another domain, say domain B.
For this, we seek a function g such that g(A) yields B′ ≈
B. According to [10], we can approximate g by learning a
discrete number of one-dimensional functions, parameterized
by B-spline curves with tunable coefficients of local B-spline
functions.

KAN is comparable to MLP, but instead of learnable
weights, it has learnable activation functions on edges, and
summation on the resultant learned function’s output is per-
formed at the nodes. As explained in [10], a KAN layer with
nin-dimensional inputs and nout-dimensional outputs can be
represented as a matrix of 1D functions:

Φ = {φq,p}, p = 1, 2, · · · , nin, q = 1, 2 · · · , nout, (2.2)

where each function’s (φq,p) parameters are trainable. In the
Kolmogorov-Arnold theorem, the internal functions constitute
a KAN layer with nin = n and nout = 2n + 1, while the
external functions form another KAN layer with nin = 2n+1
and nout = 1. Thus, the Kolmogorov-Arnold representations
in Eq. (2.1) are constructed by composing two KAN layers.

B. B-Splines

B-splines are piecewise polynomial curves constructed from
a sequence of lower-order polynomial segments. They are
defined by a set of control points Pi and a knot vector u that
determines the influence of each control point on the B-spline
curve.

The basis function for B-splines of order 0 (piecewise
constant) is defined as:

Mi,0(u) =

{
1 if ui ≤ u < ui+1

0 otherwise



For higher-order basis functions (piecewise linear, quadratic,
etc.), the recursive definition is:

Mi,k(u) =
u− ui

ui+k − ui
Mi,k−1(u)+

ui+k+1 − u

ui+k+1 − ui+1
Mi+1,k−1(u)

where k = 1, . . . , d, and d is the degree of the B-spline.
The B-spline curve is then defined by:

c(u) =
m∑
i=0

PiMi,d(u)

where Pi are the control points, Mi,d(u) are the basis functions
of degree d, and u is the parameter.

In this context, ui represents the elements of the knot vector,
and m corresponds to the total number of control points minus
one.

We have demonstrated the importance of the two-layer
MLP in the image-to-image translation domain, particularly
in applications involving contrastive learning and generative
adversarial networks, as mentioned in Section II. We have also
explored the concept of the KAN network and its potential
applicability. Below, we will introduce our novel changes and
refinements of the KAN network, which we will later apply
to generative mechanisms.

C. Efficient Two-Layer KAN

For a layer with in features inputs and out features outputs,
the original implementation expands the input to a tensor
of the shape (batch size, out features, in features) to apply
the activation functions. As mentioned above in Subsection
A, all the activation functions are linear combinations of a
fixed set of basis functions, B-spline curves. Following the
work of [30], for efficient processing, we reconstructed the
computation process by refraining from the additional step of
expanding the input. Instead, we apply learnable activation
functions directly to the input tensor and then combine the
results linearly. Mathematically, if i is the input, and B(i)
represents the B-spline basis functions applied to the input,
the reformulated procedure of applying the activation function
σ on the input can be expressed as:

σ(i) = σb(i) +B(i)

where σb(i) is the base activation function applied to the
input i.

This modification simplifies the computation to a straight-
forward matrix multiplication, efficiently supporting both for-
ward and backward passes. Similarly, regarding regularization,
L1 regularization [31] is applied in MLP to achieve sparsity
and improve model interpretability. In the original KAN [10],
L1 regularization was adapted for learnable activation func-
tions rather than linear weights since there are no learnable
weights in terms of KAN. Specifically, the L1 norm was
defined as the average magnitude of these activation func-
tions over their inputs. This approach required the activation
functions to be sparsified by their L1 norm. Additionally,
an entropy regularization was necessary to further enforce

sparsity. In our implementation of KAN, we align with the
original approach by applying L1 regularization to the B-spline
activation functions (‘spline activation‘) to enforce sparsity
and control overfitting. The main difference is the removal
of the tensor expansion step and additional entropy regular-
ization, making the process more efficient.

To obtain an optimizable layer, the original KAN imple-
mentation [10] used a residual connection mechanism and
expressed the activation function ϕ(x) as the combination of
the basis function b(x) and the spline function, given as:

ϕ(x) = wbb(x) + wsspline(x)

where wb and ws are learnable weights, but they can be
considered redundant since they can be merged into b(x) and
spline(x) [10].

Instead of the additive operation, we applied concatenation
and processed it with Gated Linear Units (GLUs) [32], in
a novel way, to enrich features while maintaining the same
number of parameters to avoid an increase in computation, as
detailed in the subsection below.

1) Integration of Basis and Spline Functions via Concate-
nation and Gated Linear Units (GLUs): In our Kolmogorov
Arnold Network (KAN) layer implementation, we aim to
enhance expressive power while maintaining the same feature
dimensionality. To obtain this, we propose the following
approach:

1) Concatenation: Compute the outputs of b(x) and
spline(x), then concatenate them:

concatenated output = concat(wb · b(x), ws · spline(x))

2) Gated Linear Units (GLUs): Apply GLU to the con-
catenated output for non-linear transformation while
maintaining the original feature dimensionality:

ϕ(x) = (W ·concatenated output+b)⊙ρ(V ·concatenated output+c)

where ⊙ denotes element-wise multiplication and ρ rep-
resents the penalized tanh function with our customized
implementation:

ρα(x) = tanh(x) + α ·max(−x, 0)

Here, α is a hyperparameter that controls the penalty
applied to the negative part of the input x. It is worth
mentioning that, while the sigmoid function is generally
used in GLU, we integrated the penalized tanh as shown
above, as it yielded better results during experiments.

With these steps, we make different use of the residual
connection mechanism, unlike the original KAN implemen-
tation, and implement the activation function ϕ(x) as the con-
catenation of the basis function and the spline function. The
construction ends with non-linear transformations to maintain
the initial dimension of the concatenated inputs.



Fig. 2. Illustration of Two-Layer KAN. Φ1 and Φ2 represent the collection
of all 1D functions parametrized by B-Spline in layer 1 and layer 2,
respectively.

Through these novel customizations of KAN, we finally
construct a two-layer efficient KAN. Fig. 2 illustrates the
process. Now, we will show how we integrate this obtained
innovative two-layer efficient KAN into contrastive learning
and GANs in unpaired image-to-image translation and give
rise to the KAN-CUT model.

D. Formulation of KAN-CUT Model

Conforming to the principle of Generative Adversarial
Networks (GANs), we integrate two neural network mod-
els: a generator and a discriminator. The generator’s role
is translating (generating) from input domain A to output
domain B, while the discriminator determines whether the
provided image is genuine or artificial. Following recent
literature in image-to-image translation [17], [19], [20], we
have implemented ResNet-based encoder-decoder architecture
of the generator.

During the translation of an image a in A to an image
b in B, not only should the entire image share information,
but the individual patches within the image should also share
information while transforming domain-dependent informa-
tion in the generated image. For instance, let’s say we are
translating an image from a cat to a dog. The generated dog
image should share local information in the patches, meaning
the eyes and nose should appear in the same locations as
they were in the cat image (see Fig. 3, where we depict the
appearance of the eyes of a cat and a dog with blue-colored
squares), while the obtained domain-dependent features such
as fur patterns and facial structure should be unique to a
dog (see Fig. 3, where we highlight fur patterns with red-
colored squares). We can achieve this effect of the images
sharing patch-level information by maximizing information
between corresponding patches while minimizing information
in the non-corresponding patches. Since our work is based
on an unsupervised mechanism, it is not straight forward to
determine which patches are similar or corresponding and

Fig. 3. Illustration showing that images should share information based on
patches. Images are sourced from the AFHQ dataset [34] and are reproduced
under the Creative Commons Attribution-NonCommercial 4.0 International
License.

how to maximize the information. Thanks to the predictive
mechanism of contrastive learning [22], [33], we can use
contrastive loss to successfully select the correct positive patch
from a given set of patches in which there exists one positive
and several negatives for a given query. More specifically, fol-
lowing [19], working in a vector representation, we construct
an (N+1)-way classification problem, where the probability of
positive being selected over negatives is achieved with cross-
entropy loss given as:

L(q, p, {ni}) = − log
exp(q, p)/τ )

exp(q, p)/τ ) +
∑N

i=1 exp(q, ni)/τ)
(1)

where q, p ∈ RK and ni ∈ RN×K are K-dimensional
vectors corresponding to query, positive, and N negatives,
respectively. τ is a temperature parameter to scale the distances
between vectors. Following this procedure, we can select the
correct query and positive vector from the set of vectors
and maximize the mutual information between them in the
embedding space. It is clear that we can obtain the selection
and maximization of mutual information between vectors.
Now, the question arises: how can we obtain the vectors or
features where we can apply contrastive estimation?

As mentioned in [19], since images are processed in the
generator G, we can utilize features from intermediate layers
of the generator’s encoder, Genc. Inspired by [19] and [22],
we select X layers from the encoder and pass them to our in-
novative two-layer efficient KAN instead of a two-layer MLP
(see Fig. 4 illustrating the difference in layer implementation
between KAN and MLP), producing a more informative stack
of features. For instance, let’s say we feed image a to the
generator G and generate image G(a). To obtain stacks of
features from which the positive feature or vector is chosen,
we select the x-th layer from the encoder through which a is
being processed and pass it to the two-layer KAN network Kl

to produce a stack of features {zx}X = {Kx(G
l
enc(a))}X (as

depicted with the red-colored arrow in Fig. 5).
In each layer, there are several spatial locations quantified

by Sx, where s ∈ {1, . . . , Sx}. We refer to the positive feature
as zsx ∈ RCx and the negative features as zS\s

x ∈ R(Sx−1)×Cx ,
where Cx denotes the channel count at each layer. To denote a



Fig. 4. Comparison between the Two-Layer MLP and Two-Layer KAN architectures.

Fig. 5. Architecture of Generator used in KAN-CUT. The cat and dog images are sourced from the AFHQ dataset [34] and are reproduced under the Creative
Commons Attribution-NonCommercial 4.0 International License.

query vector or feature in this instance, we feed the generated
image G(a) to the same encoder, select the x-th layer, and
pass it to the two-layer KAN network Kl to produce another
stack of features, {ẑx}X = {Kx(G

l
enc(G(a)))}X (as depicted

with green-colored arrow in Fig. 5). From this feature stack,
we refer to a corresponding query point as ẑsx. It is worth
mentioning that negatives vectors are drawn from the same
input image, following [19]. Once we have the query, positive,
and negative vectors, we can perform constrastive learning
using the loss function given above in equation (1). The
above procedure is performed for an instance of a spatial
location and from a layer; however, we need to do this for
all spatial locations and layers. For that, we use PatchNCE
loss as presented in [19], which can be expressed as:

LPatchNCE(G,K,A) = Ea∼A

[
X∑

x=1

Sx∑
s=1

X
(
ẑsx, z

s
x, z

S\s
x

)]
(2)

1) Adversarial Loss for Generation of Realistic-Looking
Images: We can achieve mutual information maximization at

the patch level with the above procedure using contrastive
learning and the two-layer efficient KAN. For high-quality
image generation, we use adversarial loss from generative
adversarial networks (GANs). The initial work in GANs was
introduced in [35], and this architecture is considered as
Vanilla GAN. The authors introduced the use of a sigmoid
cross-entropy loss for GANs. This loss can sometimes cause
vanishing gradients when data samples fall within the correct
classification boundary but remain distant from the actual
data distribution. To mitigate this problem, [36] proposed
Least Squares Generative Adversarial Networks (LSGANs),
replacing the binary cross-entropy loss with a least squares
loss. Following principles of [35] and [36], to guarantee the
generation of authentic images perceived by humans in domain
B′, such that B′ ≈ B for the given input images from
domain A, we utilize an adversarial loss based on the least
squares loss. The adversarial loss, also known as LSGAN loss,
comprises two main components: the loss for the generator and
the loss for the discriminator. These losses guide the back-



propagation process through which the neural networks are
trained and updated. The general procedure involves training
the generator to generate images in the target domain that are
identical to real images, whereas the discriminator learns to
differentiate real images from generated ones.

The adversarial loss can be formulated as:

LLSGAN(D) =
1

2
Eb∼B [(D(b)− 1)2] +

1

2
Ea∼A[(D(G(a)))2]

LLSGAN(G) =
1

2
Ea∼A[(D(G(a))− 1)2]

(3)
In these equations, D(b) represents the discriminator’s deci-

sion for a ground truth image b from the target domain, where
the label for real images is set to 1. G(a) is the generated
image from the input image a from the input domain, where
the label for fake images is set to 0. The generator G aims to
minimize LLSGAN(G), making the discriminator believe that
the generated images are real by pushing D(G(a)) towards 1.
The discriminator D aims to minimize LLSGAN(D), correctly
distinguishing real images from generated ones by pushing
D(b) towards 1 and D(G(a)) towards 0. This results in a
minimax game between the two, similar to the initial work
in [35], promoting the generation of high-quality, realistic
images.

2) Final Loss Functions: Following the same principle in
[19], we utilize three different loss functions involving only
one generator and discriminator. These loss functions include
the adversarial loss for generating realistic-looking images, the
PatchNCE loss, LPatchNCE(G, K, A), for ensuring patch-level
correspondence, and a similar PatchNCE loss, LPatchNCE(G,
K, B), to prevent inappropriate translation by the generator,
similar to the identity loss presented in [17]. The combined
final loss function is formulated as follows:

Lfinal =LLSGAN(G,D,A,B)+

λPatchNCE-ALPatchNCE(G,K,A)+

λPatchNCE-BLPatchNCE(G,K,B)

(4)

IV. EXPERIMENTS

For evaluation, we selected two well-known, widely uti-
lized, and publicly accessible datasets for research in image-
to-image translation: Horse → Zebra and Cat → Dog.

A. Datasets

a) Horse→Zebra: First introduced in CycleGAN [17],
this dataset comprises 1067 horse images and 1344 zebra
images, resulting in 2403 training images. Additionally, there
are 120 horse images and 140 zebra images, totaling 260 test
images.

b) Cat→Dog: First introduced in StarGAN V2 [34], this
dataset is a subset of AFHQ and includes 5000 training images
and 500 test images for each category.

B. Evaluation Metrics

For the evaluation metric, we selected the Fréchet Inception
Distance (FID) [37] score. It is one of the most utilized
metrics for assessing the quality of images produced by GANs.

The FID score evaluates the distance between feature vectors
calculated for real and fake (generated) images, utilizing a pre-
trained Inception v3 [38] network. A lower FID score signifies
higher similarity to the real images, thus representing better
quality of the generated images.

C. Experimental Environment and Baselines

a) Experiment Setting: Our experiments were performed
in the Python 3.6.8 environment using the PyTorch framework
for all facets of training and testing. The computational tasks
were carried out on a system comprising NVIDIA A100-
PCI GPUs, each featuring 80 GB of HBM2 memory. The
computation tasks were facilitated using CUDA version 12.3
and NVIDIA driver version 545.23.08. All the models were
trained for 400 epochs using the Adam optimization algorithm
[39], set at a learning rate of 0.0001. During the training
of our model, KAN-CUT, we chose λPatchNCE-A = 1 and
λPatchNCE-B = 1.

b) Baselines: For our comparative analysis, we selected
well-known GAN models as our baselines: CycleGAN [17],
MUNIT [40], SelfDistance [41], GCGAN [18], CUT [19], and
DCLGAN [20]. It is worth noting that all models were trained
in our setup except for MUNIT [40], SelfDistance [41], and
GCGAN [18], for which the FID scores were recorded from
[20], where DCLGAN was proposed.

D. Results

The quantitative results from each baseline model, includ-
ing the proposed KAN-CUT, are presented in Table I. It
can be seen that KAN-CUT outperforms all the models on
both selected datasets, with an FID score of 40.2 on the
Horse→Zebra dataset, and 59.55 on the Cat→Dog dataset.

Additionally, our study presents a visualization of the per-
formance of each model in generating zebra images from horse
images and dog images from cat images, as depicted in Fig.
6. As mentioned above, we did not run the experiments for
MUNIT [40], SelfDistance [41], and GCGAN [18] in our work
and could not find the resulting images generated by these
models online. Therefore, the visualization comparison was
done against CycleGAN, DCLGAN, and CUT. The KAN-
CUT model is able to generate higher quality zebra images
based on stripes, structure, and color, compared to all these
selected baseline models.

V. CONCLUSION, LIMITATION, AND FUTURE WORK

GANs, being among the most prominent generative models,
have played a major role in the success of Image-to-Image
(I2I) generation (translation), a subdomain of Generative AI.
Despite their success, there are several areas requiring further
research, particularly in terms of accuracy, computational
efficiency, and knowledge transferability. Focusing primarily
on accuracy and demonstrating the efficacy of Kolmogorov-
Arnold Networks (KAN) [10] in the image-to-image transla-
tion domain, we propose the KAN-CUT model. This novel
model replaces the two-layer MLP in the CUT model [19]
with a two-layer, efficient, and customized KAN.



Input CycleGAN CUT DCLGAN KAN-CUT

Fig. 6. Comparative Results of Horse → Zebra and Cat → Dog. The figure presents a side-by-side comparison of zebra images generated by various
models, including KAN-CUT, in the first four rows, and the same comparison of dog images generated by those models in the fifth to eighth rows. The
figure highlights the effectiveness of each approach in synthesizing accurate details such as structure and color. Images from the Horse → Zebra dataset are
sourced from ImageNet [42] and are reproduced under the ImageNet terms of access, which allows use for non-commercial research and educational purposes.
Images from the Cat → Dog dataset are sourced from the AFHQ dataset [34] and are reproduced under the Creative Commons Attribution-NonCommercial
4.0 International License.

As shown in the Results section, our proposed KAN-
CUT model outperforms all selected baseline GAN mod-
els on two well-known research datasets, Horse→Zebra
and Cat→Dog, in both quantitative and qualitative assess-

ments. Notably, KAN-CUT, being an upgraded version of
CUT, achieved a superior FID score by 5.3 points on the
Horse→Zebra dataset and by 16.65 points on the Cat→Dog
dataset. To the best of our knowledge, our study is the first to



Method Horse→Zebra Cat→Dog
FID ↓ FID ↓

CycleGAN [17] 66.8 85.9
MUNIT [40] 133.8 104.4
SelfDistance [41] 80.8 144.4
GCGAN [18] 86.7 96.6
CUT [19] 45.5 76.2
DCLGAN [20] 43.2 60.7
KAN-CUT (Ours) 40.2 59.55

TABLE I
COMPARISON OF THE PERFORMANCE OF DIFFERENT GAN MODELS WITH

THE PROPOSED MODEL, KAN-CUT, ON THE HORSE→ZEBRA AND
CAT→DOG DATASETS. THE PERFORMANCE IS MEASURED USING THE FID

SCORE (LOWER IS BETTER).

propose and demonstrate the applicability of KAN in image-
to-image translation, potentially paving the way for numerous
applications of KAN in Generative AI, which we find very
promising.

While the present study has been successful, it has some
limitations. Our primary goal was to demonstrate the applica-
bility of KAN [10] and to showcase its improved performance
compared to MLP. We do not claim improvement over the
state-of-the-art performance in the image-to-image translation
domain. Additionally, the KAN-CUT model’s performance has
been demonstrated on only two datasets, Horse→Zebra and
Cat→Dog, due to time and resource constraints. Experimental
validation on other datasets remains an area for future work.
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T. Y. Hou, and M. Tegmark, “Kan: Kolmogorov-arnold networks,” arXiv
preprint arXiv:2404.19756, 2024.

[11] A. Kolmogorov, On the representation of continuous functions of several
variables by superpositions of continuous functions of a smaller number
of variables. American Mathematical Society, 1961.

[12] M. Hu and J. Guo, “Facial attribute-controlled sketch-to-image transla-
tion with generative adversarial networks,” EURASIP Journal on Image
and Video Processing, vol. 2020, no. 1, p. 2, 2020.

[13] Y. Song and N. Y. Chong, “S-cyclegan: Semantic segmentation enhanced
ct-ultrasound image-to-image translation for robotic ultrasonography,”
arXiv preprint arXiv:2406.01191, 2024.

[14] A. Mahara and N. D. Rishe, “Generative adversarial model equipped
with contrastive learning in map synthesis,” in Proceedings of the 2024
6th International Conference on Image Processing and Machine Vision,
2024, pp. 107–114.

[15] Y. Zhao and C. Chen, “Unpaired image-to-image translation via latent
energy transport,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2021, pp. 16 418–16 427.

[16] M. Zhao, F. Bao, C. Li, and J. Zhu, “Egsde: Unpaired image-to-
image translation via energy-guided stochastic differential equations,”
Advances in Neural Information Processing Systems, vol. 35, pp. 3609–
3623, 2022.

[17] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp.
2223–2232.

[18] H. Fu, M. Gong, C. Wang, K. Batmanghelich, K. Zhang, and D. Tao,
“Geometry-consistent generative adversarial networks for one-sided un-
supervised domain mapping,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2019, pp. 2427–2436.

[19] T. Park, A. A. Efros, R. Zhang, and J.-Y. Zhu, “Contrastive learning
for unpaired image-to-image translation,” in Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part IX 16. Springer, 2020, pp. 319–345.

[20] J. Han, M. Shoeiby, L. Petersson, and M. A. Armin, “Dual contrastive
learning for unsupervised image-to-image translation,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2021, pp. 746–755.

[21] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Stargan:
Unified generative adversarial networks for multi-domain image-to-
image translation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 8789–8797.

[22] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[24] Z. Yi, H. Zhang, P. Tan, and M. Gong, “Dualgan: Unsupervised dual
learning for image-to-image translation,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2849–2857.

[25] M. Cheon, “Kolmogorov-arnold network for satellite image classifica-
tion in remote sensing,” arXiv preprint arXiv:2406.00600, 2024.

[26] C. Li, X. Liu, W. Li, C. Wang, H. Liu, and Y. Yuan, “U-kan makes
strong backbone for medical image segmentation and generation,” arXiv
preprint arXiv:2406.02918, 2024.

[27] C. J. Vaca-Rubio, L. Blanco, R. Pereira, and M. Caus, “Kolmogorov-
arnold networks (kans) for time series analysis,” arXiv preprint
arXiv:2405.08790, 2024.

[28] M. Kiamari, M. Kiamari, and B. Krishnamachari, “Gkan: Graph
kolmogorov-arnold networks,” arXiv preprint arXiv:2406.06470, 2024.

[29] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[30] Blealtan, “Efficient kan,” https://github.com/Blealtan/efficient-kan, 2024,
accessed: April 7, 2024.

[31] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society: Series B (Methodological), vol. 58,
no. 1, pp. 267–288, 1996.

[32] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling
with gated convolutional networks,” in International conference on
machine learning. PMLR, 2017, pp. 933–941.

[33] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

https://github.com/Blealtan/efficient-kan


[34] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “Stargan v2: Diverse image
synthesis for multiple domains,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 8188–
8197.

[35] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[36] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least
squares generative adversarial networks,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2794–2802.

[37] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” Advances in neural information processing systems,
vol. 30, 2017.

[38] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[40] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsu-
pervised image-to-image translation,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 172–189.

[41] S. Benaim and L. Wolf, “One-sided unsupervised domain mapping,”
Advances in neural information processing systems, vol. 30, 2017.

[42] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[43] G. Kour and R. Saabne, “Real-time segmentation of on-line handwritten
arabic script,” in Frontiers in Handwriting Recognition (ICFHR), 2014
14th International Conference on. IEEE, 2014, pp. 417–422.

[44] ——, “Fast classification of handwritten on-line arabic characters,” in
Soft Computing and Pattern Recognition (SoCPaR), 2014 6th Interna-
tional Conference of. IEEE, 2014, pp. 312–318.

[45] G. Hadash, E. Kermany, B. Carmeli, O. Lavi, G. Kour, and A. Jacovi,
“Estimate and replace: A novel approach to integrating deep neural
networks with existing applications,” arXiv preprint arXiv:1804.09028,
2018.

[46] T. An and C. Joo, “Cycleganas: Differentiable neural architecture search
for cyclegan,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024, pp. 1655–1664.


	Introduction
	Related Work
	Proposed Approach
	Kolmogorov-Arnold Networks (KAN)
	B-Splines
	Efficient Two-Layer KAN
	Integration of Basis and Spline Functions via Concatenation and Gated Linear Units (GLUs)

	Formulation of KAN-CUT Model
	Adversarial Loss for Generation of Realistic-Looking Images
	Final Loss Functions


	Experiments
	Datasets
	Evaluation Metrics
	Experimental Environment and Baselines
	Results

	Conclusion, Limitation, and Future Work
	References

