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Abstract. The positional Burrows—Wheeler Transform (PBWT) was
presented as a means to find set-maximal exact matches (SMEMs) in
haplotype data via the computation of the divergence array. Although
run-length encoding the PBW'T has been previously considered, storing
the divergence array along with the PBWT in a compressed manner
has not been as rigorously studied. We define two queries that can be
used in combination to compute SMEMs, allowing us to define smaller
data structures that support one or both of these queries. We combine
these data structures, enabling the PBWT and the divergence array to
be stored in a manner that allows for finding SMEMs. We estimate and
compare the memory usage of these data structures, leading to one data
structure that is most memory efficient. Lastly, we implement this data
structure and compare its performance to prior methods using various
datasets taken from the 1000 Genomes Project data.

1 Introduction

The positional Burrows—Wheeler Transform (PBWT) was defined by Durbin [5]
as a means for analyzing haplotype datasets. Hence, the input consists of h se-
quences S = {51, ..., Sy} containing w biallelic sites corresponding to the same
loci. The main idea is that specific loci are sequenced and it is determined if the
position contains the major allele (denoted as 1) or has an alternate allele (de-
noted as 0). We will represent S as a h X w binary matrix that is denoted as M.
The PBWT of M is another h x w binary matrix, denoted as PBWT][1..A|[1..w],
where the first column is the same as the first column of M, and the j-th col-
umn of PBWT is obtained by stably sorting the rows of M[1..h][1..j — 1] in co-
lexicographic order (starting at column j—1) and then taking the final column of
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the result. We can define this more formally by first defining the j-th prefix array
(PA;), which is the co-lexicographic ordering of the prefixes Si[1..5], ..., Sp[1..].
It follows that an equivalent definition of the PBWT is col(PBWT); = col(M);
and col(PBWT);[i] = col(M);[PA;_1[i]] for all i = 1..h and j = 2..w, where
col(PBWT); denotes the j-th column of the PBWT. As noted by Durbin, the
PBWT is highly run-length compressible [5] when read in column-major order.
One of the main motivations for the invention of the PBWT is that it enables
set-maximal exact matches (SMEMs) to be found efficiently in haplotype data.
Given the input sequences S = {S1,...,S,} and a pattern P[l..w], we define
Pli..j], where 1 < i < j < w, to be a SMEM if it occurs in one of the sequences
in S and one of the following holds: i) i =1 and j = w; ii) ¢ = 1 and P[1..j + 1]
does not occur in S} iii) j = w and P[i — 1..w] does not occur in S; iv) P[i—1..7]
and P[i..j + 1] does not occur in S. Given the PBWT, a pattern P[1..m], and a
starting column ¢, the PBWT allows us to efficiently find all the sequences in §
that contain P between columns ¢ and £+ m — 1. If there are no such sequences
then all the sequences that contain P[1..m’] between columns ¢ and ¢ +m’ — 1,
where P[1..m] is the longest prefix of P that occurs in S, are returned. Durbin
demonstrated that SMEMSs can be identified in O(hw)-time via the computation
of the divergence arrays. Here, the j-th divergence array (DA) stores, for each
i > 0, the length of the longest common suffix between the i-th and (i — 1)-st
rows of M when the rows of M are sorted according to the co-lexicographic order
of their prefixes up to the j-th column.

Although Durbin (and others, i.e., Li [10]) showed that run-length compress-
ing PBWT leads to significant space improvement, there are only a few methods
for storing the divergence array in a compressed manner. Cozzi et al. [3] provided
one such approach that is based on casting the problem of finding SMEMs to
computing matching statistics, and showing that computing matching statistics
can be accomplished via building a data structure that mirrors that of Rossi et
al. [13]. However, it is largely open how to store the PBWT alongside the auxiliary
data structures needed to efficiently find SMEMs. In this paper, we generalize
the approach of Cozzi et al. [3] by describing two queries (start and extend)
that can be used in combination to find SMEMs in the PBWT, and address
the prevailing gap in the literature by providing a comprehensive list of smaller
data structures that can be used to efficiently support start and/or extend.
We show that these data structures can be combined in various ways to create
data structures that store the PBWT in a manner that supports SMEM-finding.

We study the theoretical bounds of each data structure, and benchmark their
memory consumption under a practical setting. This benchmarking leads to a
solution that is deemed most performant. We fully implement this approach and
compare it to the methods of Cozzi et al. [3] and Durbin [5] by building the
data structure on increasingly larger haplotype datasets from the 1,000 genomes
project data. We compare both the construction time and space, and the time
and space to find SMEMs, allowing us to conclude about the practicality of the
methods.
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2 Preliminaries

String definitions. We assume that all input strings are binary strings since
our application is biallelic haplotype data. Given a binary character b, we de-
note the negation of b as =b = 1 — b. We denote the empty string as . We
denote the length of S by |S|. We denote the i-th prefix of S as S[1..7], the i-th
suffix as S[i..n], and the substring spanning position ¢ through j as S[i..j], with
Sli..j] = e if i > j. Given two strings S and T, we say that S is lexicographically
smaller than T if either S is a proper prefix of T' or there exists an index ¢ > 1
such that S[1..i] = T'[1..7] and S[i + 1] occurs before T'[i + 1]. Lastly, for a string
S, a binary character ¢, and an integer j, we define rank query S.rankc(j) as the
number of occurrences of ¢ in S[1..j], and the select query S.selectc(j) as the
position of the j-th c in S.

RMQ, PSV, and NSV. Given an array A[l..n] of integers, a range minimum
query (RMQ) for two positions ¢ < j asks for the position k of the minimum in
Ali..j], i.e., k = argming, ¢, ;;A[k’]. We denote this query by RMQA (7, j). Given
a position i in A, we define the previous-smaller-value (PSV) as PSV (i) =
max({j : j < i,Alj] < A[i]} U {0}). We define the next-smaller-value (NSV) as
NSVA(i) =min({j : j > i, A[j] <A[]} U{n +1}).

LCP and LCE. Given two strings S and 7', we denote the length of the longest
common prefix between S and T as lcp(S,T). Using this notation, we define the
longest common prefix array of an input string S of length n (given its Suffix
Array SAg) as LCP[1..n] where LCP[i] = Icp(S[SAs][i]..n], S[SAs[i — 1]..n]) for
all 7 > 1, and LCP[1] = 0. Given an input string S of length n and two integers
1<i<mnandl<j<n, the Longest Common Extension (LCE) is the longest
substring of S that starts at both ¢ and j. Moreover, as we will discuss in this
work, there are multiple data structures that efficiently support LCE queries for
a string S.

SLPs. The concept of straight-line programs (SLPs) will be used in our work.
An SLP is a representation of the input as a context-free grammar whose lan-
guage is precisely the input string [11].

Matching statistics in the PBWT. Cozzi et al. showed that the problem
of finding SMEMs in the PBWT can be cast into computing matching statistics
for P, which is a generalization of Bannai et al. [1]. Given a pattern P[l..w],
the matching statistics of P with respect to S is an array A[l..w] of (row, len)
pairs such that for each position 1 < j < w: (1) Sap.row[s — Aljl.len + 1..5] =
P[j—A[j].len+1..5], and (2) P[j—A[i].len..j] is not a suffix of S1[1..4],..., Sn[1..5].
Informally, for each position j of the pattern P, A[j].row is one row of the input
matrix M where a longest shared common suffix (of length A[j].len) ending in
position j in the pattern P and in S4[;.row occurs.
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Fig. 1: An illustration of our components and data structures. The components
are shown in colored boxes, and the data structures are shown in white boxes at
the bottom.

3 Building Blocks for a PBWT Data Structure

In this section, we begin by defining two queries, called (start and extend),
that are used to compute matching statistics in the PBWT. Then we define
the smaller data structures, which we call components, that support start or
extend—and in one case (i.e., the A-encoded divergence array), can support
both start and extend. These components are used to build data structures for
SMEM finding in the PBWT. We show both the components and data structures
in Figure 1. We note that we will frequently use n = h-w throughout this section
to bound the time and space.

3.1 Queries Needed to Support SMEM-finding

We define two queries, referred to as start and extend, which can be used in
combination to compute matching statistics, and hence, find SMEMs. If we let
i,j € [1..w] be two integers such that P[i..j] is a suffix of one of S1[1..5], ..., Sk[1..5]
then the extend query returns that there exists the match of P[i..j] to P[i..j +1]
if and only if j < w and PJi..j+1] is a suffix of one of Sy[1..5+1],...,Sp[1..5+1].
The start query finds the smallest integer ¢’ € [4..5] such that P[i’..j] is a suffix of
one of S1[1..5],. .., Sn[l..j]. Hence, we compute the matching statistics as follows.
We assume that we computed the matching statistics up to position ¢ € [1..w],
and use the start query to find the smallest ¢’ € [i..w] such that P[i’..i'+A[i].len]
is a suffix of one of Sy[1..i" + Ali].len],..., Sp[1..i' + A[é].len]. By minimality of
i’, we can set A[j].len = A[j — 1].len — 1 for all j € [i + 1..¢' — 1]. Then we find
the longest prefix P[i’..k] that is also a suffix of one of S1[1..k],..., Sy[1..k] using
the extend query. We set A[i’].len = k — ¢/ + 1. Since i’ > i, we can proceed by
induction to compute the whole array of matching statistics.
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3.2 Top Level: Mapping Structure

All the data structures that we present require a component data structure,
which we call a mapping structure, that when given the position in PBWT of a
bit PBWT{][j] can return:

—

— the position in col(PBWT) 1 ; of the bit immediately to the right of PBWT[4][5]
in M;

— the position in col(PBWT); of the last occurrence of =PBWT(i][j] above
PBWTIi][j] (if it exists);

— the position in col(PBWT); of the first occurrence of =PBWT][j] below
PBWTI:][j] (if it exists).

The first query corresponds to LF-mapping in the BWT and allows us to step
from one column to the next one (to the right) in the PBWT, staying in the same
row in M. The second and third queries correspond to how Rossi et al. [13] jump
up or down, respectively, in the BWT when they find a mismatch. We imple-
mented the mapping structure as a run-length compressed bitvector, occupying
roughly O(rlog(n/r)) bits and answering queries in O(loglogn)-time, where r
is the total number of runs in the columns of the PBWT.

3.3 Second Level: Start Support

In this subsection, we provide a comprehensive discussion of all the data struc-
tures that support start queries.

Sampled Column Permutations If we use a Cartesian tree but neither the
divergence array itself (encoded or unencoded) nor two instances of each compo-
nent data structure, then it seems we need a way to find at least one occurrence
of each SMEM in order to determine its length. We can use the sampled column
permutations together with an analogue of Policriti and Prezza’s [12] Toehold
Lemma: for the bits at either end of each run in a column in the PBWT, we
store which rows in the input matrix they came from, using a total of roughly
2rlg h bits; whenever we reach the right end of a SMEM and expand our search
interval, the expanded interval must contain the first or last bit in some run of
the bits we seek, and we learn from which row of the input matrix it came.

Cartesian Trees. If we store a representation of the shape of a Cartesian
tree built upon the divergence array, then we can support RMQ, PSV and NSV
queries on the divergence array. Yet, we note that these queries return only a posi-
tion, and cannot easily support random access. We consider three representations
of the tree shape: (1) an augmented balanced-parentheses (BP) representation
occupying roughly 2n+o(n) bits [6] and answering queries in constant time; (2) a
simple DAG-compressed representation (with each non-terminal storing the size
of its expansion) answering queries in time bounded by its height; and (3) an
interval-tree storing selected intervals corresponding to nodes in the Cartesian
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tree and answering queries in constant time. We do not include Gawrychowski et
al.’s compressed RMQ data structure [8] because we are not aware of an imple-
mentation and we see no easy way to estimate its space usage for the divergence
array.

The constructions of the BP representation and DAG-compressed represen-
tations are standard, but our interval-tree structure needs some explanation. We
query the Cartesian tree only while forward stepping through the PBWT and
when our search interval contains only 0’s and we want a 1, or when it contains
only 1’s and we want a 0. To proceed, we must ascend the tree and widen our
interval (like ascending a prefix tree, discarding the early bits of our pattern)
until it contains a copy of the bit we want. Notice our query interval corresponds
to a node v in the Cartesian tree, and the PBWT interval we seek corresponds to
the lowest ancestor u of v whose interval is not unary. It follows that we need to
store in our interval-tree only the PBWT intervals for nodes u in the Cartesian
tree such that the interval for at least one of w’s children is unary but u’s interval
is not unary.

Since our intervals can nest but not otherwise overlap, we can store our
interval-tree in a more space-efficient manner than usual: we write out a string
with open-parens, close-parens and Os, with each open-close pair indicating an
interval and the number of Os before, between and after them indicating its
starting point, length and ending point; we encode that string as one bitvector
with Os indicating Os and 1s indicating parens, and another bitvector with Os
indicating open-parens and 1s indicating close-parens (so the combination of the
bitvectors is a wavelet tree for the string); and we store a BP representation
of the tree structure of the stored intervals. If we store k intervals, then our
first bitvector has n + 2k bits and 2k copies of 1, our second bitvector has 2k
bits with k copies of 0 and k copies of 1, and the tree structure has k£ nodes
and so its BP representation takes 2k + o(k) bits. This means we use roughly
2k lg ”;rk% + 2k + 2k + o(k) = 2klg(n/k) + o(klg(n/k)) bits, and can answer
queries in constant time. We note that, since even our query intervals can nest
but not contain or otherwise overlap any of our stored intervals, we can query
with a single endpoint instead of a whole interval.

3.4 Third Level: Extend Support

In this subsection, we discuss all components that can support extend queries.

Divergence Array. The simplest possible data structure to support finding the
length of each SMEM is to store the uncompressed divergence array, which was
proposed by Durbin. The shortcoming of this is the large space requirements—as
it would occupy space in bits roughly equal to the sum of the base-2 logarithms
of all entries (with 2 added to each entry).

Longest Common Extension We consider the addition of an LCE data struc-
ture. Suppose we have arrived at column j 4+ 1 and we know that the longest
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suffix of pattern P[1..j] that occurs in M ending at column j has an occurrence
immediately followed by PBWT][i][j + 1], and we know which row of M that bit
PBWT/i][j + 1] comes from. If P[j 4+ 1] = PBWT][i][j + 1] then the longest suffix
of P[1..5 + 1] that occurs in M ending at column j + 1 has an occurrence ending
with PBWTIi][j 4+ 1]. Therefore, we assume P[j + 1] # PBWT/[i][j + 1]. By the
definition of the PBWT, there is an occurrence of the longest suffix of P[1..j +1]
that occurs in M ending at column j + 1, ending either at the last occurrence of
P[j + 1] = -PBWTJi][j + 1] above PBWTIi][j + 1] (if it exists), or at the first
occurrence of that bit below PBWTIi][j + 1] (if it exists). We recall that the
mapping structure allows us to quickly find these occurrences of that bit.

Forward-Backward. Suppose we use a Cartesian tree to maintain the invari-
ant that our search interval in the PBWT contains all the bits immediately
following occurrences of the longest suffix of the prefix of the pattern that we
have processed so far, that occur in the desired columns of the PBWT. If that
search interval contains a copy of the next bit of the pattern, then we proceed
by forward stepping, without consulting the Cartesisan trees. The only time we
query the Cartesian trees is when the search interval does not contain a copy of
the next bit of the pattern, meaning we have reached the right end of a SMEM.
It follows that, using the mapping structure and the Cartesian trees, we can find
the right endpoints of all the SMEMs. If we keep instances of all our compo-
nents for the reversed input matrix, we can also find all the left endpoints of the
SMEMs. Since SMEMs are maximal, they cannot nest, so we can easily pair up
the endpoints and obtain the SMEMs. This doubles the time and space.

Random Access. Lastly, the simplest possible component is a compressed data
structure of the original input that provides efficient random access to the input,
which can obviously be used to find the length of a given SMEM. Although the
total length of the SMEMs can be quadratic in the length of the pattern, the
fact they cannot nest implies we need only a linear number of random accesses.
In fact, if we combine a random access data structure with Cartesian trees then
the number of random accesses is equal to the number of SMEMs, and the
total length of the sequence that we extract from M is linear in the length of
the SMEMs. There are many data structures that support random access to
the input matrix M, two notable ones are (a) an SLP of M (read row-wise)
answering queries in O(logn) time, and (b) a plain representation of M (with 8
bits packed into each byte) occupying roughly n bits and allowing access to each
bit in constant time.

3.5 A-encoded Divergence Array

The last component we discuss is A-encoded divergence array. As illustrated
in Figure 1, we leave this component last since it can support both queries.
To differentially encode (A-encode) the divergence array, we store each entry
of DA[i][j] with i > 1 as the difference DA[i][j] — DA[i — 1][j]; for i = 0 we
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always have DA[i][j] = 0. If the PBWT is highly run-length compressible, read
in column-major order, then the A-encoded DA is small. To see why, consider
that if PBWTIi..i + ¢ — 1][j] is a run of equal bits in the j-th column of the
PBWT and col(PBWT);;1[t'..i" + ¢ — 1] are the bits immediately to their right
in the input matrix, then DA[i’ + k][j + 1] = DA[i + k][j] + 1 for 1 < k < ¢ — 1.
Therefore,

DA[i’ + k][j + 1] — DA[i' + k — 1][j + 1] = DA[i + k][j] — DA[i + k — 1][;]

for 1 < k < {¢—1, so the A-encoded of DA[i'41..i’ +£—1][j+1] is the same as that
of DA[i + 1..i + ¢ — 1][j]. It follows that, if there are r runs in the columns of the
PBWT, then the (linearized) A-encoded DA has a string attractor of size O(r)
and, thus, it can be represented as a straight-line program occupying O(r log? n)
bits [9, Lemma 3.14].

Increasing the size of this SLP by a small constant factor, we can store at
each non-terminal the length, sum, and minimum prefix sum of its expansion,
and thus support random access, RMQ, PSV, and NSV queries on the divergence
array in O(logn)-time. This is similar to how Gagie et al. [7, Lemma 6.2] used
an SLP for their A-encoded LCP array.

4 Composite Data Structures for the PBWT

We already described two data structures that efficiently support finding SMEMs
in the previous section, namely, the “Mapping Structure 4+ Cartesian Tree +
Forward-backward” and “Mapping Structure + Cartesian Tree 4+ Sample Col-
umn Permutations + Random Access”. There are three other data structures
that will be evaluated (Table 1), namely: (1) Mapping Structure + A-Encoded
Divergence Array; (2) Mapping Structure + Cartesian Tree + Divergence Array;
and (3) Mapping Structure + LCE + Sampled Column permutations.

5 Experiments and Discussion

In this section, we provide experimental evaluations of our presented data struc-
tures. We begin by benchmarking the memory usage of our data structures.
Based on these experiments, we fully implement one of these data structures
and show the scalability of them on real data.

5.1 Comparison of Data Structures

Ezperimental set-up. We replicate the simulated dataset used by Durbin [5]. In
particular, we run the Markovian coalescent simulator MaCS [2] with command
line parameters 100000 2e7 -t 0.001 -r 0.001 to generate a haplotype ma-
trix with 100,000 individuals and 360,000 sites. Next, we subsample the dataset
with a parameter £ such that, given a column of length h having o ones, we
skip this column if o/h < & We set £ to be equal to 0.01, 0.03, 0.05, 0.08, and
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Sample Parameter &

Component| 0.01 0.03 0.05 0.08 0.10

Mapping structure| 57M 53M 52M 51M 51M

A-encoded divergence array| 479M 452M 435M 426M 418M
Cartesian tree| 472M 472M 458M 420M 402M

Longest common extension| 96M 88M 88M 80M 80M
Sampled column permutations| 80M 76M 76M 76M 76M
Divergence array| 125G 92G 777G 64G 58G

Random access| 96M 88M 88M 80M 80M

Data Structure

MAP + LCE + PERM
MAP + DEDA

MAP + CT + FWBW

MAP + CT + DA

MAP + CT + PERM + RA

233M 217M 216M 207M 207M
536M 505M 487M 477M 469M
1.1G 1.1G 1.0G 942M 906M
126G 93G 78G 64G  58G
705M 689M 674M 627TM 609M

Table 1: The estimated size in bits of the combinations of component data struc-
tures that support SMEM-finding in the PBWT. M denotes megabytes and G
denotes gigabytes. In boldface the best performance. We do not list Forward-
Backward here as it is not a new data structure, only two instances of the
Mapping Structure and the Cartesian Tree.

0.10, which results in the datasets having varying degrees of repetitiveness. See
Table 1 for the size of the datasets. The haplotype matrix is publicly available
at http://dolomit.cs.tu-dortmund.de/tudocomp/pbwt_matrix.xz. We ran
all benchmarks on an Intel Core i3-9100 CPU (3.60GHz) with 128 GB RAM,
running Debian 11.

Implementation. We implemented all methods in C/C++. The mapping struc-
ture was implemented using sparse bitvectors with a number of set bits equal to
the number of runs. The differentially-encoded divergence array and the Carte-
sian tree were implemented with grammar compression. Forward and backward
was implemented by building the data structures in both the forward and back-
ward directions of the mapping structure. The sampled column permutations
were obtained by sampling at run boundaries. The LCE data structure and the
random access were implemented with as an SLP that answers LCE queries. All
data structures are publicly available at https://github.com/koeppl/pbwt.

Results. We give the estimated sizes of the data structures that are compositions
of these components in Table 1. We witness that MAP+LCE+PERM was the most
performant, which was followed by MAP+DEDA. The performance of MAP+DEDA
was somewhat surprising since it is similar to a structure suggested by Gagie et
al. [7] that was but not implemented because it was thought to be impractical.
We note that as £ increases the size of all the components and data structures
decreases—this is intuitive since the datasets become less repetitive, resulting in
fewer columns being selected. Hence, we see that the compression suffers for all
the methods as ¢ increases but MAP+LCE+PERM maintains a lead.
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5.2 Comparison of Methods on 1000 Genomes Project Data

Ezperimental set-up. We implement and evaluate MAP+LCE+PERM on the 1000
Genomes Project data by downloading the VCF files for the 1000 genomes
project data and then converting these files to biallelic using bcftools view -m2
-M2 -v snps [4]. We consider increasingly larger datasets by selecting the panels
for Chromosomes 22, 20, 18, 16 and 1 which have 5008 samples and a number of
biallelic sites that range from ~1 million to ~6 millions. All datasets correspond
to 4,908 individuals. All data are available at https://ftp.1000genomes.ebi.
ac.uk/voll/ftp/release/20130502/. We ran all experiments in this subsec-
tion on a machine with an Intel Xeon CPU E5-2640 v4 (2.40GHz) with 756 GB
RAM and 768 GB of swap, running Ubuntu 20.04.4 LTS.

Competing methods. We compared against the PBWT implementation of Durbin
[5], which are available at https://github.com/richarddurbin/pbwt. In de-
tail, we ran both the matchIndexed and matchDynamic algorithms. We refer to
these methods as PBWT-index and PBWT-dynamic, respectively. In addition, we
compared against the methods of Cozzi et al. [3], which implements a mapping
structure with sampled column permutations with the Thresholds data struc-
ture of Rossi et al. [13]. The method is referred to as p-PBWT. The computation
of the matching statistics is analogous to Rossi et al. with one slight modifica-
tion: the inverse of the mapping function is used to compute the lengths of the
matching statistics. We refer to Cozzi et al. [3] for these details.

(b)
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Fig. 2: Memory (a) and time (b) to construct the data structures underlying all
methods for increasingly larger number of biallelic sites. Memory is reported in
GB and time is reported in seconds.

Results. We give the maximum memory usage and time for constructing all the
data structures in Figure 2. We note that the construction for PBWT-index and
PBWT-dynamic is the same so it is reported once (as PBWT) in Figure 2, and
that the constructed data structure is incomplete, meaning that additional in-
dexes are needed for SMEM finding. This explains why the memory required for
construction of the PBWT is small. We see that the method of y-PBWT requires
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more memory than the PBWT but less memory than MAP+LCE+PERM. In terms
of construction time, there was negligible difference between the performance of
MAP+LCE+PERM and p-PBWT. PBWT had the most efficient construction time.

Next, we evaluated the performance of SMEMs-finding by first extracting
100 sequences from the input panels to be used query sequences. We illustrate
the memory usage and the time required for SMEM-finding when all the query
strings were given as input at once, which is shown in Figure 3 (a) and (b).
Figure 3 (c¢) shows mean of the time required when each is given as an indi-
vidual query, i.e., executing 100 queries one at a time. The peak memory usage
to query all the sequences at once surpasses that of querying them individually.
We obtained the following average number of SMEMs per 100 queries: 1,184
SMEMs for chromosome 22 (1,055,454 sites), 1,416 SMEMs for chromosome
20 (1,739,315 sites), 1,708 SMEMs for chromosome 18 (2,171,378 sites), 2,281
SMEMs chromosome 16 (2,596,072 sites) and 4,953 SMEMs for chromosome 1
(6,196,151 sites). PBWT-dynamic used the least memory when querying the whole
set of queries but had opposing behavior doing one query at a time. It was fastest
when the queries were given at once but slowest when the queries were given
individually. Opposingly, PBWT-indexed required more memory than all other
competing methods, requiring up to 20 times more memory. PBWT-indexed was
the second slowest method when the queries were given at once but fastest
when the methods were given individually. We see that MAP+LCE+PERM used
less memory than PBWT-MatchIndexed and was at most 10 times slower than
PBWT-MatchIndexed when the queries were given individually but was slightly
slower than PBWT-MatchIndexed when the queries were given at all once. In
addition, MAP+LCE+PERM was faster than PBWT-MatchDynamic when the queries
were at once but slower than PBWT-MatchDynamic when queries were given in-
dividually. With respect to u-PBWT, MAP+LCE+PERM used slightly more memory
and query time than y-PBWT. We note that MAP+LCE+PERM also has the advan-
tage not requiring two passes on the query string, which makes it appropriate
for online settings when the SMEMs can be found as the input is read in.

(a) (b) (c)
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100

500 1400
1000
100

10

1
02 /‘

I

10

1 100

Time (seconds)

Time (seconds)

Memory (gigabytes)

|

0.1
20

72
15
72

N
m
2
R
5

105545,
15

78

72
5195151
1055454
15
6195151
1055454

17393

5196151

m
~
N

~

~

17393
21773
25950
17393
25960
25950

&
#sites #sites #sites
—8— PBWT-MatchIndexed —4— PBWT-MatchDynamic MAP+LCE+PERM -PBWT

Fig.3: Memory (a), time (b) and mean time for one query at a time (c) to
compute SMEMSs with 100 queries. In (c) the standard deviation values are very
small so the corresponding error bars are omitted.
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6 Conclusions

We presented and benchmarked a number of data structures that support SMEM-
finding in the PBWT. Our experiments revealed that MAP+LCE+PERM was the
most memory-efficient out of all data structures we presented. After fully im-
plementing it, we showed that it is slightly slower and uses more memory than
the method of Cozzi et al. [3]; however, we note that it has the advantage that
it only requires one-pass over the query string, making it appropriate for the
calculation of SMEMs in an online format.
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