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Abstract

The demand for collaborative and private ban-
dit learning across multiple agents is surging
due to the growing quantity of data generated
from distributed systems. Federated bandit
learning has emerged as a promising frame-
work for private, efficient, and decentralized
online learning. However, almost all previous
works rely on strong assumptions of client ho-
mogeneity, i.e., all participating clients shall
share the same bandit model; otherwise, they
all would suffer linear regret. This greatly
restricts the application of federated bandit
learning in practice. In this work, we intro-
duce a new approach for federated bandits for
heterogeneous clients, which clusters clients
for collaborative bandit learning under the
federated learning setting. Our proposed al-
gorithm achieves non-trivial sub-linear regret
and communication cost for all clients, subject
to the communication protocol under feder-
ated learning that at anytime only one model
can be shared by the server.

1 INTRODUCTION

Bandit learning algorithms (Auer et al., 2002; Chapelle
and Li, 2011; Li et al., 2010a; Abbasi-Yadkori et al.,
2011) have become a reference solution to the prob-
lems of online decision optimization in a wide variety
of applications, including recommender systems (Li
et al., 2010a), clinical trials (Durand et al., 2018), and
display advertising (Li et al., 2010b). Typically, these
algorithms are operated by a centralized server; but
due to the growing quantity of data generated from
distributed systems, there is a surge in demand for
private, efficient, and decentralized bandit learning
across multiple clients. Federated bandit learning has

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

emerged as a promising solution framework, where mul-
tiple clients collaborate to minimize their cumulative
regret under the coordination of a single central server
(Wang et al., 2020; Dubey and Pentland, 2020b; Shi
and Shen, 2021; Li and Wang, 2022; He et al., 2022).
The server’s role is limited to facilitating joint model
estimation across clients, without having access to any
clients’ arm pulling or reward history.

Although federated bandit learning has gained increas-
ing interest from the research community, most exist-
ing approaches necessitate that all clients share the
same underlying bandit model in order to achieve near-
optimal sub-linear regret for a population of clients.
This strong homogeneity assumption distills federated
bandit learning to a joint estimation of a single global
model across clients, subject to the federated learn-
ing communication protocol (Bonawitz et al., 2019;
Kairouz et al., 2021). However, in reality, clients can
have diverse objectives, resulting in different optimal
policies. Imposing a single global model on a hetero-
geneous client population can easily cost every client
linear regret (Hossain et al., 2021). Consequently, ra-
tional clients should choose not to participate in such a
federated learning system, as they cannot determine if
other participating clients share the same bandit model
with them beforehand, and they can already achieve
sub-linear regret independently (albeit inferior to the
regret obtained when all clients genuinely share the
same bandit model). This seriously impedes the prac-
tical application of existing federated bandit learning
solutions.

In a parallel line of bandit research, studies in col-
laborative bandits aim to improve bandit learning in
heterogeneous environments by facilitating collective
model estimation among different clients. For exam-
ple, clustered bandit algorithms group similar clients
and use a shared bandit model for clients within the
same group (Gentile et al., 2014; Li et al., 2016; Gen-
tile et al., 2017; Cesa-Bianchi et al., 2013; Wu et al.,
2016). When the relatedness among clients are pro-
vided, such as through an affinity graph, joint policy
learning can be performed analytically (Cesa-Bianchi
et al., 2013; Wu et al., 2016). However, most of the
existing collaborative bandit learning algorithms oper-
ate under a centralized setting, in which data from all
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clients is assumed to be directly accessible by a central
server. As a result, these methods cannot address the
demand for privacy and communication efficiency in on-
line learning for distributed systems. Significant efforts
are required to adapt these algorithms to distributed
settings Mahadik et al. (2020).

In this paper, we introduce a novel approach for fed-
erated bandit learning among heterogeneous clients,
extending collaborative bandit learning to the stan-
dard federated learning setting. The goal is to ensure
that every participating client achieves regret reduction
compared to their independent learning, thereby moti-
vating all clients to participate. As the first work of this
kind, we focus on estimating a linear contextual bandit
model (Li et al., 2010a; Abbasi-Yadkori et al., 2011) for
each client, which is also the most commonly employed
model in federated bandits. Not surprisingly, regret
reduction in a population of heterogeneous clients can
be realized by clustering the clients, where collective
model estimation is only performed within each clus-
ter. But the key challenges lie in the communication
protocol in federated learning. First, the server lacks
real-time access to each client’s data, resulting in de-
layed inferences of client clusters. Second, the server
can only estimate and broadcast one global model at
a time (He et al., 2020; Foley et al., 2022). This can
cause communication congestion and delay the model
updates. Both of them cost regret.

To address these challenges we develop a two-stage
federated clustered bandit algorithm. In the first stage,
all clients perform pure exploration to prepare a non-
parametric clustering of clients based on the statistical
homogeneity test (Li et al., 2021). Then in the second
stage, a first-in-first-out queue is maintained on the
server side to facilitate event-triggered communication
(Wang et al., 2020) at the cluster level. We rigorously
establish the upper bounds of cumulative regret and
communication cost for this algorithm. Then, we em-
pirically enhance the algorithm by allowing dynamic
re-clustering of clients in the second stage and employ a
priority queue to improve regret. We conduct compre-
hensive empirical comparisons of the newly proposed
federated bandit algorithm against a set of representa-
tive baselines to demonstrate the effectiveness of our
proposed framework.

2 RELATED WORK

Our work is closely related to studies in federated ban-
dit learning and collaborative bandits. In this section,
we discuss the most representative solutions in each
area and highlight the relationships between them and
our work.

Federated Linear Contextual Bandits: There have
been several works that study the federated linear con-

textual bandit setting, where multiple clients work col-
laboratively to minimize their cumulative regret with
the coordination of a single central server (Wang et al.,
2020; Li and Wang, 2022; Huang et al., 2021). Wang
et al. (2020) introduced DisLinUCB, where a set of
homogeneous clients, each with the same linear bandit
parameter, conduct joint model estimation through
sharing sufficient statistics with a central server. Li
and Wang (2022) and He et al. (2022) extended this
setting by introducing an event-triggered asynchronous
communication framework to achieve sub-linear com-
munication cost as well as sub-linear regret in a homoge-
neous environment. Additionally, Dubey and Pentland
(2020a) considers deferentially private federated contex-
tual bandits in peer-to-peer communication networks.
Fed-PE, proposed in (Huang et al., 2021), is a federated
phase-based elimination algorithm for linear contextual
bandits that handles both homogeneous and heteroge-
neous settings. However, in their setting, the client is
trying to learn the fixed context vectors associated with
each arm as opposed to the linear reward parameter
(which is known in their setting). With the exception
of Fed-PE, which utilizes a different bandit formulation
altogether, all of these prior work rely on strong as-
sumptions of client homogeneity, while our work seeks
to extend federated linear contextual bandit learning
to a heterogeneous environment.

Collaborative Bandits: Collaborative bandits seek
to leverage similarities between heterogeneous clients to
improve bandit learning. Clustered bandit algorithms
are one example, where similar clients are grouped to-
gether, and a shared bandit model is used for all clients
in the same group(Gentile et al., 2014; Li et al., 2016;
Gentile et al., 2017; Cesa-Bianchi et al., 2013; Wu et al.,
2016). Gentile et al. (2014) assumed that observations
from different clients in the same cluster are associated
with the same underlying bandit parameter. Gentile
et al. (2017) further studied context-dependent cluster-
ing of clients, grouping clients based on their similarity
along their bandit parameter’s projection onto each
context vector. Li et al. (2021) unified non-stationary
and clustered bandit by allowing for a time varying
bandit parameter for each client, which requires online
estimation of the dynamic cluster structure at each
time. Other works leverage explicit inter-client and
inter-arm relational structures, such as social networks
(Buccapatnam et al., 2013; Cesa-Bianchi et al., 2013;
Wu et al., 2016; Hong et al., 2021; Caron et al., 2012;
Mannor and Shamir, 2011) to facilitate collaboration.
However, most existing collaborative bandit solutions
are designed under a centralized setting, where all
clients’ observation data is readily available at a cen-
tral server. Liu et al. (2022) and Korda et al. (2016)
consider online cluster estimation in a distributed set-
ting. However, their federated learning architectures
do not align with the standard federated learning archi-
tecture and real world implementations where a single
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central server broadcasts a single global model at each
timestep (McMahan et al., 2016; He et al., 2020; Foley
et al., 2022). Specifically, Liu et al. (2022) utilizes a
hierarchical server configuration that is distinct from
the standard single-server FL setup. On the other
hand, Korda et al. (2016) is based on a peer-to-peer
(P2P) communication network, which stands in con-
trast to the centralized communication model and also
overlooks the potential communication costs associated
with such a decentralized approach.

3 METHODOLOGY

In this section, we begin by outlining the problem
setting investigated in this work. Then we present
our two-stage federated clustered bandit algorithm de-
signed to serve a population of heterogeneous clients
under the standard communication setup in federated
learning. We provide theoretical analysis of the upper
regret bound for our developed solution. Lastly, we
introduce a set of improvements to our proposed algo-
rithm, including dynamic re-clustering of clients using
an adaptive clustering criterion, and the implementa-
tion of a priority queue to enhance online performance,
both of which were found empirically effective.

3.1 Problem Setting

A federated bandit learning system consists of two
components: 1) N clients, which take actions and get
reward feedback from their environment (e.g., edge de-
vices in a recommendation system interacting with end
users) and 2) a central server coordinating client com-
munication for collaborative model estimation. In each
time step t = 1, 2, ...T , each client i ∈ N chooses an
action xt,i from its action set At,i = {xt,1, xt,2..., xt,K},
where x ∈ R

d. Adhering to the standard linear reward
assumption from (Li et al., 2010b), the corresponding
reward received by client i is yt,i = ⟨θ∗i , xt,i⟩+ηt, where
noise ηt comes from a σ2 sub-Gaussian distribution,
and θ∗i is the true linear reward parameter for client
i. Without loss of generality, we assume ∥x∥2 ≤ 1 and
∥θ∗i ∥ ≤ 1.

The learning system interacts with the environment for
T rounds, aiming to minimize the cumulative pseudo-

regret RT =
∑T
t=0

∑N
i=0 maxx∈At,i

⟨θ∗i , x⟩ − ⟨θ∗i , xt,i⟩.
Following the federated learning setting, we assume a
star-shaped communication network, where the clients
cannot directly communicate among themselves. In-
stead, they must share the learning algorithm’s pa-
rameters (e.g., gradients, model weights, or sufficient
statistics) through the central server. To preserve
data-privacy, raw observations collected by each client
(xt,i, yt,i) are stored locally and will not be shared
with the server. At every timestep t = 1, ...T , the
central server is capable of using the shared learning

algorithm to update and broadcast one model to the
selected clients. The communication cost is defined as
the amount of sufficient statistics communicated across
the learning system over the entire time-horizon.

Unlike existing federated bandit works (Wang et al.,
2020; Li and Wang, 2022; He et al., 2022) which assume
homogeneous clients, we adopt the standard clustered
bandit setting to model a heterogeneous learning envi-
ronment. Without an underlying cluster structure in
the environment, collaboration between clients would
be infeasible. Therefore, we assume that clients shar-
ing similar reward models form clusters, collectively
represented as C = {C1, C2, ..., CM}. The composi-
tion and quantity of these clusters, are unknown to
the system, necessitating on-the-fly inference. Consis-
tent with prevalent clustered bandit practices (Gentile
et al., 2014, 2017; Liu et al., 2022), we use unknown
environmental parameters ϵ and γ to delineate the
ground-truth cluster structures:

Assumption 1 (Proximity within clusters). For any
two clients i, j within a particular cluster Ck ∈ C, ∥θ∗i −
θ∗j ∥ ≤ ϵ where ϵ = 1/(N

√
T ).

Assumption 2 (Separateness among clusters). For
any two clusters Ck, Cl ∈ C, ∀i ∈ Ck, j ∈ Cl, ∥θ∗i −
θ∗j ∥ ≥ γ ≥ 0 (Gentile et al., 2014, 2017; Li et al.,
2021; Liu et al., 2022).

Contrary to previous clustered bandit assumptions of
identical reward models within a cluster, our Assump-
tion 1 offers more flexibility. It enables similar clients
(represented by ϵ) to collaborate, amplifying the sys-
tem’s collaborative benefit. We also adopt a standard
context regularity assumption found in clustered ban-
dits.

Assumption 3 (Context regularity). At each time t,
∀i ∈ {N} arm set At,i is generated i.i.d. from a sub-
Gaussian random vector xt,i ∈ R

d, such that E[xt,ix
⊤
t,i]

is full-rank with minimum eigenvalue λc > 0 (Gentile
et al., 2014, 2017; Li et al., 2019).

Notably, our context regularity Assumption 3 is weaker
than those in (Gentile et al., 2014, 2017; Li et al.,
2019). Ours only requires the lower bound on the
minimum eigenvalue of E[xt,ix

⊤
t,i], while others require

the imposition of a variance condition on the stochastic
process generating xt,i.

To facilitate our later discussions, we use Ht,i =

{(xτ,i, yτ,i)}tτ=1 to represent the set of t observations
from client i. (Xi,yi) denote design matrices and feed-
back vectors of Ht,i where each row of X is the context
vector of an arm and the corresponding element in y is
the observed reward for this arm. Note that Xj only
contains the observations made by client j and does
not include aggregated observations from other clients
in the cluster. We also define the weighted norm of a

vector x ∈ R
d as ∥x∥A =

√
x⊤Ax, where A ∈ R

d×d is
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clusters be a maximal clique of G (line 5 in Algorithm

1). We denote the set of resulting clusters as Ĉ =

{Ĉ1, Ĉ2, ...ĈM̂} and the set of cluster indices in C that
client i belongs to as Ki.
Using the maximal cliques of G as the cluster estimates
introduces a unique challenge that affects our subse-
quent algorithmic design: the estimated clusters may
not be disjoint. In Figure 1, we can see that client 3,
represented by θ3, is a member of two clusters, Ĉ2 and
Ĉ4. Therefore, θ3 will receive shared model updates
from clients {θ1, θ7, θ4}. However, the absence of an
edge between θ1 and θ4 implies that simultaneous col-
laboration between {θ3, θ1} and {θ3, θ4} is not allowed
by our algorithm. As a result, when θ3 is collaborating
with θ1, it should only share its local data, excluding
what it has received from the server. Later we describe
our queue-based sequential approach to resolve this.

Algorithm 1 Cluster Estimation

1: for (i, j) ∈ N do

2: if s(HT0,i,HT0,j) ≤ υc then add edge e(i, j) to
G

3: end for

4: Ĉ = {Ĉ1, Ĉ2, ...ĈM̂} = maximal cliques(G)
5: Set Ki = {k : i ∈ Ĉk} for each client i

Optimistic Learning Phase Upon identifying
client clusters suitable for collaboration, we proceed to
the optimistic learning phase of our algorithm. Here,
clients optimistically choose arms, utilizing the collabo-
ration with other similar clients to enhance their local
model estimates. At each time step t ∈ {T0...T}, each
client i ∈ [N ] optimistically selects an arm xt,i ∈ At,i

using the UCB strategy based on its sufficient statistics
{Vt,i, bt,i}:

xt = argmax
x∈At,i

x⊤θ̂t−1,i +CBt−1,i(x) (2)

where θ̂t−1,i = V
−1

t−1,ibt−1,i is the ridge regression es-

timator with regularization parameter λ; V t−1,i =
Vt−1,i + λI; and the confidence bound of reward es-
timation for arm x is CBt−1,i(x) = αt−1,i∥x∥V −1

t−1,i
,

where αt−1,i = σ

√

2 log

(

det(V t−1,i)1/2

δ det(λI)1/2

)

+
√
λ. Note

that Vt,i is formulated using data locally collected by
client i in conjunction with data from the clients with
whom client i has previously collaborated. After client
i observes reward yt,i, it updates its local sufficient
statistics to improve the reward estimates in future
rounds.

Communication Protocol Our algorithm inte-
grates the event-triggered communication protocol from

Wang et al. (2020) to efficiently balance communication
and regret minimization within clusters. It uses delayed
communication, where clients store observations and
rewards in a local buffer ∆Vt,i and ∆bt,i. Clients re-
quest server collaboration when the informativeness of
the stored updates surpass a certain threshold. Specifi-
cally, If ∆tt,i log(det(Vt,i)/ det(Vt,i −∆Vt,i)) ≥ Dk for
any k ∈ Ki, with Dk as the communication thresh-
old for the estimated cluster Ĉk, the client sends a
collaboration request for Ĉk.

Multiple clients across different clusters can trigger si-
multaneous communication requests, and single clients
can request collaboration for multiple clusters because
the estimated clusters are not disjoint. In such cases,
the central server uses a first-in-first-out queue (FIFO)
Q to manage the clusters needing collaboration one-
by-one. At each timestep t ∈ {T0...T}, it serves one
cluster from the queue, ensuring no inter-cluster data
contamination by computing Vt,sync and bt,sync using
only the clients’ upload buffers. Despite the single
global-model restriction in federated learning, our al-
gorithm still helps multiple groups of similar clients in
a pseudo round-robin manner. As a result, a cluster
of clients can resume engaging with the environment
without being hindered by the server’s processing time
for unrelated clusters that don’t offer collaborative
advantage.

This queuing strategy enhances the system’s efficiency,
allowing clusters to re-engage with the environment
without idling for the server’s processing of all other
clusters. However, before computing and sharing
{Vt,sync, bt,sync} for collaboration, our algorithm man-
dates the complete upload of local buffers from every
client in that cluster. This signifies that our algo-
rithm employs asynchronous communication at the
cluster level but still requires synchronous communica-
tion among clients within the same cluster. In practical
distributed systems, clients often exhibit variable re-
sponse times and occasional unavailability. Adapting
our algorithm to support asynchronous communication
at the individual client level, such that they can collab-
orate without awaiting updates from all other clients
within the cluster, remains an important open research
question.

3.3 Theoretical Results

As presented in Section 3.2, our algorithm first uti-
lizes a homogeneity test to cluster similar clients in a
heterogeneous environment. We prove that with our
homogeneity test, Algorithm 1 correctly identifies the
underlying clusters.

Theorem 3.1 (Clustering Correctness). Under the
condition that we set the homogeneity test threshold
υc ≥ F−1(1− δ

N2 , df, ψ
c), with probability at least 1−δ,

we have Ĉ = C.
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Algorithm 2 HetoFedBandit

1: Input: T , δ ∈ (0, 1), exploration length T0, λ > 0,
neighbor identification υc

2: Initialization: Clients: ∀i ∈ N : V0,i =
0d×d, b0,i = 0d,H0,i = ∅,∆V0,i = 0d×d,∆b0,i =
0d,∆ti,0 = 0, Ki = ∅ ; Server: Client graph G
with N nodes, FIFO queue Q;

3: Pure Exploration Phase (Algorithm 3)
4: Cluster Estimation (Algorithm 1)
5: Cluster communication thresholds D =

[D1, ..., DM̂ ] where Dk = (T log |Ĉk|T )/(d|Ĉk|)
6: for t = T0 + 1, ..., T do

7: for Client i ∈ N do

8: Choose arm xt,i ∈ At,i by Eq. 2 observe re-
ward yt,i

9: Update client i: Ht,i = Ht−1,i ∪ (xt,i, yt,i),
Vt,i += xt,ix

⊤
t,i, bt,i += xt,iyt,i,

10: ∆Vt,i += xt,ix
⊤
t,i, ∆bt,i += xt,iyt,i,∆tt,i +=

1
11: for k ∈ Ki do
12: if ∆tt,i log(det(Vt,i)/ det(Vt,i − ∆Vt,i)) ≥

Dk then

13: Collaboration Request: Server adds Ĉk
to Q

14: end if

15: end for

16: end for

17: if Q is non-empty then

18: Server pops Ĉk from Q
19: Every client i ∈ Ĉk sends ∆Vt,j , ∆bt,j to server

20: Each client in Ĉk receives Vt,sync =
∑

j∈Ĉk
∆Vt,j , bt,sync =

∑

j∈Ĉk
∆bt,j from the

server
21: Local client updates: Vt,i += Vt,sync −∆Vt,i,

bt,i += bt,sync − ∆bt,i, ∆Vt,i = 0, ∆bt,i =
0,∆tt,i = 0

22: end if

23: end for

F−1(·) is the inverse of the CDF of the non-central χ2

distribution, and ψc
.
= 1

σ2 . We provide the complete
proof of Theorem 3.1 in Appendix C. Moreover, Al-
gorithm 2 adopts a UCB-based arm selection, which
requires the construction of a confidence ellipsoid.

Lemma 3.2 (Confidence Ellipsoids). Suppose client

i is a member of cluster Ĉk ∈ Ĉ, and is therefore
collaborating with clients j ∈ Ĉk. For any δ > 0, with
probability at least 1 − δ, for all t ≥ 0 and all clients
i ∈ N , θ∗i lies in the set:

βt,i =

{

θ ∈ R
d :

∥

∥θ̂t,i − θ
∥

∥

V t,i
≤ σ

√

2 log

(

det(V t,i)1/2

det(λI)1/2δ

)

+
√
λ+

∥

∥

∥

∥

∑

j∈Ĉk\{i}

X⊤
j Xj(θ

∗
j − θ∗i )

∥

∥

∥

∥

V
−1

t,i

}

We provide the complete proof of Lemma 3.2 in Ap-
pendix D.

Our algorithm enables collaboration among heteroge-
neous clients, which introduces extra biases represented
by the term H = ∥∑j∈Ĉk\{i} X

⊤
j Xj(θj − θi)∥V −1

t,i
.

With improved analysis compared with Li et al. (2021),
we utilize our cluster estimation procedure Algorithm
1 to control the magnitude of the bias term H by
judiciously picking the threshold υc.

Then, based on the constructed confidence ellipsoid,
we prove Theorem 3.3, which provides upper bounds of
the cumulative regret RT and communication cost CT
incurred by HetoFedBandit. While the good/bad
epoch decomposition used in our analysis is first intro-
duced by Wang et al. (2020), additional care needs to
be taken when bounding the extra regret introduced
by the delays in serving clusters before they can be
removed from the queue. We present the complete
proof of Theorem 3.3 in Appendix E.

Theorem 3.3 (Regret and Communication Cost).

With an exploration phase length of T0 = 16ψdσ2

λcγ2 , with

probability 1 − δ our protocol achieves a cumulative
regret of

RT = O

(

Nψdσ2

λcγ2
+

M
∑

k=1

d
√

|Ck|T log2(|Ck|T )

+d|Ck|2M log(|Ck|T )
)

(3)

where ψd = F−1
(

δ
N2(M−1) ; d, υ

c
)

, with communication
cost

CT = O(Nd2) +

M
∑

k=1

O(|Ck|1.5 · d3) (4)

Remark 1. The regret upper-bound has three compo-
nents. The first term is our version of the ”problem
hardness” (Li et al., 2021; Gentile et al., 2014) which is
independent of T. This ”hardness” factor is determined
by the cluster separation parameter γ from Assumption
2. The second term is the standard regret upper bound
from centralized clustered bandit algorithms (Li et al.,
2021; Gentile et al., 2014). The third term arises from
the potential waiting time clusters may experience in
the queue before the server serves them. Our commu-
nication cost matches that of an idealized algorithm
executing DisLinUCB(Wang et al., 2020) within each
ground-truth cluster.

We compare our regret and communication upper-
bound under three cases. Case 1 - Single cluster:

SettingM = 1 reduces the problem to a nearly homoge-
neous setting, where every client is within ϵ of everyone
else. Under this setting, our regret becomes Õ(d

√
NT )

where logarithmic factors and factors that do not de-
pend on T (since it is assumed that T ≫ N) are omit-

ted in Õ. Additionally communication cost becomes
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O(N1.5d3). Our algorithm matches the regret and
communication cost of (Wang et al., 2020), which is de-
signed for homogeneous clients. Case 2 - N clusters:

Setting M = N reduces the problem to a completely
heterogeneous setting, where no client can benefit from
collaboration as each client is at least ϵ away from oth-
ers. Algorithm 2 has regret Õ(dN

√
T ), which recovers

the regret of running LinUCB (Abbasi-Yadkori et al.,
2011) independently on each client. In this setting our
communication becomes O(Nd3). Case 3 - Equal

Size Clusters: Setting |Ck| = N/M, ∀k gives us M
clusters of equal size. In this setting our regret becomes
Õ(d

√
MNT ), where the first term recovers the results

presented in Gentile et al. (2014); Li et al. (2021). Our

communication becomes O(d3N1.5/
√
M).

3.4 Empirical Enhancements:

HetoFedBandit-E

In this section, we describe the details of our proposed
empirical enhancements to our HetoFedBandit algo-
rithm, where we perform re-clustering to improve the
quality of estimated clusters of clients and replace the
first-in-first-out queue with a priority queue to help
clusters where a shared model update can most rapidly
reduce regret for clients in that cluster. The detailed de-
scription of our enhanced algorithm HetoFedBandit-

E can be found in Algorithm 5 in Appendix F.

3.4.1 Data-Dependent Clustering

We propose a data-dependent clustering procedure to
enhance collaboration among clients with similar ob-
servational histories. Our homogeneity test for cluster
formation ensures an upper bound on the bias term
H, as outlined in Lemma 3.2. This term depends on
the differences in underlying parameters (θ∗i vs., θ∗j )
and each client’s observation history. For instance, if
client j’s observations are in the null space of (θ∗j − θ∗i ),
collaborating with client j will not introduce excessive
bias to client i. But without further assumptions about
the context vector sequence, we must conservatively
assume in our original design that every client j’s entire
observation history aligns with (θ∗j − θ∗i ).

Previously, we used a homogeneity test with thresh-
old ϵ = 1

N
√
T

to verify clients’ collaboration across all

timesteps. Now, we can relax the homogeneity test
threshold to check if two clients can collaborate at a
specific timestep t by examining if ∥θi − θj∥ ≤ ϵ =

1/
(

N
√

λmax(X⊤
j Xj)

)

.To achieve this, we modify our

algorithm to forgo single round cluster estimation. In-
stead, every time a client requests collaboration, we
re-cluster the clients using the data-dependent thresh-
olds for our pairwise homogeneity tests. By making
these thresholds data-dependent, each client can col-
laborate with more neighbors earlier, boosting overall

collaborative benefits in our learning system.

3.4.2 Priority Queue

The second enhancement to HetoFedBandit involves
utilizing a priority queue instead of a FIFO queue
to determine the order in which to serve clusters re-
questing collaboration. As is demonstrated in (Wang
et al., 2020; Li and Wang, 2022), the cumulative re-
gret incurred by a federated bandit algorithm is deter-
mined by the determinant ratios of the clients within

the system: ∆tt,i log
( det(Vt,i)
det(Vt,i−∆Vt,i

)

. Since the central

server cannot assist all clusters at once, determinant
ratios of awaiting clients can increase as they linger
in the queue. In the original HetoFedBandit, clus-
ters are attended based on their request order. How-
ever, an earlier-joining cluster might have a slower
regret accumulation compared to a later one with a
larger and faster growing determinant ratio. By utiliz-
ing a priority queue that serves the clusters based on:

argmaxĈk∈Ĉ
∑

i∈Ĉk
∆tt,i log(

det(Vt,i)
det(Vt,i−∆Vt,i

) the server

ensures clusters are addressed in an order that mini-
mizes the system-wide cumulative regret.

4 EXPERIMENTS

In this section, we investigate the empirical perfor-
mance of HetoFedBandit and HetoFedBandit-E,
by comparing them against several baseline models on
both simulated and real-world datasets.

4.1 Baselines

In our evaluation, we compare our proposed HetoFed-

Bandit algorithm with several representative algo-
rithms from both the clustered and federated bandit
learning domains. We compare against, LinUCB algo-
rithm from (Abbasi-Yadkori et al., 2011), DisLinUCB
(Wang et al., 2020), FCLUB DC (Liu et al., 2022),
and DyClu (Li et al., 2021). To ensure compatibility
with our setting, we set the number of local servers in
FCLUB DC to be equal to the number of clients.

4.2 Synthetic Dataset

We first present the results of our empirical analysis
of HetoFedBandit and HetoFedBandit-E on a
synthetic dataset.

Synthetic Dataset Generation In this section, we
describe the pre-processing procedure for the synthetic
dataset used in Section 4.2. We first create an action
pool {xk}Kk=1 where x is sampled from N(0d, Id). To
create a set of N clients in accordance with our environ-
ment assumptions, we first sample M cluster centers
{θm}Mm=1 from N(0d, Id) that are γ + 2ϵ away from
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A PURE EXPLORATION PHASE ALGORITHM

In this section, we provide the details of Pure Exploration Phase Algorithm introduced in Section 3.2. We present
the description of this algorithm here due to the space limitations in the main paper.

Algorithm 3 Pure Exploration Phase

1: for t = 1, 2, ..., T0 do

2: for Agent i ∈ N do

3: Choose arm xt,i ∈ Ai,t uniformly at random and observe reward yt,i
4: Update agent i: Ht,i = Ht−1,i ∪ (xt,i, yt,i), Vt,i += xt,ix

⊤
t,i, bt,i += xt,iyt,i,

5: ∆Vt,i += xt,ix
⊤
t,i, ∆bt,i += xt,iyt,i,∆t0,i += 1

6: end for

7: end for

B TECHNICAL LEMMAS

In this section, we introduce the technical lemmas utilized in the subsequent proofs in this paper.

Lemma B.1 (Lemma 11 in Abbasi-Yadkori et al. (2011)). Let {Xt}∞t=1 be a sequence in R
d, V is a d× d positive

definite matrix and define V̄t = V +
∑t
s=1XsX

⊤
s , where V = λI. Additionally we have that λmin(V ) ≥ max(1, L2)

and ∥Xt∥2 ≤ L for all t, then

log

(

det(V̄n)

det(V )

)

≤
T
∑

t=1

∥Xt∥2V̄ −1

t−1

≤ 2 log

(

det(V̄n)

det(V )

)

(5)

Lemma B.2 (Theorem 1 of Abbasi-Yadkori et al. (2011)). Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=1 be a real-valued
stochastic process such that ηt is Ft-measurable, and ηt follows conditionally zero mean R-sub-Gaussian for some
R ≥ 0. Let {Xt}∞t=1 be an R

d-valued stochastic process such that Xt is Ft−1-measurable. Assume that V is a
d× d positive definite matrix. For any t > 0, define

Vt = V +

t
∑

τ=1

XτX
⊤
τ St =

t
∑

τ=1

ητXτ

Then for any δ > 0, with probability at least 1− δ,

||St||V −1

t
≤ R

√

2 log
det(Vt)1/2

det(V )1/2δ
, ∀t ≥ 0

Lemma B.3 (Determinant-Trace Inequality). Suppose X1, X2, ..., Xt ∈ R
d and for any 1 ≤ τ ≤ t, ∥Xτ∥2 ≤ L,

Let Vt = λI +
∑t
τ=1XτX

⊤
τ for some λ > 0. Then,

det(Vt) ≤ (λ+ tL2/d)d

Lemma B.4 (Lemma 12 from (Li et al., 2021)). When the underlying bandit parameters θ∗i and θ∗j of two
observation sequence Ht−1,i and Ht−1,j from client i and j are not the same, the probability that the cluster
identification phase clusters them together corresponds to the type-II error probability given in Lemma B.6, which
can be upper bounded by:

P
(

S(Ht−1,i,Ht−1,j) ≤ υc
∣

∣∥θ∗i − θ∗j ∥ > ϵ
)

≤ F (υc; d, ψd)

under the condition that both λmin(
∑

(xk,yk)∈Ht−1,i
xkx

⊤
k ) and λmin(

∑

(xk,yk)∈Ht−1,2
xkx

⊤
k ) are at least 2ψdσ2

γ2 .

Lemma B.5 (Lemma B1 from Li and Wang (2022)). Denote the number of observations that have been used to
update {Vi,t, bi,t} as τi, i.e., Vi,t = λI +

∑τi
s=1 xsx

⊤
s . Then under Assumption 3, with probability at least 1− δ,

we have:

λmin(Vi,t) ≥ λ+
λcτi
8

∀τi ∈ {τmin, τmin + 1, . . . , T}, i ∈ [N ], where τmin = ⌈ 64
3λc

log( 2NTdδ )⌉.
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Lemma B.6. Lemma 3 from Li et al. (2021) When X1 and X2 are rank-sufficient, the type-II error probability
can be upper bounded by,

P
(

s(Ht−1,1,Ht−1,2) ≤ υ | ∥θ1 − θ2∥ > ϵ
)

≤ F
(

υc; d,
||θ∗1 − θ∗2 ||

2/σ2

1/λmin(X⊤

1
X1) + 1/λmin(X⊤

2
X2)

)

.

C PROOF OF THEOREM 3.1

In this section, we provide the full proof of Theorem 3.1, which states that utilizing our homogeneity test

with threshold υc ≥ F−1(1 − δ
N2 ; df, ψ

c), after the exploration phase of length T0 = 16ψdσ2

λcγ2 , the clusters

Ĉ = {Ĉ1, Ĉ2, ..., ĈM̂} estimated by HetoFedBandit match the ground-truth clusters of the environment
C = {C1, C2, ..., CM}.
The homogeneity test statistic s(Ht−1,1,Ht−1,2) follows a non-central χ

2 distribution s(Ht−1,1,Ht−1,2) ∼ χ2(df, ψ),
where the degree of freedom

df = rank(X1) + rank(X2)− rank
([

X1X2

])

and the non-centrality parameter

ψ =
1

σ2

[

X1θ1X2θ
∗
2

]⊤ [

It1+t2 −
[

X1X2

] (

X⊤
1 X1 +X⊤

2 X2

)− [

X⊤
1 X⊤

2

]

]

[

X1θ1X2θ
∗
2

]

(Li et al., 2021).

Based on the definition and properties of the test statistic, we next prove two corollaries. First we will prove that
with high probability C ⊆ Ĉ. Then we will prove that Ĉ ⊆ C. As a result, the conjunction of these events holding
simultaneously demonstrates that Ĉ = C, proving that our estimated clusters are correct with a high probability.

C.1 Lower Bounding P (C ⊆ Ĉ)

Recall that based on our cluster definition presented in Assumption 1, all clients that belong to the same cluster
are within ϵ of each other. We denote the ground-truth client graph G∗ as the graph where ∃e(i, j) ∈ G∗ ∀i, j ∈ N
where ∥θ∗i − θ∗j ∥ ≤ ϵ. By Assumption 2, we know that clients that do not belong to the same cluster are separated

by γ, so that the ground-truth clusters C are the maximal cliques of G∗. Thus, in order to prove that P (C ⊆ Ĉ),
we need to show that the set of edges in the ground-truth client graph G∗ is a subset of the edges in the
estimated client graph G. To achieve this, we need to prove an upper-bound of the type-I error probability of the
homogeneity test, which corresponds to the probability that our algorithm fails to cluster two clients together
when the underlying bandit parameters ∥θ∗i − θ∗j ∥ ≤ ϵ.

Lemma C.1. The type-I error probability of the test can be upper bounded by:

P
(

s(Ht−1,1,Ht−1,2) > υ | ∥θ∗1 − θ∗2∥ ≤ ϵ
)

≤ 1− F (υ; df, ψc),

where F (υ; df, ψc) denotes the cumulative density function (CDF) of distribution χ2(df, ψc) evaluated at υ, and
ψc := 1

σ2 denotes its non-centrality parameter.

Proof. Denote ζ = θ∗2 − θ∗1 . Then θ
∗
2 = θ∗1 + ζ. When ∥ζ∥ ≤ ϵ, the non-centrality parameter ψ becomes:

ψ =
1

σ2

[

X1θ
∗
1

X2(θ
∗
1 + ζ)

]⊤ [

It1+t2 −
[

X1

X2

]

(

X⊤
1 X1 +X⊤

2 X2

)−1 [
X⊤

1 X⊤
2

]

] [

X1θ
∗
1

X2(θ
∗
1 + ζ)

]

σ2ψ =

[

X1θ
∗
1

X2θ
∗
1

]⊤ [

It1+t2 −
[

X1

X2

](

[

X⊤
1 X⊤

2

]

[

X1

X2

])−1
[

X⊤
1 X⊤

2

]

]

[

X1θ
∗
1

X2θ
∗
1

]

+

[

X1θ
∗
1

X2θ
∗
1

]⊤ [

It1+t2 −
[

X1

X2

](

[

X⊤
1 X⊤

2

]

[

X1

X2

])−1
[

X⊤
1 X⊤

2

]

]

[

0
X2ζ

]

+

[

0
X2ζ

]⊤ [

It1+t2 −
[

X1

X2

](

[

X⊤
1 X⊤

2

]

[

X1

X2

])−1
[

X⊤
1 X⊤

2

]

]

[

X1θ
∗
1

X2θ
∗
1

]

+

[

0
X2ζ

]⊤ [

It1+t2 −
[

X1

X2

](

[

X⊤
1 X⊤

2

]

[

X1

X2

])−1
[

X⊤
1 X⊤

2

]

]

[

0
X2ζ

]
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Since

[

X1θ
∗
1

X2θ
∗
1

]

is in the column space of

[

X1

X2

]

, the first term in the above result is zero. The second and third

terms can be shown equal to zero as well using the property that matrix product is distributive with respect to
matrix addition, which leaves us only the last term. Therefore, by substituting ζ = θ∗2 − θ∗1 back, we obtain:

ψ =
1

σ2
(θ∗1 − θ∗2)

⊤X⊤
2 X2(X

⊤
1 X1 +X⊤

2 X2)
−1X⊤

1 X1(θ
∗
1 − θ∗2)

≤ 1

σ2
∥θ∗1 − θ∗2∥2λmax(X

⊤
2 X2(X

⊤
1 X1 +X⊤

2 X2)
−1X⊤

1 X1)

≤ ϵ2

σ2
λmax(X

⊤
2 X2(X

⊤
1 X1 +X⊤

2 X2)
−1X⊤

1 X1)

The first inequality uses the Rayleigh-Ritz theorem, and the second inequality is a result of Assumption 1.
Furthermore, we can use the relation Y(X +Y)−1X = (X−1 +Y−1)−1, where X and Y are both invertible
matrices, to further simplify our upper bound for ψ. This relation can be derived by taking inverse on both sides
of the equation X−1(X+Y)Y−1 = X−1XY−1 +X−1YY−1 = Y−1 +X−1. This gives us the following,

ψ =
ϵ2

σ2
λmax

(

(

(X⊤
1 X1)

−1 + (X⊤
2 X2)

−1
)−1

)

≤ ϵ2

σ2

1

λmin((X⊤
1 X1)−1 + (X⊤

2 X2)−1)

≤ ϵ2

σ2

1

λmin((X⊤
1 X1)−1) + λmin((X⊤

2 X2)−1)

≤ ϵ2

σ2

1
1

λmax(X⊤

1
X1)

+ 1
λmax(X⊤

2
X2)

=
ϵ2

σ2

λmax(X
⊤
1 X1)× λmax(X

⊤
2 X2)

λmax(X⊤
1 X1) + λmax(X⊤

2 X2)

≤ ϵ2

σ2
max{λmax(X

⊤
1 X1), λmax(X

⊤
2 X2)}

Where the last inequality holds because

λmax(X
⊤
1 X1)

λmax(X⊤
1 X1) + λmax(X⊤

2 X2)
≤ 1 and

λmax(X
⊤
2 X2)

λmax(X⊤
1 X1) + λmax(X⊤

2 X2)
≤ 1

Denote the number of observations in Xi as τi. Furthermore, since ∥xt,i∥ ≤ 1, we know that λmax(X
⊤
i Xi) ≤ τi.

Thus we can further upper bound

ψ ≤ ϵ2

σ2
max{λmax(X

⊤
1 X1), λmax(X

⊤
2 X2)}

≤ ϵ2

σ2
max{τi, τj}

≤ ϵ2

σ2
T

Assumption 1 tells us that ϵ = 1
N

√
T

for (i, j) in the same cluster Ck.

ψ ≤ T

σ2N2T
≤ 1

σ2
:= ψc

Therefore, when ∥θ∗1 − θ∗2∥ < ϵ, the test statistic s(Ht−1,1,Ht−1,2) ∼ χ2(df, 0, ψc). The type-I error probability
can be upper bounded by P

(

s(Ht−1,1,Ht−1,2) > υ
∣

∣ ∥θ∗1 − θ∗2∥
)

≤ 1− F (υ; df, ψc), which concludes the proof of
Lemma C.1.

Corollary C.1.1. Under the condition that we set the threshold υ to υc ≥ F−1(1 − δ
N2 , df, ψ

c), we have

P (C ⊆ Ĉ) ≥ 1− δ.
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Proof. In our setting (Assumption 1), all users who are within ϵ = 1
N

√
T

of each other belong to the same

ground-truth cluster. Our algorithm uses the pairwise homogeneity test to assess whether each pair of clients
is within ϵ of each other. As we showed in Lemma C.1, the type-I error probability of our pairwise neighbor
identification is upper-bounded by 1 − F (υ; df, ψc). Therefore, to achieve a type-I error probability of δ/N2

between two individual clients, we can solve for the required threshold υc

δ

N2
≤ 1− F (υ; df, ψc)

⇒ F (υ; df, ψc) ≤ 1− δ

N2

⇒ F−1(1− δ

N2
, df, ψc) ≤ υc

Taking the union bound over all N2 pairwise tests proves the that the set of edges in the ground-truth client
graph G∗ is a subset of the edges estimated client graph G. Therefore the corollary is proven.

C.2 Lower Bounding P (Ĉ ⊆ C)

In this section, we prove that with high probability P (Ĉ ⊆ C). To achieve this, we demonstrate that the set of
edges in the estimated client graph G is a subset of the ground-truth edges in G∗. To achieve this, we utilize
the type-II error probability upper-bound to ensure that with high probability clients with different underlying
parameters are not clustered together. Using this type-II error probability, we follow similar steps in Lemma 13
of (Li et al., 2021) to prove:

Lemma C.2. If the cluster identification module clusters observation history Ht−1,i and Ht−1,j together,
the probability that they actually have the same underlying bandit parameters is denoted as P

(

∥θ∗i − θ∗j ∥ ≤
ϵ|s(Ht−1,i,Ht−1,j) ≤ υc

)

.

P
(

∥θ∗i − θ∗j ∥ ≤ ϵ|s(Ht−1,i,Ht−1,j) ≤ υc
)

≥ F (υc; df, ψc)

under the condition that both λmin

(
∑

(xk,yk)∈Ht−1,i
xkx

⊤
k

)

and λmin

(
∑

(xk,yk)∈Ht−1,j
xkx

⊤
k

)

are at least 2ψdσ2

γ2 ,

where ψd = F−1
( (1−F (υc;d,ψc))

M−1 ; d, υc
)

.

Proof. Compared with the type-I and type-II error probabilities given in Lemma C.1 and B.4, the probability
P (∥θ∗i − θ∗j ∥ ≤ ϵ|S(Ht−1,i,Ht−1,j) ≤ υc) also depends on the population being tested on.

Denote the events
{

∥θ∗i − θ∗j ∥ > ϵ
}

∩
{

S(Ht−1,i,Ht−1,j) > υc
}

as True Positive (TP ),
{

∥θ∗i − θ∗j ∥ ≤ ϵ
}

∩
{

S(Ht−1,i,Ht−1,j) ≤ υc
}

as True Negative (TN),
{

∥θ∗i − θ∗j ∥ ≤ ϵ
}

∩
{

S(Ht−1,i,Ht−1,j) > υc
}

as False Positive

(FP ), and
{

∥θ∗i −θ∗j ∥ > ϵ
}

∩
{

S(Ht−1,i,Ht−1,j) ≤ υc
}

as False Negative (FN) of cluster identification, respectively.
We can rewrite the probabilities in Lemma C.1, B.4 and C.2 as:

P
(

S(Ht−1,i,Ht−1,j) > υc|∥θ∗i − θ∗j ∥ ≤ ϵ
)

=
P (FP )

P (TN + FP )
≤ 1− F (υc; df, ψc)

P
(

s(Ht−1,i,Ht−1,j) ≤ υc|∥θ∗i − θ∗j ∥ > ϵ
)

=
P (FN)

P (FN + TP )
≤ F (υc; df, ψd)

P
(

∥θ∗i − θ∗j ∥ ≤ ϵ|s(Ht−1,i,Ht−1,j) ≤ υc
)

=
P (TN)

P (TN + FN)
>

1

1 + P (FN)
P (TN)

We can upper bound P (FN)
P (TN) by:

P (FN)

P (TN)
≤ P (TP + FN)

P (TN + FP )
· F (υ

c; df, ψd)

F (υc; df, ψc)

where TP+FN
TN+FP denotes the ratio between the number of positive instances (∥θ∗i − θ∗j ∥ > ϵ) and negative instances

(∥θ∗i − θ∗j ∥ ≤ ϵ) in the population. We can upper bound this ratio for any pair (i, j) uniformly sampled from [N ],
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since we need to run the test on all N2 pairs. First we note that P (TP+FN)
P (TN+FP ) =

P (∥θ∗i −θ∗j ∥>ϵ)
P (∥θ∗i −θ∗j ∥≤ϵ)

. We upper-bound

this ratio by giving a lower bound on the probability of two randomly sampled clients belonging to the same
cluster as P (∥θ∗i − θ∗j ∥ ≤ ϵ):

P (∥θ∗i − θ∗j ∥ ≤ ϵ) =

M
∑

k=1

|Ck|
N

× |Ck| − 1

N − 1

>

M
∑

k=1

( |Ck| − 1

N − 1

)2

>

M
∑

k=1

1

M2

=
1

M

The second inequality is true because the probability that two uniformly sampled clients belonging to the same
cluster is minimized when the clusters are all of equal sizes. Therefore we have

P (∥θ∗i − θ∗j ∥ > ϵ)

P (∥θ∗i − θ∗j ∥ ≤ ϵ)
≤ 1− 1

M
1
M

=M − 1

It is worth noting that in the event that M = 1, the ratio can trivially be upper bounded by 1. With this upper

bound of P (FN)
P (TN) , we can now write:

P
(

∥θ∗i − θ∗j ∥ ≤ ϵ|S(Ht−1,i,Ht−1,j) ≤ υc
)

≥ 1/
(

1 + (M − 1) · F (υ
c; df, ψd)

F (υc; df, ψc)

)

Then by setting ψd = F−1
( (1−F (υc;df,ψc))

(M−1) ; df, υc
)

, we have:

P
(

∥θ∗i − θ∗j ∥ ≤ ϵ|S(Ht−1,i,Ht−1,j) ≤ υc
)

≥ 1/
(

1 + (M − 1) · F (υ
c; df, ψd)

F (υc; df, ψc)

)

= F (υc; df, ψc)

and the lemma is proven.

Corollary C.2.1. Under the condition that we set the threshold υc ≥ F−1(1− δ
N2 , df, ψ

c), with an exploration

phase length of T0 = min{ 64
3λc

log( 2Tdδ ), 16ψ
dσ2

λcγ2 }, we have P (Ĉ ⊆ C) ≥ 1− δ.

Proof. Under Assumption 3, and with exploration length T0 = min{ 64
3λc

log(2Td/δ), 16ψ
dσ2

λcγ2 }, the application of

Lemma B.5 from (Li and Wang, 2022) gives with probability 1− δ that

λmin(X
⊤
i Xi) ≥

λcT0
8

=
2ψdσ2

γ2

As a result, we can apply Lemma C.2, which gives

P
(

∥θ∗i − θ∗j ∥ ≤ ϵ|s(Ht−1,i,Ht−1,j) ≤ υc
)

≥ F (υc; df, ψc)

Using the same steps as shown in Corollary C.1.1, we can see our choice of test statistic threshold υc ≥
F−1(1 − δ

N2 ; df, ψ
c) results in this event occurring with probability 1 − δ

N2 . Because our algorithm conducts
this pairwise homogeneity test across all pairs of clients, a union bound over all N2 pairwise tests proves the
corollary.

The combination of Corollaries C.1.1 and C.2.1 prove that based on our choice of υc and T0, Ĉ = C with probability
1− δ.
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D PROOF OF LEMMA 3.2

In this section, we present the complete proof of the confidence ellipsoids, following similar steps to the proof of
Theorem 2 in (Abbasi-Yadkori et al., 2011).

Before we begin the proof, we will introduce a couple of useful notations to prevent clutter. Recall from Section
3.1 that the design matrix of client i, denoted as Xi, only contains the observations made by client i through
timestep t and does not include aggregated observations from other clients. In this proof, we assume without
loss of generality, that client i is a member of ground-truth cluster Ck and is therefore collaborating with clients

j ∈ Ck. As a result, we can denote V
−1

t,i = λI +
∑

j∈Ck
X⊤
j Xj and bt,i =

∑

j∈Ck
X⊤
j (Xjθ

∗
j + ηj) due to the

sharing of sufficient statistics among clients in Ck (line 21 in Alg. 2), where we denote ηj = (η1,j , η2,j , ..., ηt,j)
⊤.

Note that in this proof, we only focus on the case where client i is collaborating with members of its ground-truth
cluster, because in Theorem 3.1, we already prove with high probability C = Ĉ. In our subsequent regret analysis
in Theorem 3.3, we demonstrate that the regret incurred when C ̸= Ĉ is upper bounded by a constant.

Proof.

θ̂t,i = V
−1

t,i bt,i

= V
−1

t,i

∑

j∈Ck

X⊤
j (Xjθ

∗
j + ηj)

= V
−1

t,i

[

∑

j∈Ck

X⊤
j Xjθ

∗
j +

∑

j∈Ck

X⊤
j ηj

]

= V
−1

t,i

[

∑

j∈Ck

X⊤
j Xjθ

∗
i +

∑

j∈Ck\{i}
X⊤
j Xj(θ

∗
j − θ∗i ) +

∑

j∈Ck

X⊤
j ηj

]

= V
−1

t,i

[

(λI +
∑

j∈Ck

X⊤
j Xj)θ

∗
i − λθ∗i +

∑

j∈Ck\{i}
X⊤
j Xj(θ

∗
j − θ∗i ) +

∑

j∈Ck

X⊤
j ηj

]

= V
−1

t,i V t,iθ
∗
i − λV

−1

t,i θ
∗
i + V

−1

t,i

∑

j∈Ck\{i}
X⊤
j Xj(θ

∗
j − θ∗i ) + V

−1

t,i

∑

j∈Ck

X⊤
j ηj

As a result, we have,

θ̂t,i − θ∗i = V
−1

t,i

∑

j∈Ck

X⊤
j ηj − λV

−1

t,i θ
∗
i + V

−1

t,i

∑

j∈Ck\{i}
X⊤
j Xj(θ

∗
j − θ∗i ).

Applying the self-normalized bound gives:

∥

∥θ∗i − θ̂t,i
∥

∥

V t,i
≤

∥

∥

∑

j∈Ck

X⊤
j ηj

∥

∥

V
−1

t,i
+

√
λ
∥

∥θ∗i
∥

∥

V
−1

t,i
+

∥

∥

∥

∥

∑

j∈Ck\{i}
X⊤
j Xj(θ

∗
j − θ∗i )

∥

∥

∥

∥

V
−1

t,i

≤
∥

∥

∑

j∈Ck

X⊤
j ηj

∥

∥

V
−1

t,i
+

√
λ∥θ∗i ∥2 +

∥

∥

∥

∥

∑

j∈Ck\{i}
X⊤
j Xj(θ

∗
j − θ∗i )

∥

∥

∥

∥

V
−1

t,i

where we used that ∥θ∗∥2
V

−1

t,i

≤ 1
λmin(V t,i)

∥θ∗∥2 ≤ 1
λ∥θ∗∥2.

The application of Lemma B.2 and using ∥θ∗i ∥2 ≤ 1 give:

∥θ∗i − θ̂t,i∥V t,i

≤ σ

√

2 log

(

det(V t,i)1/2 det(λI)−1/2

δ

)

+
√
λ+

∥

∥

∥

∥

∑

j∈Ck\{i}
X⊤
j Xj(θ

∗
j − θ∗i )

∥

∥

∥

∥

V
−1

t,i

:= βt,i

with probability at least 1− δ. Then with a union bound over all N clients applied to the inequality above, we
prove that ∥θ∗i − θ̂t,i∥V t,i

≤ βt,i, ∀i, t with probability at least 1−Nδ.
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E PROOF OF THEOREM 3.3

In this section we present the full proof of our algorithm’s cumulative regret and communication upper bounds.
Before proving the theorem, we will need to prove the following lemmas.

Lemma E.1 (Heterogeneity Term Bound). Under the condition that the homogeneity test threshold υc is set

to be greater than F−1(1− δ
N2 , df, ψ

c), and with an exploration phase length of T0 = min{ 64
3λc

log( 2Tdδ ), 16ψ
dσ2

λcγ2 }
we have with probability 1− δ:

∥

∥

∥

∥

∑

j∈Ck\{i}
X⊤
j Xj(θ

∗
j − θ∗i )

∥

∥

∥

∥

V
−1

t,i

≤ 1

Proof.

∥
∑

j∈Ck\{i}
X⊤
j Xj(θ

∗
j − θ∗i )∥V −1

t,i
≤

∑

j∈Ck\{i}
∥X⊤

j Xj(θ
∗
j − θ∗i )∥V −1

t,i

=
∑

j∈Ck\{i}

√

(θ∗j − θ∗i )
⊤X⊤

j Xj(λI +
∑

i∈Ck

X⊤
i Xi)−1X⊤

j Xj(θ∗j − θ∗i )

≤
∑

j∈Ck\{i}

√

(θ∗j − θ∗i )
⊤X⊤

j Xj(X⊤
j Xj)−1X⊤

j Xj(θ∗j − θ∗i )

≤
∑

j∈Ck\{i}
∥θ∗j − θ∗i ∥

√

λmax(X⊤
j Xj)

≤
∑

j∈Ck\{i}
∥θ∗j − θ∗i ∥

√
t

≤
∑

j∈Ck\{i}
∥θ∗j − θ∗i ∥

√
T

where the first inequality is given by the triangle inequality. The second inequality holds because the sum over
all clients V t,i =

∑

i∈Ck
X⊤
i Xi necessarily includes X⊤

j Xj , hence V t,i ≥ X⊤
j Xj . Additionally, X

⊤
j Xj is positive

semi-definite so that V
−1

t,i ≤ (X⊤
j Xj)

−1. The third inequality is given by the Rayleigh-Ritz Theorem. We have

the last inequality because we know that since ∥xt,i∥ ≤ 1, λmax(X
⊤
i Xi) ≤ τi ≤ T .

Theorem 3.1 shows that by setting υc ≥ F−1( δ
N2 , df, ψ

c) and T0 = min{ 64
3λc

log( 2Tdδ ), 16ψ
dσ2

λcγ2 }, with probability

1− δ we have Ĉ = C. Therefore, since i, j belong to the same ground-truth cluster Ck, we have by Assumption 1,
∥θ∗j − θ∗i ∥ ≤ ϵt =

1
N

√
t
. As a result, we can further upper bound the heterogeneity term by

∥

∥

∥

∥

∑

j∈Ck\{i}
X⊤
j Xj(θ

∗
j − θ∗i )

∥

∥

∥

∥

V
−1

t,i

≤
∑

j∈Ck\{i}

√
T

N
√
T

≤ 1

Lemma E.2. We define the single step pseudo regret rt,i = ⟨θ∗i , x∗t,i − xt,i⟩ where x∗t,i = argmaxx∈At,i
⟨x, θ∗t,i⟩.

With probability 1−Nδ, rt,i is bounded by

rt,i ≤ 2

(

σ

√

2 log

(

det(V t,i)1/2 det(λI)−1/2

δ

)

+
√
λS +O(1)

)

∥xt,i∥V −1

t,i
= O

(

σ

√

d log
T

δ

)

∥xt,i∥V −1

t,i
(6)
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Proof. Assume without loss of generality θ∗i ∈ Ck,

rt,i = ⟨θ∗i , x∗t,i⟩ − ⟨θ∗i , xt,i⟩
≤ ⟨θ̃t,i, xt,i⟩ − ⟨θ∗i , xt,i⟩
= ⟨θ̃t,i − θ∗i , xt,i⟩
= ⟨θ̃t,i − θ̂t,i, xt,i⟩+ ⟨θ̂t,i − θ∗i , xt,i⟩
≤ ∥θ̃t,i − θ̂t,i∥V t,i

∥xt,i∥V −1

t,i
+ ∥θ̂t,i − θ∗i ∥V t,i

∥xt,i∥V −1

t,i

≤ 2

(

σ

√

2 log

(

det(V t,i)1/2 det(λI)−1/2

δ

)

+
√
λS +

∥

∥

∥

∥

∑

j∈Ck\{i}
X⊤
j Xj(θ

∗
j − θ∗i )

∥

∥

∥

∥

V
−1

t,i

)

∥xt,i∥V −1

t,i
(7)

The first inequality is because ⟨θ̃t,i, xt,i⟩ is optimistic. Applying Lemma E.1 to upper bound the heterogeneity
term gives

RHS of Eq.(7) ≤ 2

(

σ

√

2 log

(

det(V t,i)1/2 det(λI)−1/2

δ

)

+
√
λS +O(1)

)

∥xt,i∥V −1

t,i

= O

(

σ

√

d log
T

δ

)

∥xt,i∥V −1

t,i

Now we are equipped to prove Theorem 3.3.

Proof. The cumulative regret of our system can be decomposed into three components. The first component is
the regret accumulated under our exploration stage. During these timesteps we can trivially upper bound the
instantaneous regret by 2. The second component considers the regret during timesteps in which our estimated
clusters are correct. The third component considers the regret accumulated during the timesteps in which our
estimated clusters are incorrect, which we can also upper bound the instantaneous regret by 2.

RT ≤
T0
∑

t=0

N
∑

i=1

2 +

T
∑

t=T0+1

M̂
∑

k=1

∑

i∈Ĉk

rt,i · 1{Ĉ = C}+
T
∑

t=T0+1

M̂
∑

k=1

∑

i∈Ĉk

2 · 1{Ĉ ̸= C}

Note that because our cluster estimation is non-parametric the number of estimated clusters M̂ is not a
hyper-parameter to our clustering algorithm.

According to Theorem 3.1, if we select υc ≥ F−1(1− δ
N2 , df, ψ

c) and T0 = 16ψdσ2

λcγ2 , the probability that Ĉ = C is

1− δ. Therefore, by setting δ = 1
N2T , the regret contributed by the rightmost term is of the order O(1). As a

result, our high-probability regret bound is given by:

RT ≤ 32Nψdσ2

λcγ2
+

T
∑

t=T0+1

M̂
∑

k=1

∑

i∈Ĉk

rt,i · 1{Ĉ = C}+O(1)

In the subsequent steps, we will focus on the regret accumulated when Ĉ = C. This means we only need to
examine the instances when the estimated number of clusters and their compositions exactly match the actual
clusters. Consequently, in subsequent discussions M̂ =M and Ĉk = Ck for all k ∈ [M ].

Now we prove Theorem 3.3 following the steps in the proof of Theorem 4 in Wang et al. (2020). We consider the
case where Eq.(6) holds because with the same choice of δ = 1

N2T , the expected instantaneous regret resulting
during timesteps when Eq.(6) does not hold is O(1).

In our communication protocol, for each cluster Ck, there will be a number of epochs separated by communication
rounds. We denote |Ck| denotes the number of clients in cluster Ck. If there are Pk epochs within cluster Ck,
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then VPk
will be the matrix with all samples from Ck included. Similarly we denote the last globally shared V to

the clients in Ck in epoch p as Vp.

From Lemma B.3, we have det(V0) = λd. det(VP,k) ≤
(

tr(Vp)
d

)d

≤
(

λ+ |Ck|T
d

)d

. Therefore by the pigeonhole

principle:

log
det(Vp)

det(V0)
≤ d log

(

1 +
|Ck|T
λd

)

It follows that for all but R := d log
(

1 + |Ck|T
λd

)

epochs:

1 ≤ det(Vj)

det(Vj−1)
≤ 2 (8)

In these “good epochs” where Eq (8) is satisfied, we can follow Theorem 4 from Wang et al. (2020) and treat all
of the |Ck|T observations from cluster k as observations from an imaginary single agent in a round-robin manner.

We similarly use Ṽt,i = λI +
∑

{(p,q):(p<t)∨(p=t∧q<i)} xp,qx
⊤
p,q to denote the V t,i this agent calculates before seeing

xt,i. If xt,i is in a good epoch, then:

1 ≤ det(Ṽt,i)

det(V t,i)
≤ det(Vj)

det(Vj−1)
≤ 2

We similarly denote Bp,k as the set of (t, i) pairs that belong to epoch p and Pgood,k as the set of good epochs in
cluster k. In that event we can use the regret bound for a single agent:

Rgood =

T
∑

t=T0+1

M
∑

k=1

∑

i∈Ck

rt,i

≤
M
∑

k=1

√

|Ck|T
∑

p∈Pgood,k

∑

(t,i)∈Bp,k

r2t,i

≤
M
∑

k=1

O

(

√

d|Ck|T log(T/δ)
∑

p∈Pgood,k

∑

(t,i)∈Bp,k

min(∥xt,i∥2Ṽ −1

t,i

, 1)

)

≤
M
∑

k=1

O

(

√

√

√

√d|Ck|T log(T/δ)
∑

p∈Pgood,k

log

(

det(Vp)

det(Vp−1)

))

≤
M
∑

k=1

O

(

√

d|Ck|T log(T/δ) log

(

det(Vp)

det(V0)

))

≤
M
∑

k=1

O

(

d
√

|Ck|T log(|Ck|T )
)

Now we must analyze the regret caused by the bad epochs, of which there are R = O(d log(|Ck|T )) within each
cluster Ck ∈ C. This part of the analysis differs from the proof in Theorem 4 of (Wang et al., 2020) due to the
fact that in our protocol, clusters that have requested collaboration may have to wait in the queue until they are
served in the event that multiple clusters have requested collaboration at the same timestep.

Consider the regret for a particular cluster Ck ∈ C during this bad epoch. Suppose that the bad epoch starts
at time t0 and lasts n timesteps. We denote the time tq when the cluster k is added to the queue awaiting
collaboration. We can decompose the regret of this cluster during the bad epoch into two parts, corresponding to
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the timesteps before and after Ck has been added to the queue:

REGbad(k) =

tq−1
∑

t=t0

rt,i +

n
∑

t=tq

rt,i

Based on our algorithm design, we can see in line 13 of Algorithm 2 that a cluster is only added to the queue
when at least one client in that cluster has exceeded its communication threshold Dk. Therefore we know that
before tq, we can upper bound the regret of the cluster k from t0 to tq − 1 as:

tq−1
∑

t=t0

rt,i ≤ O

(

√

d log
T

δ

)

∑

i∈Ck

tq−1
∑

t=t0

∥xt,i∥V −1

t,i

≤ O

(

√

d log
T

δ

)

∑

i∈Ck

√

(tq − 1− t0) log
det(Vtq−1,i)

det(Vtq−1,i −∆Vtq−1,i)

≤ O

(

√

d log
T

δ

)

|Ck|
√

Dk

Once cluster k is added to the queue at timestep tq, it may have to wait to be served by the central server based
on how many clusters have requested collaboration before it. Recall that our queue is a FIFO queue (line 19 in
Algorithm 2), and we have M total clusters. Therefore the maximum time cluster Ck could have to wait in the
queue is M timesteps. Each timestep the cluster is waiting in the queue, a client in this cluster will miss |Ck|
observations. For each of these missed observations, we can upper bound the regret incurred by 2, giving

n
∑

t=tq

rt,i ≤ 2(M + 1)|Ck|2

Combining our results, we have the following bound on the regret of cluster Ck during a bad epoch:

REGbad(k) ≤ O

(

√

d log
T

δ

)

|Ck|
√

Dk + 2(M + 1)|Ck|2

As we know we have at most R = O(d log(|Ck|T )) bad epochs, we can further bound it by

REGbad(k) ≤ O

(

√

Dk|Ck|d1.5 log1.5(|Ck|T ) + 2d|Ck|2(M + 1) log(|Ck|T )
)

with the choice of Dk = T log |Ck|T
d|Ck| , our regret becomes:

REGbad(k) ≤ O

(

d
√

|Ck|T log2(|Ck|T ) + 2d|Ck|2M log(|Ck|T )
)

The summation over all M clusters gives the regret for all clusters in all of the bad epochs:

REGbad ≤
M
∑

k=1

O

(

d
√

|Ck|T log2(|Ck|T ) + 2d|Ck|2M log(|Ck|T )
)

Combining the regret from the exploration phase, good epochs, and bad epochs gives a final cumulative regret
upper bound of:

RT ≤ 32Nψdσ2

λcγ2
+

M
∑

k=1

O

(

d
√

|Ck|T log(|Ck|T )
)

+

M
∑

k=1

O

(

d
√

|Ck|T log2(|Ck|T ) + 2d|Ck|2M log(|Ck|T )
)

+O(1)
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This can be further simplified into the following,

RT ≤ O

(

Nψdσ2

λcγ2
+

M
∑

k=1

d
√

|Ck|T log2(|Ck|T ) + 2d|Ck|2M log(|Ck|T )
)

E.1 Communication cost

The cumulative communication cost CT of our algorithm can be divided into two parts. The first is the
communication cost associated with the pure exploration and cluster estimation phase. During the pure
exploration phase, no clients communicate with the central server, so that the communication cost associated
with that phase is trivially 0. At the end of the exploration phase, all i ∈ [N ] clients share with server their
sufficient statistics VT0,i and bT0,i, each of which are d× d and d× 1 respectively. Therefore, the communication
cost of the cluster estimation is Ccluster est = N(d2 + d) = O(Nd2).

Next, we characterize the communication cost of the second phase, the federated clustered bandit phase. In our
communication protocol, for each cluster Ck, there will be a number of epochs separated by communication
rounds. Denote the length of an epoch as α, so that there can be at most ⌈Tα ⌉ epochs with length longer than α.
For an epoch with less than α time steps, similarly, we denote the first time step of this epoch as ts and the last as

te, i.e., te − ts < α. Therefore, log
det(Vte )
det(Vts )

> Dk

α . Following the same argument as in the regret proof, the number

of epochs with less than α time steps is at most ⌈RαDk
⌉. Then Cfed cluster(k) = |Ck| · (⌈Tα ⌉+ ⌈RαDk

⌉), because at the

end of each epoch, the synchronization round incurs 2|Ck| communication cost. We minimize Cfed cluster(k) by

choosing α =
√

DkT
R , so that Cfed cluster(k) = O(|Ck| ·

√

TR
D ). With our choice of Dk = T log |Ck|T

d|Ck| , we have

Cfed cluster(k) = O(|Ck| ·
√

TR
T log |Ck|T
d|Ck|

)

= O(|Ck| · d
√

|Ck|)

Combining our communication cost from our two phases together gives:

CT = O(Nd2) +
M
∑

k=1

O(d3|Ck|1.5)

F EMPIRICALLY ENHANCED ALGORITHM

In this section, we present the details of our proposed empirical enhancements to our HetoFedBandit algorithm,
where we perform re-clustering to improve the quality of estimated clusters of clients and replace the first-in-first-
out queue with a priority queue to help clusters where a shared model update can most rapidly reduce regret for
clients in that cluster. We describe the enhancements in 3.4, but present the complete enhanced algorithm in
Algorithm 4 and 5.

G ADDITIONAL EMPIRICAL ENHANCEMENT EVALUATION

In this work, we demonstrate the effectiveness of our empirical enhancements on two synthetic datasets. In
Section 4.2, we analyzed the performance of both HetoFedBandit and HetoFedBandit-E on a balanced
synthetic dataset that was generated following the procedure described in Section 4.2. In this section, we evaluate
our models on an imbalanced synthetic dataset to emphasize the distinct contributions of our priority queue and
data-dependent re-clustering enhancements.

Dataset In this imbalanced dataset, we deliberately vary the distribution of clients and the sizes of clusters. We
establish N = 50 clients and M = 13 ground-truth clusters. Instead of randomly assigning clients to clusters like
we did in Section 4.2, we manually assigned 26 clients to cluster C1, and the remaining 24 clients were assigned in
pairs to the remaining 12 cluster centers. After being assigned to a cluster center, we follow the same procedure
from Section 4.2 to generate the client parameters within ϵ of the cluster centers. For the other environment
settings, we used d = 25, K = 1000, γ = 0.85 and T = 2500.
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Algorithm 4 Data-Dependent Clustering

1: Re-initialize client graph G with no edges
2: for (i, j) ∈ N do

3: Server Computes υc = F−1(1− δ
N2 , df, ψ

c) where

4: ψc = ϵ2

σ2λmax(X
⊤
2 X2(X

⊤
1 X1 +X⊤

2 X2)
−1X⊤

1 X1)
5: if s(Ht,i,Ht,j) ≤ υc then
6: Add edge e(i, j) to G
7: end if

8: end for

9: Ĉ = {Ĉ1, Ĉ2, ...ĈM̂} = maximal cliques(G)
10: Set Ki = {k : i ∈ Ĉk} for each client i

11: Cluster communication thresholds D = [D1, ..., DM̂ ] where Dk = (T log |Ĉk|T )/(d|Ĉk|)

Algorithm 5 HetoFedBandit-E

1: Input: T , δ ∈ (0, 1), regularization parameter λ > 0
2: Initialize Clients: ∀i ∈ N : V0,i = 0d×d, b0,i = 0d,H0,i = ∅,∆V0,i = 0d×d,∆b0,i = 0d,∆ti,0 = 0, Ki = ∅
3: Initialize Server: Client graph G with N nodes;
4: Initialize empty Priority Queue Q;
5: for t = T0 + 1, ..., T do

6: for Client i ∈ N do

7: V t−1,i = Vt−1,i + λI, θ̂t−1,i = V
−1

t−1,i bt−1,i

8: Choose arm xt,i ∈ At,i by Equation 2 observe reward yt,i
9: Update agent i: Ht,i = Ht−1,i ∪ (xt,i, yt,i), Vt,i += xt,ix

⊤
t,i, bt,i += xt,iyt,i,

10: ∆Vt,i += xt,ix
⊤
t,i, ∆bt,i += xt,iyt,i,∆tt,i += 1

11: if ∆tt,i log(det(Vt,i)/ det(Vt,i −∆Vt,i)) ≥ Dk then

12: Empty Priority Queue Q;
13: Every client i ∈ N sends ∆Vt,j and ∆bt,j to server
14: Data Dependent Cluster Estimation (Algorithm 4)

15: Send collaboration request to server, which then adds Ĉk∀k ∈ Ki to Q
16: end if

17: end for

18: if Q is non-empty then

19: Server pops cluster Ĉk = argmaxĈk∈Ĉ
∑

i∈Ĉk
∆tt,i log(

det(Vt,i)
det(Vt,i−∆Vt,i)

) from Q

20: Server Computes: Vt,sync =
∑

j∈Ĉk
∆Vt,j , bt,sync =

∑

j∈Ĉk
∆bt,j

21: Each client in Ĉk receives Vt,sync and bt,sync from the server and updates their local model
22: Vt,i += Vt,sync −∆Vt,i, bt,i += bt,sync −∆bt,i, ∆Vt,i = 0, ∆bt,i = 0,∆tt,i = 0
23: end if

24: end for

Models In order to evaluate the contributions of each enhancement proposed in Section 3.4, we implemented two
additional enhanced algorithms of HetoFedBandit. In HetoFedBandit-PQ, we replace the server’s FIFO queue
with a priority queue that selects a cluster to collaborate with based on their determinant ratios. HetoFedBandit-
DR performs data-dependent clustering at each collaboration round. HetoFedBandit-E, as described in
Algorithm 5, is our fully enhanced algorithm, where both a priority queue and data-dependent clustering are
employed.

Results In Figure 4a, we conducted an empirical evaluation of the individual enhancements proposed in
Section 3.4. A comparison between HetoFedBandit-DR and HetoFedBandit demonstrates that the use of data-
dependent clustering significantly improved performance on our imbalanced synthetic dataset. By employing a
data-dependent clustering threshold, our algorithm facilitated greater collaboration among clients with similar
observation histories during the early rounds. Although this enhancement incurred additional communication
cost, the cost remained sub-linear and comparable to that of DisLinUCB.

Comparing HetoFedBandit with HetoFedBandit-PQ, our observations suggest that the utilization of a priority




