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Abstract

Test Time Adaptation (TTA) has emerged as a practi-

cal solution to mitigate the performance degradation of

Deep Neural Networks (DNNs) in the presence of corrup-

tion/ noise affecting inputs. Existing approaches in TTA

continuously adapt the DNN, leading to excessive resource

consumption and performance degradation due to accu-

mulation of error stemming from lack of supervision. In

this work, we propose Domain-Aware Real-Time Dynamic

Adaptation (DARDA) to address such issues. Our key ap-

proach is to proactively learn latent representations of some

corruption types, each one associated with a sub-network

state tailored to correctly classify inputs affected by that

corruption. After deployment, DARDA adapts the DNN to

previously unseen corruptions in an unsupervised fashion
by (i) estimating the latent representation of the ongoing

corruption; (ii) selecting the sub-network whose associated

corruption is the closest in the latent space to the ongo-

ing corruption; and (iii) adapting DNN state, so that its

representation matches the ongoing corruption. This way,

DARDA is more resource-efficient and can swiftly adapt to

new distributions caused by different corruptions without

requiring a large variety of input data. Through experi-

ments with two popular mobile edge devices – Raspberry Pi

and NVIDIA Jetson Nano – we show that DARDA reduces

energy consumption and average cache memory footprint

respectively by 1.74⇥ and 2.64⇥ with respect to the state of

the art, while increasing the performance by 10.4%, 5.7%
and 4.4% on CIFAR-10, CIFAR-100 and TinyImagenet.

1. Introduction
Traditional mobile edge computing scenarios assume

that the inputs of DNNs are received uncorrupted. However,
in many real-life scenarios, sudden and unexpected corrup-
tions (e.g., snowy or foggy conditions) can cause a drastic
change in data distribution, consequently causing perfor-
mance loss [1, 15]. For example, a semantic segmentation
DNN trained with data collected in normal weather condi-
tions has been shown to exhibit a performance loss of more

than 30% when tested in snowy conditions [14], while an
image classification DNN can experience a similar decrease
in the case of reduced lighting conditions [5].
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Figure 1. Overview of the proposed DARDA framework.

Test-time Adaptation (TTA) tackles this issue by adapt-
ing the DNN with unlabeled test data in an online man-
ner, thus handling distributional shifts in real time. Existing
TTA methods lose performance when encountering contin-
uously changing distributions with highly correlated input
samples [17, 19]. This assumption is true in many real-
world scenarios. For example, an unmanned autonomous
vehicle (UAV) monitoring an outdoor environment will
likely encounter similar classes as video feeds are very
likely to be highly correlated when considering limited time
spans. Continuous adaptation of an edge deployed DNN
to such a challenging yet practical scenario causes many
adaptation methods to fail. Moreover, existing methods lack
awareness of when the domain shift happens, thus they con-
tinuously fine-tune the DNN even if there is no shift in data
distribution. However, in a real-life deployment scenario,
certain data distribution might persist for a certain period
of time (e.g., a bright sunny day). This imposes unneces-
sary burden on energy consumption and cache memory –
without yielding performance improvements.

To address the critical issues defined above, we propose a
new framework named Domain-Aware Real-Time Dynamic



Adaptation (DARDA), shown in Fig. 1. We now provide a
step-by-step walk-through of DARDA. First, the data stream
can shift due to some corruption which is also correlated
in label space (distribution of labels are not uniform) (step
1). The corruption process is then detected and extracted
(step 2), resulting in a latent representation (step 3), which
we call signature for brevity. Then, the corruption signature
Ccor is assigned to the closest corruption centroid C⇤. Each
centroid is learned during training and represents a known
corruption type. Moreover, it is associated with a “boot-
strapped” sub-network of the main DNN that is specifically
tailored to the specific corruption. The sub-network signa-
ture S⇤ is then used to retrieve the actual sub-network struc-
ture and weight (step 4), which is then immediately plugged
into the DNN (step 5). Next, the DNN is updated to match
the type of ongoing corruption (not seen during the subnet-

work and corruption signature training phase) (step 6) by
“moving” the current subnetwork signature Scur closer to
the actual ongoing corruption Ccur (step 7).
Summary of Novel Contributions

• We propose Domain-Aware Rapid Dynamic Adapta-
tion (DARDA) to seamlessly and effectively adapt in real-
time state-of-the-art DNN to unseen corruptions (Section
Sec. 4). The key innovation of DARDA is a brand-new ap-
proach to learn a latent space putting together the corruption
process and the state of the DNN, which is done through
a corruption extractor (Section Sec. 4.1), a corruption en-
coder (Section Sec. 4.2) and a sub-network encoder (Sec-
tion Sec. 4.3), which together make DARDA able to seam-
lessly adapt the DNN with unlabeled inputs. The imple-
mentation is available at: darda repository.

• We prototype DARDA and evaluate its performance
against five state of the art approaches, namely BN [10],
TENT [17], CoTTA [19], NOTE [2], RoTTA [21] on the
ResNet-56 DNN trained with the CIFAR-10 and CIFAR-
100 datasets augmented with same known corruption types
that are considered to be known prior to deployment. We
show that DARDA improves the performance by 10.4% and
5.7% on CIFAR-10 and CIFAR-100 respectively, while per-
forming 29% less forward computation and 77% less back-
ward passes during the adaptation process and with only
16.57% of additional memory.

• We implement DARDA on Jetson-Nano and Raspberry
Pi 5, commonly used to exhibit efficiency of edge-deployed
DNNs [4, 20]. Experiments show that DARDA handle distri-
bution shifts while being 1.74⇥ more energy efficient than
the best-performing state of the art TTA algorithm. For
adaptation and inference task DARDA takes 7.3⇥ less time
per sample while it occupies 2.64⇥ less cache memory.
2. Related Work and Existing Issues

Some existing works [2, 16] on TTA have provided em-
pirical evidence of performance improvement by only re-

estimating the normalization statistics of Batch Normaliza-
tion (BN) layers from test data. The absence of supervision
is typically covered by two unsupervised forms of losses.
Firstly, a line of work [3, 12, 18] minimizes the entropy of
the predictions over a batch of data to prevent the collapse
of a trivial solution. Invariance regularization-based TTA
algorithms perform some data augmentation (e.g. rotation
[19], adversarial perturbation [11]) on test data during infer-
ence. The inconsistency of the prediction of DNN on dif-
ferent augmented test data is leveraged as an unsupervised
loss function to update the learnable parameters during in-
ference. The proposed DARDA framework uses cross-modal
learning to acquire a shared representation space between
the corruption space and the DNN space [13, 23]. However,
to our knowledge, none of the existing research addresses
cross-modal learning between the corruption process and
the state of the DNN model. Next, we discuss into some
practical limitations of TTA in edge vision application.
Excessive Resource Consumption. To improve perfor-
mance, existing TTA approaches typically involve contin-
uous adaptation even with uncorrupted input samples, thus
imposing a heavy burden on edge resources. Ideally, adap-
tation should be only performed upon changes in the corrup-
tion process, thereby conserving constrained resources such
as energy and processing power at the edge. Despite the
potential benefits, current methods have yet to explore this
direction. Fig. 2a shows a significant increase in resources
between inference-only and existing TTA approaches in Jet-
son Nano. Specifically, the energy consumption increases
by up to 11.9⇥ , along with a 6.8⇥ increase in CPU latency
and a 3.1⇥ increase in GPU latency.
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Figure 2. Current issues of Test-time Adaptation.

Higher Average Cache Usage. Mobile edge devices have
limited memory size. As such, it is compelling to ensure
TTA uses minimal memory footprint. Specifically, during
inference, various blocks of a DNN are executed sequen-
tially, and the cache memory usage at any given time is
bounded by the data size of the activation map of the block
being computed. However, as the TTA dynamically updates
the DNN, local gradients of learnable parameters with re-
spect to intermediate activation are stored, a quantity that
scales with both the DNN size and the number of learn-

https://github.com/shahriar-rifat/DARDA.git


able parameters. From Fig. 2a, we observe that the average
cache usage increases by up to 21.7⇥ compared to a DNN
deployed for inference only.

Dependence on Sample Diversity. To be effective in real-
world scenarios, the dynamic adaptation of a DNN needs to
happen in a rapid fashion. However, Figure Fig. 2b shows
that existing state of the art work [21] takes significant time
to restore the performance of the original DNN when the
noise condition keeps changing. The reason behind such
behavior lies in the inherent dependency on sample diver-
sity of [21]. In other words, if diverse samples are not ob-
served with a new corruption process, the work [21] cannot
achieve its optimum performance gains.

3. Problem Statement
We define ds as the number of available learning do-

mains, each characterizing a different imperfection and/or
corruption type. We further define the related set of ds
datasets where xd

i and ydi indicates ith data sample and label
from domain d respectively, as

D
d =

��
xd
i , y

d
i

� nd

i=1
, with 0  d < ds. (1)

Each dataset D
d is composed of nds independent and

identically distributed (IID) samples characterized by some
probability distribution Pd(X,Y ) where X and Y are ran-
dom variables of input and output respectively. We assume
a DNN has been trained on an uncorrupted dataset and ds
sub-networks f(.; ✓d) are created so that (i) their architec-
ture includes the batch normalization layer and the dense
layers of the DNN; (ii) their weights ✓d are obtained by
fine-tuning each sub-network to each specific domain. We
assume continuous and correlated (thus, non-IID) data flow
to the DNN in real time, coming from du unknown domain
datasets D

u, with 0  u < du. By unknown we mean
Pu(X,Y ) 6= Pd(X,Y ), for all (0  d < ds , 0  u < du).
We define a domain latent space O ⇢ Ro, where o is the di-
mension of the latent space. Our goal is to (i) sense when
the data flow has changed domain from the current domain
d to the unknown domain u; (ii) infer domain t that is clos-
est to u in the latent space; (ii) select the related fine-tuned
sub-network f(·; ✓t) to quickly recover performance, and
(iii) adapt f(·; ✓t) so as to find optimal f⇤(.; ✓⇤) such that:

✓⇤t = arg min
✓t

1

nu

nuX

i=1

L {f (xu
i ; ✓t) ; y

u
i } (2)

where nu is a given number of samples in the unknown do-
main. Such samples are assumed to be available sequen-
tially and the distribution of labels is different from the cur-
rent domain’s, i.e., Pu(Y ) 6= Pd(Y ). Notice that ground-
truth labels yui are usually not available in real-world set-
tings and are only used for performance evaluation.

4. Description of DARDA Framework
The main components of DARDA are a corruption ex-

tractor (Section Sec. 4.1), a corruption encoder (Section
Sec. 4.2) and a model encoder (Section Sec. 4.3), a new
corruption-aware memory bank (Section Sec. 4.4), new
batch normalization scheme (Section Sec. 4.5) and a new
real-time adaptation module (Section Sec. 4.6).
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Figure 3. Proposed Corruption Extractor.

4.1. DARDA Corruption Extractor
Fig. 3 shows our proposed corruption extraction ap-

proach. Our key intuition is that features related to cor-
ruption and semantic features for inference are tightly in-
tertwined. Since decoupling these features is difficult with-
out corresponding clean samples, we design a process to
decouple corruption features without corresponding clean
sample. Specifically, we learn the corruption features by
mapping corrupted data to a different corrupted version of
the same data [6, 8]. For a given corrupted data x we down-
sample it through two convolution kernels with static filters
G1(.) = [[0, 0.5], [0.5, 0]] and G2(.) = [[0.5, 0], [0, 0.5]]
to generate two downsampled version of the corrupted data.
From the first downsampled corrupted data G1(x), we try to
create an exact copy of the other downsampled data G2(x)
by subtracting some residual information learned by pass-
ing G1(x) through the corruption extractor g(·). We de-
note this predicted copy as G̃2(x). Similarly, we compute
G̃1(x) from G2(x). The mapping functions are as follows:

G̃2(x) = G1(x)� g(G1(x)) (3)

G̃1(x) = G2(x)� g(G2(x)) (4)

In Fig. 3, the extracted residual is denoted by dotted
lines. The parameters of g(·) can be optimized by mini-
mizing the following loss function, which is the loss mean
squared error (MSE) indicated in Fig. 3.

LN =
dsX

c=1

ndsX

i=1

1

2
(
���G̃2(xc,i)�G2(xc,i)

���
2

2
+

���G̃1(xc,i)�G1(xc,i)
���
2

2
)

(5)



The intuition behind our approach is that the pixel values of
the uncorrupted data in close proximity are usually highly
correlated. Therefore, two downsampled versions of the
data would be almost the same since they were generated
by averaging values in close proximity. The corruption pro-
cess breaks this correlation. Thus, our extractor g(·) learns
to extract a representation of the corruption to generate un-
corrupted data. We design this loss function in Eq. (5) to
create an opposite dynamics that enable us to extract in-
formation about the corruption process. We have theoreti-
cally proven through Proposition 1 that, for additive noise
our proposed approach indeed learns to extract information
about the corruption. In Tab. 1, it is empirically verified
that the proposed corruption extractor is useful for different
kinds of corruption in general.

4.2. DARDA Corruption Encoder
We use the corruption-related features to detect a cor-

ruption shift in real time. Specifically, we use a corrup-
tion encoder h(·) to encode corruption information of the
input data from the known corruption types into a projec-
tion in the corruption latent space. While generating the la-
tent space, we ensure that samples from the same corruption
distribution are grouped together in that latent space and
samples from different corruption distribution are located
distant from each other. For the N samples

�
Ci, Di

 N
i=1

in a training data batch, we define C as the set of each cor-
ruption projection Ci in the latent space. We also define
as Di as the corruption label for projection Ci, and as D

the corresponding set. We define the following supervised
contrastive loss function for a batch of training data:

LD(C,D) =
2·NX

i=1

L
i
D(C,D) (6)

where L
i
D(C,D) is defined as

L
i
D(C,D) =

�1

2 · nds � 1

2·NX

j=1

1(i 6=j)&(Di 6=Dj)

⇥ log
exp(Ci.Cj/⌧)

P2·N
k=1 1(k 6=i)exp(Ci.Ck/⌧)

(7)

where N represents the total number of samples in the batch
and ⌧ is a scaling parameter. While training the corruption
encoder, we generate a soft augmentation (random rotations
and flips) from each data sample to have more samples from
each noise classes. This way, our training batch size be-
comes 2 · N . For each sample i in our training batch, we
calculate its contrastive loss using Eq. Eq. (7). Here, the nu-
merator enforces cosine similarity between similar corrup-
tion types and the denominator penalizes high similarity be-
tween projections which are from different corruption class.

Thus, similar corruption projections are positioned closer
and dissimilar ones are positioned far apart. We jointly train
the corruption extractor g(.) and corruption encoder h(.) by
minimizing the loss function:

L = LD + �e · LN (8)

where �e is a constant which does not impact perfor-
mance yet makes the convergence of g(.) and h(.) faster.
The training process is described in Algorithm 2.

4.3. DARDA Sub-Network Encoder
To guide the adaptation of the sub-network, we need to

obtain a “fingerprint” of the current sub-network, whose
state space is by definition continuous and infinite. We
address this issue by creating a set of unique fingerprints
F 1

· · ·F ds of each sub-network by feeding a fixed Gaussian
noise into the DNN and consider its output response vector
as the fingerprint of the sub-network. Our intuition is that
since a DNN works as a non-linear function approximator,
it will produce a different output for the same input with
different parameters. We generate a signature Sd of each
sub-network from each fingerprint F d as Sd = S(F d; )
where S : F ! Ro which is a shallow neural network pa-
rameterized by  that maps the fingerprint to the corruption
latent space. The S encoder is trained so as to minimize the
following loss function, which maximizes the cosine simi-
larity between the latent space projections:

LCM =
dsX

i=1

dsX

j=1

1i=j

�
exp(�Si . Cj)

 
(9)

Here, 1(.) is the indicator function. We use a regular-
ization term in addition to LCM to distribute encoder S’s
projection in regions from where sub-network’s projections
would produce well-performing sub networks. The mea-
sured cosine similarity between a sub-network signature Si

and a corruption signature Cj is converted into probability
distribution ⇡ij using:

⇡ij = �

 
Si

· Cj

Pds

k=1 S
k · Ck

!
, i, j 2 [0, ds] (10)

where � is the softmax function. If aij indicates accuracy
of sub-network i in corruption domain j we can generate a
probability distribution ↵ij such as

↵ij = �

 
log 1/(1� aij)Pds

k=1 log 1/(1� aik)

!
, i, j 2 [0, ds] (11)

We can calibrate the sub-network encoder to to generate
projections that have affinity with other corruption domains
where it can perform well by minimizing the KL divergence



between ⇡ij and ↵ij . The regularization term Lr and the
loss Lm that the sub-network encoder is trained on are

Lr =
dsX

i=1

dsX

j=1

log
⇡ij
↵ij

(12)

Lm = LCM + �r Lr, (13)

where 0 < �r < 1 is a regularization parameter.

4.4. Corruption-Aware Memory Bank
In practical scenarios, the distribution of labels differs

from the actual label distribution. Importantly, while dur-
ing training, the DNN is given input data with IID la-
bels, in real-world scenarios sequential data is highly cor-
related while other classes are very scarce at a particular
time. Adaptation to this unreliable label distribution leads
to substantial performance loss in traditional approaches, as
shown in Section Sec. 5. To address this problem, we need
to have a stable snapshot of the ongoing corruption at in-
ference time. Thus, we create and maintain a memory bank
M with N slots to store samples. We construct the memory
bank in a label-balanced manner. Recalling that Y is the set
of labels, for each class y 2 Y , we store N

|Y | number of in-
coming test samples. As we do not have labeled data, the
labels are inferred from the prediction ŷ of the model. How-
ever, sampling based on prediction of continuously adapted
model leads to error accumulation [21].

To solve error accumulation, existing methods [19, 21]
resort to inference with multiple DNNs by feeding different
augmented views of test samples to them. However, this re-
quires additional computation and memory for multiple in-
ference. Although sensing the corruption and bootstrapping
with proper sub-network signature leads to reliable mem-
ory bank construction, we store the samples that are only
representative of the ongoing corruption. For each incom-
ing test samples we predict its class label, and store it in
the memory bank if we have room for that particular class
and if it is highly representative of the ongoing corruption.
The process of memory bank construction is described in
Algorithm 1.

4.5. Corruption-Aware Batch Normalization
Due to sudden corruption, the normalization statistics

(µ̄, �̄2) estimated on uncorrupted training data become un-
reliable. Although using a specific sub-network with nor-
malization statistics (µs,�2

s) would be feasible, we can use
the samples stored in the memory bank to further refine our
estimation of the ongoing statistics (µt,�2

t ). To this end, we
use BN [7]. Let Al ✏RB⇥Chl⇥N l

be a batch of activation
tensors of the lth convolutional layer, where B corresponds
to the batch size, Chl denotes the number of channels in lth

layer and Nl is the dimension of activations in each channel.

A BN layer first calculates µCh = 1
|B||N l|

P
b✏B, n✏N l(Al)

and �Ch = 1
|B|
P

b✏B(A
l
� µCh)2 and subtracts µCh from

all input activations in the channel. Subsequently, BN di-
vides the centered activation by the standard deviation �Ch.
Normalization is applied:

BN
⇣
Al

b,Ch,N l

⌘
 �⇥

Al
b,Ch,N l � µCh
p
�2
Ch + ✏

+� 8 b, Ch,N l

(14)
Here, � and � are the affine scaling and shifting parame-
ters followed by normalization, while (✏ > 0) is a small
constant added for numerical stability. The normalized and
affine transformed outputs are passed to the next (l + 1)th

layer, while the normalized output is kept to the lth layer.
BN also keeps track of the estimate of running mean and
variance to use during the inference phase as a global esti-
mate of normalization statistics, and � and � are optimized
with the other DNN parameters through back propagation.

Whenever the corruption changes, the projection from
the corruption encoder matches with the closest corruption
centroid in the latent space. At the same time, samples af-
fected by the new corruption are being stored in the mem-
ory bank. As we constrict the memory bank to have certain
amount of samples from a particular class, due to our de-
sign of non IID real world data stream, initially there will
be samples from previous corruption distribution also on the
memory bank. Fig. Fig. S4 shows that the projections for
even the unknown corruption get clustered nearby in the
latent space. When the samples of the memory bank be-
come representative of the current corruption, they should
have low variance among their cosine similarity with cur-
rent closest corruption centroid Ccur. Therefore, when the
change in corruption is detected and the variance of cosine
similarity from the centroid becomes lower than 'thresh,
current DNN normalization statistics are updated as:

µs = (1�m) · µs + m · µ̂t

�2
s = (1�m) · �2

s + m · �̂2
t

(15)

where m is the momentum and (µ̂t, �̂2
t ) are the current nor-

malization statistics of different layers of the DNN, which
we obtain by making one forward pass using the samples in
the memory bank.

4.6. Corruption-Aware Real-Time DNN Adaptation
Adapting the parameters of the current DNN in an unsu-

pervised manner usually needs careful selection of hyper-
parameters. To avoid this issue, only the sub-network is
adapted. As explained earlier, we make one forward pass
with the samples in the memory bank and the fixed Gaus-
sian noise to calculate the normalization statistics of the
current ongoing corruption and current sub-network fin-
gerprint. The mean of the corruption embedding C̄ =
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Figure 4. Performance Comparison in Different Popular Corruption Benchmark Datasets (Unseen Corruptions).

1
N
PN

i=1 C
i of the samples in the memory bank and the sub-

network projection S is also calculated. Specifically, the
tuneable parameters of the sub-network (shift � and scale �
parameters of the BN layer and final fully connected layers)
are updated using gradient descent to minimize the follow-
ing unsupervised loss:

Lu = exp(�S · C̄) (16)

Notice that we do not assume any access to labeled data,
and do not use pseudo-labels (i.e., DNN prediction) as la-
bels. Conversely, we minimize the loss between corruption
embedding and model state in the latent space which is not
disrupted by the distribution of labels in the batch.

5. Experimental Results
Datasets. We use the tool described in [9] to synthetically
generate realistic corruptions for CIFAR-10 and CIFAR-
100 datasets. Both CIFAR-10 and CIFAR-100 have 50,000
training images and 10,000 testing images. In line with
prior work, we use the following 15 different corruptions
of different categories which are “Noise” (Gaussian, shot,

impulse), “Blur” (defocus, glass, motion, zoom), “Weather”
(snow, frost, fog, bright) and “Digital” (contrast, elastic,

pixelate, JPEG) to train our corruption encoder. For fair
comparison, we evaluate the performance on 4 corruptions
(Gaussian blur, saturate, spatter, speckle noise) which are
unseen during training phase. In line with [2, 17, 19, 22],
we consider the corruptions in their highest severity.
5.1. Comparison with State-of-the-Art Benchmarks

Fig. 4a and Fig. 4b show the performance DARDA as
compared to other state of the art approaches. We show re-
sults with ideal IID assumption and a more realistic non-IID
assumption (i.e., samples are correlated).

As we can observe, DARDA performs consistently bet-
ter in both datasets and across both setups, with DARDA
improving the performance by 10.4% on CIFAR-10 test
corruptions and 5.7% on CIFAR-100 compared to the 2nd
best performing baseline RoTTA. Among the other consid-
ered baselines, TENT, CoTTA and BN achieves poor per-
formance for non-IID samples. Since DARDA starts from

a bootstrapped sub-network in changed corruption domain
and update only with samples from our memory bank and
corruption latent space, DARDA performs consistently well
in both cases. Since NOTE is equipped to handle correlation
among online data batches, there is no significant perfor-
mance drop for non-IID assumption. However, NOTE re-
sets the DNN after evaluation on each corruption type which
is unrealistic as it does not have the capability to know when
current corruption domain is changing. Thus, due to error
accumulation for continuous adaptation, the performance is
fairly poor. DARDA does not accumulate errors from the
previous corruption domain, as in every new corruption do-
main we start from a new DNN state.

5.2. Sensitivity to Correlated Samples
The performance of DARDA does not depend on the la-

bel space to bootstrap from an appropriate sub-network. To
prove this point, we plot the average performance in the
first five batches of incoming data by varying the value of
the correlation parameter � for the CIFAR-100 dataset using
sequences similar to those used for Fig. 4b. From Fig. 5 it
emerges that the correlation does not have a sensible effect
on DARDA. Furthermore, as the value of � decreases, the
performance of BN and CoTTA drastically decreases, and
for the best method RoTTA, performance starts to plum-
met when encountering severe correlation. Indeed, with
high correlation among samples, there is not enough sam-
ple diversity to have a stable update of the DNN. However,
DARDA can reliably sense corruption drift even with a sin-
gle sample and bootstrap with the most similar sub-network
stored in the buffer. Thus, even for extremely correlated
samples, we have a well-performing sub-network from the
early instances of data batches after incurring in corruption.
This indicates the efficacy and reliability of DARDA in crit-
ical mobile edge computing scenarios.

5.3. Effect of Batch Size and Dirichlet Parameter
We can observe from Fig. 6 that the batch size and

Dirichlet parameter do not have a significant effect on per-
formance of DARDA. This is because the corruption signa-
ture can be extracted even with a single sample. Moreover,



Figure 5. Performance across first five data batches for continu-
ously incurred corruption on CIFAR-100.

by updating the normalization statistics of the BN layer us-
ing a memory bank that enforces diversity among samples,
we ensure that samples are representative of the ongoing
corruption. Among other approaches, a higher value of
batch size leads to high performance gain for TENT, BN
and CoTTA. Especially for CoTTA, with batch size greater
than 128, the performance reaches up to RoTTA. Also, the
overall effect of Dirichlet parameter � is less prominent than
the initial batches.

Figure 6. Performance vs correlation coefficient and batch size.
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Figure 7. Energy consumption on common edge devices for a
batch of 64 data samples.

5.4. Evaluation of Catastrophic Forgetting
The adaptation of DNN should not result in performance

degradation on uncorrupted inputs, since in most real-life
scenarios uncorrupted data is most common. However, dur-
ing TTA, the DNN might get specialized in certain corrup-
tions and fail to deliver performance. Fig. 8 shows the per-
formance showing 5 uncorrupted data batches from CIFAR-
10 after two sequences, which are (on the left subfigure)
saturate ! Gaussian blur ! spatter ! speckle and (on

the right subfigure) Gaussian blur ! saturate ! spatter
! speckle. Fig. 8 concludes that conversely from DARDA,
state-of-the-art approaches incur in catastrophic forgetting.
The best-performing baseline RoTTA has its accuracy de-
graded by up to 22% when uncorrupted data is fed after
speckle noise. The classification error is particularly high
when uncorrupted data is fed after a more severe corruption
type (e.g, Gaussian blur) than the milder one (e.g, spatter).

Figure 8. Performance when 5 uncorrupted data batches are fed
after every adaptation, for CIFAR-100 and � = 0.01.

5.5. On-Device Dynamic Adaptation Efficiency
In this section, we evaluate the on-device performance

of DARDA in diverse edge platforms. We select com-
monly available Raspberry-Pi-5 and Nvidia Jetson-Nano,
since they are representative of resource-constrained de-
vices widely applied for mobile vision applications.
DARDA adapts using one backward pass to update the

sub-network only when a corruption is perceived by the cor-
ruption extractor. The corruption extractor and corruption
encoder are also active for each data sample. Tab. 1 reports
the average number of multiply and accumulate (MAC) op-
erations for the forward pass of each method. For the back-
ward pass, the average number of samples for different cor-
ruptions with which the backward pass was called is re-
ported. To calculate DARDA forward pass MAC, all the
operations involved in the corruption extractor, corruption
encoder and sub-network encoder are summed with the op-
eration performed by different sub-networks. To support
continuous adaptation without error accumulation, CoTTA
and RoTTA continuously perform two forward passes with
the original data sample and another augmented sample re-
spectively. Thus, their number of operations is two times
more than BN, TENT and CoTTA. Although BN, TENT
and NOTE have less forward computation than DARDA,
the unrealistic assumption of IID data stream and episodic
adaptation – notice that the DNN state is continuously reset
after adaptation – which makes them not applicable in real-
time mobile edge applications. From Fig. 9 it is also evident
that DARDA incurs lower CPU and GPU latency compared
to closest performing benchmarks.

From Tab. 1, we can be observe that there is an exces-
sive amount of cache usage during adaptation, except for
BN, which can slow down or even block some other tasks



Method Cache(Mb) Average no. samples
Forward MACS

Average no. Samples
Backward Pass

BN 67 1.28⇥ 1012 0
TENT 914 1.28⇥ 1012 10,000
CoTTA 4271 2.56⇥ 1012 10,000
NOTE 1003 1.28⇥ 1012 10,000
RoTTA 2735 2.56⇥ 1012 10,000
DARDA 312 1.82⇥ 1012 2294

Table 1. Comparison of Computation and Average Cache Usage of
DARDA and other approaches while performing continuous adap-
tation on CIFAR-100.

we are interested in using the same device. For example,
the closest performing baseline RoTTA in continual adapta-
tion settings needs 8.78x cache than DARDA. Although BN
needs less cache usage than DARDA to operate as it does
not need to store gradient for backward pass, it performs
poorly, as shown in Sec. 5.1. From Fig. 7, it is observed
that DARDA uses 2.9⇥ less energy than the closest perform-
ing benchmark in terms of performance. To calculate the
energy consumption value, we use the setup in Fig. S3.
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Figure 9. Adaptation Latency on common edge devices for a batch
of 64 data samples.

5.6. Impact of Submodules of DARDA
To investigate the contribution of different components

toward performance gain, we replace different parts of
DARDA using different alternative options. We report the
related performance in Tab. 2. We consider (i) DARDAwith-
out Corruption Extractor, where corrupted data is directly
projected into latent space; (ii) DARDA without context-
aware BN & Adaptation, directly using the DNN con-
structed from current sub-network signature for prediction;
(iii) DARDA with context-aware BN & without fine tuning,
we update the normalization values of the BN layers using
samples from the memory bank but do not update the tun-
able parameters; (iv) DARDA with context-aware BN and
Entropy Minimization, where we update the tunable param-
eters by minimizing entropy of predictions.

From Tab. 2 it can be observed that the corruption ex-
tractor is crucial for the performance as erroneous corrup-
tion projection would select the wrong sub-network. Cre-
ating corruption projections using only corrupted data leads
to performance drop of 20.4% and 16.6% on CIFAR-10 and

Variants of DARDA Error [%]
(CIFAR-10)

Error [%]
(CIFAR-100)

w/o Corruption Extractor 36.7 56.9
w/o Context Aware BN

& Adaptation 22.7 41.5

with Context Aware BN
w/o Adaptation 23.8 42.9

with Context Aware BN
& Entropy Minimization 23.9 42.7

Ours 16.3 36.4

Table 2. Effect of Individual Components of DARDA.

CIFAR-100 unseen corruption respectively. Context-aware
BN with adaptation is also important as the accuracy re-
duces by 6.4% and 5.1% respectively for test corruptions
on CIFAR-10 and CIFAR-100, respectively. It is an inter-
esting observation that for CIFAR-10, updating the tunable
parameters by minimizing entropy of predictions degrades
the performance by 0.1% rather that improving. However,
our loss Ln in Eq. (16) results up to 1.2% performance gain
which proves that a learned cross-modal latent space can
guide DNN adaptation.

6. Conclusion
In this work, we have proposed Domain-Aware

Real-TimeDynamic Neural Network Adaptation (DARDA).
DARDA adapts the DNN to previously unseen corruptions in
an unsupervised fashion by (i) estimating the latent repre-
sentation of the ongoing corruption; (ii) selecting the sub-
network whose associated corruption is the closest in the
latent space to the ongoing corruption; and (iii) adapting
DNN state, so that its representation matches the ongoing
corruption. This way, DARDA is more resource-efficient and
can swiftly adapt to new distributions without requiring a
large variety of input data. Through experiments with two
popular mobile edge devices – Raspberry Pi and NVIDIA
Jetson Nano – we show that DARDA reduces energy con-
sumption and average cache memory footprint respectively
by 1.74⇥ and 2.64⇥ with respect to the state of the art,
while increasing the performance by 10.4%, 5.7% and 4.4%
on CIFAR-10, CIFAR-100 and TinyImagenet.
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