
Abstract — Simulation to Real-World Transfer allows 
affordable and fast training of learning-based robots for 
manipulation tasks using Deep Reinforcement Learning 
methods. Currently, Asymmetric Actor-Critic approaches are 
used for Sim2Real to reduce the rich idealized features in 
simulation to the accessible ones in the real world. However, the 
feature reduction from the simulation to the real world is 
conducted through an empirically defined one-step curtail. 
Small feature reduction does not sufficiently remove the actor’s 
features, which may still cause difficulty setting up the physical 
system, while large feature reduction may cause difficulty and 
inefficiency in training. To address this issue, we proposed 
Curriculum-based Sensing Reduction to enable the actor to 
start with the same rich feature space as the critic and then get 
rid of the hard-to-extract features step-by-step for higher 
training performance and better adaptation for real-world 
feature space. The reduced features are replaced with random 
signals from a Deep Random Generator to remove the 
dependency between the output and the removed features and 
avoid creating new dependencies. The methods are evaluated on 
the Allegro robot hand in a real-world in-hand manipulation 
task. The results show that our methods have faster training and 
higher task performance than baselines and can solve 
real-world tasks when selected tactile features are reduced. 

I. INTRODUCTION

Dexterous in-hand manipulation is one of the essential 
functions for robots in human-robot interaction [1], intelligent 
manufacturing [2], telemanipulation [3], and assisted living 
[4], but it is also hard to solve due to the high degrees of 
freedom (DoFs) in control space and the complex interaction 
with the object. Deep Reinforcement Learning (DRL) [5] has 
shown its abilities in recent research [6-8] to solve dexterous 
in-hand manipulation tasks thanks to its learning capability, 
which enables the robot to find a control policy by interacting 
with the environment through exploration and exploitation. 

Recent literature uses Simulation to Real-world (Sim2Real) 
[9] transfer, which trains the DRL policy in the simulated
environment and then transfers the policy to the real robot to
complete the same task. The benefit of using Sim2Real is that
the simulation platform can be easily customized to recreate
the real-world environment, reducing the implementation
effort. The training can be accelerated with multi-thread and
parallel training setups [6]. Most importantly, the simulation
environment can provide more explicit information [10] that is
hard to extract in the real world, such as tactile, depth, and
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thermal sensing, to expand the feature space of the DRL policy 
and increase task performance.  

Although the rich information in simulation can 
significantly improve policy performance, a side-effect is that 
setting up the same information space in the real world is 
challenging and expensive. The more information used in 
simulation, the more effort and cost to extract the information 
in the real world will be needed. For example, a single BioTac 
[11] tactile sensor attached to the fingertip for the Allegro
hand [12] costs $15k. In the OpenAI Gym simulation platform
[13], the Shadow hand can have 92 tactile sensors that cover
the whole hand [14], which is impractical in the real world. To
reduce implementation effort in the real world,
high-dimensional inputs like images are used [6], but the DRL
model needs extra convolutional layers to extract information
from the sparse data [15], increasing the data required and the
training burden. Further, high-dimensional data are usually
highly dependent on environmental conditions. When
transferred to the real world, any change to the light condition,
color, and camera setup will significantly affect the policy
performance [6].

To utilize extra information in the simulation, researchers 
developed the Asymmetric Actor-Critic (AAC) [16] method 
based on the conventional actor-critic method. AAC trains a 
critic to approximate the value function to predict the state 
information’s potential reward and the actor policy’s control 
output. When training AAC for Sim2Real in simulation, the 
critic can observe explicit information (e.g., joint, position, 
tactile) and help the training of the actor, who can only 
observe ambiguous information (e.g., image) to accommodate 
the real world. After the training, only the actor is transferred, 
requiring less setup effort in the real world. Although AAC 
allows the feature reduction from the rich idealized features in 
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Fig. 1. Compare current AAC with our CSR method. The AAC approach is a 

fixed, one-step feature reduction that cannot maximize the benefit from the 

rich feature space in the simulation environment. The proposed CSR method 
gradually reduces the feature space for the actor from the same as the critic to 

a smaller feature space that is suitable for the real world for better 

performance and easier implementation in the real world. 



simulation to the accessible ones in the real world, it still has 
significant shortcomings that lead to a non-adaptable actor-
critic feature gap and suboptimal actor performance. This 
shortcoming stems from the empirically defined one-step 
curtail that reduces features from the simulation to the real 
world [6-7]. Small feature reduction does not sufficiently 
remove the actor’s features, which still causes difficulty 
setting up the physical system, while large feature reduction 
may cause difficulty and inefficiency in policy training. Thus, 
in the current AAC, the actor needs to compromise to balance 
the feature extraction effort and the learning performance, 
resulting in the incapability of maximizing the benefit from 
the rich information in the simulation.  

In this work, our rationale is that the actor should start with 
the same rich feature space as the critic, then get rid of the 
hard-to-extract features step-by-step (Fig. 1). Such a strategy 
enables higher training performance with the rich information 
at the start of training and gradual adaptation for real-world 
feature space. To achieve this goal, there are two questions to 
answer. First, how to decide which features need to be reduced 
in each step? Second, how to reduce features during the 
training without sacrificing training stability? To address the 
first question, we proposed the Curriculum-based Sensing 
Reduction (CSR) method. To achieve state space reduction, 
CSR evaluates the importance of the target features during the 
early training period based on expert-defined feature 
importance measures and builds a sensing reduction 
curriculum that specifies which features are removed at each 
step, with an objective that avoids influence on the task 
performance. To address the second question, we developed 
the Deep Random Generator (DRG) using a deep random 
neural network [19] to generate random signals to replace the 
reduced feature signal. As the actor adapts to the random 
signal, DRG will remove the dependency between the output 
and the reduced features and avoid creating new dependencies. 
In summary, the contributions of this work are: 
1) Developed CSR to generate the stepwise feature reduction

curriculum based on the feature importance to help the
control policy gradually adapt to the limited feature space.

2) Developed the DRG method to generate random signals
that replace the signal from the reduced features, remove
the dependency between the output and the reduced
features, and avoid creating new dependencies.

3) Incorporated low dimensional input to reduce the model
size and implementation effort in the real world by
improving data explicitly and learning efficiency.

4) Validated CSR and DRG on the Nvidia Isaac Gym robotics
simulation platform in an in-hand manipulation task using
an Allegro hand. The trained policy is transferred to the
physical Allegro hand and tested in the task performance
in real-world experiments in multiple control scenarios.

II. RELATED WORK

A. Learning-based In-hand Manipulation
The rapid development of dexterous robotic hands has
provided hardware foundations, such as the Allegro hand [12],
an anthropomorphic robotic hand with 16 DoFs in which all
joints are controllable. Tactile sensors like temperature [20],
Hall effect [21], and electroactive polymeric [22] are
developed to improve the fidelity of the robot’s observation
space. With the readiness of robot hardware, researchers have
been putting efforts into developing generalizable and

adaptable control methods for in-hand manipulation 
applications. DRL methods have demonstrated their 
capability to handle in-hand manipulation tasks [6-8]. The 
OpenAI Gym [13] toolkit implements challenging in-hand 
manipulation tasks [23]. Nvidia released their Isaac Gym 
platform [24] that can train the DRL policy on GPU with 
much faster simulation and a more realistic environment 
thanks to the CUDA and PhysX engine.  

B. Sim2Real for In-hand Manipulation
Recent literature focuses on deploying the DRL agent trained
in simulation [37] to the physical robot hand to complete real-
world tasks. Domain randomization [25] is applied for in-
hand manipulation to sensing, actuation, and appearance to
improve the policy adaptability to noise and disturbance in the
real world. To solve the observation gap, the key technology
of Sim2Real for in-hand manipulation is AAC. The first AAC
for Sim2Real of the robot arm was proposed in [16], where
the critic observes explicit information to help the actor who
can only observe the image. AAC was then adopted by much
Sim2Real research, such as controlling a robot arm to open
drawers [25], manipulating deformable objects with a gripper
[26], and learning to crawl with a soft robot [27]. AAC has
been adopted for in-hand manipulation to control a Shadow
hand to solve a Rubik’s cube or rotate a block to a target pose
[7]. However, in the current AAC, the feature space of the
actor and critic is still pre-determined and fixed, researchers
must make compromises to balance between learning
efficiency and implementation effort in the real world.

C. Curriculum Learning for Improving Learning Efficiency
Recent research proposes the Curriculum Learning (CL)
method to improve the learning efficiency and performance
of RL training. CL trains the DRL policy on a series of easier
tasks toward the target tasks with a selected sequence [18]. In
[28], a reverse curriculum generation method was proposed to
gradually learn to reach the goal from a set of start states
increasingly far from the goal, which leads to efficient
training on goal-oriented tasks. A graph-based curriculum
representation was proposed in [29] to automatically decide
the fixed learning sequence of the objectives within the time
threshold. A curriculum was implemented in [30] to
continuously update the reward function during training.
Current CL approaches are used in task design and reward
design domains. These approaches inspired the authors to
adopt the gradual learning strategy and introduce it to the
feature space domain for the first time in in-hand
manipulation tasks.

III. METHODOLOGY

This section introduces the modeling of in-hand manipulation 
in III. A. The development of CSR is explained in III. B. The 
development of the DRG is explained in III. C.  

A. Modeling and Representation
In this work, the in-hand manipulation task is modeled as a
Markov Decision Process [31], which is described as a tuple
[𝐴, 𝑆, 𝑇, 𝑅, 𝛾], where 𝐴 is a set of actions, 𝑆 is a set of states.
and 𝑇(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)  is the state transition probability to
describe the probability of action 𝑎 in state 𝑠 at time 𝑡 leading 
to state 𝑠𝑡+1 as time 𝑡 + 1. In this work, the environment is
assumed deterministic, so 𝑇 = 1 . 𝑟 = 𝑅(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) is the
reward received after the transition from state 𝑠𝑡 to state 𝑠𝑡+1.
 𝛾 is a discount factor. A policy 𝜋(𝑠) specifies the action for 
state 𝑠 . A Proximal Policy Optimization algorithm [32] is 



adopted to solve the in-hand manipulation task by 
approximating the DRL policy with the objective: 

𝐿 = 𝐸̂𝑎𝑡, 𝑥𝑡∈𝐷[𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑥𝑡)𝐴̂𝑡] (1) 

The policy 𝜋𝜃  is represented with a Deep Neural Network as

𝜋(𝑠, 𝜃), where 𝜃 is the network parameters. 𝐴̂𝑡 is an estimator
of the advantage function at timestep 𝑡. 𝐷 = {𝑎𝑡 , 𝑥𝑡 , 𝑟} is the
set of past transitions. The observable state is denoted as 𝑥 ∈
𝑆 , including the positions, velocities, and torques of the 
robot’s joints, the Cartesian position, and rotation of the 
object represented by a quaternion as its linear and angular 
velocities, the target position, and the tactile information. As 
a validation test case, tactile information is the target to be 
removed in this work. The action and state spaces are 
normalized to -1 to 1 for stable training. 

B. Curriculum-based Sensing Reduction
Specifically, for in-hand manipulation tasks, explicit
observation enables both the actor and critic to increase the
task performance with low dimensional feature space,
including the information from the robot joints reading, object
position, and tactile sensors. Then, the easy-to-get features
remain, such as the joint information, which can be recorded
from encoders, and the object position, which can be tracked
with a camera. The hard-to-get features like tactile
information will be reduced stepwise during the training so
the actor can gradually adapt to the limited information and
maintain the performance. To generate a curriculum that helps
the actor adapt gradually, the first step is to identify which
features need to be reduced first and which need to be reduced
later. The reduction sequence is calculated by evaluating the
feature’s importance during the training. We define a criterion
based on feature’s impact on task performance. A feature is
deemed important when it greatly impacts task performance
when reduced, and vice versa. However, it is hard to directly
measure such impact by removing the features one by one
during the training. To address this issue, evaluation metrics
that relate to task performance based on expert interpretations
can be empirically defined. For example, possible metrics are
that the tactile sensors on the fingertips are more important
than those on the palm or the tactile sensors on the edge of the
hand are more important than the sensors on the inner side.

The online metrics that evaluate features during 
manipulation can be defined, which may give a more accurate 
comparison. This work uses an online metric based on the 
activation number for each tactile sensor. The sensor with a 
higher activation number is more important, which means the 
policy relied more on it when interacting with the object 
during the in-hand manipulation process. With the defined 
metric, the features can be ranked based on the importance 
level, and the curriculum can be generated to reduce the 
features starting from the least important one. The features set 
in the actor’s observation are denoted as 𝑥 ← {𝑓1, . . . , 𝑓𝑛 } ,
where 𝑛 is the number of features, and each 𝑓 is the sensor 
reading. The metric to evaluate the feature is calculated is 
denoted as 𝑔(𝑓). For a 𝑚 step curriculum 𝐶 = {𝑐1, … , 𝑐𝑚},
the features that will be reduced in each step are extracted by 

𝑐𝑚 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑖[𝑔(𝑓1), … , 𝑔(𝑓𝑛)]      ∀𝑖 ∈ 𝑐𝑚 (2)
where 𝑖 is the number of features removed for each step. In 

this work, 𝑖 and 𝑚 are empirically defined. During training, 

each step in the curriculum is triggered based on a 

performance threshold 𝜏, determined based on the cumulative 

episode reward. If the episode reward is higher than 𝜏, CSR 

will be activated to reduce features according to the 

importance measure.  

C. Deep Random Generator for Decremental Feature
Curriculum Learning

Once the CSR selects the target features, the next step is to 
reduce these features during the training. The challenge lies in 
reducing the number of features without altering the model 
structures or compromising the learning mechanism. Because 
the training of the DRL model approximates the non-linear 
relation between the input and output, where the output 
becomes bonded and dependent on the input as the model 
updates, thus, reducing the part of the input features will break 
the already learned dependency and affect the task 
performance. Literature [17] tried directly replacing the 
feature signal with a constant scalar value like zeros. However, 
we argue that this approach will not completely remove the 
dependency and may create a new dependency between the 
model output and the constant value, resulting in performance 
reduction. To address this issue, we develop DRG (Fig. 2) to 
generate random signals inside the DRL model to replace the 
reduced feature signal. DRG is inspired by network 
randomization [19] methods, originally developed to improve 
the generalizability of the DRL policies by randomizing the 
observation signal with a deep random layer while keeping all 
the feature information with no bias. DRG adopts the deep 
random layer approach to generate random signals that 
completely replace the reduced feature signals. DRG consists 
of two steps of signal randomization. First, the reduced 
features 𝑓 are randomly sampled from a normal distribution:  

𝑓~𝒩(𝛿, 𝜎2) (3)
where 𝒩 is the normal distribution, 𝛿 is the mean, and 𝜎 is the 
deviation. Combined with the remaining signals, the new 
randomized observation 𝑥̂𝑡 = 𝔽(𝑥𝑡 , 𝜑) will be processed with
a deep random layer, whose weights 𝜑 is initialized at the start 
of every training epoch with a Xavier normal distribution [36]: 

𝑃(𝜑) = 𝛼(𝜑 = 𝐼) + (1 − 𝛼)𝒩 (0; √
2

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡

) (4) 

where 𝐼  is an identity kernel, 𝛼 ∈ [0, 1]  is a weighting 

parameter, and 𝑛𝑖𝑛 , 𝑛𝑜𝑢𝑡are the number of input and output

channels. The Xavier normal distribution is used for 

randomization inside the DRL model because it maintains the 

variance of the input observation 𝑥 and the randomized input 

𝑥̂. Then the DRL objective function becomes: 

𝐿′ = 𝐸̂𝑎𝑡, 𝑥𝑡∈𝐷[𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝔽(𝑥𝑡 , 𝜑))𝐴̂𝑡] (5)

Fig. 2. An illustration of DRG. The blue layer is the deep random layer, which 
is initialized with a Xavier normal distribution. The red nodes are the target 
features, whose signal will be replaced by randomized signals to remove the 
existing input-output dependency and avoid creating new dependency. 



With the two-stepped randomization, we expected DRG to 

remove the dependency between the output and the reduced 

features and avoid creating new dependencies. Combined 

with CSR, the training process is shown in Algorithm 1.  

IV. EXPERIMENTS

A. Task Design
The CSR and DRG will be evaluated in a simulated
environment for training, and the policy will be transferred
and tested on the physical robot to conduct real-world in-hand
manipulation tasks. The Allegro hand environment uses 13
tactile sensors from the Nvidia Isaac Gym platform [24]. The
Allegro hand is a 4-finger robot hand with 16 DoFs. The in-
hand manipulation task (Fig. 3) is designed to rotate a block
placed on the Allegro hand’s palm. The task is manipulating
the block around the Z-axis to achieve the target position that
is randomly generated. Four tactile sensors are attached to
every finger, and one tactile sensor is on the palm. The same
domain randomization in [24] is applied to the simulation.
The observation space includes the joint position, velocity,
torque, object position, quaternion, target quaternion, and
tactile information. In the simulation, the observation is
generated from the simulation API. In the real world, the joint
information is extracted from the ROS node, and the object
position and rotation are captured with an Aruco code [33]
attached to the top of the object. A Logitech C930e webcam
is used to track the Aruco code and estimate the object
position and orientation at a speed of 30Hz. Kalman filter [34]
is used to denoise the signal due to the detection loss during
the manipulation process. The training target is achieving the
desired task performance while removing the tactile sensors
(Table I). This means the actor policy will start with 75
features in observation, then reduce to 62 features once the
training is finished.

During training, a goal is considered achieved if the 
difference in the rotation is less than 0.1 rad to avoid early 
convergance. During testing, the criterion changes to 0.4 rad 
to avoid unstable behavior due to strict evaluation. Such a 
setting helps the policy achieve higher performance. In the 
simulation, the environment is simulated at 60Hz to capture 
subtle dynamics. The actor controls the Allegro hand at 30Hz 
to accommodate the speed limit on the physical hand. The PC 
hardware for training includes an Intel 12900K, a Nvidia 
RTX3080ti, and 64 GB of RAM. Most hyperparameters are 
from [24], but with changes to the number of environments to 
8192, total epoch to 20000, and mini-batch size to 65536.  

B. Evaluation Metrics
Based on the benchmark results from Nvidia Isaac Gym, the
curriculum trigger threshold is set at 𝜏 = 2500 . The
following curriculums were designed for comparison. The
number of features that will be reduced at each step is
empirically defined, and the specific features will be selected
with the importance measure:

1) CSR (3 steps) + DRG: This curriculum contains three
steps. The first step reduces 4 tactile features. The second
step reduces 4 tactile features. The last step reduces 5
tactile features. The signal will be processed with DRG.

2) CSR (2 steps) + DRG: It contains two steps. The first step
reduces 7 tactile features. The second step reduces 6 tactile
features. The signal will be processed with DRG.

3) CSR (2 steps): The curriculum is the same as (2), but the
signal will be replaced with zeros instead of DRG.

4) Asymmetric Actor-Critic (one-step curtail): AAC is
considered a one-step curtail baseline where the actor
starts the training without any tactile features.

It should be noted that the final actor feature space for all 
configurations is the same for a fair comparison. The 
comparison focuses on one-step curtail vs. multi-step 
curriculums based on the same overall feature reduction. For 
multi-step curriculums, our method determines when and 
which to remove features. Comparing 1) and 2) evaluate how 
the number of steps will affect the training process. 
Comparing 2) to 3) evaluate the effectiveness of DRG. 
Comparing 1) to 4) evaluate CSR’s improvements to the 
traditional AAC. The following evaluation metrics are used: 
Learning efficiency: The learning efficiency in a specified 
period assesses how the curriculum improves the training.  
Task performance: The task performance is compared in 
both simulations and real-world for a comprehensive 
comparison. We consider the success rate as the evaluation 
metric. The success rate is the percentage of successful cases 
in a testing set with 100 trials. Each trial has randomly 
generated initial and target poses. The testing set is reused in 
all evaluations for a reproducible comparison. The episode is 
set to 10 seconds for easier implementation in the real world. 
During the manipulation process, a new target position will 
be chosen once the last target is achieved. The robot can keep 
rotating the object until the object drops, helping to reduce the 
number of manual resets in the real world.  

TABLE I. OBSERVATION SPACE AND TARGET TACTILE SENSORS 

(a) Simulation (b) Real World
Fig. 3. (a) The simulation setup and (b) Real-world setup. The tasks are to 
rotate the block around Z-axis in-hand to reach the target position that is 
randomly generated. A single top-down camera is used in real-world to 
detect the postion and rotation angle of the object. 

Algorithm 1 CSR 

Initialize critic 𝑄𝜇, actor 𝜇𝜃, replay buffer 𝐷, importance measure 𝑔,
performance threshold 𝜏, max-episode-length 𝑇, max-episode 𝑘. 
1:   for episode = 1 to 𝑘 do 
2:    Initialize state 𝑥, initialize curriculum index 𝑚 = 1 
3:    for 𝑡 = 1 to 𝑇 do 
4:   Select action 𝑎𝑡 = 𝜇𝜃(𝑥𝑡) + 𝒩
5:    Save transition (𝑥, 𝑎, 𝑟, 𝑥′) to 𝐷 
6:    Calculate 𝑔(𝑓) for all target sensors 
7:    end for 
8:    Sample transition (𝑥, 𝑎, 𝑟, 𝑥′) from 𝐷, calculate ∑ 𝑟 
9:    if ∑ 𝑟 > 𝜏 do 

10:  Generate curriculum 𝑐𝑚 with eq. (1) 
11:    Replace selected sensor signal with DRG  
12:    𝑚 = 𝑚 + 1 
13:     end if 
14:     Update actor 𝜇𝜃

15:     Update target network parameters 𝜃′ 
16: end for 



Manipulation behavior: How the trained policy manipulates 
the object is another critical factor that affects task 
performance in the real world. The preliminary test shows that 
the operation frequency is closely related to the manipulation 
behavior. Also, the physical hand usually cannot achieve the 
same operating frequency as the simulation due to the motor 
speed, collision, and stochastic dynamics. We will vary the 
control frequency in the real world to study how different 
operation speeds affect manipulation behaviors and task 
performance. In practice, we test the control frequency at the 
original speed (30Hz) and slowdown three times (10Hz) and 
six times (5Hz). We count the number of success cases during 
the 30s of consecutive rotations to measure the task 
performance under different control frequencies. The 
performance will be compared with the literature [6][35]. The 
manipulation behavior will be analyzed in the next section.  

V. RESULTS AND DISCUSSION

A. Training Process
The training process is shown in Fig. 4. Overall, the 2-step
CSR + DRG (blue) achieved the best performance than others,
proving the effectiveness of the proposed method. Comparing
the 2-step CSR + DRG (blue) and 3-step CSR + DRG (red),
both methods had similar learning efficiency at the start of the
training and triggered the feature reduction at a similar time.
After the first CSR step, 2-step CSR + DRG had a worse
performance reduction than 3-step CSR because it reduced
more features. Interestingly, 2-step CSR + DRG caught up
with the 3-step CSR + DRG and triggered the second
curriculum step at a similar time. The potential explanation is
that the feature importance measure correctly dropped the
unnecessary features, so 2-step CSR + DRG relied less on
those reduced features. After the second CSR step, the 2-step
CSR + DRG completed the feature reduction and removed all
tactile features. However, contrary to the first step, the 2-step
CSR + DRG had less performance reduction than the 3-step
CSR + DRG. A possible reason is that in late training, the 3-
step CSR + DRG depended more on the tactile features,
causing a higher impact on the performance at the second
curriculum step. For the same reason, at the third curriculum
step, the 3-step CSR + DRG had another performance
reduction and didn’t show an increase at the end of training.
It may catch up with further training, but we didn’t show it
since we want to compare the learning efficiency under the
same number of training epochs.

The 2-step CSR without DRG (yellow) spent more time 
catching up after the first curriculum step and struggled with 
low performance after the second curriculum step. This means 
the zeros in the replaced signal affect the performance and 
emphasize the importance of DRG. The baseline AAC also 
faced a performance drop in early training. A possible reason 
is over-fitting or local suboptimality. Then its performance 
slowly increased in later training but still had a lower 
performance at the end. A necessary interpretation is that the 
number of curriculum steps is one important factor affecting 
learning speed. Another important message is that the target 
features should be reduced at an appropriate time to benefit 
the policy training and avoid building strong dependencies. 

The reduced tactile features at each curriculum step are 
shown in Fig. 4. The remaining features are in orange, and the 
removed features are marked in blue. A shared phenomenon 
across all curricula is that the features close to the lower 
phalanx of the fingers are reduced first. The reason is that the 
policy learned a manipulation behavior that relies more on 
fingertips. The lower phalanx tactile features are triggered 
less than the middle and fingertip features and, therefore, less 
important. As a result, those features are reduced first.  

B. Performance Evaluation
Table II shows the results of task performance in both
simulation and real world. Corresponding to the training
results, CSR (2 steps) + DRG achieved the highest success
rate in all tests. The CSR (3 steps) + DRG came to the second
due to the impact on task performance after the third
curriculum step. Without DRG, CSR (2 steps) converged to a
sub-optimal policy, which performs poorly in all tests. The
baseline AAC performs similarly to the CSR (2 steps), but it
may catch up as its performance is still increasing at the end
of the training.

The control frequency significantly impacts the task 
performance. For example, although the CSR (2 steps) + DRG 
achieved a 96% success rate in simulation at 30Hz, the 
performance dropped to 32% when keeping the same control 
frequency in the real world. If we slow down the speed 3 times 
to 10Hz, the success rate (58%) gets higher than 30Hz. 
However, the performance (37%) worsens when we further 
slowdown to 5Hz. This behavior is consistent across all 
configurations. To explain why, we plot the actual (red) and 
the goal (blue) position for the first joint of the thumb under 
different frequencies in Fig. 5. Due to the different time scales, 

     (a)                                                                                                  (b) 
Fig. 4. (a) The 2-step CSR + DRG (blue) achieved the highest task performance in the designed training period. The 2-step CSR without DRG (yellow) has 
difficulty in increasing performance after the first curriculum step and dropped performance after the second step. The 3-step CSR + DRG (red) has a negative 
impact on the performance at the last curriculum step. The baseline AAC (purple) has a much lower task performance and less learning efficiency at the end 
of training. (b) The reduced tactile features in each curriculum step (AAC is not shown since its actor starts and ends with no tactile features). The reduced 
features are marked in blue. It shows that the sensors close to the lower phalanx of the fingers are reduced first because the policy mainly relies on the fingertips. 



we focus on the following ability: whether the actual joint 
matches the goal position. The results show that at 10Hz, the 
robot has the best following ability. At 30Hz, the command is 
too fast to follow because the speed of the servo motor is 
limited. At 5Hz, the robot cannot reach the target in time when 
the command is too far from the current position. This is 
because the control designed in the Allegro hand always tries 
to achieve the goal in a specified time for smooth motion, but 
it cannot reach the goal when it is too far. We expect the 
performance to improve by developing controllers with fine-
tuned acceleration curves, which will be studied in the future. 

Table III compares the CSR (2 steps) + DRG and the 
performance of similar tasks from the literature OpenAI [6] 
and NYU-RL [35]. OpenAI used the AAC method with one-
step curtail feature reduction from the critic to the actor. 
NYU-RL learned from human demonstrations with 
Demonstration Augmented Policy Gradient, where actor and 
critic have the same feature space. We compare the number 
of successful cases in 30 seconds. The supplemental video 
provides more visualized comparisons. It should be noted that 
OpenAI used images as the input, and the policy was trained 
with supercomputers with 100 years of experience data. 
NYU-RL used the same low-dimensional input as ours and 
was trained on similar computational resources. OpenAI’s 
task is to rotate the object along the XYZ axis and control a 
Shadow Hand with 24 degrees of freedom, which is more 
difficult than the Z axes rotation task with the Allegro in our 
approach and NYU-RL’s. The performance of NYU-RL in 
simulation is not shown because the data is not presented. The 
control frequencies are not strictly the same due to the 
different setups, but all reduced control frequencies when 
deploying to the real world. Due to the modeling discrepancy, 
the simulation cannot perfectly mimic the physical interaction 
and dynamics of the object in the real world. Thus, the task 
performance dropped after the transfer. The results show that 
CSR (2 steps) + DRG achieved more task success than 
OpenAI and NYU-RL, showing the promise of our method. 
OpenAI has a lower number of successes because its task is 
more difficult. NYU-RL has fewer successes because it learns 
from human demonstrations, which were intentionally slowed 
down to improve manipulation stability.  

C. Manipulation Behavior Analysis between Simulation and
Real World

This section uses the 10 Hz CSR (2 steps) + DRG as the case 
study to analyze the manipulation behaviors in simulation and 
the real world. Fig 6 shows the clockwise and 
counterclockwise rotations, depending on the shortest 
distance between the object’s current and target positions. The 
frames are picked to show the typical finger cooperation. In 
clockwise rotation (Fig. 6a), the robot tends to rotate with the 

thumb, index, and middle finger or with the index, middle, 
and ring fingers. In counterclockwise rotation, the index and 
middle fingers apply the periodic rotation movement, and the 
thumb and the ring finger prevent the object from falling. 
Interestingly, we notice that different rotation patterns have 
different performance reductions when transferred to the real 
world. Generally, clockwise is more difficult than 
counterclockwise. The reason is that the Allegro hand in the 
experiment is a right hand, which is naturally better in the 
counterclockwise rotation. In the clockwise direction, the 
rotation relies on the impulse from the edge fingers (thumb or 
ring, Fig, 6a), making the object freely rotate on the palm, but 
is unstable compared to the counterclockwise rotation (Fig, 
6b), where the index finger and middle finger will adjust the 
object’s position to prepare it for the next impulse. In 
summary, robot hand structures and different manipulation 
behaviors will affect the performance when transferring the 
policy from the simulation to the real world, which is worth 
further study in the future.  

VI. CONCLUSION

This work incorporated the low-dimensional, rich feature 
space for policy training in simulation for in-hand 
manipulation tasks. We proposed the CSR method to generate 
a curriculum for the actor to discard the undesired features in 
the real world for convenient policy transfer. We developed 
the DRG to remove the existing policy output and input 
dependencies and avoid creating new ones by generating 
random signals to replace the reduced feature signals with a 
deep random network. The simulation and real-world 
evaluations prove the effectiveness of the proposed method. 
Our future work will study the potential of the proposed 
methods in different in-hand manipulation tasks and further 
refine the methods with automatic curriculum generation.  

TABLE III. AVERAGE NUMBER OF SUCCESSFUL TASKS IN 30 SECONDS 

TABLE II. TASK SUCCESS RATE OVER 100 TRIALS 

(a) Clockwise rotation

(b) Counterclockwise rotation
Fig. 6. (a) Clockwise rotation (b) Counterclockwise rotation.  

Fig. 5. The following ability of the first joint of the thumb in control 
frequencies (a) 30Hz, (b) 10Hz, and (c) 5Hz. The robot has the best 
following ability in 10Hz. In 30Hz, the command is too fast to follow because 
the speed of the servo motor is limited. In 5Hz, the command is too far from 
the current position, so the robot cannot reach the target in time. 
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