DRAFT

Euterpe: A Web Framework for Interactive Music

Systems

YONGYI ZANG * CHRISTODOULOS BENETATOS * AND ZHIYAO DUAN

(yongyi.zang @rochester.edu) (c.benetatos @rochester.edu) (zhiyao.duan@rochester.edu)

Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA

We present Euterpe, a prototyping web framework designed to facilitate the deployment
of human-computer interactive music systems on the web. Utilizing the web’s natural cross-
platform compatibility, Euterpe enables widespread accessibility to these systems, potentially
maximizing their impact. One of our main goals is to reduce the burden on developers by pro-
viding support in handling the JavaScript aspects of implementation. While developers still
need to write JavaScript for their core algorithms, Euterpe assumes the responsibilities of re-
ceiving both audio and MIDI real-time input streams, synchronizing them, and sending them
to the core algorithm in a structured fashion. Additionally, we offer pre-built functionalities for
input and output data visualization. To showcase the capabilities of Euterpe, we conduct case
studies on the deployment of “BachDuet” and “JazzImprov”, two neural network music im-
provisation algorithms that were previously inaccessible to the general public. Through these
case studies, we gather valuable feedback from both end-users who interacted with BachDuet
and the independent developer who created JazzImprov. For access to the framework’s source

code and comprehensive documentation, please visit https://euterpeframework.org/.

0 INTRODUCTION

The domain of “Interactive music systems”, a term
coined by Rowe [1], has a long history of research
and development [2, 3]. Such systems can serve a wide
range of roles, spanning from augmented computer instru-
ments to the complete embodiment of autonomous musical
agents [1]. These systems offer enhanced musical engage-
ment, promoting active participation and creativity among
users, enabling them to experience music in a more immer-
sive way than through passive listening [4].

As such, the continued research and development of in-
teractive music systems is very important. However, it is
equally important to ensure that these systems are widely
and easily accessible to end users. Unfortunately, this is
often not the case, as research efforts focused on such
systems often conclude with open-sourcing the core al-
gorithms without fully developing a functional prototype
or creating one that is easily accessible to users without
requiring significant effort to install it [5]. A recent sur-
vey [2] on musical agents highlights the scarcity of ac-
cessible prototypes for end users. Out of the 78 surveyed
agents, only five had playable prototype systems accessi-
ble through open-source code, while only one of them had
a web demo that was easily accessible to the end users.

*Equal contribution.

Submitted to J. Audio Eng. Soc., 2023 June

This scarcity of accessible interactive music systems re-
stricts the potential impact and wider adoption among the
general public.

One possible solution to address this issue is to encour-
age the development of interactive music systems for the
web environment. By focusing on web-based implementa-
tions, developers can leverage the inherent advantages of
the web platform, such as its widespread accessibility and
cross-platform compatibility. JavaScript is the primary pro-
gramming language for web development and has gained
significant traction in the realm of music applications since
the introduction of the Web Audio API [6, 7].

However, transitioning from research code to a final
product that is accessible to end users can be a challeng-
ing task [8]. This is particularly true for interactive music
systems, as their concurrent nature often necessitates spe-
cial run-time support, such as threading as well as complex
scheduling and synchronization of multiple streams of in-
formation [9]. These systems also demand a wide range of
user interface components to display the various input and
output information associated with the musical interaction.

In this work, we introduce “Euterpe”, a prototyping
framework that aims to alleviate most of the challenges
faced by developers in the implementation of interactive
music systems on the web. We specifically focus on sys-
tems that accept musical input in the form of audio and

ZANG, BENETATOS AND DUAN

MIDI, and produce output in audio and symbolic music
data formats.

Euterpe takes on several crucial responsibilities in the
context of interactive music systems. It handles the recep-
tion of real-time audio and MIDI input streams, ensuring
their synchronization and structured transmission to the
core algorithm. By assuming these tasks, Euterpe relieves
developers from the need of managing these input sources,
allowing them to focus on the core functionality of their
systems.

Additionally, in order to promote the creation of user-
friendly applications, we provide a list of visualization
components called “widgets”. These widgets serve as pre-
built tools that developers can utilize to display various
types of information on the screen such as audio, MIDI,
text, and numerical parameters.

Euterpe also includes customizable settings and audio
mixer windows that allow users to control various param-
eters of the interaction. These parameters include settings
related to the core algorithm as well as the audio levels of
all the instruments involved in the interaction.

We aim to support two commonly used interaction
paradigms within Euterpe: the “simultaneous” and “call &
response” playing modes, depending on whether the two
participants take turns or play at the same time. Addition-
ally, we support the two most common types of symbolic
music representation in regards to time granularity, namely
“event-based” and “grid-based” [10], as well as frame-level
processing for audio.

Finally, to demonstrate Euterpe’s capabilities, we
present two case studies. First, we present our prior work
during the development of Euterpe named “BachDuet”,
which is a neural-network-based musical agent for real-
time human-Al simultaneous improvisation of duets in
Baroque style in the MIDI format. Second, we invite an
independent researcher in the field of interactive music
systems, to use Euterpe to create and deploy a prototype of
her music interaction algorithm “JazzImprov”.

In the following sections, we first review related work
(Sec. 1), then delve into the design goals and requirements
of Euterpe (Sec. 2). Next, we present implementation de-
tails, including the high-level system architecture and indi-
vidual components (Sec. 3). We then present the two case
studies and the feedback we received from the external de-
veloper and the end users (Sec. 4) Finally, we explore po-
tential improvements and future work (Sec. 5).

1 RELATED WORK

1.1 Real-Time Interactive Music Systems

In this section, we review several real-time interactive
music systems. The design of these systems guided us in
determining the types of musical interactions Euterpe aims
to support.

“Voyager” [11] is an interactive music system that al-
lows a musician to improvise simultaneously in “free time”
with an artificial intelligence agent that responds to both
low-level and high-level acoustic features of their input in

2

DRAFT

real time. It supports both MIDI and audio inputs. “Gen-
Jam” [12] is a system that can improvise jazz music in real
time in the call & response mode where the musician and
the system take turns to play for a predefined number of
measures. “BachDuet” [13] is a musical agent that is able
to improvise duet counterpoints in real-time with a human
player in Baroque style. The improvisation happens in a
simultaneous fashion where both the human and the agent
play a monophonic voice in the symbolic music format.
User inputs are quantized to the sixteenth-note time grid,
while at the same time the agent generates its voice aligned
to the same grid.

“RL-Duet” [14] is musical agent with the same inter-
action characteristics as BachDuet, but with the difference
that it only predicts new notes on some of the slots of the
time grid, depending on the duration of the last note it gen-
erated. It is also an example of a musical agent that has
never been deployed and tested in a real human-computer
interaction scenario. ‘“Piano Genie” [15, 16] is a neural-
network-based musical instrument that allows users to play
melodies on a full 88-key piano using a small 8-key key-
board. It supports polyphonic input and output and oper-
ates in free time. This is achieved by an event-based oper-
ation where every new MIDI event received from the user
instantly triggers a response from the core algorithm. “Al
Duet” [17] is a musical agent that engages in a free-time,
monophonic, call & response interaction with the user by
generating continuations of the user’s input on a MIDI key-
board.

Finally, “Continuator” [18] is capable of analyzing a mu-
sician’s MIDI input in real time and generating new musi-
cal MIDI phrases that continue the style and structure of
the input in a call & response fashion. Continuator also
has some interesting interaction characteristics. During the
user’s “call,” the input stream of MIDI events is pushed to a
buffer and sent to the core algorithm at variable time inter-
vals asynchronously. When the agent responds, notes are
generated step by step, while at the same time, the agent
keeps receiving input from the user (if any).

1.2 Audio and Music Analysis in JavaScript

The audio and music analysis ecosystem in JavaScript
has seen significant growth and development over the past
decade, with the introduction of several libraries and tools.
The Web Audio and Web MIDI APIs are low-level tools
used to process audio and MIDI directly in the browser.
Based on Web Audio APIs, Tone. js provide a sim-
ple and intuitive interface for generating and manipulating
sounds. For manipulating symbolic music data Tonal. js
and Music21]j are music theory libraries with support
for a variety of note representations, including MIDI.
Essentia.js and Meyda. js are libraries that offer
tools for audio analysis and processing, much like what
librosa library does for Python. Finally, Magenta. js
is a library that includes a collection of symbolic music
generation models developed by Google’s Magenta group,
built to run entirely in the browser. All these libraries have
significantly expanded the range of music-related applica-

Submitted to J. Audio Eng. Soc., 2023 June

DRAFT

tions that can be built entirely in the browser. Euterpe pro-
vides a platform for developing interactive music systems
using the resources mentioned above.

1.3 Web Frameworks for Hosting Systems

There are several frameworks available that aim to facil-
itate the deployment and accessibility of machine learning
systems on the web.

“Gradio” [19] is an open-source Python library that al-
lows developers to build simple GUIs for their machine-
learning models and deploy them on the web to share with
others. Gradio is designed for hosting those models on
servers, allowing users to connect to it remotely, instead
of downloading a local copy.

“HuggingFace” [20] is a web framework for hosting
neural-network-based models. The framework allows de-
velopers to deploy their models as web services that can
be accessed via RESTful APIs, making it easy for others to
use and integrate these models into their applications. Hug-
gingFace can also automatically generate widgets based on
the model type (e.g., text classification, translation) to let
users interact with the models.

Compared to Euterpe, HuggingFace and Gradio require
only knowledge of Python, which is the most commonly
used programming language for prototyping and develop-
ing machine-learning models [21]. However, these frame-
works are particularly suitable for deploying models that
support more static interaction modes, such as classifica-
tion or text-to-image tasks, which involve limited user in-
put compared to a typical real-time music interaction task.
Models in those frameworks are intended to be deployed on
remote servers, making them unsuitable for simultaneous
interaction due to speed and stability constraints of network
communication. Additionally, the scaling requirements of
server-based systems may impose financial burdens on re-
searchers and developers as the demand and resource needs
increase.

In contrast, systems based on Euterpe can be deployed
as single page applications (SPA) that run entirely on the
user’s local browser environment, thereby reducing latency
and allowing the deployment of real-time music systems
with higher interactivity. This local deployment also allows
for more efficient scaling, as the system can be easily ac-
cessed by multiple users without the need for additional
server resources. Nevertheless, this functionality requires
the developer to implement the system’s core algorithm in
JavaScript and also imposes memory and time complexity
constraints for the algorithm.

1.4 Music Prototyping Languages

Numerous specialized programming languages for com-
puter music have been developed over the years [6], specif-
ically designed for audio synthesis and processing as well
as for rapid prototyping of interactive music systems.

One such popular language is Max/MSP [22], which
is commonly used for prototyping interactive music sys-
tems [23, 3]. Max/MSP is a visual programming language
that allows users to visually connect modules and cre-

Submitted to J. Audio Eng. Soc., 2023 June

JAES TEMPLATE

ate real-time audio and MIDI processing systems. It pro-
vides out-of-the-box graphical components for visualiz-
ing data. However, creating easily accessible and share-
able systems using Max/MSP can be challenging. While
it is possible to export Max/MSP patches as executable
files, the process can vary between platforms, making the
resulting standalone applications platform-specific. Addi-
tionally, Max/MSP does not offer native support for Linux
operating systems, further limiting its accessibility and
portability across different platforms.

Another notable language in the field is Faust [24],
which is specifically designed to express audio signal com-
putations. Faust is specialized and focused on audio pro-
cessing tasks and operates at the audio sample level [9].
Faust programs can be compiled to various languages in-
cluding WebAssembly, enabling them to run directly on
web browsers. However, due to its focus on audio sig-
nal processing, handling higher-level musical structures is
challenging [9].

2 DESIGN

Euterpe is designed as a starting point to facilitate quick
prototyping of various types of interactive music systems.
To achieve that, we first try to identify the aspects in which
these systems can significantly differ as well as the com-
mon core elements that they share. Then we incorporate
support for those features that could ensure a wide cover-
age of interactive music systems.

Textual or verbal interaction between two entities always
happens in a call & response fashion; however, as discussed
in Sec. 1.1, a musical interaction can happen in call & re-
sponse (e.g., Continuator), simultaneous (e.g., BachDuet)
or any combination of the two (e.g., Voyager). Regarding
temporal granularity, musical interaction can happen based
on a strict or a more fluid time grid. In other scenarios,
such as “free time” (e.g., Voyager), there might not even
be a time grid, with participants follow their intuition and
take actions at completely irregular points in time. In re-
gards to modalities, human-computer musical interaction
may involve multiple input and output modalities, such as
audio, visual or symbolic data.

Additionally, depending on these aforementioned inter-
action scenarios, interactive music systems often use simi-
lar ways to visualize the interaction, such as waveform and
spectrogram views for audio, or piano roll and score for
symbolic music.

Finally, we observe the diverse deployment environ-
ments in which interactive music systems are made acces-
sible. These systems may take the form of standalone ap-
plications compatible with various operating systems, mo-
bile applications specifically designed for smartphones and
tablets, or even specialized hardware devices. Furthermore,
it is also important to recognize that end users have vary-
ing degrees of familiarity with different environments, and
that certain systems may not be readily available in envi-
ronments they are familiar with.

Therefore, we aim to achieve the following design ob-
jectives:

ZANG, BENETATOS AND DUAN

User |

DRAFT

ey,

MIDI On-screen || Computer Audio
1| Keyboard) (Keyboard)| Keyboard

Scheduler

]

MICP Packets

_.H.__-_-----“

Agent Internal Logic (Provided by developers)

1
\

1
I .
: Visual
- ~ Components
Audio
—
Components
‘ Interaction Data

Archive

Fig. 1. Overview of the Euterpe architecture

—_—

. Support a variety of musical interaction modes (Sec. 3)

2. Support both audio and symbolic music modalities
(Sec. 3.1)

3. Provide various options for information visualization
(Sec. 3.7)

4. Achieve cross-platform compatibility and ease of access

for end users (Sec. 3.8)

An overview of Euterpe’s architecture is shown in Fig-
ure 1. The “Scheduler’(Sec 3.4) is Euterpe’s brain, and it
functions as an intermediary between the user’s input and
the music interaction core algorithm, the “agent”(Sec. 3.2).
The Scheduler is responsible for synchronizing all different
audio and note events and triggering the corresponding vi-
sual and audio components in the GUI. Each of these com-
ponents, is treated as an independent module, capable of
operating concurrently with the others. This modular de-
sign is informed by the fact that interactive music systems
are inherently concurrent [9], i.e., different components of
the system may be excecuted out-of-order or in partial or-
der. For communication between these elements, we de-
sign a music interaction communication protocol (MICP)
(Sec. 3.3). This modular design also allows developers to
focus on the core algorithm, while Euterpe undertakes the
task of interpreting the user input, forming structured data
to send to the algorithm, and managing the presentation of
the user’s input and the agent’s output.

3 IMPLEMENTATION

For the implementation of Euterpe, we utilize Vue.js, a
JavaScript framework for building web applications. Vue.js
provides reactivity and offers a component-based architec-
ture, which suits well the modular and concurrent design-
ing approach outlined in Sec. 2. Additionally, we make use
of the WebAudio and WebMidi APIs, which provide robust
support for handling audio and MIDI input/output within
web browsers.

To further improve Euterpe’s performance, we also uti-
lize parallelism. While JavaScript itself does not natively
support multiple threads, we leverage the use of the Web
Workers API [25] to execute resource-intensive computa-
tions in separate processes. Specifically, we utilize a Web
Worker for the agent module, and two AudioWorklets (a
specialized form of Web Worker) for recording from the
microphone and audio playback. All the rest of the mod-
ules responsible for processing the user input and rendering
the interface are running on the main thread. Communica-
tion between the main thread and the modules running on
separate Web Workers is achieved through a combination
of message passing (i.e., postMessage method) and the
utilization of SharedArrayBuffers [26], which enable effi-
cient data sharing for time-critical data such as audio sam-
ples.

3.1 User Input

Euterpe can be used for symbolic and audio-based music
interaction algorithms by supporting both note event and
audio inputs. For note event input, Euterpe implements an
on-screen touch-enabled piano keyboard, and supports the
computer keyboard as well as external MIDI devices (facil-
itated by the Web MIDI API). In terms of audio input, the
system employs the Web Audio protocol to directly extract
audio buffers from the user’s audio input device.

3.2 Agent

Euterpe implements the agent using the Web Worker
API. A Web Worker is a JavaScript object that runs a given
JavaScript source code as a separate process. Web Work-
ers do not share memory with the main thread, and thus,
any communication with the main thread happens through
message passing. Web Workers allow us to run demanding
tasks without blocking the main thread, ensuring a smooth
experience for end users.

The agent in Euterpe follows a modular approach by or-
ganizing its logic into separate steps commonly found in

Submitted to J. Audio Eng. Soc., 2023 June

DRAFT

interactive music algorithms. These steps are encapsulated
as callback functions called “hooks”. We provide a set of
default hooks that cover various aspects of the agent’s func-
tionality:

* The 1loadConfig hook is triggered when the configu-
ration object is received from the main thread. The agent
can keep a copy in its thread, set any necessary parame-
ters, and do configuration-related computations.

* The loadAlgorithmhook is triggered when the main
thread is ready to initialize the algorithm. Within this
hook, the agent can perform any algorithm-specific ini-
tialization tasks such as loading pre-trained models, set-
ting up data structures, or configuring internal variables.
After that it sends a success status message to the main
thread to indicate that it is ready to proceed with the in-
teraction.

* The processNoteEvent hook is triggered whenever
the main thread receives a note event from the user (i.e.,
event-based operation).

* The processClockEvent hook is triggered at every
clock tick, and receives the raw as well as the quantized
note events since the last tick. It enables synchronization
and music-time level processing (e.g., beat-level).

* The processAudioBuffer hook is triggered when a
new audio buffer is ready for processing. The frequency
at which this hook is triggered depends on the window
and hop size settings chosen by the developer.

* The processVariableUpdate hook is triggered
when the user interacts with the system’s GUI and
changes a Ul element that corresponds to a variable or
hyper-parameter of the agent.

These hooks are automatically triggered from the main
thread and offer developers the flexibility to implement var-
ious types of interaction logic within them. It is noted that
developers can also write agent logic outside these hooks or
even in external files that can be imported into the agent’s
script.

3.3 Music Interaction Communication Protocol
(MICP)

The modular design of Euterpe (Sec. 2) can benefit from
designing a communication protocol between the agent and
the main thread. By standardizing the communication pro-
cess, we aim to minimize errors by establishing a clear un-
derstanding of the expected inputs and outputs. This helps
developers and researchers to easily plug in their music in-
teraction algorithms to Euterpe. We refer to this protocol
as the Music Interaction Communication Protocol (MICP),
and we use the term “packet” to refer to an object that is
transferred following the MICP.

A MICP packet is an object that contains two fields:
the hookType and the messages. The hookType field cor-
responds to the hooks discussed earlier in the agent sec-
tion. When a packet is sent from the main thread to the
agent, it specifies which hook should process the packet.

Submitted to J. Audio Eng. Soc., 2023 June

JAES TEMPLATE

Conversely, when a packet is sent from the agent to the
main thread, it indicates which hook generated the packet.
The messages field contains a list of messages. The rea-
son for sending multiple messages within the same packet
(whenever possible) is to reduce the communication over-
head between the agent and the main thread (see also
Sec. 3.4.2). Each message within a MICP packet consists
of two fields: messageType and content. The messageType
field indicates the type of the message and helps determine
how the content should be interpreted. In our implementa-
tion, we have defined several message types, including:

* status: It is used by the agent to convey status infor-
mation to the main thread, based on which further ac-
tions can be triggered. For instance, when the agent’s
loadAlgorithm hook successfully loads the music inter-
action algorithm, it sends a “success” message to indi-
cate that the initialization process is completed without
errors. After receiving such message, the main thread
may then start running the algorithm.

* quantized_notes: It is sent from the main thread
to the agent on regular time intervals defined by a time
grid. It contains user note events quantized to the time
grid.

* note_1list: Itis used by both the main thread and the
agent to transfer un-quantized note events.

* vector: It is used by the agent to send results in the
form of a 1-d vector. The values of this vector will be
displayed using the vector widget (Sec. 3.7.6).

e label: It is used by the agent to send short textual
results. These will be displayed in the label widget
(Sec. 3.7.6).

More details on how the main thread utilizes the
quantized_notes and note_1list message types is
illustrated in Figure 2 and explained in details in Sec. 3.4

3.3.1 NoteEvent Object

As mentioned earlier, when the message is of type
note_list orquantized_notes, it contains a list of
note event objects. These note event objects are designed
as a generalization of MIDI note events, with additional
fields that are specifically useful for Euterpe’s internal op-
erations:

* player: the player associated with the note event (e.g.,
Human or agent)

e instrument: the sampler instrument to be used to
play this note

¢ eventSource: the source of the note event (Sec. 3.1)

* name: the name of the note event, if available (e.g.,
“C4”)

e type: the articulation of the note event which can be
On, Off or Hold

* midi: the MIDI value of the note event

* chroma: the chroma value of the note event

* channel: the MIDI channel of the note event

* velocity: the velocity value of the note event

ZANG, BENETATOS AND DUAN

Past Current Future
C
A D
E
B F
x—O0 % O ticks
t=-1 t=0
Note List
Quantized Notes
Age Age

X H (@) K

DRAFT

Don Dog
List B Eon 2
P
n' Bogs Fon Eon Chold
Notes R
Bos Fon Eon

Fig. 2. An example of how the Scheduler processes the user’s input, on grid-based mode.

* createdAt: the creation timestamp of the note event

* playAfter: the timestamp indicating when the note
event should be played after

¢ duration: the duration value of the note event, used
only by the agent, for notes that their duration is known

It is important to note that all the time-related fields
(createdAt, playAfter, and duration) are not
scalar values but objects, describing time using a combi-
nation of ticks (quantized time) and seconds (continuous
time). For instance, a note event generated by the agent,
with playAfter = {tick: 2, seconds: 0.3} will be
sent to the main thread and scheduled to play after 2 clock
ticks and 0.3 seconds with ticks being addressed initially,
followed by the seconds delay). This combination of tick
and physical timings enables sophisticated note schedul-
ing, potentially allowing support for a grid-based agent that
is able to generate notes with micro-timing variations for a
more expressive performance.

3.4 Scheduler

As previously mentioned, the Scheduler functions as the
“brain” of Euterpe. For note and audio inputs, the Sched-
uler implements two sets of logic as detailed below.

3.4.1 Note Scheduling

Grid-based. We implemented a “Clock” module that
sends out “ticks” every clock period, which we use to sup-
port music interaction algorithms that need to sync their
input and output operations to a time grid, such as Bach-
Duet and RL-Duet. The developer determines the Clock’s
period in two ways: either explicitly, by setting the period
of the Clock in seconds, or implicitly, by specifying the
tempo in beats per minute (BPM) and the ticks per beat.

In grid-based systems that require the time grid to be
adjustable, we provide a user-controllable tempo slider,
which allows the user to change the Clock period on the

6

fly. We also integrate an optional safe-keeping feature to
alert the user when the agent’s processing time exceeds the
clock’s period, as this would make it difficult to sync to the
correct tick.

Another two critical tasks the Scheduler performs are:
1) the temporal quantization of the user’s input on the
time grid defined by the Clock and 2) the application of
polyphony constraints on the user’s quantized input. In
Fig. 2, we provide a diagram illustrating these two tasks
related to the user’s input stream. The horizontal time-tick
axis shows tick positions (x label); the green bars rep-
resent the user’s MIDI input stream. At every tick, the
MICP packet sent to the agent has hookType equal to
processClockEvent and contains two messages. The
first is of type note_1list and includes all the new user
note events that happened since the last tick. The second
is of type quantized_notes and contains a list of the
quantized and polyphony-constrained user note events for
the current tick.

Additionally, in Fig. 2, the reader will notice a slight
time delay between the tick (x label) and the dispatch of
the MICP packet to the agent (o label). For strict grid-based
interactions, where the user has to align their input to the
tick of a metronome, even the slightest misalignment with
the metronome will cause the event to be registered on the
next tick than the one the user intended. In our figure, the
user’s intention was to play the notes A, B, and C simul-
taneously as a chord on tick —1; however we can see that
the A note’s onset happened before the tick —1, while the
B note’s onset happened after the tick. This small time de-
lay between the tick onset and the MICP dispatch is what
ensures the correct parsing of the user’s input.

The developer can set the amount of delay; however,
they should be careful of providing enough time for the
agent to process the packet before the next tick. No-
tice that the note_1ist message does not contain the
note C since its “on” and “off” events occurred before

Submitted to J. Audio Eng. Soc., 2023 June

DRAFT

and after the current tick. However, it appears in the
quantized_notes message as a “hold” event (when
the polyphony is larger than 2). On the other hand, the
note D is included in the note_list but not in the
quantized_notes, since its duration was less than the
clock period.

Event-based. These are systems that do not operate on
a time grid. In this case the Scheduler’s job is much easier.
In event-based mode, whenever the Scheduler receives an
event from the user’s input stream, it instantly dispatches
it to the agent using a MICP packet with hookType
equal to processNoteEvent and a message of type
note_11st which contains that single note event.

If needed, the Scheduler can operate on both grid-based
and event-based operations simultaneously.

3.4.2 Audio Scheduling

The audio scheduling differs from the note scheduling
in some important aspects. We will describe the path that
raw input audio samples follow, from the Audio Recorder
(implemented as an AudioWorklet) to reach the agent (im-
plemented as a WebWorker).

As we described in Sec. 3.4.1, notes played by the
user would first go to the Scheduler, undergo processing
if necessary, and then be relayed to the agent through
a MICP packet (via the postMessage method). How-
ever, due to the finer time granularity of audio compared
to note events, as well as the overhead associated with
postMessage, this method is not suitable for ensuring
uninterrupted flow of audio samples to the agent. To ad-
dress this, we employ a more immediate means of com-
munication between the Scheduler and the agent by utiliz-
ing SharedAudioBuffers. These buffers allow for instanta-
neous sharing of data among different processes, ensuring
that changes made by one process are immediately visible
to others with access to the shared buffer.

More specifically, we use the ringbuf . js library that
allows us to create a ring buffer based on a SharedAu-
dioBuffer object. This ring buffer operates on a single-
consumer single-producer model, allowing for efficient
sharing of audio data between two processes.

The maximum delay introduced by this buffer is equal to
the size of the underlying SharedAudioBuffer, which can
be configured by the user.

The initialization of the ring buffer takes place in the
main thread, and it is shared with both the Audio Recorder
and the agent during the initialization stage. Once initial-
ized, the main thread (Scheduler) no longer interacts with
the ring buffer. The Audio Recorder assumes the role of
the “producer”, responsible for pushing audio samples into
the ring buffer, while the agent serves as the “consumer”,
responsible for reading the samples at regular intervals. To
ensure smooth operation, it is essential that the agent reads
the samples from the ring buffer at a rate equal to or faster
than the AudioRecorder writes to it. This prevents buffer
overflow and loss of audio samples. By maintaining this
requirement, we can achieve seamless audio data transfer
between the AudioRecorder and the agent.

Submitted to J. Audio Eng. Soc., 2023 June

JAES TEMPLATE

The agent also performs the task of creating audio
frames based on a window size, w, and a hop size, A, spec-
ified by the developer. When audio samples are retrieved
from the ring buffer, they are added to an internal FIFO
queue with a size equal to the window-size. Every & au-
dio samples, a new audio frame with length w is created
from the current state of the queue. This audio frame is
then passed to the processAudioBuf fer hook, which
allows for further processing of the audio frame.

A similar process is used for sending audio samples gen-
erated by the agent to the Audio Player. In this case, a
new ring buffer is shared between the agent and the Au-
dio Player, but with the agent serving as the producer and
Audio Player serving as the consumer.

3.5 Global Configuration

To allow developers to easily customize the system,
we provide a unified interface for configuring interaction
logic and color palette. For interaction logic, we supply
a YAML-format configuration file that specifies settings
such as tempo, interaction mode, window and hop size for
audio and other interaction related parameters. The con-
figuration file also allows developers to specify the ap-
plication title, introduction text, and agent related hyper-
parameters. Additionally, the developers can specify the
instrument types available to the end user and the agent,
as well as the behavior and types of information to be dis-
played by the GUI widgets (Sec. 3.7). Finally, we provide
a Cascading Style Sheets (CSS) file that defines the color
palette for the system. By modifying this CSS file, devel-
opers have the ability to easily customize and define the
color scheme for all components in the application.

3.6 Audio Components
3.6.1 Audio Recorder and Player

To handle audio input and output, we utilize Au-
dioWorklets, which serve as the Audio Recorder and
Audio Player components. The Audio Recorder captures
audio input from the user’s device and sends it to be fur-
ther processed by the agent. On the other hand, the Audio
Player receives audio data from the agent and plays it back
through the output device, allowing the user to hear the
generated music in real-time. Details on how the Audio
Recorder and Audio Player worklets communicate with
the main thread and the agent can be found in Sec. 3.4.2.

3.6.2 Sampler Instruments

As the primary audio component for note events, we
provide an interface for creating sampler instruments that
use concatenative synthesis to generate audio for note se-
quences in real time. Each sampler instrument comprises
audio samples corresponding to individual notes; when a
note is triggered, its corresponding sample is played. For
more dynamic performance, the velocity of a given note
determines the playback volume for its corresponding sam-
ple. Euterpe’s sampler instruments are implemented via the
web audio framework Tone. js [27].

ZANG, BENETATOS AND DUAN

3.7 Visual Components

Euterpe offers a range of visual components or widgets,
that are synchronized with the scheduler to display real-
time information about the interaction. These widgets are
adaptive in nature, as their content and behavior directly
depend on the entries specified in a configuration file by
the developer (Sec. 3.5).

3.7.1 Score

Western modern staff notation, referred to as “score”
here, is a widely recognized and utilized musical notation
system, and has been integrated into Euterpe. This inclu-
sion aims to provide a familiar and intuitive interface for
musicians who are accustomed to reading and interpret-
ing music in score notation. VexFlow. js [28], a library
that provides an interface for a Scalable Vector Graphics
(SVG) score, is used to implement the score notation. At
each clock tick, the notes are drawn on the graph, and a
scrolling animation is triggered to ensure that the currently
displayed section of score notation corresponds to the cur-
rent interaction. Due to the complexity of implementing
a polyphonic score notation engraving algorithm, we cur-
rently only support monophonic voices for the grid-based
operation mode.

3.7.2 Piano Roll

The rising popularity of music sequencing software,
Digital Audio Workstations (DAWSs), and musical games
has led to widespread user familiarity with piano roll nota-
tion. In this notation system, each note is represented as a
rectangle, with one dimension indicating the pitch and the
other indicating the timing. Euterpe has also integrated this
notation system by leveraging Three. js [29], a graph-
ical library that facilitates the creation and display of 3D
computer graphics. Similar to A.I. Duet [17], an ortho-
graphic camera perspective is utilized to produce a 2D vi-
sual effect. The piano roll is synchronized with note events,
where user and agent outputs correspond to note rectan-
gles with different colors. Contrary to the score notation,
Piano roll supports polyphonic voices in both event-based
and grid-based operation modes.

3.7.3 Settings Window

The Settings window in Euterpe offers end users the
ability to adjust various interaction settings, such as the
BPM (clock speed) and selection of an external MIDI de-
vice. It additionally includes interactive elements such as
buttons, sliders, and switches. The amount and behavior of
these elements is adaptive and can be easily customized by
developers through the configuration file.

3.7.4 Mixer Widget

The Mixer widget in Euterpe is an audio mixer designed
to control the volume and mute status of each instrument
belonging to the players involved in the interaction. The
content of the Mixer widget is automatically populated
based on the players and instruments defined in the config-
uration file. This dynamic behavior ensures that the mixer

8

DRAFT

interface accurately reflects the structure of the interaction
and the audio elements involved.

3.7.5 Monitor Widget

The Monitor widget serves as a non-interactive tool de-
signed to monitor real-time changing variables of the inter-
action. Its purpose is to provide developers and end users
with insights into the system’s behavior and assist in track-
ing and analyzing specific parameters. It can only be used
to track floating-point values and it offers two ways to
present the monitored data: a text format and a 1-d rolling
graph. Developers can customize the widget by adjusting
the configuration file to specify the variables they want to
monitor, set the frequency of value updates, and choose be-
tween the text or graph display format.

3.7.6 Other Widgets

* Label Widget: This is a straightforward text box that is
used to displaying text sent from the agent to the main
thread. It serves as a convenient tool for presenting small
textual elements such as chord or key labels.

» Vector Widget: This is a bar plot designed to show-
case the values of a one-dimensional array sent from
the agent. This array can represent various data, such
as probability predictions for different classes, audio
chroma vectors, and more. To configure the widget, the
developer needs to specify the desired number of bins as
well as optional labels for each bin in the configuration
file.

* Spectrum Widget: A widget that provides a visual rep-
resentation of the frequency content of the user’s audio
input.

3.8 Deployment

Euterpe can be deployed as a SPA using Webpack, a
module bundler. At build time, a Euterpe application’s de-
pendency graph is analyzed by Webpack, with all depen-
dencies converted into a unified format. The resulting out-
put bundle contains all the code and assets necessary to
run the entire web application in the user’s browser envi-
ronment, with a single webpage as the application’s entry
point. This process happens automatically with each build
without the need for manual user intervention. Therefore,
Euterpe can be deployed with readily available web page
hosting sites, such as Heroku, Netlify, or GitHub Pages, or
be deployed as a standalone offline application with frame-
works like Electron or NW. js.

4 CASE STUDIES

4.1 BachDuet

To demonstrate the deployment process of a sym-
bolic music based system with Euterpe, we choose Bach-
Duet [13] as an example. As a neural-network based
real-time interaction system, the deployment of BachDuet
poses unique challenges and allows us to showcase many
Euterpe features. We present both user data analysis from
passively collected metadata from the published website,

Submitted to J. Audio Eng. Soc., 2023 June

DRAFT

as well as a more focused subjective evaluation involving
ten end-user participants. The final system is deployed at
https://bachduet.com.

4.1.1 System Description

BachDuet enables a human performer to improvise
a real-time duet counterpoint with a computer agent in
Baroque style. The concept of this interaction is illustrated
in Fig. 3. The input to the system is a human musician’s
monophonic MIDI performance, while the output is the
agent’s monophonic performance in real time generated by
a Recurrent Neural Network (RNN).

4.1.2 GUI

Since BachDuet is an interactive music system in the
Baroque style, an easy-to-use interface for classically-
trained musicians is needed. Therefore, besides the Piano
Roll notation, we also enable the Score notation compo-
nent.

We further customize the color by specifying the CSS
variables, which automatically changes the entire applica-
tion’s color palette. Also, we injected custom CSS to cus-
tomize the on-screen keyboard’s appearance further. The
final GUI is illustrated in Figure 4

4.1.3 Configuration

As we briefly introduced in Sec. 1.1, this is a MIDI in-
teraction system that uses a sixteenth-note time grid, which
means that we have a grid-based interaction mode that uses
the Clock to create the time grid. We set the Clock to tick
four times per beat. The user’s monophonic MIDI input
stream is temporally quantized based on the sixteenth-note
time grid, and the only time signature it supports is 4/4.
Since the interaction is monophonic and grid-based, we
can also enable the Score visualization. Based on the de-
scriptions above, we provide part of the configuration file
in Listing 1.

4.1.4 Agent

Before implementing the agent logic, an important pre-
liminary step is to convert the neural network model into
a format compatible with JavaScript libraries that sup-
port neural network inference. For BachDuet, we choose
TensorFlow. js. This step is necessary not only for the

Predicts

BachDuet

Past Context T

current note by user

Fig. 3. The interaction concept of BachDuet

Submitted to J. Audio Eng. Soc., 2023 June

JAES TEMPLATE

L 3 SETTINGS | [FEEDBACK | 122 ABOUT
—
. z|x|c|v R T Y U 1

B N M Q W E

Fig. 4. Screenshot of BachDuet GUI

title: "BachDuet"
subtitle: "Baroque-style AI"
interactionMode:
noteMode: true
audioMode: false
noteModeSettings:
eventBased: false
gridBased: true
polyphony:
input: 1
output: 1
clockSettings:
ticksPerBeat: 4
timeSignature:
numerator: 4
denominator: 4
tempo: 90
clockPeriod: null
agentSettings:
warmupRounds: 2
randomness: 0
gui:
score: true
pianoRoll: true

Listing 1: Configuration file for BachDuet

deployment of BachDuet but also for any other neural-
network based agent.

In the 1loadConfig hook, the agent receives the con-
figuration from the main thread and stores it in a local vari-
able. BachDuet also relies on an external JSON dictionary
loaded in this hook, which contains the mapping between
MIDI numbers and neural network tokens.

In the loadAlgorithm hook, we initialize
TensorFlow. js, then we load the neural network’s
weights and we run a few warm-up rounds. Finally, a
MICP packet is sent to the main thread stating that it is
ready for interaction.

In the processClockEvent hook, we take the user’s
latest MIDI input quantized to the current clock tick and

9

https://bachduet.com

ZANG, BENETATOS AND DUAN

the agent’s previous output, then run an inference step to
generate the next note to be played by the agent.

4.1.5 Deployment

To deploy the website, we use the web page hosting ser-
vices provided by Netlify. We created a GitHub repository’
that hosts the source code, then connects the push action
to Netlify. Netlify runs the build command on each push,
then sets the Webpack bundle as the website root direc-
tory, as mentioned in Sec. 3.8. This allows us to utilize the
free webpage hosting service of Netlify, including a Se-
cure Sockets Layer (SSL) certificate from “Let’s Encrypt,”
allowing for HTTPS connections.

4.1.6 Feedback

BachDuet was initially launched in May 2022. As of its
one-year anniversary, the site recorded a total of 794 musi-
cal interactions with its users. The breakdown of user inter-
actions across different operating systems was as follows:
Windows users accounted for 360 interactions, Macintosh
users similarly accounted for 360, Linux users had 50 in-
teractions, and tablet users (such as those using Chrome
OS and iPadOS) had 24 interactions. An integral aspect of
the web user experience is the loading time; based on the
recorded data, 36.4% of users were able to load the entire
webpage within 1 second, and 90.0% of users loaded the
webpage within 3.5 seconds.

For a more in-depth understanding of the user experi-
ence, we solicited feedback from then participants who
had no previous interaction with BachDuet. The partici-
pants were asked to interact with the platform and subse-
quently complete a questionnaire, which contains the fol-
lowing questions:

Uhttps://github.com/yongyizang/BachDuet-WebGUI

User Ratings of Question 4 to Question 9

10.0
2.0 1L 1 L
"3 8.0 o o o J—
-4
7.5
7.0 o o o o
6.5
6.0
Q4 Q5 Q6 Q7 Q8 Q9
Question

Fig. 5. Box plot of ratings of Questions 4 to 9 received from all
ten participants. Higher values indicate better agreement with the
questions. Median of each box is shown as the blue line. The top
and bottom of each box represent the 25 and 75 percentile, re-
spectively. Outlines are shown as circles.

10

DRAFT

1. Which types of input methods did you use ? (Participants
can choose computer keyboard, MIDI keyboard or on-
screen keyboard.)

2. Can you estimate the approximate duration of your in-
teraction with the system? (Participants can choose <1
minute, 1-5 minutes, 5-10 minutes or 10-30 minutes.)

3. What device are you currently using to play with this
system?

4. Do you find the GUI easy/intuitive to use? (scale 1-10)

5. Do you find the GUI to be simple and uncluttered?
(scale 1-10)

6. Do you find the visualizations to be accurate compared
to your actual input? (scale 1-10)

7. Does the GUI clearly reflect the notes and timeline
of the real-time interaction between you and the com-
puter? (scale 1-10)

8. Do you find the GUI allows you to quickly and easily
perform tasks, like changing BPM, changing volume?
(scale 1-10)

9. What’s your rating of your interaction with BachDuet?
(scale 1-10)

For Questions 4 to 9, a higher value indicates higher
agreement with the question. An additional open-ended
question was also included at the end to encourage par-
ticipants to provide further comments.

Regarding the first three questions, six participants re-
ported using a computer keyboard for interactions, three
used a combination of the on-screen and computer key-
boards, and one used a MIDI keyboard. Three participants
engaged for a span of 1-5 minutes, the majority of five par-
ticipants interacted for a duration of 5-10 minutes, and the
remaining two reported a longer interaction time of 10-30
minutes. All participants used a laptop, and specifically,
four participants were Macintosh users with the remaining
six using Windows.

Boxplots of scores for Questions 4 to 9 are shown in Fig-
ure 5. The data suggests a favorable perception of the user
interface by participants, particularly in terms of intuitive-
ness (Q4), simplicity and clean design (Q5), accuracy on
visualizations of user input (Q6), and clarity of GUI in re-
flecting the real-time interaction (Q7). Overall, participants
were positive about their interaction with BachDuet (Q9).
In open-ended responses, participants commented that the
system was “very fluid and responsive”, and they had “a
very nice and smooth experience” and “really liked the
general UI”.

The survey responses also indicated a potential area
for improvement in system controllability (Q8). From the
open-ended responses, it is evident that users had specific
feature requests, some of which were related to Euterpe as
a whole, while others specifically pertained to the Bach-
Duet system. Regarding Euterpe, users expressed a desire
to have additional functionality, such as the ability to pause,
rewind, and replay previously generated music. They also
requested the flexibility to customize the mapping of the
computer keyboard to MIDI notes. Furthermore, four users
requested a direct export feature that would allow them to
save the interaction data as a MIDI file.

Submitted to J. Audio Eng. Soc., 2023 June

DRAFT

4.2 Jazzimprov

To better illustrate the real-world experience of de-
ployment with Euterpe, we invited Yiyang Wang, an in-
teractive music system researcher and musician, to de-
velop and deploy her JazzImprov. Unlike BachDuet, Jazz-
Improv accepts audio input and outputs MIDI events,
making it an ideal test case for evaluating Euterpe’s au-
dio capabilities. The prototype of the system can be
found under the deployed systems section in https://
euterpeframework.orgq.

4.2.1 System Description

Details of the system’s design are shown in Fig. 6. It
allows a human performer to improvise with a computer-
generated backing track that emulates a Jazz trio band con-
sisting of Piano, Double Bass, and Drums. The Piano voice
plays chords generated by an RNN based on current human
input and prior interaction history. The RNN first generates
probabilities for each of the 12 notes, and uses rule-based
logic to extract the most probable chord. The chord is con-
verted to individual NoteEvent objects (Sec. 3.3.1 that are
sent to the main thread for playback. The Drums, and Dou-
ble Bass parts are generated based on the chord predictions
using rule-based logic. The chord predictions are gener-
ated once every beat, however the Drums and Double Bass
tracks are generated based on a 16th note grid.

4.2.2 GUI

Given the audio-based nature of JazzImprov, Yiyang
needed to provide visual representations of audio interac-
tions. For this purpose, she selected the Spectrum Widget
and added RMS and perceived loudness values to the Mon-
itor Widget. She used the the Vector Widget to visualize
her model’s raw probability outputs (12-d vector). Addi-
tionally, the model’s predicted chord is displayed using a
Label Widget in real-time. Finally, to monitor the model’s
performance, Yiyang added her agent’s inference time to
the Monitor Widget as well. The final GUI is illustrated in
Fig. 7.

Hur'nan ‘))
Rhythm Section
Performer
Player

I (by algorithm)

\!J Audio in

Progression Next
Chromagram Feature |—> RNN Chord

Data Collection & Inference

Fig. 6. Overview of “JazzImprov” interaction system

Submitted to J. Audio Eng. Soc., 2023 June

JAES TEMPLATE

4.2.3 Configuration

Based on the previous descriptions, part of the configu-
ration file for JazzImprov is provided as in Listing 2.

title: "JazzImprov"
subtitle: "An AI JazzTrio"
interactionMode:
noteMode: true
audioMode: true
noteModeSettings:
eventBased: false
gridBased: true
audioModeSettings:
input: true
output: false
windowSize: 2048
hopSize: 1024
clockSettings:
ticksPerBeat: 4
timeSignature:
numerator: 4
denominator: 4
tempo: 90
clockPeriod: null
agentSettings:
warmupRounds: 2
gui:
score: false
pianoRoll: true
vectorWidget: true
labelWidget: true
spectrumWidget: true

Listing 2: Configuration file for JazzImprov

4.2.4 agent

As another neural-network based system, JazzImprov
shares similar loadConfig and loadAlgorithm
hooks with BachDuet.

Chord

G#:min7

0000

Fig. 7. Screenshot of JazzImprov GUI

11

https://euterpeframework.org
https://euterpeframework.org

ZANG, BENETATOS AND DUAN

Inside the processAudioBuffer hook, Yiyang
added the audio frame-level feature extraction. She used
Meyda. js to convert the raw audio frames into a chroma
vector representation. Each chroma vector is pushed to a
queue that exists within the scope of the agent. This queue
serves as a storage mechanism for the chroma features
extracted from the audio frames.

The processClockEvent hook is triggered by the
main thread on every clock tick (16th note). Within this
hook, JazzImprov performs the inference of the RNN
model every four ticks, as the model operates on the beat
and quarter note level. At each interval of four ticks, Jazz-
Improv accesses the chroma queue, which is populated
by the processAudioBuffer hook, runs the RNN in-
ference using the chroma vectors, and then empties the
queue to prepare for the next batch of chroma vectors. At
the same time, within the processClockEvent hook,
JazzImprove also runs an rule-based algorithm that gener-
ates drums, bass, and the piano rhythm, at every tick.

4.2.5 Deployment

To deploy the website, Yiyang followed similar steps as
BachDuet to deploy using Netlify. In the interest of sim-
plicity, we skip the details. At the time of this paper’s writ-
ing, the source code repository for Yiyang’s web applica-
tion is not open-sourced; we will update Euterpe’s website
with the repository link once it is publicly released.

4.2.6 Feedback

The opportunity to collect feedback from an external re-
searcher who has thoroughly explored Euterpe and suc-
cessfully deployed an interaction system with it is very
valuable. To gather comprehensive comments, we de-
signed a questionnaire containing open-ended questions
for Yiyang to detail her experience. Her responses are as
follows:

* Have you implemented your algorithm into a prototype
in other languages/platforms? If yes, how long, roughly,
did you spend in building the interface and application
side of the prototype?

Yes. I spent roughly 60 hours in
total (used Max and Python, proficient
in both).

* How “portable, shareable, and accessible” do you think
your previous application was, on a scale of 1 to 10?
Higher values are better.

4. Max/MSP supports multiple coding

platforms; however, the application

had OS-specific dependencies, making
it not quite portable.

* Do you have any background in terms of web program-
ming? If yes, can you specify your background?

DRAFT

web frameworks (Django, Flask). I
haven’t built a standalone website
from frameworks previously.

* How long did it take, roughly, for you to implement
your application as a webpage using Euterpe?

I used a time-tracking tool to track
the entire application development
process; it took 15 hours in total,
starting from the template provided
by Euterpe. This did not include the
time in exporting the neural network
from PyTorch to TensorFlow.]js which
took around 5 hours.

* How long do you think it may take, roughly, for you to
implement your application as a webpage without using
Euterpe?

More than 400 hours. It’s going to be
a headache to figure out the GUI and
the system’s overall structure.

* How “portable, shareable, and accessible” do you think
the newly built application is, on a scale of 1 to 10?
Higher values are better.

9. The web-based nature of Euterpe
extends a natural layer of portability
and accessibility.

* What do you think are the strongest strengths of Eu-
terpe?

Euterpe abstracts away the ‘‘dull’’
process of web user interface design

and the tricky data transport specifications.

* What do you think are the most prominent weaknesses
of Euterpe?
The UI components have only limited
options to customize directly from
the config files, so if the developer
or researcher is aiming for something
quite different, more intricate changes
to the overall framework need to be
made. Better documentation needs to
be written for that purpose as well.

This feedback highlights Euterpe’s ability to facilitate
the prototype deployment process. Euterpe achieves this
through its abstraction of the system, which only exposes a
limited number of agent hooks, thereby simplifying the de-
velopment process. That being said, this simplification also
limits the options for the researchers, as Yiyang pointed out
as an area for improvement. Taking into consideration her
constructive critique, our ongoing objective is to expand
our range of widgets to cater to the diverse needs of devel-
opers, while also extending the documentation to support
those seeking further customization of Euterpe.

Yes. I had some experience with JavaScrifstFUTURE WORK

(1000 lines of code in single projects),

and some working knowledge of general
website structure (html, css, etc.)
and limited experience on Python

Euterpe is an active project, and we are committed to en-
hancing its features to provide better support for a broader
range of interactive music systems. We have outlined a

Submitted to J. Audio Eng. Soc., 2023 June

DRAFT

roadmap of enhancements and features for Euterpe, ranked
from short-term to long-term priorities:

* Exporting Audio and MIDI. Even though the interac-
tion data are stored internally in Euterpe, we do not pro-
vide the option to directly export the symbolic or au-
dio interaction history in popular formats such as MIDI,
PDF or WAV. This is a feature that many end users, as
well as our independent developer, asked.

* Polyphony constraints. Currently we are only apply-
ing polyphonic constraints on the quantized notes dur-
ing grid-based operation. Our next step is to apply the
polyphony constraints directly at the user’s un-quantized
input events. Additionally, since currently we only sup-
port “last” priority (the last note played by the user has
higher priority), We also want to implement other types
of priorities, such as “highest” and “lowest”.

* Server based agents. Another area of future work for
Euterpe is to enable interactions with agents that run on
remote servers instead of the browser. While this may
not be suitable for real-time simultaneous interactions
with strict deadlines, it can be valuable for real-time in-
teractions with more flexible timing requirements. Addi-
tionally, working with larger models, such as audio lan-
guage models, may necessitate running agents on remote
servers due to resource constraints.

* Conditioning on external material. Score-driven inter-
active music systems (as defined in [1]) may require ex-
ternal material, such as chord sequences or MIDI files.
We plan to add support for importing external material
to better adhere to those systems’ needs.

* Looping based interactions. We also aim to support a
looping-based music interaction paradigm that involves
both the user and the agent. In this interaction mode,
users create and manipulate musical loops, while also
enabling the agent to contribute its own layers to the
loop. Users will have the ability to record their own mu-
sical phrases or sounds, overlay them with the agent’s
generated material, and explore new musical possibili-
ties through iterative layering.

 Polyphonic and free time score notation. We plan to
expand the capabilities of the score notation visualiza-
tion. As mentioned in 3.7.1, The score notation is limited
to displaying monophonic note sequences with a prede-
fined time grid and a known time signature.

* Visual input methods. Besides musical input, there are
interactive music systems that use visual input methods
such as dance moves or hand gestures to interact with
music [30]. Thus, we plan to introduce support for web
cameras as input and transmit video information to the
agent.

* Better mobile device support. As of now, Euterpe is
designed for desktop devices, not taking advantage of
interaction methods, such as multi-touch, that are mainly
available on mobile devices.

To address this limitation, we plan to introduce new vi-
sual components specifically designed for mobile de-
vices, such as a multi-touch on-screen keyboard.

Submitted to J. Audio Eng. Soc., 2023 June

JAES TEMPLATE

e Multi-player mode. The current design of Euterpe as-
sumes a two-player interaction system with one human
player and one agent. We plan to introduce a multi-
player interaction mode to provide broader support.

6 CONCLUSION

In this work, we presented Euterpe, a prototyping web
framework, designed to simplify the deployment process
of human-computer interactive music systems on the web.
By leveraging the web’s cross-platform compatibility, Eu-
terpe enhances the accessibility and potential impact of
these systems. Our focus was on reducing the development
burden by handling JavaScript aspects such as real-time in-
put streams and data synchronization, allowing developers
to focus on their core algorithms. Additionally, Euterpe of-
fers a series of widgets for data visualization, further help-
ing developers in creating an engaging prototype.

To demonstrate the capabilities of Euterpe, we con-
ducted case studies of the deployment of two neural net-
work music improvisation systems.The first system was
BachDuet, a MIDI-based improvisation system that has
been accessed by hundreds of end users on the web. Sub-
jective evaluation revealed a high level of approval and pos-
itive user experience regarding the interface of BachDuet.
The second system was JazzImprov, an audio-based impro-
visation system developed by an independent researcher.
The researcher reported that she was able to create a work-
ing prototype in one-third of the time it took to implement
using her previous approach. This feedback suggests that
Euterpe can be a valuable tool in accelerating the develop-
ment process of interactive music systems.

Euterpe is under active development, and we plan on
adding more features to support a wider range of interac-
tive music systems as well as addressing the needs of re-
searchers and end users.

7 ACKNOWLEDGMENT

This work has been partially funded by the National Sci-
ence Foundation grants Nos. 1846184 and 2222129. We
thank Yiyang Wang for her feedback, bug reports, and fea-
ture suggestions in the case study of the deployment of her
JazzImprov system with Euterpe. We also thank Tianyu
Huang for his assistance in the early stages of the devel-
opment.

8 REFERENCES

[1] R. Rowe, Interactive music systems: machine listen-
ing and composing (MIT press, 1992).

[2] K. Tatar and P. Pasquier, “Musical agents: A typol-
ogy and state of the art towards musical metacreation,”
Journal of New Music Research, vol. 48, no. 1, pp. 56-105
(2019).

[3] T. Winkler, Composing Interactive Music: Tech-
niques and Ideas Using Max (MIT press, 2001).

13

ZANG, BENETATOS AND DUAN

[4] R. Rowe, “The Aesthetics of Interactive Music Sys-
tems,” Contemporary music review, vol. 18, no. 3, pp. 83—
87 (1999).

[5] H. Flores Garcia, A. Aguilar, E. Manilow, D. Ve-
denko, and B. Pardo, “Deep Learning Tools for Audac-
ity: Helping Researchers Expand the Artist’s Toolkit,” pre-
sented at the 5th Workshop on Machine Learning for Cre-
ativity and Design at NeurIPS 2021 (2021).

[6] L. Wyse and S. Subramanian, “The viability of the
web browser as a computer music platform,” Computer
Music Journal, vol. 37, no. 4, pp. 10-23 (2013).

[71 S. Pfeiffer, “HTMLS Audio APL,” in The Definitive
Guide to HTMLS Video, pp. 223-245 (Springer, 2011).

[8] J. Jacobs, “From Prototype to Product: Deployment
strategies in computer science research,” XRDS: Cross-
roads, The ACM Magazine for Students, vol. 23, no. 1, pp.
5-6 (2016).

[91 R. B. Dannenberg, “Languages for Computer
Music,” Frontiers in Digital Humanities, vol. 5
(2018), doi:10.3389/fdigh.2018.00026, URL https://
www.frontiersin.org/articles/10.3389/
fdigh.2018.00026.

[10] S. Ji, J. Luo, and X. Yang, “A comprehensive
survey on deep music generation: Multi-level representa-
tions, algorithms, evaluations, and future directions,” arXiv
preprint arXiv:2011.06801 (2020).

[11] G. E. Lewis, “Too many notes: Computers, com-
plexity and culture in” voyager”,” Leonardo Music Jour-
nal, pp. 33-39 (2000).

[12] J. Biles et al., “GenJam: A genetic algorithm for
generating jazz solos,” presented at the International Com-
puter Music Conference, vol. 94, pp. 131-137 (1994).

[13] C. Benetatos, J. VanderStel, and Z. Duan, “Bach-
Duet: A deep learning system for human-machine counter-
point improvisation,” presented at the Proceedings of the
International Conference on New Interfaces for Musical
Expression (2020).

[14] N. Jiang, S. Jin, Z. Duan, and C. Zhang, ‘“Rl-duet:
Online music accompaniment generation using deep rein-
forcement learning,” presented at the Proceedings of the
AAAI conference on artificial intelligence, vol. 34, pp. 710—
718 (2020).

[15] C. Donahue, I. Simon, and S. Dieleman, ‘“Piano
genie,” presented at the Proceedings of the 24th Interna-
tional Conference on Intelligent User Interfaces, pp. 160—
164 (2019).

[16] C.Donahue, “Piano Genie,” https://imaginary.github.io/

piano-genie/ (accessed Mar. 10, 2023).

DRAFT

of-the-art natural language processing,” arXiv preprint
arXiv:1910.03771 (2019).

[21] S. Raschka, J. Patterson, and C. Nolet, “Machine
learning in python: Main developments and technology
trends in data science, machine learning, and artificial in-
telligence,” Information, vol. 11, no. 4, p. 193 (2020).

[22] M. Puckette, D. Zicarelli, et al., “Max/MSP,” Cy-
cling, vol. 74, pp. 1990-2006 (1990).

[23] V. J. Manzo, Max/MSP/Jitter for music: A practi-
cal guide to developing interactive music systems for edu-
cation and more (Oxford University Press, 2016).

[24] D. Fober, S. Letz, et al., “FAUST: an efficient func-
tional approach to DSP programming,” (2009).

[25] M. D. Network, “Web Workers API,” https:
//developer.mozilla.org/en-US/docs/
Web/API/Web_Workers_API, accessed on June 6,
2023.

[26] M. D. Network, “Web Workers API,” https://
developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/
SharedArrayBuffer, accessed on June 6, 2023.

[27] tonejs, “Tone.js,” https://tonejs.github.io/ (accessed
Mar. 15, 2023).

[28] L. K. Mohit Muthanna Cheppudira, Michael
Scott Cuthbert et al., “VexFlow,” https://github.com/Oxfe/
vexflow (accessed Mar. 15, 2023).

[29] mrdoob, “Three.js,” https://threejs.org/ (accessed
Mar. 15, 2023).

[30] T. Winkler, “Making motion musical: Gesture map-
ping strategies for interactive computer music,” presented
at the International Computer Music Conference, p. 26

(1995).

[17] Y. Mann, “A.I Duet,” https://experiments.withgoogle.com/

ai/ai-duet/view/ (accessed Mar. 10, 2023).

[18] F. Pachet, “The continuator: Musical interaction
with style,” Journal of New Music Research, vol. 32, no. 3,
pp- 333-341 (2003).

[19] A. Abid, A. Abdalla, A. Abid, D. Khan, A. Al-
fozan, and J. Zou, “Gradio: Hassle-free sharing and
testing of ml models in the wild,” arXiv preprint
arXiv:1906.02569 (2019).

[20] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. De-
langue, A. Moi, et al., “Huggingface’s transformers: State-

14

Submitted to J. Audio Eng. Soc., 2023 June

https://www.frontiersin.org/articles/10.3389/fdigh.2018.00026
https://www.frontiersin.org/articles/10.3389/fdigh.2018.00026
https://www.frontiersin.org/articles/10.3389/fdigh.2018.00026
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer

DRAFT

JAES TEMPLATE

THE AUTHORS

Yongyi Zang Christodoulos Benetatos

Yongyi Zang received his B.S. with honors in 2023, ma-
joring in Audio and Music Engineering under the Electri-
cal and Computer Engineering department at the Univer-
sity of Rochester, minoring in Computer Science. His re-
search interest lies mainly in Computer Audition, as well
as combining techniques with relevant fields, such as Nat-
ural Language Processing and Computer Vision.

Christodoulos Benetatos is a 5th year Ph.D candidate
in Electrical and Computer Engineering department at the
University of Rochester. He received his B.S and M.Eng
in Electrical Engineering from National Technical Univer-
sity of Athens in 2018. His research interests lie primar-
ily in designing and developing computer-assisted music-
making systems.

Zhiyao Duan is an associate professor in Electrical and
Computer Engineering, Computer Science and Data Sci-
ence at the University of Rochester. He received his B.S.
in Automation and M.S. in Control Science and Engineer-
ing from Tsinghua University, China, in 2004 and 2008,
respectively, and received his Ph.D. in Computer Science
from Northwestern University in 2013. His research inter-
est is in computer audition and its connections with com-
puter vision, natural language processing, and augmented
and virtual reality. He received a best paper award at the
Sound and Music Computing (SMC) conference in 2017,
a best paper nomination at the International Society for
Music Information Retrieval (ISMIR) conference in 2017,
and a CAREER award from the National Science Foun-
dation (NSF). He served as a Scientific Program Co-Chair
of ISMIR 2021, and is serving as an associate editor for
IEEE Open Journal of Signal Processing, a guest editor for
Transactions of the International Society for Music Infor-
mation Retrieval, and a guest editor for Frontiers in Signal
Processing. He is the President-Elect of ISMIR.

Submitted to J. Audio Eng. Soc., 2023 June

.
\
\
\
\
\
\
\
\
\
\

Zhiyao Duan

15

