
Abstract — Simulation to Real-World Transfer allows
affordable and fast training of learning-based robots for
manipulation tasks using Deep Reinforcement Learning
methods. Currently, Asymmetric Actor-Critic approaches are
used for Sim2Real to reduce the rich idealized features in
simulation to the accessible ones in the real world. However, the
feature reduction from the simulation to the real world is
conducted through an empirically defined one-step curtail.
Small feature reduction does not sufficiently remove the actor’s
features, which may still cause difficulty setting up the physical
system, while large feature reduction may cause difficulty and
inefficiency in training. To address this issue, we proposed
Curriculum-based Sensing Reduction to enable the actor to
start with the same rich feature space as the critic and then get
rid of the hard-to-extract features step-by-step for higher
training performance and better adaptation for real-world
feature space. The reduced features are replaced with random
signals from a Deep Random Generator to remove the
dependency between the output and the removed features and
avoid creating new dependencies. The methods are evaluated on
the Allegro robot hand in a real-world in-hand manipulation
task. The results show that our methods have faster training and
higher task performance than baselines and can solve
real-world tasks when selected tactile features are reduced.

I. INTRODUCTION

Dexterous in-hand manipulation is one of the essential
functions for robots in human-robot interaction [1], intelligent
manufacturing [2], telemanipulation [3], and assisted living
[4], but it is also hard to solve due to the high degrees of
freedom (DoFs) in control space and the complex interaction
with the object. Deep Reinforcement Learning (DRL) [5] has
shown its abilities in recent research [6-8] to solve dexterous
in-hand manipulation tasks thanks to its learning capability,
which enables the robot to find a control policy by interacting
with the environment through exploration and exploitation.

Recent literature uses Simulation to Real-world (Sim2Real)
[9] transfer, which trains the DRL policy in the simulated
environment and then transfers the policy to the real robot to
complete the same task. The benefit of using Sim2Real is that
the simulation platform can be easily customized to recreate
the real-world environment, reducing the implementation
effort. The training can be accelerated with multi-thread and
parallel training setups [6]. Most importantly, the simulation
environment can provide more explicit information [10] that is
hard to extract in the real world, such as tactile, depth, and

This material is based on work supported by the US NSF under grant
1652454 and 2114464.

#L. Tao is with Oklahoma State University, 563 Engineering North,

Stillwater, OK, 74075, USA (email: lingfeng.tao@okstate.edu).
^J. Zhang is with the GAC R&D Center Silicon Valley, Sunnyvale, CA

94085, USA (e-mail: zhangjiucai@gmail.com).

*Q. Zheng, and X. Zhang are with Colorado School of Mines, Intelligent
Robotics and Systems Lab, 1500 Illinois St, Golden, CO 80401, USA

(e-mail: zheng@mines.edu, xlzhang@mines.edu).

thermal sensing, to expand the feature space of the DRL policy
and increase task performance.

Although the rich information in simulation can
significantly improve policy performance, a side-effect is that
setting up the same information space in the real world is
challenging and expensive. The more information used in
simulation, the more effort and cost to extract the information
in the real world will be needed. For example, a single BioTac
[11] tactile sensor attached to the fingertip for the Allegro
hand [12] costs $15k. In the OpenAI Gym simulation platform
[13], the Shadow hand can have 92 tactile sensors that cover
the whole hand [14], which is impractical in the real world. To
reduce implementation effort in the real world,
high-dimensional inputs like images are used [6], but the DRL
model needs extra convolutional layers to extract information
from the sparse data [15], increasing the data required and the
training burden. Further, high-dimensional data are usually
highly dependent on environmental conditions. When
transferred to the real world, any change to the light condition,
color, and camera setup will significantly affect the policy
performance [6].

To utilize extra information in the simulation, researchers
developed the Asymmetric Actor-Critic (AAC) [16] method
based on the conventional actor-critic method. AAC trains a
critic to approximate the value function to predict the state
information’s potential reward and the actor policy’s control
output. When training AAC for Sim2Real in simulation, the
critic can observe explicit information (e.g., joint, position,
tactile) and help the training of the actor, who can only
observe ambiguous information (e.g., image) to accommodate
the real world. After the training, only the actor is transferred,
requiring less setup effort in the real world. Although AAC
allows the feature reduction from the rich idealized features in

Curriculum-based Sensing Reduction in Simulation to Real-World

Transfer for In-hand Manipulation

Lingfeng Tao#, Member, IEEE, Jiucai Zhang^,

Qiaojie Zheng*, and Xiaoli Zhang*, Senior Member, IEEE

Fig. 1. Compare current AAC with our CSR method. The AAC approach is a

fixed, one-step feature reduction that cannot maximize the benefit from the

rich feature space in the simulation environment. The proposed CSR method
gradually reduces the feature space for the actor from the same as the critic to

a smaller feature space that is suitable for the real world for better

performance and easier implementation in the real world.

simulation to the accessible ones in the real world, it still has
significant shortcomings that lead to a non-adaptable actor-
critic feature gap and suboptimal actor performance. This
shortcoming stems from the empirically defined one-step
curtail that reduces features from the simulation to the real
world [6-7]. Small feature reduction does not sufficiently
remove the actor’s features, which still causes difficulty
setting up the physical system, while large feature reduction
may cause difficulty and inefficiency in policy training. Thus,
in the current AAC, the actor needs to compromise to balance
the feature extraction effort and the learning performance,
resulting in the incapability of maximizing the benefit from
the rich information in the simulation.

In this work, our rationale is that the actor should start with
the same rich feature space as the critic, then get rid of the
hard-to-extract features step-by-step (Fig. 1). Such a strategy
enables higher training performance with the rich information
at the start of training and gradual adaptation for real-world
feature space. To achieve this goal, there are two questions to
answer. First, how to decide which features need to be reduced
in each step? Second, how to reduce features during the
training without sacrificing training stability? To address the
first question, we proposed the Curriculum-based Sensing
Reduction (CSR) method. To achieve state space reduction,
CSR evaluates the importance of the target features during the
early training period based on expert-defined feature
importance measures and builds a sensing reduction
curriculum that specifies which features are removed at each
step, with an objective that avoids influence on the task
performance. To address the second question, we developed
the Deep Random Generator (DRG) using a deep random
neural network [19] to generate random signals to replace the
reduced feature signal. As the actor adapts to the random
signal, DRG will remove the dependency between the output
and the reduced features and avoid creating new dependencies.
In summary, the contributions of this work are:
1) Developed CSR to generate the stepwise feature reduction

curriculum based on the feature importance to help the
control policy gradually adapt to the limited feature space.

2) Developed the DRG method to generate random signals
that replace the signal from the reduced features, remove
the dependency between the output and the reduced
features, and avoid creating new dependencies.

3) Incorporated low dimensional input to reduce the model
size and implementation effort in the real world by
improving data explicitly and learning efficiency.

4) Validated CSR and DRG on the Nvidia Isaac Gym robotics
simulation platform in an in-hand manipulation task using
an Allegro hand. The trained policy is transferred to the
physical Allegro hand and tested in the task performance
in real-world experiments in multiple control scenarios.

II. RELATED WORK

A. Learning-based In-hand Manipulation
The rapid development of dexterous robotic hands has
provided hardware foundations, such as the Allegro hand [12],
an anthropomorphic robotic hand with 16 DoFs in which all
joints are controllable. Tactile sensors like temperature [20],
Hall effect [21], and electroactive polymeric [22] are
developed to improve the fidelity of the robot’s observation
space. With the readiness of robot hardware, researchers have
been putting efforts into developing generalizable and

adaptable control methods for in-hand manipulation
applications. DRL methods have demonstrated their
capability to handle in-hand manipulation tasks [6-8]. The
OpenAI Gym [13] toolkit implements challenging in-hand
manipulation tasks [23]. Nvidia released their Isaac Gym
platform [24] that can train the DRL policy on GPU with
much faster simulation and a more realistic environment
thanks to the CUDA and PhysX engine.

B. Sim2Real for In-hand Manipulation
Recent literature focuses on deploying the DRL agent trained
in simulation [37] to the physical robot hand to complete real-
world tasks. Domain randomization [25] is applied for in-
hand manipulation to sensing, actuation, and appearance to
improve the policy adaptability to noise and disturbance in the
real world. To solve the observation gap, the key technology
of Sim2Real for in-hand manipulation is AAC. The first AAC
for Sim2Real of the robot arm was proposed in [16], where
the critic observes explicit information to help the actor who
can only observe the image. AAC was then adopted by much
Sim2Real research, such as controlling a robot arm to open
drawers [25], manipulating deformable objects with a gripper
[26], and learning to crawl with a soft robot [27]. AAC has
been adopted for in-hand manipulation to control a Shadow
hand to solve a Rubik’s cube or rotate a block to a target pose
[7]. However, in the current AAC, the feature space of the
actor and critic is still pre-determined and fixed, researchers
must make compromises to balance between learning
efficiency and implementation effort in the real world.

C. Curriculum Learning for Improving Learning Efficiency
Recent research proposes the Curriculum Learning (CL)
method to improve the learning efficiency and performance
of RL training. CL trains the DRL policy on a series of easier
tasks toward the target tasks with a selected sequence [18]. In
[28], a reverse curriculum generation method was proposed to
gradually learn to reach the goal from a set of start states
increasingly far from the goal, which leads to efficient
training on goal-oriented tasks. A graph-based curriculum
representation was proposed in [29] to automatically decide
the fixed learning sequence of the objectives within the time
threshold. A curriculum was implemented in [30] to
continuously update the reward function during training.
Current CL approaches are used in task design and reward
design domains. These approaches inspired the authors to
adopt the gradual learning strategy and introduce it to the
feature space domain for the first time in in-hand
manipulation tasks.

III. METHODOLOGY

This section introduces the modeling of in-hand manipulation
in III. A. The development of CSR is explained in III. B. The
development of the DRG is explained in III. C.

A. Modeling and Representation
In this work, the in-hand manipulation task is modeled as a
Markov Decision Process [31], which is described as a tuple
[𝐴, 𝑆, 𝑇, 𝑅, 𝛾], where 𝐴 is a set of actions, 𝑆 is a set of states.
and 𝑇(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) is the state transition probability to
describe the probability of action 𝑎 in state 𝑠 at time 𝑡 leading
to state 𝑠𝑡+1 as time 𝑡 + 1. In this work, the environment is
assumed deterministic, so 𝑇 = 1 . 𝑟 = 𝑅(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) is the
reward received after the transition from state 𝑠𝑡 to state 𝑠𝑡+1.
 𝛾 is a discount factor. A policy 𝜋(𝑠) specifies the action for
state 𝑠 . A Proximal Policy Optimization algorithm [32] is

adopted to solve the in-hand manipulation task by
approximating the DRL policy with the objective:

𝐿 = 𝐸̂𝑎𝑡, 𝑥𝑡∈𝐷[𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑥𝑡)𝐴̂𝑡] (1)

The policy 𝜋𝜃 is represented with a Deep Neural Network as

𝜋(𝑠, 𝜃), where 𝜃 is the network parameters. 𝐴̂𝑡 is an estimator
of the advantage function at timestep 𝑡. 𝐷 = {𝑎𝑡 , 𝑥𝑡 , 𝑟} is the
set of past transitions. The observable state is denoted as 𝑥 ∈
𝑆 , including the positions, velocities, and torques of the
robot’s joints, the Cartesian position, and rotation of the
object represented by a quaternion as its linear and angular
velocities, the target position, and the tactile information. As
a validation test case, tactile information is the target to be
removed in this work. The action and state spaces are
normalized to -1 to 1 for stable training.

B. Curriculum-based Sensing Reduction
Specifically, for in-hand manipulation tasks, explicit
observation enables both the actor and critic to increase the
task performance with low dimensional feature space,
including the information from the robot joints reading, object
position, and tactile sensors. Then, the easy-to-get features
remain, such as the joint information, which can be recorded
from encoders, and the object position, which can be tracked
with a camera. The hard-to-get features like tactile
information will be reduced stepwise during the training so
the actor can gradually adapt to the limited information and
maintain the performance. To generate a curriculum that helps
the actor adapt gradually, the first step is to identify which
features need to be reduced first and which need to be reduced
later. The reduction sequence is calculated by evaluating the
feature’s importance during the training. We define a criterion
based on feature’s impact on task performance. A feature is
deemed important when it greatly impacts task performance
when reduced, and vice versa. However, it is hard to directly
measure such impact by removing the features one by one
during the training. To address this issue, evaluation metrics
that relate to task performance based on expert interpretations
can be empirically defined. For example, possible metrics are
that the tactile sensors on the fingertips are more important
than those on the palm or the tactile sensors on the edge of the
hand are more important than the sensors on the inner side.

The online metrics that evaluate features during
manipulation can be defined, which may give a more accurate
comparison. This work uses an online metric based on the
activation number for each tactile sensor. The sensor with a
higher activation number is more important, which means the
policy relied more on it when interacting with the object
during the in-hand manipulation process. With the defined
metric, the features can be ranked based on the importance
level, and the curriculum can be generated to reduce the
features starting from the least important one. The features set
in the actor’s observation are denoted as 𝑥 ← {𝑓1, . . . , 𝑓𝑛 } ,
where 𝑛 is the number of features, and each 𝑓 is the sensor
reading. The metric to evaluate the feature is calculated is
denoted as 𝑔(𝑓). For a 𝑚 step curriculum 𝐶 = {𝑐1, … , 𝑐𝑚},
the features that will be reduced in each step are extracted by

𝑐𝑚 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑖[𝑔(𝑓1), … , 𝑔(𝑓𝑛)] ∀𝑖 ∈ 𝑐𝑚 (2)
where 𝑖 is the number of features removed for each step. In

this work, 𝑖 and 𝑚 are empirically defined. During training,

each step in the curriculum is triggered based on a

performance threshold 𝜏, determined based on the cumulative

episode reward. If the episode reward is higher than 𝜏, CSR

will be activated to reduce features according to the

importance measure.

C. Deep Random Generator for Decremental Feature
Curriculum Learning

Once the CSR selects the target features, the next step is to
reduce these features during the training. The challenge lies in
reducing the number of features without altering the model
structures or compromising the learning mechanism. Because
the training of the DRL model approximates the non-linear
relation between the input and output, where the output
becomes bonded and dependent on the input as the model
updates, thus, reducing the part of the input features will break
the already learned dependency and affect the task
performance. Literature [17] tried directly replacing the
feature signal with a constant scalar value like zeros. However,
we argue that this approach will not completely remove the
dependency and may create a new dependency between the
model output and the constant value, resulting in performance
reduction. To address this issue, we develop DRG (Fig. 2) to
generate random signals inside the DRL model to replace the
reduced feature signal. DRG is inspired by network
randomization [19] methods, originally developed to improve
the generalizability of the DRL policies by randomizing the
observation signal with a deep random layer while keeping all
the feature information with no bias. DRG adopts the deep
random layer approach to generate random signals that
completely replace the reduced feature signals. DRG consists
of two steps of signal randomization. First, the reduced
features 𝑓 are randomly sampled from a normal distribution:

𝑓~𝒩(𝛿, 𝜎2) (3)
where 𝒩 is the normal distribution, 𝛿 is the mean, and 𝜎 is the
deviation. Combined with the remaining signals, the new
randomized observation 𝑥̂𝑡 = 𝔽(𝑥𝑡 , 𝜑) will be processed with
a deep random layer, whose weights 𝜑 is initialized at the start
of every training epoch with a Xavier normal distribution [36]:

𝑃(𝜑) = 𝛼(𝜑 = 𝐼) + (1 − 𝛼)𝒩 (0; √
2

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡

) (4)

where 𝐼 is an identity kernel, 𝛼 ∈ [0, 1] is a weighting

parameter, and 𝑛𝑖𝑛 , 𝑛𝑜𝑢𝑡are the number of input and output

channels. The Xavier normal distribution is used for

randomization inside the DRL model because it maintains the

variance of the input observation 𝑥 and the randomized input

𝑥̂. Then the DRL objective function becomes:

𝐿′ = 𝐸̂𝑎𝑡, 𝑥𝑡∈𝐷[𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝔽(𝑥𝑡 , 𝜑))𝐴̂𝑡] (5)

Fig. 2. An illustration of DRG. The blue layer is the deep random layer, which
is initialized with a Xavier normal distribution. The red nodes are the target
features, whose signal will be replaced by randomized signals to remove the
existing input-output dependency and avoid creating new dependency.

With the two-stepped randomization, we expected DRG to

remove the dependency between the output and the reduced

features and avoid creating new dependencies. Combined

with CSR, the training process is shown in Algorithm 1.

IV. EXPERIMENTS

A. Task Design
The CSR and DRG will be evaluated in a simulated
environment for training, and the policy will be transferred
and tested on the physical robot to conduct real-world in-hand
manipulation tasks. The Allegro hand environment uses 13
tactile sensors from the Nvidia Isaac Gym platform [24]. The
Allegro hand is a 4-finger robot hand with 16 DoFs. The in-
hand manipulation task (Fig. 3) is designed to rotate a block
placed on the Allegro hand’s palm. The task is manipulating
the block around the Z-axis to achieve the target position that
is randomly generated. Four tactile sensors are attached to
every finger, and one tactile sensor is on the palm. The same
domain randomization in [24] is applied to the simulation.
The observation space includes the joint position, velocity,
torque, object position, quaternion, target quaternion, and
tactile information. In the simulation, the observation is
generated from the simulation API. In the real world, the joint
information is extracted from the ROS node, and the object
position and rotation are captured with an Aruco code [33]
attached to the top of the object. A Logitech C930e webcam
is used to track the Aruco code and estimate the object
position and orientation at a speed of 30Hz. Kalman filter [34]
is used to denoise the signal due to the detection loss during
the manipulation process. The training target is achieving the
desired task performance while removing the tactile sensors
(Table I). This means the actor policy will start with 75
features in observation, then reduce to 62 features once the
training is finished.

During training, a goal is considered achieved if the
difference in the rotation is less than 0.1 rad to avoid early
convergance. During testing, the criterion changes to 0.4 rad
to avoid unstable behavior due to strict evaluation. Such a
setting helps the policy achieve higher performance. In the
simulation, the environment is simulated at 60Hz to capture
subtle dynamics. The actor controls the Allegro hand at 30Hz
to accommodate the speed limit on the physical hand. The PC
hardware for training includes an Intel 12900K, a Nvidia
RTX3080ti, and 64 GB of RAM. Most hyperparameters are
from [24], but with changes to the number of environments to
8192, total epoch to 20000, and mini-batch size to 65536.

B. Evaluation Metrics
Based on the benchmark results from Nvidia Isaac Gym, the
curriculum trigger threshold is set at 𝜏 = 2500 . The
following curriculums were designed for comparison. The
number of features that will be reduced at each step is
empirically defined, and the specific features will be selected
with the importance measure:

1) CSR (3 steps) + DRG: This curriculum contains three
steps. The first step reduces 4 tactile features. The second
step reduces 4 tactile features. The last step reduces 5
tactile features. The signal will be processed with DRG.

2) CSR (2 steps) + DRG: It contains two steps. The first step
reduces 7 tactile features. The second step reduces 6 tactile
features. The signal will be processed with DRG.

3) CSR (2 steps): The curriculum is the same as (2), but the
signal will be replaced with zeros instead of DRG.

4) Asymmetric Actor-Critic (one-step curtail): AAC is
considered a one-step curtail baseline where the actor
starts the training without any tactile features.

It should be noted that the final actor feature space for all
configurations is the same for a fair comparison. The
comparison focuses on one-step curtail vs. multi-step
curriculums based on the same overall feature reduction. For
multi-step curriculums, our method determines when and
which to remove features. Comparing 1) and 2) evaluate how
the number of steps will affect the training process.
Comparing 2) to 3) evaluate the effectiveness of DRG.
Comparing 1) to 4) evaluate CSR’s improvements to the
traditional AAC. The following evaluation metrics are used:
Learning efficiency: The learning efficiency in a specified
period assesses how the curriculum improves the training.
Task performance: The task performance is compared in
both simulations and real-world for a comprehensive
comparison. We consider the success rate as the evaluation
metric. The success rate is the percentage of successful cases
in a testing set with 100 trials. Each trial has randomly
generated initial and target poses. The testing set is reused in
all evaluations for a reproducible comparison. The episode is
set to 10 seconds for easier implementation in the real world.
During the manipulation process, a new target position will
be chosen once the last target is achieved. The robot can keep
rotating the object until the object drops, helping to reduce the
number of manual resets in the real world.

TABLE I. OBSERVATION SPACE AND TARGET TACTILE SENSORS

(a) Simulation (b) Real World
Fig. 3. (a) The simulation setup and (b) Real-world setup. The tasks are to
rotate the block around Z-axis in-hand to reach the target position that is
randomly generated. A single top-down camera is used in real-world to
detect the postion and rotation angle of the object.

Algorithm 1 CSR

Initialize critic 𝑄𝜇, actor 𝜇𝜃, replay buffer 𝐷, importance measure 𝑔,
performance threshold 𝜏, max-episode-length 𝑇, max-episode 𝑘.
1: for episode = 1 to 𝑘 do
2: Initialize state 𝑥, initialize curriculum index 𝑚 = 1
3: for 𝑡 = 1 to 𝑇 do
4: Select action 𝑎𝑡 = 𝜇𝜃(𝑥𝑡) + 𝒩
5: Save transition (𝑥, 𝑎, 𝑟, 𝑥′) to 𝐷
6: Calculate 𝑔(𝑓) for all target sensors
7: end for
8: Sample transition (𝑥, 𝑎, 𝑟, 𝑥′) from 𝐷, calculate ∑ 𝑟
9: if ∑ 𝑟 > 𝜏 do

10: Generate curriculum 𝑐𝑚 with eq. (1)
11: Replace selected sensor signal with DRG
12: 𝑚 = 𝑚 + 1
13: end if
14: Update actor 𝜇𝜃

15: Update target network parameters 𝜃′
16: end for

Manipulation behavior: How the trained policy manipulates
the object is another critical factor that affects task
performance in the real world. The preliminary test shows that
the operation frequency is closely related to the manipulation
behavior. Also, the physical hand usually cannot achieve the
same operating frequency as the simulation due to the motor
speed, collision, and stochastic dynamics. We will vary the
control frequency in the real world to study how different
operation speeds affect manipulation behaviors and task
performance. In practice, we test the control frequency at the
original speed (30Hz) and slowdown three times (10Hz) and
six times (5Hz). We count the number of success cases during
the 30s of consecutive rotations to measure the task
performance under different control frequencies. The
performance will be compared with the literature [6][35]. The
manipulation behavior will be analyzed in the next section.

V. RESULTS AND DISCUSSION

A. Training Process
The training process is shown in Fig. 4. Overall, the 2-step
CSR + DRG (blue) achieved the best performance than others,
proving the effectiveness of the proposed method. Comparing
the 2-step CSR + DRG (blue) and 3-step CSR + DRG (red),
both methods had similar learning efficiency at the start of the
training and triggered the feature reduction at a similar time.
After the first CSR step, 2-step CSR + DRG had a worse
performance reduction than 3-step CSR because it reduced
more features. Interestingly, 2-step CSR + DRG caught up
with the 3-step CSR + DRG and triggered the second
curriculum step at a similar time. The potential explanation is
that the feature importance measure correctly dropped the
unnecessary features, so 2-step CSR + DRG relied less on
those reduced features. After the second CSR step, the 2-step
CSR + DRG completed the feature reduction and removed all
tactile features. However, contrary to the first step, the 2-step
CSR + DRG had less performance reduction than the 3-step
CSR + DRG. A possible reason is that in late training, the 3-
step CSR + DRG depended more on the tactile features,
causing a higher impact on the performance at the second
curriculum step. For the same reason, at the third curriculum
step, the 3-step CSR + DRG had another performance
reduction and didn’t show an increase at the end of training.
It may catch up with further training, but we didn’t show it
since we want to compare the learning efficiency under the
same number of training epochs.

The 2-step CSR without DRG (yellow) spent more time
catching up after the first curriculum step and struggled with
low performance after the second curriculum step. This means
the zeros in the replaced signal affect the performance and
emphasize the importance of DRG. The baseline AAC also
faced a performance drop in early training. A possible reason
is over-fitting or local suboptimality. Then its performance
slowly increased in later training but still had a lower
performance at the end. A necessary interpretation is that the
number of curriculum steps is one important factor affecting
learning speed. Another important message is that the target
features should be reduced at an appropriate time to benefit
the policy training and avoid building strong dependencies.

The reduced tactile features at each curriculum step are
shown in Fig. 4. The remaining features are in orange, and the
removed features are marked in blue. A shared phenomenon
across all curricula is that the features close to the lower
phalanx of the fingers are reduced first. The reason is that the
policy learned a manipulation behavior that relies more on
fingertips. The lower phalanx tactile features are triggered
less than the middle and fingertip features and, therefore, less
important. As a result, those features are reduced first.

B. Performance Evaluation
Table II shows the results of task performance in both
simulation and real world. Corresponding to the training
results, CSR (2 steps) + DRG achieved the highest success
rate in all tests. The CSR (3 steps) + DRG came to the second
due to the impact on task performance after the third
curriculum step. Without DRG, CSR (2 steps) converged to a
sub-optimal policy, which performs poorly in all tests. The
baseline AAC performs similarly to the CSR (2 steps), but it
may catch up as its performance is still increasing at the end
of the training.

The control frequency significantly impacts the task
performance. For example, although the CSR (2 steps) + DRG
achieved a 96% success rate in simulation at 30Hz, the
performance dropped to 32% when keeping the same control
frequency in the real world. If we slow down the speed 3 times
to 10Hz, the success rate (58%) gets higher than 30Hz.
However, the performance (37%) worsens when we further
slowdown to 5Hz. This behavior is consistent across all
configurations. To explain why, we plot the actual (red) and
the goal (blue) position for the first joint of the thumb under
different frequencies in Fig. 5. Due to the different time scales,

 (a) (b)
Fig. 4. (a) The 2-step CSR + DRG (blue) achieved the highest task performance in the designed training period. The 2-step CSR without DRG (yellow) has
difficulty in increasing performance after the first curriculum step and dropped performance after the second step. The 3-step CSR + DRG (red) has a negative
impact on the performance at the last curriculum step. The baseline AAC (purple) has a much lower task performance and less learning efficiency at the end
of training. (b) The reduced tactile features in each curriculum step (AAC is not shown since its actor starts and ends with no tactile features). The reduced
features are marked in blue. It shows that the sensors close to the lower phalanx of the fingers are reduced first because the policy mainly relies on the fingertips.

we focus on the following ability: whether the actual joint
matches the goal position. The results show that at 10Hz, the
robot has the best following ability. At 30Hz, the command is
too fast to follow because the speed of the servo motor is
limited. At 5Hz, the robot cannot reach the target in time when
the command is too far from the current position. This is
because the control designed in the Allegro hand always tries
to achieve the goal in a specified time for smooth motion, but
it cannot reach the goal when it is too far. We expect the
performance to improve by developing controllers with fine-
tuned acceleration curves, which will be studied in the future.

Table III compares the CSR (2 steps) + DRG and the
performance of similar tasks from the literature OpenAI [6]
and NYU-RL [35]. OpenAI used the AAC method with one-
step curtail feature reduction from the critic to the actor.
NYU-RL learned from human demonstrations with
Demonstration Augmented Policy Gradient, where actor and
critic have the same feature space. We compare the number
of successful cases in 30 seconds. The supplemental video
provides more visualized comparisons. It should be noted that
OpenAI used images as the input, and the policy was trained
with supercomputers with 100 years of experience data.
NYU-RL used the same low-dimensional input as ours and
was trained on similar computational resources. OpenAI’s
task is to rotate the object along the XYZ axis and control a
Shadow Hand with 24 degrees of freedom, which is more
difficult than the Z axes rotation task with the Allegro in our
approach and NYU-RL’s. The performance of NYU-RL in
simulation is not shown because the data is not presented. The
control frequencies are not strictly the same due to the
different setups, but all reduced control frequencies when
deploying to the real world. Due to the modeling discrepancy,
the simulation cannot perfectly mimic the physical interaction
and dynamics of the object in the real world. Thus, the task
performance dropped after the transfer. The results show that
CSR (2 steps) + DRG achieved more task success than
OpenAI and NYU-RL, showing the promise of our method.
OpenAI has a lower number of successes because its task is
more difficult. NYU-RL has fewer successes because it learns
from human demonstrations, which were intentionally slowed
down to improve manipulation stability.

C. Manipulation Behavior Analysis between Simulation and
Real World

This section uses the 10 Hz CSR (2 steps) + DRG as the case
study to analyze the manipulation behaviors in simulation and
the real world. Fig 6 shows the clockwise and
counterclockwise rotations, depending on the shortest
distance between the object’s current and target positions. The
frames are picked to show the typical finger cooperation. In
clockwise rotation (Fig. 6a), the robot tends to rotate with the

thumb, index, and middle finger or with the index, middle,
and ring fingers. In counterclockwise rotation, the index and
middle fingers apply the periodic rotation movement, and the
thumb and the ring finger prevent the object from falling.
Interestingly, we notice that different rotation patterns have
different performance reductions when transferred to the real
world. Generally, clockwise is more difficult than
counterclockwise. The reason is that the Allegro hand in the
experiment is a right hand, which is naturally better in the
counterclockwise rotation. In the clockwise direction, the
rotation relies on the impulse from the edge fingers (thumb or
ring, Fig, 6a), making the object freely rotate on the palm, but
is unstable compared to the counterclockwise rotation (Fig,
6b), where the index finger and middle finger will adjust the
object’s position to prepare it for the next impulse. In
summary, robot hand structures and different manipulation
behaviors will affect the performance when transferring the
policy from the simulation to the real world, which is worth
further study in the future.

VI. CONCLUSION

This work incorporated the low-dimensional, rich feature
space for policy training in simulation for in-hand
manipulation tasks. We proposed the CSR method to generate
a curriculum for the actor to discard the undesired features in
the real world for convenient policy transfer. We developed
the DRG to remove the existing policy output and input
dependencies and avoid creating new ones by generating
random signals to replace the reduced feature signals with a
deep random network. The simulation and real-world
evaluations prove the effectiveness of the proposed method.
Our future work will study the potential of the proposed
methods in different in-hand manipulation tasks and further
refine the methods with automatic curriculum generation.

TABLE III. AVERAGE NUMBER OF SUCCESSFUL TASKS IN 30 SECONDS

TABLE II. TASK SUCCESS RATE OVER 100 TRIALS

(a) Clockwise rotation

(b) Counterclockwise rotation
Fig. 6. (a) Clockwise rotation (b) Counterclockwise rotation.

Fig. 5. The following ability of the first joint of the thumb in control
frequencies (a) 30Hz, (b) 10Hz, and (c) 5Hz. The robot has the best
following ability in 10Hz. In 30Hz, the command is too fast to follow because
the speed of the servo motor is limited. In 5Hz, the command is too far from
the current position, so the robot cannot reach the target in time.

REFERENCES

[1]. T. B. Sheridan, “Human–robot interaction: status and challenges,”
Hum. Factors, vol. 58, no. 4, pp. 525–532, 2016.

[2]. Z. Kappassov, J.-A. Corrales, and V. Perdereau, “Tactile sensing in
dexterous robot hands — Review,” Rob. Auton. Syst., vol. 74, pp. 195–
220, 2015, doi: https://doi.org/10.1016/j.robot.2015.07.015.

[3]. Y. P. Toh, S. Huang, J. Lin, M. Bajzek, G. Zeglin, and N. S. Pollard,
“Dexterous telemanipulation with a multi-touch interface,” in 2012
12th IEEE-RAS International Conference on Humanoid Robots
(Humanoids 2012), IEEE, 2012, pp. 270–277.

[4]. S. S. Groothuis, S. Stramigioli, and R. Carloni, “Lending a helping
hand: Toward novel assistive robotic arms,” IEEE Robot. Autom.
Mag., vol. 20, no. 1, pp. 20–29, 2013.

[5]. K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process.
Mag., vol. 34, no. 6, pp. 26–38, 2017.

[6]. O. M. Andrychowicz et al., “Learning dexterous in-hand
manipulation,” Int. J. Rob. Res., p. 027836491988744, 2019, doi:
10.1177/0278364919887447.

[7]. OpenAI, I. Akkaya, M. Andrychowicz, et al., “Solving rubik’s cube
with a robot hand,” ArXiv, vol. abs/1910.07113, 2019.

[8]. G. Garcia-Hernando, E. Johns, and T.-K. Kim, “Physics-Based
Dexterous Manipulations with Estimated Hand Poses and Residual
Reinforcement Learning,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp.
9561–9568. doi: 10.1109/IROS45743.2020.9340947.

[9]. H. Zhu et al., “The ingredients of real-world robotic reinforcement
learning,” arXiv Prepr. arXiv2004.12570, 2020.

[10]. A. Kadian et al., “Sim2real predictivity: Does evaluation in simulation
predict real-world performance?,” IEEE Robot. Autom. Lett., vol. 5,
no. 4, pp. 6670–6677, 2020.

[11]. J. A. Fishel and G. E. Loeb, “Sensing tactile microvibrations with the
BioTac—Comparison with human sensitivity,” in 2012 4th IEEE RAS
& EMBS international conference on biomedical robotics and
biomechatronics (BioRob), IEEE, 2012, pp. 1122–1127.

[12]. S. Funabashi et al., “Object recognition through active sensing using
a multi-fingered robot hand with 3d tactile sensors,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2018, pp. 2589–2595.

[13]. G. Brockman et al., “Openai gym,” arXiv Prepr. arXiv1606.01540,
2016

[14]. D. Han, B. Mulyana, V. Stankovic, and S. Cheng, “A Survey on Deep
Reinforcement Learning Algorithms for Robotic Manipulation,”
Sensors, vol. 23, no. 7. 2023. doi: 10.3390/s23073762.

[15]. A. Melnik, L. Lach, M. Plappert, T. Korthals, R. Haschke, and H.
Ritter, “Tactile sensing and deep reinforcement learning for in-hand
manipulation tasks,” in IROS Workshop on Autonomous Object
Manipulation, 2019.

[16]. L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel,
“Asymmetric actor critic for image-based robot learning,” arXiv
Prepr. arXiv1710.06542, 2017.

[17]. T. Nguyen, Z. Li, T. Silander, and T. Y. L. B. T.-P. of the 30th I. C.
on M. Learning, “Online Feature Selection for Model-based
Reinforcement Learning,” vol. 28, no. 1. PMLR, pp. 498–506.
[Online]. Available: http://proceedings.mlr.press/v28/nguyen13.pdf

[18]. S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P.
Stone, “Curriculum learning for reinforcement learning domains: A
framework and survey,” arXiv Prepr. arXiv2003.04960, 2020.

[19]. K. Lee, K. Lee, J. Shin, and H. Lee, “Network randomization: A
simple technique for generalization in deep reinforcement learning,”
arXiv Prepr. arXiv1910.05396, 2019.

[20]. T. M. Huh, H. Choi, S. Willcox, S. Moon, and M. R. Cutkosky,
“Dynamically reconfigurable tactile sensor for robotic manipulation,”
IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2562–2569, 2020.

[21]. T. P. Tomo et al., “Design and characterization of a three-axis hall
effect-based soft skin sensor,” Sensors, vol. 16, no. 4, p. 491, 2016.

[22]. E. Biddiss and T. Chau, “Electroactive polymeric sensors in hand
prostheses: Bending response of an ionic polymer metal composite,”
Med. Eng. Phys., vol. 28, no. 6, pp. 568–578, 2006.

[23]. M. Plappert et al., “Multi-goal reinforcement learning: Challenging
robotics environments and request for research,” arXiv Prepr.
arXiv1802.09464, 2018.

[24]. V. Makoviychuk et al., “Isaac gym: High performance gpu-based
physics simulation for robot learning,” arXiv Prepr.
arXiv2108.10470, 2021.

[25]. Y. Chebotar et al., “Closing the sim-to-real loop: Adapting simulation
randomization with real world experience,” in 2019 International

Conference on Robotics and Automation (ICRA), IEEE, 2019, pp.
8973–8979.

[26]. J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement
learning for deformable object manipulation,” in Conference on Robot
Learning, PMLR, 2018, pp. 734–743.

[27]. C. Schaff, A. Sedal, and M. R. Walter, “Soft robots learn to crawl:
Jointly optimizing design and control with sim-to-real transfer,” arXiv
Prepr. arXiv2202.04575, 2022.

[28]. C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel,
“Reverse curriculum generation for reinforcement learning,” in
Conference on robot learning, PMLR, 2017, pp. 482–495.

[29]. F. L. Da Silva and A. H. R. Costa, “Object-oriented curriculum
generation for reinforcement learning,” in Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent
Systems, 2018, pp. 1026–1034.

[30]. S. Narvekar and P. Stone, “Learning curriculum policies for
reinforcement learning,” arXiv Prepr. arXiv1812.00285, 2018.

[31]. E. Levin, R. Pieraccini, and W. Eckert, “Using Markov decision
process for learning dialogue strategies,” in Proceedings of the 1998
IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP’98 (Cat. No. 98CH36181), 1998, vol. 1, pp. 201–
204.

[32]. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” arXiv Prepr.
arXiv1707.06347, 2017, [Online]. Available:
http://arxiv.org/abs/1707.06347

[33]. D. Avola, L. Cinque, G. L. Foresti, C. Mercuri, and D. Pannone, “A
Practical Framework for the Development of Augmented Reality
Applications by using ArUco Markers.,” in ICPRAM, 2016, pp. 645–
654.

[34]. H. C. Kam, Y. K. Yu, and K. H. Wong, “An improvement on aruco
marker for pose tracking using kalman filter,” in 2018 19th
IEEE/ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), IEEE, 2018, pp. 65–69.

[35]. S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto, “Dexterous
imitation made easy: A learning-based framework for efficient
dexterous manipulation,” arXiv Prepr. arXiv2203.13251, 2022.

[36]. X. Glorot and Y. B. B. T.-P. of the T. I. C. on A. I. and Statistics,
“Understanding the difficulty of training deep feedforward neural
networks,” vol. 9. PMLR, pp. 249–256. [Online]. Available:
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

[37]. J. Liang, A. Handa, K. Van Wyk, V. Makoviychuk, O. Kroemer, and
D. Fox, “In-hand object pose tracking via contact feedback and gpu-
accelerated robotic simulation,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2020, pp.
6203–6209.

