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Abstract

Semantic segmentation methods are typically designed for RGB color images, which
are interpolated from raw Bayer images. While RGB images provide abundant color
information and are easily understood by humans, they also add extra storage and com-
putational burden for neural networks. On the other hand, raw Bayer images preserve
primitive color information with a single channel, potentially increasing segmentation
accuracy while significantly decreasing storage and computation time. In this paper,
we propose RawSeg-Net to segment single-channel raw Bayer images directly. Differ-
ent from RGB images that already contain neighboring context information during ISP
color interpolation, each pixel in raw Bayer images does not contain any context clues.
Based on Bayer pattern properties, RawSeg-Net assigns dynamic attention on Bayer im-
ages’ spectral frequency and spatial locations to mitigate classification confusion, and
proposes a re-sampling strategy to capture both global and local contextual information.

1 Introduction

Scene segmentation is a fundamental
and challenging topic in computer vi-
sion with a wide range of applica-
tions, such as in autonomous driving,
augmented reality, medical imaging,
etc [1] [26] [11]. The vast major-
ity of current semantic segmentation
algorithms take the 3-channel color
images after image signal processor
(ISP) pipelines as inputs. To output
RGB color images, the ISP pipeline
will consume extra time from raw
Bayer images and may damage or lose

Figure 1: RawSeg-Net is able to achieve accu-
rate scene segmentation from 8-bit (single channel)
Bayer pattern image (left). The middle image is the
result of the left image overlaid with color Bayer
pattern for better observation. Our method pre-
cisely segments moving objects (pedestrians, cars)
and object boundaries (buildings, roads) (right).

primitive pixel information captured by the raw camera sensor due to the operations like de-
mosaicing, exposure adjustment, and many other middle processes in ISP [10]. Raw Bayer
images contain all the necessary color and intensity gradient information in a single channel,
making them an efficient source for RGB images. They save up to 67% of image storage

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 GUOYU LU: RAWSEG: SEGMENTATION BASED ON RAW BAYER IMAGES

ASPP
[irreon —ff

¥ e —#

feature map

1 x grid input _, ‘

suogydeg

ion

result

2 X segmentation
Final refined output result

Figure 2: Overview of our proposed RawSeg-Net. Multiple 8-bit raw Bayer images with
different grid sizes are input to the backbone to extract low-level features. We further deploy
ASPP module to extract the contextual information, introduce spatial coordinate attention to
focus on each grid coordinate, and utilize spectral frequency attention to focus on each split
spectrum. By concatenating different weighted feature maps and fusing the class maps from
different grid sizes, the raw Bayer image can be accurately segmented.

space and can potentially increase the image processing pipeline by eliminating the ISP pro-
cess, which is a significant time-consuming step. By processing single-channel images, the
computation burden and neural network complexity can also be reduced. Therefore, raw
Bayer images have several advantages, including completeness and accuracy of color in-
formation, efficient storage, fast processing speed, and reduced network complexity. The
widely used Bayer pattern, arranged in a repeated 2 X 2 matrix grid containing one red com-
ponent, one blue component, and two green components, is typically used to generate raw
Bayer images.Despite the numerous benefits of raw Bayer images over RGB images, there
is currently a shortage of segmentation algorithms specifically designed for Bayer patterns.

In this work, we demonstrate the usability of raw Bayer images on scene segmenta-
tion tasks and propose a semantic segmentation network designated for raw Bayer image
RawSeg-Net in order to accurately segment raw Bayer images, as Fig. 1. Unlike RGB color
images that maintain neighboring contextual information during ISP color interpolation, raw
Bayer images’ pixels miss the context clues from neighboring locations from spectral and
spatial perspectives. Therefore, to effectively utilize Bayer pattern, we explore a spatial coor-
dinate attention mechanism to accurately allocate attention weights to each specific pixel by
aggregating diverse feature maps and spectral frequency attention to capture different light
wavelengths and high frequency details contained in the raw Bayer image. As scene images
are commonly composed of objects of various sizes (e.g., building as large structures and
traffic signs as fine structures), we compose the grids into different sizes (e.g., one composed
grid maintains 4 small grids with the same color) to segment the image and fuse segmenta-
tion outputs with different grid sizes to precisely segment the images with objects in various
scales, benefiting from the Bayer grid pattern. With convolution kennels dedicated to Bayer
patterns, RawSeg-Net can capture spatial and spectral features at various grid sizes to realize
precise segmentation based on raw images. Our method is detailed in Fig. 2.

To sum up, this paper makes several significant contributions. 1) We demonstrate that
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single-channel raw Bayer images are highly suitable for image segmentation tasks, offering
advantages such as reduced storage requirements, faster image processing, and less complex
neural networks. 2) We propose novel spatial coordinate attention and spectral frequency
attention mechanisms designed specifically for Bayer images, allowing for highly accurate
semantic segmentation. 3) We introduce a fusion strategy that leverages different grid sizes
of the Bayer pattern to effectively segment objects of varying scales.

2 Related work

Semantic Segmentation: Benefiting from the successful usages of deep Convolutional Neu-
ral Networks (CNNs) [21] [25] [15] [3] [16], semantic segmentation has achieved significant
improvement towards understanding a complex scene. Fully Convolutional Networks (FCN)
[21] first applied a fully convolutional network in semantic segmentation tasks. Following
FCN, extensive research was proposed based on the FCN architecture, such as UNet [25],
SegNet [2], PSPNet [15] and DeepLab-based [3] [4] works. Recently, PSANet [37] pro-
posed a point-wise attention network to learn attention for each feature map position for
scene parsing. HRNet [32] started from a high resolution convolution stem and gradually
added high-to-low resolution blocks. In addition to CNN features based on color and tex-
ture information for segmentation, depth information is also applied to support segmentation
tasks [22, 23]. Large models, like SAM [13], are also proposed for segmentation tasks. Ex-
isting semantics segmentation schemes are mainly designed for RGB color images without
focusing on raw Bayer images, which are the source of RGB images.

Context Attention: Contextual information is critical in various vision-based tasks such
as semantic segmentation. An increasing number of works have explored contextual de-
pendencies and context-weighted information, especially attention mechanisms. Different
strategies are proposed to explore long-term attention dependencies [31] [28] [33] [6]. Wang
et al. [33] presented a self-attention module with non-local operations to capture long-range
dependencies in spatial-temporal dimensions to process videos and images. DANet [6] ap-
plied a dual-attention strategy to combine information from the input images and the final
feature maps. Different from attention mechanisms commonly applied to RGB color images,
this paper focuses on the affluent contextual relationships contained in the Bayer patterns to
better capture the shape and spectral information explicitly existing in raw Bayer images.

Bayer Pattern: Most of the works using Bayer Color Filter Array (CFA) are designed for
image demosaicing, which is to interpolate the vacant red, green and blue values in the raw
Bayer pattern images to restore 3-channel RGB color images [17] [35] [24] [20]. Various
clues have been investigated to interpolate RGB color information, such as color difference
[5], edge direction [14] and image reconstruction [27]. Deep learning approaches have also
been applied in image demosaicing [30] [29] [19]. In particular, Liu et al. [19] proposed a
self-guidance network to use an initially estimated green channel as guidance to recover all
missing values in the input image. Another typical application for Bayer images is image
restoration. Bayer images have also bee applied to object detection tasks [7]. Zhou et al. [39]
proposed to restore images from the raw Bayer domain. However, Bayer images have rarely
been applied to image segmentation tasks, mainly because Bayer images are not convenient
for human eyes to observe.

3 Raw Bayer Image Segmentation Framework

RawSeg-Net is specially designed for raw Bayer images to map to pixel-level class annota-
tions. The introduction of dynamic attention mechanisms on the Bayer pattern helps coordi-
nate and split spectral wavelengths under multiple Bayer grid sizes.
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3.1 Raw Bayer Pattern
Most commercial digital cameras have a single CCD/CMOS sensor that captures the in-
tensity of light, but not its color wavelength. To produce color information, the sensor is
overlaid with a Bayer "color filter array" (CFA), which filters the captured pixels and pro-
duces different spectral channels. This results in a raw Bayer image I°®°", which is an image
mosaic. To recover the full RGB color S from the separate spectral channels S®,S¢ and S2,
where § = SR(JSC|USB, S8 and SR each occupy a quarter of all pixels, and S® occupies half
of all image pixels arranged in a quincunx lattice. Fig. 3 shows the zoom-in details of a
20 x 20 region in the captured raw Bayer image by a single CCD sensor equipped with a
Bayer pattern filter, as well as a rendering illustration where each sample point is plotted
with Bayer color.

Demosaicing methods are typically
used to interpolate missing color informa-
tion and recover the full RGB color im-

S i
age from a raw Bayer image. However, -
in scenes with high contrast and constantly
changing colors or objects, demosaicing
may result in the loss of details and in-

troduce color artifacts like bleeding and Figure 3: Formulation of raw Bayer images.
zippering. Furthermore, post-processing For each sample image (row), left is the zoom-
stages such as demosaicing can be com- in 20 x 20 pixels’ region of the raw Bayer im-
putationally expensive, which makes raw 2% right is the raw Bayer image overlaid with
Bayer images a more cost-effective option color Bayer pattern for better observation.

for end-to-end semantic segmentation. In contrast to RGB images, raw Bayer images pre-
serve the most primitive color information, making them ideal for semantic segmentation.
The Bayer CFA used in typical post-processing steps is illustrated in Fig. 4.

b Bayer pattern T -
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Figure 4: An illustration regarding the usage of Bayer CFA in a typical camera ISP pipeline.
3.2" Spectral Frequency Attention Block BiRveianam

Effective utilization of color information is cru-
cial for various computer vision tasks, includ-
ing segmentation and detection, as it provides
a wider spectral perception field with multiple
color channels. To strengthen the features that
encode spectral information and reduce the im-
pact of ineffective features, it is essential to re-
calibrate them. This is particularly relevant for ‘ ==
Bayer images that contain only a single color Figure 5: Anillustration of the frequency
channel per pixel, as all three RGB channels have components from the Discrete Cosine
already been interpolated from neighboring pix- 1ransform (DCT) of feature maps.

els during the ISP process, which encodes contextual information in the image. However,
this contextual information is not encoded in the raw Bayer images. To learn spectral at-
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tention from the context information, we propose to decompose the image into frequency
spectra using Discrete Cosine Transform (DCT), which has been largely used in image and
video compression applications. The DCT representation expresses an image as a sum of
sinusoids at varying magnitudes and frequencies. Given an input image x of size M x N, the
2D DCT spectrum B € RM*V is obtained as:

M—1N—1
(2m+1)p  w(2n+1)g
By, = mzb ; ap.4COS o cos N (1)

where ag g is ﬁ, which corresponds to the lowest frequency component in the left top

regions of Fig. 5. ap 4 is ﬁ for all other frequency components of the 2D DCT. By y—1
corresponds to DCT coefficients of the highest frequency in bottom right regions of Fig. 5.
Given the input feature map X € RO>*W DCT coefficients A € RF*CH*W are com-
puted for the selected F frequency components. Reshaping X to 1 x C x Hx W, conducting
element-wise multiplication with A, and summarizing the output across the spatial coordi-
nate, the embedded frequency matrix will be D € RE*/, J = H x W. The embedding is then
forwarded to choose the maximum frequency response per channel via max pooling. The
final weighted feature map output Y is generated by a fully connected layer and sigmoid

activation, as shown in Fig. 6.
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Figure 6: The detailed structure of our spectral frequency attention block. The input feature
map is first decomposed to spectral frequency domain. The DCT coefficients are then for-
mulated to one channel attention map via a MaxPooling and MLP. The output feature map
weighted by the attention map through element-wise multiplication shares the same dimen-
sion as the input.

3.3 Spatial Attention Module ool

To extract smooth and continuous A4 '
segmentation boundaries, a larger o | _.@-.!Dl _,®_.@

spatial perception field covering lo- Y Signoia OHET] CxEXW
cations with salient and continuous fincon

color information is necessary for
raw Bayer images where neighbor-
ing pixels do not have continuous
color changes. To address this, we
introduce a spatial attention mod-
ule, as shown in Fig. 7. The raw
Bayer image is composed of grids
of light-sensitive cells, and the spatial attention block enhances a wide range of contextual
information into the local Bayer point. To explore spatial attention in raw Bayer images,
we process the input feature X’ € ROH*W separately with global average pooling (GAP)
and global max pooling (GMP) along the feature channels, and aggregate the results for
concatenation. This process is expressed as:

Pool_block(X") = Concat { GAP(X'),GMP(X')} (2)

Avepool ff 2XHXW
[Arefo,

IXHXW

IXHXW

Figure 7: The structure of the spatial attention block,
where " ®@” denotes the element-wise Handamard mul-
tiplication. Given an input feature map X', the spatial
attention block learns a spatial attention map P and
generates the spatial attention guided feature Y.
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where the output of the Pool_block (X’) is in a tensor of shape 2 x H x W. The output is then
followed by a 5 x 5 convolutional layer and a batch normalization layer. The output is then
passed through a sigmoid activation layer (-) to generate a 1 x H x W attention map. The
final weighted attention output is element-wisely multiplied with the original input feature
map as:

Y' = o (Conv (Pool_block(X"))) ® X’ 3)

where the output feature map Y’ shares the same dimension as the input feature map X’
as C x H x W. With the introduced spectral frequency attention (SFA) and spatial coordi-
nate attention (SCA) blocks, the extracted features from the backbone are able to adaptively
emphasize on both Bayer spectrum and coordinate. The SFA and SCA are concatenated
together to several convolution layers to generate the final pixel-level estimation map, as
shown in Fig. 8.

The overall objective function 2 3_’ NN 8
for training the RawSeg-Net is a y y 5 5
combination of the normal cross-
entropy loss (between the esti-
mated segmentation output y and the ™" 4 4 . femtramap
ground truth label y ) and the RMI —E-B-B- B

loss [38] (between the estimated

probability of segmentation labels Figure 8: Illustration of the attention modules in our
and the probability of the ground entire pipeline.

truth labels) as:

Lseg(y7 ) lceLce(Ya ) Armlll (Y Y) (4)

where L., is the per-pixel cross-entropy loss, and I;(Y,Y) denotes the lower bound of the
mutual information of estimated and the ground truth variables. Ly (y,7) is designed to
simultaneously minimize the dissimilarity and maximize the lower bound of the mutual in-
formation to enable the estimated segmentation map to achieve high-order consistency with
the ground truth segmentation map.

3.4 Multi-grid Re-sampling Strategy

Considering the raw Bayer image Smaller Bayer grid *z
is composed of pixel level light-
sensitive cells, a more focused strat-
egy for processing multi-level grids 3!
is essential for the final segmenta- ‘
tion output. In contrast with [36] [8] Larger Bayer grid :

[9] that use different sampling op- Figure 9 Illust.ration (')f the c'reation qf re-sampled
erations or pyramid pooling to ob- Bayer grids while the image size remains the same.

tain a multiscale representation, we A larger Bayer grid composes of small Bayer pixels
instead opt for re-sampling the orig- without reducing original dimension.

inal grid size to a larger size Bayer grid. More specifically, we group pixels in each original
2 x 2 Bayer pattern together and assign the same color to the newly composed larger Bayer
grid so that the entire Bayer image is composed of Bayer patterns with larger size. Therefore,
the individual pixel-wise segmentation estimations are combined with dynamically learned
scale-aware weights followed by a pixel-wise summation for generating the final refined seg-
mentation. The re-sampling strategy of the raw Bayer image and the dynamic weight guided
output refinement steps are depicted in Fig. 9.
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With this strategy, we ob-
serve that the final refined
output performs better than
the estimations with origi-
nal Bayer input in the large
structures such as on build-
ing boundaries and pedes-
trian road, and performs bet-
ter than the estimations with
the re-sampling Bayer input
in the fine structures such TIigure 10: The pixel-wise semantic segmentation outputs
as lamp poles and traffic with different Bayer grid sizes. First row: input raw Bayer
signs. With the re-sampling image; segmentation output from large Bayer grid. Second
and dynamic weighting strat-  TOW: segmentation output from small Bayer grid; final re-

egy, the refined output can fined segmentation output.
benefit from both global and local contextual information, as demonstrated in Fig. 10.

The final loss will be a combination of L., from the raw Bayer image and the re-sampling
Bayer image. Assuming the dynamic attention mask and the pixel-wise segmentation for the
input Bayer image are M and Y |, the corresponding attention mask and the segmentation
output for the re-sampled Bayer image are 1 — M and Y., ,, the refined segmentation output
can be formulated as:

Yseg_final =M- Yseg1 (1 - M) : Yé‘egz ®)
Therefore, the final refined objective function Lgp, is based on Eq. 4 that can be updated as:
Lfinal = Lseg (% Yssegl ) + Lseg ()@ Ysegz) + Lseg ()’7 Ysegjinal) (6)

4 Experlments Train  Validation  Test

4.1 Datasets and Configuration Images 2000 500 1000

We evaluate our proposed framework on three ~ Masks 14016 3350 7010
datasets: Cityscapes, Mapillary, and a dataset we Table 1: Split of our collected raw Bayer
collected using a NIKON-D3500 digital camera. image dataset.

Cityscapes is a high-resolution dataset consisting of around 5,000 images with pixel-level
segmentation annotations for 19 classes, including road, sidewalk, building, person, car, and
more. We used reverse-engineered RGB color images published by the dataset and converted
them to 8-bit Bayer images for training and evaluation. The training, validation, and testing
sets are split into 2,975, 500, and 1,525 images. We used the most common RGGB Bayer
pattern to extract one channel for each 3-channel pixel in the order of the Bayer pattern.

We also collected a real raw Bayer im-
age dataset using a NIKON-D3500 cam-
era. The dataset has the same class cate-
gories as Cityscapes, and its partition de-
tails are shown in Table 1. Fig. 11 dis- s
plays some samples of collected raw Bayer :
images and their corresponding pixel-wise
label annotations. Finally, we evaluated

our method on Mapillary and our collected Figure 11: Samples of our collected real raw
dataset with and without re-training. Bayer image dataset.
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Method MioU FPS__road _sidewalk__build _wall _fence _pole _ (ight _(sign _veg torrain__sky _ person _rider _car___truck _ bus__ train__motor__bike
RefineNet [18]  0.735 1.8 0872 0737 0826 0593 0481 0524 0706 0750 0803 0.636 0920 0796 0642 0900 0616 0.725 0610 0583 0609

Deeplab-v3 [4] 0757 23 0919 0.754 0.855 0.732 0475 0554 0760 0.752 0.828 0462 0914 0846 0.589 0865 0.540 0.627 0.538 0.682 0.646
Deeplab-v3+ [12] 0763 3.6 0.921 0.752 0867 0.735 0478 0571 0.761 0.769 0.826 0487 0919 0846 0.603 0879 0.533 0.636 0.541 0.685 0.651
DANet [6] 0.721 1.1 0875 0.810 0.838 0.584 0526 0519 0618 0534 0816 0355 0919 0850 0.568 0.848 0.628 0.700 0.615 0.570 0.552
PSANet [37] 0.767 29 0894  0.756 0.862  0.655 0.547 0.630 0.730 0.743 0.824 0479 0917 0881 0.646 0860 0.581 0717 0.681 0618 0.668
HRNetV2-W48 [32] 0774 5.6 0878 0760  0.851 0751 0569 0531 0.694 0425 0812 0314 0927 0832 0536 0917 0746 0.823 0.765 0.659 0.532
DNLNet [34] 0.788 24 0.890 0810 0839 0574 0570 0576 0740 0.635 0809 0.649 0918 0815 0565 0843 0679 0714 0780 0.503 0.613
Our 0.803 8.7 0947 0.851 0.896 0.636 0.623 0.661 0.792 0.825 0.905 0.726 0946 0859 0749 0939 0.768 0.822 0.827 0.704 0.735

Table 2: Per-category results on the validation set of the simulated Cityscapes Bayer image
data. All the models are trained with only on the fine annotated data of the train set. Our net-
work achieves 80.3% accuracy in mloU, which outperforms all other compared approaches
[18] [4] [12] [6] [37] [32] [34] on 16 out of 19 categories.

We use a ResNet-50 based network (configured with a stride of 2 and convolution kernel
of 2 x 2 for adapting Bayer pattern) and ASPP module as the backbone for extracting features
in the network. The learning rate with warm-up steps of 10 and the poly learning rate policy

[36] for decaying the initial learning rate by multiplying (1 — totgf{ter )0'9 are adopted to help
the training stage converge efficiently. The optimizer of stochastic gradient descent (SGD)
with a batch size of 4 is utilized and the initial learning rate is set to be 5e — 3. Limited by
the GPU memory, we resize images to 1024 x 512 for all experiments. Data augmentation
with random horizontal flip, color transforms in brightness, contrast, hue, and saturation is
applied. Additionally, we re-train the state-of-the-arts [18] [4] [12] [6] [37] [32] [34] on the

same Bayer image datasets for fair comparisons.

4.2 Visual and Quantitative Analysis

We report the mean Intersection over Union (IoU) of each specific category on the simulated
Cityscape dataset in Table 2 to compare the proposed method with recent state-of-the-art
approaches. Our method outperforms [6] [37] significantly on large objects such as road
and sky while improving the accuracy on relatively tiny objects like pole and bike by a large
margin compared to [32] and [34]. This performance enhancement is mainly attributed to
the design of spectral frequency attention, spatial coordinate attention, and multi-grid re-
sampling strategy that consider both global context information and local pattern shapes.
Furthermore, our method achieves high accuracy while significantly increasing the time per-
formance, with a speed of 8.7 fps compared to 1.8-5.6 fps for other methods.

We also present a qualita- Method Backbone  mloU(%)
tive evaluation of the segmenta- Deeplab-V3[4]. ResNet-50 - 55.8
tion results in Fi 12. which HRNetV2-W48[32]. ResNet-50 56.9

g ’ Mapillary DNLNet[34]. ResNet-50 58.2

shows that our method outper- Dataset Ours ResNet-50 59.3
forms other state-of-the-art meth-  (without train) | Ours ResNet-101  60.1
ods in terms of maintaining accu- Deeplab-V3[4]. ResNet-50  29.7
rate segmentation boundaries and HRNetV2-W48[32].  ResNet-30  33.6
R . . Our Collected | DNLNet[34]. ResNet-50 31.2
preserving object shapes, partic- Dataset Ours ResNet-50 427
ularly in comparison with [34] on  (without train) | Ours ResNet-101  44.9

road and persons. Furthermore, Table 3: Results on Mapillary and our collected datasets.
even without re-training on the real collected dataset, our method produces significantly
better segmentation results than other methods, demonstrating the suitability and generaliz-
ability of the proposed framework in real-world applications.

We widely validate the performance of the proposed network and test its generalization
on different scenes by evaluating it on the Mapillary dataset in Table 3. Our method achieves
about 3.5% mloU improvement compared to [4] using the same ResNet-50 backbone struc-
ture and 4.3% improvement using the ResNet-101 structure. The improvement is even more
significant on the collected dataset, with our method achieving the top performance of 42.7%
in mloU, which is 43.7% higher than [4] and 36.9% higher than [34].
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Input RAW Bayer image Colored Bayer image Our Segmentation HRNetV2-Was DNLNet

Input RAW Bayer image Colored Bayer image Our Segmentation ﬁRNetVZ-Wt‘lB i DNLNet
Figure 12: Qualitative results on Cityscapes (top) and our collected dataset (bottom). For
each dataset, from left to right: input raw image; input image with Bayer pattern overlaid for
better observation; our result; result from HRNetV2-W48 [32] and DNLNet [34].

4.3 Ablation Study Method Backbone | mloU (%) | 8(%)
Ablation study on network [12] ResNet-50 76.3 —
structures: we investigate the = Qur Naive | ResNet-50 75.2 —
impact of different backbone set- Ours ResNet-50 80.3 —
tings on segmentation perfor- [12] ResNet-101 778 1571
mance. - As shown In Table & our Naive | ResNet-101 | 77.0 | 1.84
o e S Ours | ResNet-101 | 81.6 | 131
ure without any proposed com-

ponents, achieving mIoU scores Table 4: Ablation study on different backbone settings.

of 75.2% and 77.0% with ResNet-50 and ResNet-101 backbones, respectively. After in-
corporating the introduced components, our method achieves a significant 5.1% and 4.6%
improvement over the naive structure. While changing from ResNet-50 to ResNet-101 back-
bone only brings a 1.5% improvement for the compared method [12], the proposed method
gains a 1.3% increase, indicating the improvement mainly comes from components specifi-
cally designed for Bayer images rather than deeper network structures.

Ablation study on network inputs: Table 5 compares the accuracy and computation
cost of our proposed method with different types of inputs. Our method achieves higher
mloU performance on raw Bayer images compared to grayscale images, despite both having
8-bit channels. This indicates that the proposed network effectively learns spatial, spectral,
and shape information from the Bayer pattern.
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The segmentation accuracy Method Type | mloU (%) | 6(%) | Params (M)
is comparable when taking Gray 73.6 - 108.7
RGB images (81.0%) and Bayer RefineNet [18] | RGB 74.2 0.61 121.4
images (80.3%) as inputs. How- Bayer | 73.5 0.1} 108.7

ever, the network size signif- ) Gray 75.6 N 2177
. . Our Naive RGB 76.8 1.21 39.2
icantly decreases with Bayer

. Bayer 75.2 044 27.7
images (26.5M parameters) com- Gray 797 — 265
pared to RGB images (39.8M Ours RGB | 810 | 131 | 398
parameters), saving not only Bayer 80.3 0.6+ 26.5

Image storage but also network  Typle’5: Ablation study on segmentation performance and
operation space. network parameters using different input image types.

Ablation study on Lspectral | Lspatial | Lresampling | Lrmi mloU(%) | 6(%)
key components: Ta- — — — — 750 _
ble 6 presents a de- v . _ _ 77.9 271
tailed analysis of each v v B B 78.3 3.14
key component of our
network design. The j j i ; ;zg ;.“111
results show that the . :

spatial coordinate and Table 6: Ablation study on the effect of each component and loss.

spectral frequency attention block together contribute to a 3.1% improvement in mloU com-
pared to the naive implementation without any proposed component. A multi-grid training
strategy further achieves a 1.3% gain following the attention blocks. The incorporation of
RMI loss in the objective function further raises the mloU to 80.3%, which outperforms the
naive implementation by almost 5.1%.

The effects of dif-
ferent modules are also
illustrated in Fig. 13,
which demonstrates that -
with the introduced at- ' l?j
tention modules and -y
re-sampling strategy,
some misclassified cat-
egories such as trucks,
poles, and traffic signs
can be corrected, and
object boundaries and  input raw Bayerimage W/ Lyua W/ L+ Leeral W/ Ly * ot Ui
details such as cars Figure 13: Visual analysis of the effects of different components
and persons are clearer. and losses. Salient regions are highlighted for easy comparison.

S Conclusion

We proposed RawSeg-Net, an end-to-end semantic segmentation network designed to seg-
ment raw Bayer images, enabling the elimination of the ISP process in image generation.
Our approach uses 8-bit raw Bayer images, leading to large storage reductions and com-
putational efficiency improvements. By introducing Bayer spectral frequency and spatial
coordinate attention, as well as a multi-grid re-sampling strategy, we improved segmentation
accuracy by combining local and global context information, offering a promising solution
for efficient and accurate semantic segmentation of raw Bayer images.

Ack: This paper is supported by NSF Awards No. 2334624, 2334690, and 2334246.
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