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Abstract—Aerial imagery is a powerful tool when it comes
to analyzing temporal changes in ecosystems and extracting
valuable information from the observed scene. It allows us to
identify and assess various elements such as objects, structures,
textures, waterways, and shadows. To extract meaningful information,
multispectral cameras capture data across different wavelength
bands of the electromagnetic spectrum. In this study, the collected
multispectral aerial images were subjected to principal component
analysis (PCA) to identify independent and uncorrelated components
or features that extend beyond the visible spectrum captured
in standard RGB images. The results demonstrate that these
principal components contain unique characteristics specific to
certain wavebands, enabling effective object identification and image
segmentation.
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I. INTRODUCTION

HE technological advancements of the past have

undeniably improved the overall quality of life in society.
However, these advancements have also led to negative
impacts on our ecosystem, resulting in serious consequences
such as climate change, global warming, rising sea levels,
extreme weather events, and air and sea pollution [1].

To assess the effects of these consequences, one effective
approach is the use of multispectral aerial imaging, which
involves capturing aerial imagery from unmanned aerial
vehicles (UAVs) and analyzing temporal changes reflected in
different wavelength bands of the electromagnetic spectrum.
A significant challenge faced with multispectral images is the
presence of clouds or haze caused by pollution. Clouds and
gases can obstruct parts of the scene or reduce visibility due to
light refraction, altering the way the camera perceives ground
colors [2]-[5].

Brauers et al. [6] affirm that multispectral cameras offer
superior color fidelity compared to RGB cameras, thanks to
their different methods of color acquisition with dedicated
filters. But, obtaining these images is difficult in their own
right because of the spatial resolution [7], [8]. Given these
challenges, there is a need to find new ways to obtain
more informative multispectral images that fully utilize the
information in their respective wavebands. These multispectral
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images encompass 8 bands of color information compared to
the standard three channels of the RGB model, which opens
possibilities for incorporating both qualitative and quantitative
aspects of the analysis [9].

This study proposes using principal component analysis
(PCA) to identify all independent and uncorrelated
components in multispectral aerial images and understand
their potential implications for different elements within the
scene [10]-[12]. Once the green areas, trees, waterways,
buildings, roadways, roofs, etc., have been extracted, it
becomes possible to assess the damage caused by extreme
weather events, such as destruction, flooding, and fallen
trees, by comparing the scenes before and after the event.
Additionally, longitudinal studies of multispectral aerial
imagery enable the assessment of the lasting effects of global
warming and sea level rise on various areas viewed through
multispectral imaging.

By separating multispectral images into their principal
components, we can ascertain the contribution of each
independent component in extracting or segmenting specific
elements of the scene, leading to valuable insights into
environmental monitoring and understanding the impact of
human activities on our ecosystem.

II. DATA

The dataset utilized for evaluating the proposed approach
consisted of multispectral aerial imagery obtained from the
WorldView-3 satellite, provided by Geoimage. The specific
image used in this study captures the city of Adelaide, South
Australia, as shown in Fig. 1. Table I presents a summary
of the bands captured by the satellite sensor, including their
respective names, wavelengths, and resolutions, as provided
by Geoimage company [13]. The dimensions of the image are
4259x4277x8 pixels, with each pixel containing information
up to a 16-bit integer representation.

III. METHODOLOGY
A. Pre-processing

In this study, we utilized the MatLab R2023a platform to
transform the aerial image from a three-dimensional matrix
(MxNxK) to a two-dimensional matrix (MNxK). To change
the matrix dimension, we employed a column-by-column
flattening technique, wherein we traversed the matrix
by columns and concatenated the elements into a
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TABLE I
WORLDVIEW-3 BANDS

Number Name Wavelength (um)  Resolution (m)
1 Coastal 0.400-0.450 1.24
2 Blue 0.450-0.510 1.24
3 Green 0.510-0.580 1.24
4 Yellow 0.585-0.625 1.24
5 Red 0.630-0.690 1.24
6 Red Edge 0.705-0.745 1.24
7 NIR1 0.770-0.895 1.24
8 NIR2 0.860-1.040 1.24

full detail

single-dimensional vector. This process was applied to
all 8 bands, resulting in 8 one-dimensional vectors that were
subsequently arranged into a two-dimensional matrix. This
step was necessary since MatLab requires a two-dimensional
matrix for performing PCA. The resulting matrix size has a
total of 18,215,743 pixels for each of the 8 bands.

B. Principal Component Analysis

To initiate the PCA process, the mean vector p of the
columns is computed to center the data. The mean-adjusted
matrix is obtained by subtracting this mean vector from
the original data. Then, eigenvectors and eigenvalues are
computed using the EIG decomposition method. Prior to the
decomposition, the covariance matrix of the image needs
to be calculated. Equation (1) illustrates the procedure for
computing the covariance matrix, where X represents the
mean-adjusted matrix.

Cx, = XoX{ (1

With our dataset, the covariance matrix would be 8x8
dimensions. With this covariance, we obtain the eigenvalues
which are an 8-element vector, and the eigenvectors which
are an 8x8 matrix. After ordering our eigenvectors using the
eigenvalues in the descending method, we are able now to
perform the transformation into principal components. To do
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TABLE 11
PCA SUMMARY

Number  Explained (%)  Eigenvalue (210°)
1 74.567 4.037
2 22.341 1.210
3 1.305 0.071
4 0.904 0.049
5 0.464 0.025
6 0.194 0.011
7 0.173 0.009
8 0.053 0.003

this, we multiply our mean-adjusted matrix (Xy) with the
eigenvectors (A) as given in (2):

Y = XA 2)

To present the image accurately, we need to restore the
matrix dimensions to their original size by performing the
reverse flattening process as seen above. Each of the 8 bands
now corresponds to a principal component.

IV. RESULTS

We analyze our principal components and assess the
percentage of information each component contributes to the
entire image. Table II provides these percentages, and the
eigenvalues for each component arranged in descending order.
The first two principal components already capture more than
95% of the information contained in the image. However, we
note that the components containing the remaining 5% should
not be underestimated, as they could still contain relevant
characteristics or features in the analysis of the viewed scene.

In addition to analyzing the principal components through a
table, we also generate visual representations of each principal
component as images. Fig. 2 depicts each principal component
individually. By visually examining principal components 1
and 2, we can validate the findings presented in Table II. On
the other hand, the remaining principal components appear to
contain minimal to no information, as evident from the lack
of discernible details.

However, upon closer examination by zooming in on these
images, intriguing features or patterns that were initially
unnoticed can be revealed. This phenomenon is particularly
evident when analyzing principal component 2. Fig. 3 provides
a comparison between principal component 2 and the original
image, focusing on the same area. Initially, in the original
image, the region surrounding the orange square appears to be
a typical grassy area. However, a closer inspection of principal
component 2 indicates that it does not possess the same color
as other grassy areas, as evidenced by the regions within the
red square. Instead, upon observing the areas within the blue
square, we can observe that it shares the same color as the
river. In other words, the green circular area in the original
image, which was presumed to be grass, is in fact water. Upon
verifying through Google Maps, it was confirmed that this is
a pond named Model Boat Pond.

544 ISNI:0000000091950263



Open Science Index, Computer and Information Engineering Vol:18, No:8, 2024 publications.waset.org/10013776.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:18, No:8, 2024

(a) PC1 (b) PC2

(c) PC3 (d) PC4

(e) PC5 (f) PC6

() PCT

(h) PC8

Fig. 2 Representation of all 8 principal components of the original image

This is not the only principal component that demonstrates
such behavior. By examining principal component 4, we also
discover some fascinating insights. Fig. 4 illustrates how this
component emphasizes objects with significant reflection. In
this specific instance, two buildings reflect the rays of the sun,
and these reflections are prominently visible in the principal
component.

As indicated in Table II, principal component 3 contributes
slightly over 1% of the overall image information. However,
what makes this small portion of information intriguing is its
content. Upon zooming in on the roads within the image, one
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(a) Original

(b) PC2

Fig. 3 Comparison between the original image and principal component 2

can observe the presence of small rectangles that consistently
follow a specific pattern - a combination of white or gray
with a black dot at one end. Upon comparing these rectangles
with the original image, it becomes evident that they represent
vehicles on the road. Fig. 5 visually presents the comparison
and representation of these vehicle rectangles.

Lastly, a single principal component can assist in identifying
multiple objects or structures within an image. This is
exemplified by principal component 2, which not only aids
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(a) Original

(a) Original

(b) PC4

Fig. 4 Comparison between the original image and principal component 4

in identifying water bodies but also helps to identify trees.
Remarkably, these trees can be observed even in proximity
to buildings or within the shadows of other structures. Fig. 6
highlights areas within red squares where trees, which were
inconspicuous in the original image, become apparent with the
assistance of principal component 2.

V. CONCLUSION

The results obtained with the proposed PCA-based
approach demonstrate that each principal component contains
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(b) PC3

Fig. 5 Comparison between the original image and principal component 3

relevant information for identifying specific structures in the
multispectral images, such as water bodies, trees, green areas,
and the different urban structures. The merits of this research
extend to resolving ambiguous situations, such as green pond
water vs. green areas, and for extracting objects in shaded
areas, that standard image segmentation techniques would fail
to resolve. Our research group is working to expand and
augment the present method by incorporating the independent
component analysis (ICA) to address added variability in the
images and the challenging issues of the multispectral nature
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(a) Original

(b) PC2

Fig. 6 Comparison between the original image and principal component 2

of fog and clouds. The first finding, in terms of fog and clouds,
is that they contribute to more than a single PCA component,
and a future research endeavor is to determine the extent and
weight of their contributions to the different PCA components
before their successful removal to reveal the hidden scenery
and structures.
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