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Abstract—Deep Neural Networks (DNNs) are an attractive so-

lution to address several problems in Radio Frequency Machine

Learning Systems (RFMLS). The key blocker that inhibits the

widespread deployment of DNNs in real-world tactical scenarios

is the performance degradation experienced under dynamic

channel conditions. Test Time Adaptation (TTA) presents a

promising solution to mitigate this issue by dynamically updating

the DNN to adapt to the current channel conditions in an

unsupervised manner. Although it offers superior performance

and practical benefits, TTA introduces new security concerns

and vulnerabilities, potentially exposing sensitive deployments

to Adversarial Machine Learning (AML) activity. In this work,

we introduce a novel attack strategy named Adversarial Dynamic
Adaptation (ADA) that leverages the inherent vulnerabilities in

TTA to compromise RFMLS tasks. We demonstrate that even

under realistic assumptions and while perturbing only 20% of

the samples in a test data batch, ADA degrades the performance

of the unperturbed data by up to 20.3% compared to similar

attacks designed for computer vision tasks. By assessing the

robustness against the latest TTA methods, ADA serves as

a valuable tool to identify and understand the security risks

associated with adapting DNNs at the test time in mission-critical

and sensitive deployments.

I. INTRODUCTION

Despite the promising results shown by Radio Frequency
Machine Learning Systems (RFMLS), previous work has
revealed that the non-stationary, dynamic, and unpredictable
nature of wireless channels can lead to a significant per-
formance decline [1]. The key reason is that Deep Neural
Networks (DNNs) used in RFMLS are trained using data
collected under specific channel conditions and noise envi-
ronments. Recent work in Test Time Adaptation (TTA) [2–
4] has been proposed to address the problem of dynamic
distribution shift at test time. In contrast with conventional
RFMLS that rely on fixed source trained DNN to handle
data in different channel conditions, TTA generates DNNs
specialized for the current channel condition. In particular,
TTA refines the base DNN whenever unlabeled data in
unseen channel conditions becomes available. Subsequently,
it conducts inference using the updated DNN customized
for the specific channel condition. Empirical evidence has
been shown to support the effectiveness of TTA primarily in
computer vision tasks such as image classification [2], object
detection [5], and document understanding [6]. Additionally,
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it has been shown [7] that TTA outperforms conventional
RFMLS in dynamically changing channel conditions. In this
paper, we demonstrate a security vulnerability of TTA for
RFMLS, which is more severe than conventional Adversarial
Machine Learning (AML) in wireless [8, 9].
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Fig. 1: Brief Overview of Conventional Evasion Type Attack
against static DNN and ADA.

TTA constructs the final predictive DNN by considering
the test batch rather than making predictions for a single test
data point. The prediction for one entry within a batch is
influenced by other entries in the same batch. Consequently,
adversarial action on some data points can affect final pre-
dictions on samples that are unperturbed. Although such kind
of security risks has been demonstrated in a recent work [10]
for computer vision application, the proposed ADA attack is
applicable in more general and practical scenarios. In [10],
adversarial examples were crafted using cross-entropy loss
that needs access to labeled samples. However, obtaining
labeled samples in real time can be extremely challenging for
wireless signals. However, our proposed ADA is completely
agnostic to availability of labeled samples, and can generate
attacks that achieve 20.3% increased error rate compared
to a similar state of the art strategy [10], while assuming
similar capabilities of the adversary. Our key contribution are
summarized as follows:

• We analyze the security vulnerabilities of TTA for
RFMLS through our proposed novel attack strategy Adver-

sarial Dynamic Adaptation (ADA) which does not assume
any access to labels, yet generates stronger attacks through
our novel loss function (Section IV-A). Our attack can serve
as a litmus test for deploying TTA in mission-critical tasks;



• We evaluate our attack mechanism on three different state
of the art TTA algorithms deployed for dynamic model adap-
tation and show that our proposed attack’s efficacy is agnostic
to different TTA algorithms and source DNN architecture.

The remainder of the paper is structured as follows. Section
II provides some fundamental background to explain the
motivation and distinctive properties of our approach as well
as some related work on AML for wireless. In Section III,
we describe the threat model of our adversarial attack and
rationale for our assumptions on the adversary’s capabilities.
Section IV explains our approach in detail. In Section V, we
describe our experimental setup and the related results. This is
followed by a summary of the paper and concluding remarks
in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we introduce TTA and AML to better
explain our ADA attack later and then review some related
work on AML in the wireless context.
A. Test-Time Adaptation

Without loss of generality, we present TTA in the context
of multi-class classification problem. We learn a prediction
rule f(·; ✓s) parameterized by the weights ✓s of a DNN.
Given a training data set from the source domain Ds :=n
(xs

i , y
s
i )

Ns
i=1

o
we learn f(·; ✓s) through iterative minimiza-

tion of some loss function L(f(Xs; ✓s), Y s) (e.g., cross-
entropy loss), where Xs := {xs

i}
Ns

i=1 and Y s := {ysi }
Ns

i=1.
The trained DNN is then deployed to perform inference on
test dataset Dt :=

n
(xt

i, y
t
i)

Nt
i=1

o
where the label set Y t :=

{ysi }
Nt

i=1 is unknown. In the static learning scenario, it is as-
sumed that Ds and Dt are sampled from the same distribution.
However, in real world deployment context, training and test
data distribution may shift which results in poor performance
[11] of f(·; ✓s) on Xt := {xs

i}
Nt

i=1. To address this issue,
TTA, a paradigm of transductive learning has been proposed
[12]. During inference, TTA initially acquires a function
f(·; ✓s) learned from the source training set or obtained from
some online source. Subsequently, TTA adapts to the test
data Xt without supervision and obtains the adapted DNN
f(·; ✓t). Some existing works [3, 13] on TTA have provided
empirical evidence of performance improvement by only re-
estimating the normalization statistics of Batch Normalization
(BN) layers from test data. TTA is capable of characterizing
the distribution of Xt to a certain degree, thus enhancing
performance. The absence of supervision is typically covered
by two unsupervised forms of losses.

Entropy Minimization. This line of TTA algorithms [2, 4,
14] minimizes the entropy of predictions over a batch of data
{xs

i}
B
i=1 to prevent collapsing to a trivial solution. Minimizing

entropy improves the confidence of DNN, thus leading to
improved performance on unseen test data.

Invariance Regularization. Invariance regularization
based TTA algorithms perform some data-augmentation (e.g.
rotation [15], adversarial perturbation [16]) on test data during

inference. The inconsistency of the DNN’s prediction on
different augmented test data is leveraged as an unsupervised
loss function to update the learnable parameters during infer-
ence. Maintaining consistency through this mechanism aids
the DNN in attaining improved generalization across new data
distributions, consequently enhancing test-time performance
in the process.

B. Conventional Adversarial Machine Learning

To explain the distinctive property of the proposed attack
strategy compared to traditional AML, two types of vulnera-
bilities of traditional AML are described.

Imperceptible Adversarial Examples. Most research
focuses primarily on identifying imperceptible adversarial
examples, which have been shown to be effective in deceiving
DNNs during inference [17–19]. These adversarial examples
are generated in an iterative manner through adding some
bounded perturbation �⇤ to the original sample xt

adv = x+�⇤

as follows:

� = argmax
� :k�kp✏

L(f(xt + �;✓s), y
t) (1)

where L(.) is the loss function and k�kp  ✏ is the lp norm
bound of the perturbation. Such perturbations must be directly
injected into the test data.

Data Poisoning Attack. In such attacks, adversaries insert
adversarially perturbed samples into a training set with the
intention of causing the trained model to misclassify benign
samples. In poisoning attacks one key assumption is that the
adversary has access to the training data and training routine.
However, in our ADA attack settings, an adversary doesn’t
need such kind of access to fullfill the attack objective.

C. AML for RFMLS

Numerous previous works [8, 9] have demonstrated the
efficacy of different attacks on RFMLS . For example, studies
like [20, 21] have studied exploratory attacks, in which
adversaries construct a DNN to understand the transmission
patterns in a certain channel condition to disrupt transmissions
that would have been successful otherwise. Evasion type
attacks [9, 22, 23] in wireless assume access to a DNN’s
gradient information to calculate bounded perturbation, which
added to the input forces incorrect predictions out of the
DNN. In [24, 25] over-the-air spectrum poisoning attacks have
been investigated in which adversaries manipulate a trans-
mitter’s spectrum sensing data by transmitting signals during
the victim transmitter’s spectrum sensing period. Works such
as [26] have investigated Trojan attacks against modulation
classifiers by subtly altering training data, which manifest as
phase shifts and are activated during test time. Our research
introduces a paradigm shift in attack scenarios, presenting
a fundamentally novel approach in which adversaries can
execute attacks without directly modifying samples or gaining
access to the victim’s training routine.



III. PROBLEM STATEMENT

Reusing notation in section II-A, we assume that a user
(victim) has obtained a DNN f(·; ✓s), trained on source
data Ds :=

n
(xs

i , y
s
i )

Ns
i=1

o
to solve a multi-class wireless

classification problem. However, due to changing channel
condition the distribution of the test data is continuously
changing which manifests as covariate shift, (p(Xs) 6=
p(Xt) and p(Xs|Y s) 6= p(Xt|Y t). To maintain optimum
performance while the data distribution changes, the victim
deploys a TTA algorithm with only the test data available in
batch mode Xt

B := {xt
i}

NB

i=1. The objective of the victim can
be described as follows:

✓⇤t (X
t
B) = argmin

✓A
t ⇢✓s

LTTA(X
t
B ; ✓

A
t ) (2)

Here, ✓At indicates all adaptable parameters in the source
model including the normalization statistics and LTTA indi-
cates the unsupervised loss being used by the TTA algorithm.
We assume a scenario in which a portion of the samples in a
test batch Xt

com 2 Xt
B has been exposed to and compromised

by an adversary whereas adversary cannot modify the other
portion of the data Xt

B\com. Throughout the rest of the
paper, we will refer to these samples which the adversary
can modify as exposed samples for brevity. However, we
assume that the adversary operate in a white-box setting in
which the adversary possesses knowledge of the pre-adapted
model parameters and has some form of read-only access
to benign samples Xt

B\com in the test batch (for instance,
involving a malicious insider). The goal of the adversary is
to craft perturbation �tcom such that the overall error rate of
prediction in the benign data within the same batch increases
after adaptation.

IV. PROPOSED ADA APPROACH

In this section, we explain the ADA approach. We start
by discussing the compatibility of our proposed loss in
practical deployment scenarios and appropriate selection of
the perturbation bound. Then we provide details on crafting
adversarial samples that can effect unperturbed samples.

A. Loss Function

To construct adversarial samples, the adversary needs to
calculate the perturbation gradients by iterative minimization
of some loss function Ladv . If we assume that a mali-
cious insider is providing the adversary with accurate labels
Y t
B\com of the read-only samples as in [10], the choice of

Ladv for the adversary could be the loss of cross-entropyP
xi2XB\com

P
c2C y

c
i log(f(xi; ✓t)), where C is the set of

classes. However, labeling wireless data through manual in-
spection is not straightforward like computer vision tasks,
thus it is not realistic to use cross-entropy loss that needs
access to labels. Assuming white box access, we design
a loss function Lfeat (Equation 3) that pulls the feature
representations across classes towards the center by iterative

minimization of the distance of each benign samples feature
and the centriod in the penultimate layer of the DNN as:

Lfeat =
X

xi2Xt
B\com

d( fk�1(xi; ✓pre)

� 1���Xt
B\com

���

X

xi2Xt
B\com

fk�1(xi; ✓pre )
(3)

fk�1(.) denotes the penultimate layer of the DNN assuming
it has k layers, d denotes some distance (e.g. L1, Mean Square
Error (MSE) metrics ) and ✓pre is the model parameters before
adaptation. Equation 5 measures the distance metric between
the feature centroid of the batch and feature vector of each
sample. As filtering out less-confident (high-entropy) samples
is commonly used to improve robustness in TTA [14, 28],
to enforce generation of low-entropy adversarial samples, we
add the following additional loss term:

Lentropy =
X

xi2Xcom

f(xi; ✓pre) log(f(xi; ✓pre)) (4)

The final loss for adversarial action thus becomes :

Ladv = Lfeat + � · Lentropy (5)

Here, � is the regularization constraint to control the effect
of the loss term of the entropy. Note that our proposed loss
does not assume access to labeled samples as in [10], there-
fore it is generalizable across different application scenarios.

max
�tcom: k�tcomkp✏

L(·; ✓⇤t ((Xt
com + �tcom) [Xt

B\com) (6)

Here, k.kp is the lp norm bound used in adversarial attacks
for stealthiness. For our case we choose l2 norm k.k2 as it
would bound the perturbation power thus camouflaging the
adversarial action.

B. Generation of Adversarial Perturbation

The process of crafting the adversarial perturbation in ADA
is an iterative process described in detail in Algorithm 1.
From the perspective of an attacker, ADA can be formulated
as a bilevel optimization problem where a victim is trying to
improve the predictive performance of DNN using some TTA
algorithm (2), and in outer maximization the attacker is trying
to increase the overall classification error in benign samples
Xt

B\com. However, since we assume that the attacker does
not have information about the TTA algorithm that is being
used, it simply tries to add perturbations to the compromised
samples (line 7) with the objective of increasing the error
rate of the pre-adapted model f(; ✓pre) in Xt

B\com. The ADA
adversary calculates the gradients of the perturbation �com
with respect to the proposed adversarial loss Ladv(·) (Line 8).
Finally, the optimal perturbation �⇤ for the attack is calculated
utilizing the Projected Gradient Descent (PGD) approach used
in [29] (line 9-10). It should be noted that in the ADA settings,
the adversary changes the perturbation budget ✏ according
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Fig. 2: Attack performance benchmarking for ADA across different TTA algorithms. As source DNN 1D-ResNet used in [7]
(top row) and basic Convolutional Neural Network (CNN) used in [27] (bottom row) have been used.

to the channel condition to achieve stealthiness and highly
efficient attacks. Specifically, in ADA settings, the adversary
sets the perturbation constraint ✏ to 0.063⇥ the peak value of
the corresponding I and Q channels of the current batch of
data 1.

V. PERFORMANCE EVALUATION

A. Description of Dataset

We used the RadioML 2018.01A dataset [27] to inves-
tigate the vulnerabilities of various TTA algorithms within
our ADA attack framework. This dataset encompasses 24
commonly employed modulation classes across a range of
signal-to-noise ratios (SNR). Initially, we partition the dataset
for each SNR into training and testing subsets, with 80%
of the data allocated for training and 20% for testing. To
ensure robustness of our evaluations, we employ three distinct
seeds to create random splits, and all reported performance
metrics represent the average results obtained from these three
runs. Additionally, we exclude data with extremely low SNR
(< �10dB) as it may not be indicative of our task, and data

1It has been found that across SNR range -10 dB to 20 dB, setting the
perturbation budget in this way keeps the noise floor shift within 1% across
all batches.

with exceedingly high SNR (> 20dB) as performance tends
to saturate in this range.

B. Experimental Setup

For the source model from which a victim begins adapta-
tion, we employ two 1D CNN-based architectures, as this is
a widely adopted approach in various AML studies [23, 30].
Nonetheless, our ADA framework can be applied to various
architecture choices for the source model, as long as they
are compatible with the respective TTA algorithm. As the
deeper DNN, we use the Residual Network (ResNet) structure
used with 18 convolution layers (ResNet-18) as the source
model for adaptation. We input the I/Q samples to the DNN
as a two-channel sequence. We keep the kernel size and
number of channels the same as the original ResNet model
architecture [31] except that all the operations proposed for
images were replaced by corresponding 1D alternative (e.g.,
Conv1D, Maxpool1D). As a shallower architecture, we select
the DNN proposed in [27] without residual connections. To
obtain the source model, we train DNN for 600 epochs with
Adam Optimizer with learning rate =0.001 on training data
from the 10dB SNR level. Test data from other SNR levels are
used for inference and adaptation of DNN. Unless otherwise
specified, for all reported results, we randomly sampled



Algorithm 1: ADA Algorithm
1: Input: A test data batch Xt

B ; Adversarial learning rate
↵; Pre adapted model parameters ✓pre; Number of
adversarial iteration steps n; Number of compromised
samples ncom.

2: Define: Adversarial perturbation �com = 0ncom⇥2⇥1024;
perturbation constraint ✏.

3: Output: Adversarial perturbation vector �⇤com
4: Randomly select data samples Xt

com ⇢ Xt
B ,

|Xt
com| = ncom as compromised samples to be

perturbed
5: for step = 1, 2, ....., n do

6: Calculate perturbation constraint ✏ for current batch
of data

7: Add adversarial perturbation to the compromised
samples Xt

B = {Xt
com + �com} [XB\com

8: Calculate the adversarial loss Ladv(XB\com; ✓pre)
using Equation 5

9: Calculate the perturbation gradient
grad = 5�comLadv(XB\com; ✓pre)

10: Update �⇤com through gradient projection
�com  � �com+↵·sign(grad)

k�com+↵·sign(grad)k2
⇤ ✏

11: end for

12: Return: Xt
com + �⇤com

13: TEST:

14: Update the parameters with any TTA algorithm
TTA(·), : ✓⇤A  TTA(✓A); ✓⇤t = ✓⇤A [ {✓pre \ ✓A}

15: Check the performance of Xt
B\com with updated DNN

f(Xt
B\com; ✓⇤t )

20% data from each test batch consisting of 64 samples as
compromised samples. We set the step size ↵ for adversarial
perturbation creation to 0.1 and the number of PGD steps to
100. We evaluated the performance of three state-of-the-art
TTA methods, namely TENT [2], EATA [14] and ROTTA
[28], against attacks using our ADA framework. We follow
the original implementation of TENT and EATA. As the
algorithm ROTTA involves some augmentations specific to
images (e.g. color jitters), we replace such augmentations
with Gaussian noise (µ = 0; � = [0.01, 0.02, 0.03]). The
reported accuracy values excludes the adversarial samples and
are calculated only based on the unperturbed normal samples.
The value of � in Equation 5 is chosen to be 1. However,
empirically we have found that any value within range of 1
to 3 provides nearly identical attack performance.

C. ADA Performance Across Different Baseline TTA methods

To assess the effectiveness of our proposed approach, we
conduct adversarial actions using Distribution Invading Attack
(DIA) [10] under identical conditions as ADA. As depicted
in Figure 2, our ADA attack demonstrates efficacy across
various TTA algorithms and source DNN architectures. In
particular, our framework outperforms the closest comparable
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Fig. 3: Performance of ADA for across different hyper param-
eters. The reported values are the average of the SNR range
(0-20) dB

baseline DIA by up to 20.3%. Despite TENT’s effectiveness
in enhancing performance, it exhibits the highest vulnerability
to adversarial actions during adaptation. The ADA framework
marginally outperforms DIA by only 3.12% during adaptation
using EATA, as this process involves explicitly filtering out
high-entropy samples. The attack exhibits increased potency
in the high SNR regime, where the model performs well even
in the absence of adaptation. This suggests that merely im-
proving the generalization performance of the TTA algorithms
does not inherently ensure enhanced robustness.

D. Effect of DNN Architecture Choice on Attack Performance

As depicted in Figure 2, the choice of source model archi-
tecture has significant influence on the performance of TTA
under attack. We observe that irrespective of the architecture
complexity and generalization performance our proposed ADA
framework is effective in uncovering the susceptibility of
TTA algorithms. Moreover, it’s evident that the basic CNN
is more susceptible to attacks compared to the ResNet-
18 model. This observation aligns with previous findings
[32] indicating that architectures with greater capability and
improved generalization performance tend to exhibit better
overall robustness.

E. Effect of the Portion of Compromised Samples and Itera-

tion Steps

In Figure 3, we analyze the performance of the ADA
attack on varying proportions of compromised samples and
the number of iteration steps involved to craft adversarial
perturbations. In particular, with only 10% of the samples
compromised, TENT shows the worst performance degrada-
tion (9.23%) compared to static inference with the source
model. However, when 40% of samples are compromised, all
three TTA algorithms degrade to performing random predic-
tions. Regarding the effect of step size, our proposed ADA
framework requires a reasonable number of iterations to craft
the perturbation vector for an effective attack. In scenarios
where an ADA adversary operates under a constrained budget
(e.g., 25 iteration steps), the utilization of TTA algorithms can



offer improved performance compared to employing inference
solely based on the source DNN.

VI. CONCLUSION

This paper presents a novel attack strategy designed to
exploit vulnerabilities inherent in TTA within RFMLS tasks.
Unlike previous approaches, ADA does not rely on access
to labeled samples, which makes it particularly suitable
for RFMLS scenarios where obtaining labeled data can be
challenging for adversaries. The effectiveness of ADA is
demonstrated in various TTA algorithms and source model
architectures. The proposed framework can function as a
security test benchmark for the TTA before deployment in
real-world mission-critical tasks. By comprehending these
vulnerabilities, practitioners can advance the development of
more secure and resilient RFMLS performing TTA, thereby
safeguarding them against potential threats in dynamic chan-
nel conditions.
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