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Abstract: We complete the survey for finite-source/point-lens (FSPL) giant-source events in 2016–2019
KMTNet microlensing data. The 30 FSPL events show a clear gap in Einstein radius, 9 µas < θE < 26 µas,
which is consistent with the gap in Einstein timescales near tE ∼ 0.5 days found by Mróz et al. (2017) in
an independent sample of point-source/point-lens (PSPL) events. We demonstrate that the two surveys
are consistent. We estimate that the 4 events below this gap are due to a power-law distribution of free-
floating planet candidates (FFPs) dNFFP/d logM = (0.4 ± 0.2) (M/38 M⊕)

−p/star, with 0.9 . p . 1.2.
There are substantially more FFPs than known bound planets, implying that the bound planet power-law
index γ = 0.6 is likely shaped by the ejection process at least as much as by formation. The mass density
per decade of FFPs in the Solar neighborhood is of the same order as that of ‘Oumuamua-like objects.
In particular, if we assume that ‘Oumuamua is part of the same process that ejected the FFPs to very
wide or unbound orbits, the power-law index is p = 0.89 ± 0.06. If the Solar System’s endowment of
Neptune-mass objects in Neptune-like orbits is typical, which is consistent with the results of Poleski
et al. (2021), then these could account for a substantial fraction of the FFPs in the Neptune-mass range.

Key words: gravitational lensing: micro — minor planets, asteroids: general — planets and satellites:
detection

1. INTRODUCTION

The claim by Sumi et al. (2011) of ∼2 Jupiter-mass
free-floating planet candidates (FFPs) per star opened
up the field of FFP population studies (see review by
Zhu & Dong 2021). This led to several works that tried
to interpret this population (Clanton & Gaudi 2014a,b,
2016). However, it was also later contradicted by Mróz
et al. (2017), who found no evidence for such planets
in a larger sample of events. Moreover, Mróz et al.
(2017) found that one of the two best candidates from
the Sumi et al. (2011) study actually had a longer Ein-
stein timescale. Both of these studies were limited to
statistical analysis of the Einstein timescale (tE) dis-
tribution, for which the mass dependence is convolved
with dependences on the lens-source relative proper mo-
tion (µrel) and lens-source relative parallax (πrel).

Corresponding author: A. Gould

Kim et al. (2021) initiated a new approach to prob-
ing the FFP population that focused on analyzing the
Einstein radius (θE) distribution. This approach has
two advantages. First, µrel = θE/tE is automatically
determined, which removes one of the two convolutions
with unknown distributions that was mentioned above.
Second, the selection function is relatively independent
of lens mass (M) over a broad range of masses.

When Kim et al. (2021) reported KMT-2019-BLG-
2073 as the fourth microlensing single-lens event with a
measured Einstein radius θE < 10 µas, they noted that
all four events had giant-star sources, which led them to
initiate a long-term study to find all finite-source/point-
lens (FSPL) events with such giant-star sources in
the 2016–2019 Korea Microlensing Telescope Network
(KMTNet, Kim et al. 2016) database. They were moti-
vated in part by the fact that this was the second giant-
source FSPL event from 2019 with θE < 10 µas, the
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first being OGLE-2019-BLG-0551 (Mróz et al. 2020).
Kim et al. (2021) sought to place these FSPL FFPs in
the context of a homogeneously selected sample that
would include stars and brown dwarfs (BDs), as well as
FFPs. For technical reasons that are briefly reviewed
below, they were only able to probe the 2019 database
at that time. Their systematic search yielded a to-
tal of 13 giant-source FSPL events, including the two
FFPs. They carried out a variety of tests and concluded
that there was nothing suspicious about the sample.
However, they refrained from, and strongly cautioned
against, drawing any statistical conclusions from this
sample, despite the fact that it was homogeneously se-
lected. They argued that because their study was mo-
tivated by noticing two FFP detections in a single year,
it could suffer from publication bias.

Two factors prevented (Kim et al. 2021) from car-
rying out a 4-year search immediately. First, the form of
the search had been made possible by a recent upgrade
to the 2019 online database, but this had not yet been
extended to the previous 3 years. Second, for 2019,
Kim et al. (2021) had supplemented their automated
analysis of the online database with a special, more ag-
gressive, execution of the EventFinder algorithm (Kim
et al. 2018a) that was tailored to giant sources. A
more aggressive search was required because the stan-
dard EventFinder algorithm takes advantage of the fact
that most single-lens/single-source (1L1S) events (and
even most binary events) can be qualitatively matched
to one of two variants of Gould (1996) 2-parameter pro-
files. However, this is not the case for typical FFP can-
didates, for which the source radius, θ∗, is often &θE,
leading to a “top hat” light curve shape. See the top
panel of Figure 1 of Mróz et al. (2019) for a severe ex-
ample. These upgrades and new searches required more
than a year of effort.

The search proposed by Kim et al. (2021) was
therefore carried out as these steps were completed
season-by-season. In the course of this work, Ryu et al.
(2021) reported the discovery of KMT-2017-BLG-2820,
the third FFP in the KMTNet sample, which by this
time was the sixth FSPL FFP overall. That is, in the
intervening time, Mróz et al. (2020) had discovered an-
other FFP, OGLE-2016-BLG-1928. Ryu et al. (2021)
pointed out that all six FFPs lay below an apparent
“gap” in the cumulative θE distribution from Figure 9
of Kim et al. (2021), which they dubbed the “Einstein
Desert”.

They argued from the definition of θE,

θE ≡
√

κM πrel, κ ≡ 4G

c2 AU
≃ 8.14

mas

M⊙
, (1)

that such a desert would be a natural consequence of
a bimodal function of the lens mass, M . That is, the
main stellar and BD lens population in the bulge (with
small lens-source relative parallaxes, πrel) would con-
tribute relatively small Einstein radii, but would be cut
off at θE ∼ 30 µas due to a sharp drop in the BD mass
function, e.g., near M ∼ 0.02 M⊙, combined with the

paucity of phase space for πrel . 5 µas (corresponding
to lens-source relative distances DLS ≡ DS − DL .
300 pc). Then, a second population of low-mass FFPs,
e.g., M ∼ 5 M⊕, with a much higher specific frequency
than stars and BDs would give rise to the small-θE
events.

They then argued that a population of FFPs can-
not be in the bulge and produce the observed distribu-
tion, because an analogous population in the disk would
produce larger-θE events that would “fill in” the gap.
By contrast, if the small-θE events were explained by
disk FFPs, an analogous population in the bulge would
not be detected. Specifically, for typical giant sources,
the very numerous FFPs in the bulge would not give
rise to recognizable events because they would induce
magnification, A, changes of only

A− 1 ≃ 2

ρ2
=

2κM πrel

θ2∗

= 0.14

(

M

5 M⊕

)(

πrel

20 µas

)(

θ∗
6 µas

)−2

,

(2)

where ρ ≡ θ∗/θE & 1. Hence, the FFP events would
mainly come from the less numerous disk population.
Then, a high inferred specific frequency would be nec-
essary to compensate for the overall relative paucity of
disk lenses. (In Section 8, we will show that this rea-
soning is only partly correct.)

Ryu et al. (2021) recognized that with only 13
FSPL events, the evidence from Kim et al. (2021) for
a desert was relatively weak. However, they adduced
two additional arguments. First, they noted that the
apparent gap was not (yet) contradicted by the ongo-
ing search for FSPL events in 2018 and (part of) 2017
data. Second, they pointed to an analogous desert in
the distribution of Einstein timescales,

tE ≡ θE
µrel

, µrel ≡ |µrel|, (3)

found by Mróz et al. (2017) in their analysis of point-
source/point-lens (PSPL) events extracted from 5 years
of Optical Gravitational Lensing Experiment (OGLE)
data. Here, µrel is the lens-source relative proper mo-
tion vector. The same argument predicts a desert in
the distribution of Einstein timescales, although it is
expected to be less pronounced than the one in Ein-
stein radii because the former is a convolution of the
proper-motion distribution with the latter.

Thus, this picture gave a coherent account of all
available data at that time. Nevertheless, Ryu et al.
(2021) counseled a wait-and-see approach. If their hy-
pothesis were correct, they predicted that the Einstein
desert would remain relatively parched as new FSPL
events were added. If not, one should expect that it
would be gradually “filled in”.

Here, we present the full sample of 30 FSPL giant-
source events from the KMTNet 2016–2019 database.
We find that the Einstein Desert is substantially more
distinct than in the 13-event sample from 2019. This
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strengthens the case for a bimodal mass function, with
a broad peak of stars and BDs complemented by a large
population of FFPs at much lower masses.

We show that the FFPs are more numerous than
the known bound planets. We raise the possibility that
the heavier FFPs have mainly been ejected to very wide
(rather than unbound) orbits, and may largely be ac-
counted for by the still poorly traced population of very-
wide-orbit planets. We also suggest that interstellar as-
teroids may be the extreme end of the FFP population
and, in particular, may follow the same power law.

2. REVIEW OF DETECTION PROCEDURES

The FSPL events reported here are derived from the
KMTNet microlensing survey, which uses three identi-
cal 1.6 m telescopes, each equipped with 2◦ × 2◦ cam-
eras (Kim et al. 2016). The telescopes are located in
Chile (KMTC), South Africa (KMTS), and Australia
(KMTA). See Figure 12 from Kim et al. (2018a) for the
field locations and cadences.

We essentially follow the same procedures for se-
lecting FSPL preliminary candidates as was described
by Kim et al. (2021). We refer the reader to that paper
for details. Here we give only a brief overview, and we
also describe two important differences between their
2019 sample and the 2016–2018 additional events that
we present here. One of these was already mentioned
by Kim et al. (2021), while the other is new.

We first conduct a purely automated search of
the online summary table of KMT events (about 3000
events per year), making use of the impact parameter
u0, the Einstein timescale tE, and the source magni-
tude IS (from the pipeline Paczyński 1986 PSPL fit),
together with the tabulated field extinction1 AI , to im-
pose two selection conditions,

IS,0,est ≡ IS −AI < 16, (4)

and

µthresh ≡ θ∗,est
u0tE

> 1 mas yr−1;

θ∗,est ≡ 3 µas× 10(16−(IS−AI))/5.

(5)

The first condition restricts the sample to giants. On
rare occasions, it allows foreground main-sequence or
subgiant stars, but these are eliminated at the stage of
detailed investigations.

The second condition rejects the great majority of
PSPL events while accepting (for further investigation)
the overwhelming majority of FSPL events that satisfy
Equation (4). First note that the θ∗,est estimate im-
plicitly assumes that the source has a similar color as
the red clump. This will be approximately so except
for stars well up on the giant branch, for which it will
be an underestimate. Then, assuming that the online

1The KMTNet webpage adopts: AI = 7AK , where AK is from
Gonzalez et al. (2012).

fits for PSPL events (i.e., ρ < u0) are approximately
accurate, PSPL events will have

µpspl

thresh = 0.33
mas

yr

(

u0

1/3

)−1(

tE
20 day

)−1(

θ∗,est
6 µas

)

. (6)

Hence, most PSPL giant-source events will fail this cri-
terion, leaving a tractable subset to be rejected by man-
ual light-curve fitting.

On the other hand, for FSPL events, we do not
expect the automated fit to yield the correct u0. For
ρ ≪ 1, we expect u0,fit tE,fit ≡ teff,fit ≃ t∗,true ≡
ρtrue tE,true to the extent that the fit is influenced by the
width of the peak, and 1/u0,fit ≃ Amax,fit ≃ Amax,true ≃
2/ρtrue to the extent that the fit is influenced by the
height of the peak. These imply µrel ∼ µthresh and
µrel ∼ µthresh/2, respectively. Hence, FSPL events
that fail Equation (5) have relative proper motions
µrel . 1 mas yr−1. Using the approach in the Appendix
to Gould et al. (2021), the probability for a lens to have
such a small proper motion is p < (µthresh/σµ)

3/6
√
π →

4 × 10−3, where we have adopted an isotropic bulge
proper-motion dispersion of σµ ∼ 2.9 mas yr−1. Ta-
ble 4 of Kim et al. (2021), which lists both the es-
timator µthresh and the true value µrel for 13 events
shows that the former is conservative in the sense
that µrel/µthresh . 1. Only two events (OGLE-2019-
BLG-0551 and OGLE-2019-BLG-1143) violate this in-
equality, and they do so only mildly, both with ratios
1.2. Note that neither of the two FFPs in this sam-
ple (OGLE-2019-BLG-0551, ρ = 4.5; KMT-2019-BLG-
2073, ρ = 1.1) are in the ρ ≪ 1 regime, but both ap-
proximately satisfy the inequality, with µrel/µthresh =
1.2 and 0.6, respectively.

Each such candidate, typically of order 60 per year,
is first reviewed visually. Of order 10% are eliminated
at this stage for various reasons, primarily that they
are not single lens events or that there are no data
near the peak, which would be required to measure
ρ. The remainder are fitted to PSPL and FSPL forms
using pipeline KMT data. If FSPL is preferred by
∆χ2

fspl ≡ χ2
pspl − χ2

fspl > 3 (after renormalizing the er-
ror bars to enforce χ2/dof = 1 at each observatory)
and the best fit has a normalized impact parameter
z0 ≡ u0/ρ < 1 then the data are subjected to tender
loving care (TLC) re-reduction and error renormaliza-
tion. Then, if ∆χ2

fspl > 20, the event is selected as
FSPL. For a few cases, the pipeline light curve has an
obvious FSPL form for which PSPL would give a very
poor fit. For these, we move directly from inspection
to TLC. Note that both the pipeline reductions and
TLC reductions use pySIS (Albrow et al. 2009), which
is a specific implementation of difference image analysis
(Tomaney & Crotts 1996; Alard & Lupton 1998).

For 2019, Kim et al. (2021) separately searched
the output of the real-time event selection algorithm
AlertFinder (Kim et al. 2018b) and the end-of-year
selection algorithm EventFinder (Kim et al. 2018a).
Because AlertFinder did not operate in the wings of
the season and also because it searches only for rising
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events, there were wing-of-season events that it missed
but were found by EventFinder. However, even in the
region of overlap, there were FSPL events that were
missed by one or the other. For example the FFP FSPL
event OGLE-2019-BLG-0551 was found by AlertFinder
but not EventFinder. These discrepancies motivated
the addition of an aggressive giant-source search, which
had two purposes. First, it served as a check that the
union of the AlertFinder and EventFinder samples for
2019 was effectively complete. And, indeed, the spe-
cial giant-source search did not yield any additional
FSPL events. However, Kim et al. (2021) also noted
that 2019 was the first year for which AlertFinder was
in full operation. For 2018, AlertFinder operated only
beginning in June and only in the northern bulge. It
did not operate at all in 2016 and 2017. Hence, given
that EventFinder was missing FSPL events in 2019, the
special giant-source search would have to be applied to
previous seasons. See Ryu et al. (2021) for further re-
finements of the giant-source search.

Finally, we modified the search procedures relative
to Kim et al. (2021) to better deal with saturated data.
In 2019, events that were saturated at peak were simply
eliminated as uninterpretable at the visual-inspection
stage. However, we subsequently realized that many
such events could be analyzed by incorporating the
V -band data for the regions of the light curve that were
saturated in the I band. For example, given the typical
intrinsic colors of giants (V − I)0 ∼ 1.1, typical red-
dening of KMT fields E(V − I) ∼ 1.8 and the roughly
0.65 deeper photometric zero point in the V band, the
onset of saturation would be ∼ (1.1+1.8−0.65) = 2.25
mag fainter in the V band than the I band. Of course,
V -band data were taken 10 times less frequently in
2017–2019 than I band, and even less frequently in
2016. However, for events that are well characterized
by bright (so, generally small-error) I-band light curves,
only a few points are needed over peak to measure ρ.
We applied this approach to the saturated events from
2019, but this did not lead to new FSPL events. How-
ever, it did prove useful in fully characterizing FSPL
events from 2016–2018.

3. EXPECTED θE DISTRIBUTION

Our primary motivation is to probe the poorly under-
stood population of FFPs. To do so, it is useful to
understand the θE distribution that is expected from
stars and BDs. We first show that a substantial ma-
jority of these detections will come from bulge lenses
and second that these are expected to cover the range
30 µas . θE . 300 µas. We then turn to the role of
disk lenses.

Ignoring selection effects, the rate of microlensing
events for a population of fixed mass M and toward a
given source is

Γall ∝

∫

µrel θE(DL)D
2
L dDL ν f(µrel)µrel g(M ;DL), (7)

where ν = ν(DL) is the density at distance DL, f(µ) =
f(µrel;DL) is the 1-dimensional proper motion distribu-

tion and g(M ;DL) is the mass function. However, for
FSPL events, one should replace θE(DL) → ρ θE(DL) =
θ∗, which eliminates one instance of implicit dependence
on DL (and M ; Gould & Yee 2013). We note that
with the exception of very nearby lenses DL . 1 kpc
(see below), the mean proper motion 〈µrel〉 is approxi-
mately independent of distance, while we also approx-
imate g(M) as being independent of distance. Hence,
for FSPL events,

ΓFSPL ∝ θ∗〈µrel〉 g(M)

∫ DS

DL=0

dDL D2
L ν(DL). (8)

That is, ΓFSPL is proportional to the total column of
lenses in the observation cone between the observer and
the bulge source. Without any detailed model, it is clear
that this column is dominated by bulge lenses: other-
wise, e.g., there would be a cloud of disk red-clump
stars trailing toward brighter magnitudes from the ob-
served bulge red-clump on the color-magnitude diagram
(CMD), which is not seen in practice. Hence, bulge
stars will dominate most of the θE distribution, while
disk lenses will dominate only in regions that are inac-
cessible to bulge lenses.

The bulge mass function is well populated over the
range 0.02 M⊙ . M . 1 M⊙. The upper limit is set
by the fact that the bulge is primarily an old popula-
tion for which the stars that were born M & 1 M⊙
have now mainly evolved to become remnants, mostly
white dwarfs. The lower limit is an approximation for
the steeply falling mass function in the BD regime.
The bulge has a depth of order 1 kpc, implying that
the typical range of lens-source relative parallaxes is
0.005 mas . πrel . 0.02 mas, corresponding to lens-
source separations 0.35 kpc . (DS − DL) . 1.5 kpc.
Above the upper limit, the product of the disk and bulge
density distribution declines sharply. Below the lower
limit, the amount of available phase space declines.
None of the four limits just described is a hard bound-
ary, but together they naively indicate a well-populated
range, for θE =

√
κM πrel of 30 µas . θE . 400 µas.

See Section 8.3 for a more detailed assessment.
Then, we should consider whether these intrinsic

boundaries are impacted by additional detection effects.
For typical giant-star source radii θ∗ ∼ 6 µas, these
limits correspond to Amax ∼ 2/ρ ∼ 10 and 135, re-
spectively. The lower limit is not near any selection
boundary, but saturation becomes an issue at the upper
limit. For typical giant sources I0 ∼ 14.5 and extinc-
tions AI ∼ 2, the upper boundary implies Ipeak ∼ 11.2,
which is well into the range of KMT saturation, whose
onset is seeing (and hence observatory) dependent. As
we discussed in Section 2, it is sometimes possible to
recover from saturation using V -band data. Never-
theless, the onset of saturation steepens the decline in
the upper range of θE detections, leading us to adopt
30 µas . θE . 300 µas as the expected range for bulge
lenses.

If we were to adopt a similar mass function for
disk lenses, then they would populate a range that is
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translated upward by a factor
√

πrel,disk/πrel,bulge ∼ 2
in θE, where we have adopted πrel,disk ∼ 60 µas and
πrel,bulge ∼ 15 µas as “typical” values for the disk and
bulge, respectively. Hence, the disk lenses would appear
as “sprinkled in” (and not generally individually identi-
fiable) over the range 60 µas . θE . 400 µas, and they
would only start to dominate for θE & 300 µas. The fact
that the disk mass function extends above M & M⊙
augments this effect but does not qualitatively change
it. As just mentioned, this high θE regime is suppressed
by saturation effects. However, another way to express
the relation of the disk and bulge contributions is that
at fixed θE, the disk lenses have ∼4 times lower mass
than the bulge lenses. Hence, at θE ∼ 400 µas, they
are near the peak of the mass function M ∼ 0.3 M⊙,
whereas the bulge lens mass function at M ∼ 1 M⊙
is much lower. Hence, we expect that, contrary to the
main part of the θE distribution, the upper range will
be a comparable mix of disk and bulge lenses.

We note that the higher proper motions of nearby
lenses DL . 1 kpc do not compensate for their low
observing-cone volume in the rate equation. The mean
proper-motion term in this regime scales 〈µrel(DL)〉 ∼
v⊥,typ/DL where v⊥,typ ∼ 40 km s−1 ∼ 8 kpc mas yr−1

is the typical transverse velocity of nearby stars. Hence,
when the proper-motion term is moved inside the in-
tegral, it takes the form v⊥,typ

∫

dDL DL . . . in place
of 〈µrel〉

∫

dDL D2
L . . . at larger distances. That is, the

nearby lens contribution is still heavily suppressed by
the volume factor.

Finally, it is reasonable to expect sensitivity
to FSPL events with peak magnifications down to
Amax ∼ 2, i.e., ρ ∼ 1.4 (Equation (2)), hence θE ∼
θ∗/1.4 ∼ 4 µas. Thus, the survey should have sen-
sitivity that goes almost a decade below the Einstein
radii that are generated by known stars and BDs.

4. 30 FSPL EVENTS FROM 2016–2019

Table 1 shows the microlens fit parameters for the
14 of the 17 new FSPL events that were discovered
in 2016–2018 data. The parameters for the remain-
ing three (KMT-2017-BLG-2820, OGLE-2017-BLG-
0896, OGLE-2017-BLG-0705) are adopted from previ-
ous publications (Ryu et al. 2021; Shvartzvald et al.
2019; Li et al. 2019). See Appendix A. For the 13 FSPL
events from 2019, see Table 3 of Kim et al. (2021), Ta-
ble 1 of Kim et al. (2021) and Table 1 of Mróz et al.
(2020).

For the color-magnitude analysis, we used the same
procedures as Kim et al. (2021), ultimately based on
Yoo et al. (2004). Briefly, we perform a special re-
duction using pyDIA (Albrow 2017), which carries out
light-curve photometry and field-star photometry on
the same system. We find IS by regression of the I-band
light curve on the best model and the (V − I)S color
by regression of the V -band on the I-band light curve.
We find the red-clump centroid of the field stars, and
so calculate the offset ∆[(V − I), I] of the source rela-
tive to the red clump. We estimate the intrinsic clump
color (V − I)cl,0 = 1.06 from Bensby et al. (2013) and

its intrinsic magnitude Icl,0 from Table 1 of Nataf et al.
(2013). We convert from V/I to V/K using the color-
color relations of Bessell & Brett (1988). Finally, we
estimate θ∗ using the color/surface-brightness relations
of Kervella et al. (2004) for K giants and Groenewegen
(2004) for M giants. The results of the CMD analysis
are shown in Table 2 for the 17 events from 2016–2018.
For the 13 FSPL events from 2019, see Table 4 of Kim
et al. (2021).

Among the 17 newly reported FSPL events, we re-
covered the FFP OGLE-2016-BLG-1540 (Mróz et al.
2018) (and, as already reported by Ryu et al. 2021,
the FFP KMT-2017-BLG-2820), but did not find any
additional FFPs. Hence, there are a total of four
FFPs in the sample of 30 FSPL events, OGLE-2016-
BLG-1540, KMT-2017-BLG-2820, OGLE-2019-BLG-
0551, and KMT-2019-BLG-2073.

We did not recover either of the other two known
FSPL FFPs, OGLE-2012-BLG-1323 (Mróz et al. 2019)
and OGLE-2016-BLG-1928 (Mróz et al. 2020). The
first preceded the KMT survey. For the second, the
event was not found either by EventFinder nor in the
special giant-source search because there are only 4
magnified KMT points. Even if identified, it could not
have been reliably characterized from these four points.
OGLE’s original identification of this event was post-
season and was based on 10 magnified points that probe
both the peak and the wings. The role of KMT data
(in addition to confirming the event from KMTC) was
to rule out binary models by the flat behavior of KMTS
data starting about 8 hours after the last OGLE point.

In Appendix A, we provide notes on individual
events.

5. SAMPLE CHARACTERISTICS

Notwithstanding the justified caution of Kim et al.
(2021), the results from 2019 prove to be reasonably
representative of the four year sample. For the four
years 2016–2019, the FFP/FSPL counts are (1/5, 1/9,
0/3, 2/13). For 2016–2018, they are 2/17 compared to
2/13 for 2019, which is consistent with normal Pois-
son variations. If four detections are distributed ran-
domly among four seasons, the most common configu-
ration (144/256) is the observed one, (2, 1, 1, 0). The
one feature that is possibly unusual is that there were
only 3 FSPL events in 2018 compared to 13 in 2019,
so one may wonder whether the seasonal distribution
of FSPL events, ni = (5, 9, 3, 13) can also be con-
sidered as a “typical” outcome of Poisson sampling.
We investigate this by adopting an annual expecta-
tion2 λ = 30/4 = 7.5 and construct a log likelihood,
lnL =

∑4
i=1 ln(e

−λλni/ni!) = −10.31. We can then
compare this to the same statistic for 106 realizations
in which 30 events are randomly distributed among
4 seasons. We find that 7.8% have smaller likelihood.

2Inspection of the formula for lnL shows that the choice of λ
plays no role: it just adds a constant 30 lnλ − 4λ → 30.45 to
each trial. That is, we could have just as well used lnL =
−

∑4
i=1 lnni!. We keep the more complex form to maintain

familiarity for the reader.
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Table 1

Microlens parameters for FSPL giant-star events

Name KMT Name t0 u0 tE ρ fs,KMTC

OB180705 KB181882 8316.30592 0.00123 46.247 0.01151 5.5354
(errors) 0.00145 0.01239 0.147 0.00503 0.0187

KB180244 KB180244 8312.42231 0.27149 4.430 0.35487 11.0566
(errors) 0.00118 0.00301 0.027 0.00283 0.1300

OB180626 KB182309 8230.28800 0.16989 2.983 0.21484 10.3031
(errors) 0.00132 0.00255 0.024 0.00251 0.1520

MB17147 KB170132 7850.99388 0.09138 2.695 0.13451 4.3062
(errors) 0.00043 0.00097 0.016 0.00102 0.0393

OB171254 KB170374 7952.25224 0.00000 15.278 0.02527 0.7068
(errors) 0.00025 0.00000 0.046 0.00009 0.0024

OB170560 KB172830 7859.52120 0.02900 0.901 0.89000 18.5140
(errors) 0.00100 0.01800 0.002 0.00300 0.0010

OB170905 KB171022 7895.73816 0.08702 7.734 0.15031 83.4744
(errors) 0.00401 0.00221 0.046 0.00254 0.9971

MB17241 KB170818 7883.47648 0.21697 1.845 0.29496 4.8304
(errors) 0.00057 0.00437 0.024 0.00483 0.1019

OB170084 KB170726 7807.13435 0.01226 43.642 0.02335 0.4049
(errors) 0.00212 0.00022 0.501 0.00028 0.0055

OB161045 KB160848 7559.20148 0.01061 12.030 0.02943 1.3546
(errors) 0.00115 0.00208 0.099 0.00191 0.0141

KB161128 KB161128 7486.32769 0.00951 12.550 0.02586 0.2703
(errors) 0.00147 0.00105 0.428 0.00105 0.0106

OB161540 KB162262 7606.72400 0.60500 0.330 1.63100 19.6960
(errors) 0.00100 0.02700 0.003 0.00800 0.0000

KB162057 KB162057 7467.93171 0.00000 11.374 0.06645 2.4595
(errors) 0.00196 0.00000 0.105 0.00078 0.0309

MB16258 KB160606 7537.29800 0.18800 3.722 0.57400 49.7270
(errors) 0.00100 0.00400 0.045 0.00300 0.4670

The units of t0 and tE are HJD′ = HJD − 2450000 and days, respectively. Fluxes are in units of an I = 18 system. Event
names are abbreviations for, e.g., OGLE-2018-BLG-0705. For KB172820, see Ryu et al. (2021). For OB170896 (= KB170799),
see Shvartzvald et al. (2019). For OB171186 (= KB170357), see Li et al. (2019). For OB180705, the fit included parallax:
(πE,N , πE,E) = (−0.324,−0.017)± (0.139, 0.008).

Table 2

CMD and derived parameters for FSPL giant-star events

Name KMT Name (V − I)0 I0 θ∗ θE µrel µthresh z0 = u0/ρ

OB180705 KB181882 1.46 13.14 14.78 1285.00 10.10 13.31 0.104
KB180244 KB180244 2.26 12.06 34.25 96.72 7.97 7.79 0.764
OB180626 KB182309 1.20 14.69 6.53 29.00 3.55 5.63 0.791
MB17147 KB170132 0.94 14.18 6.22 46.24 6.26 13.75 0.679
KB172820 KB172820 1.13 14.31 7.05 5.94 7.95 10.34 0.150
OB171254 KB170374 1.27 14.97 5.68 224.11 5.35 10.14 0.000
OB170896 KB170799 1.26 14.95 5.71 139.60 3.42 5.94 0.115
OB170560 KB172830 2.43 12.47 31.10 34.90 14.17 5.80 0.033
OB170905 KB171022 1.60 11.19 38.50 256.15 12.09 5.49 0.579
MB17241 KB170818 1.24 14.29 7.65 25.93 5.13 5.09 0.736
OB171186 KB170357 2.12 12.39 26.90 93.90 2.65 2.88 0.319
OB170084 KB170726 1.33 15.41 4.78 204.11 1.71 2.38 0.525
OB161045 KB160848 1.23 14.37 7.33 249.31 7.55 43.72 0.360
KB161128 KB161128 1.00 14.43 5.49 212.79 6.19 24.10 0.368
OB161540 KB162262 1.70 13.58 14.36 8.80 9.74 8.80 0.371
KB162057 KB162057 1.20 14.58 7.29 109.71 3.52 8.41 0.000
MB16258 KB160606 2.92 12.31 43.89 6.45 7.50 1.65 0.328

The units of θ∗ and θE are µas, while those of µrel and µthresh are mas yr−1. Event names are abbreviations for, e.g., KMT-2018-BLG-
1882, OGLE-2018-BLG-0705, and MOA-2017-BLG-147
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Figure 1. Color-magnitude locations of the 30 FSPL events
relative to the red clump, shown against a background of
field stars from the CMD of KMT-2019-BLG-2555, i.e., the
same as was used in Figure 8 of Kim et al. (2021). The
events are color-coded by discovery year. FFPs have red
cores. As expected, the sources are concentrated in the red
clump (the highest concentration of giants), are somewhat
over-represented on the upper giant branch (due to larger
cross sections), and, conversely somewhat under-represented
on the lower giant branch. The largest outlier, OGLE-
2017-BLG-0905 (green point near top), is discussed in Ap-
pendix A, while the second largest, KMT-2019-BLG-1143
(blue point toward the right), was discussed by Kim et al.
(2021). The lack of detections with ordinate &15.5 is dis-
cussed in Section 5, with reference to Kim et al. (2021).
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Figure 2. Field positions of 30 FSPL events in Galactic coor-
dinates, color-coded accorded to year of discovery (see labels
in Figure 1). The background black points are (as in Fig-
ure 4 of Kim et al. 2021) EventFinder events from 2019. As
in that Figure, the KMT fields are shown as black squares,
with blue field numbers. Their observational cadences can
be obtained from Figure 12 of Kim et al. (2018a).
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Figure 3. Cumulative distribution of normalized impact pa-
rameters z0 = u0/ρ. The red line connects the first and last
points, while the green line connects the first and penulti-
mate points. The underlying distribution is rigorously uni-
form in z0, so the eye is struck by the absence of detections
toward z0 ≃ 1. According to a Kolmogorov-Smirnov (KS)
test, this is not significant, but the effect may be real because
the KS test does not capture all the physics. See Section 5.
The distribution relative to the green line suggests that the
sample is homogeneously selected for z0 . 0.8.

Thus, this outcome is not particularly “unexpected”,
especially given that this is a posterior test. Therefore,
neither the seasonal distribution of the FFPs nor that
of the FSPL events can be considered unusual.

Kim et al. (2021) presented several diagnostic plots
whose purpose was to probe for statistical artifacts
and/or patterns in the sample and to identify individual
outliers that might require explanation and/or further
investigation. We present analogous plots here.

Figure 1 shows the color-magnitude diagram
(CMD) source positions of the FSPL events relative to
the red clump, color-coded by season. The blue (2019)
points and the black background points (taken from
the dereddened CMD of KMT-2019-BLG-2555) are the
same as those shown in Figure 8 of Kim et al. (2021).
Of the 30 sources, 15 are red-clump stars (or giant-
branch stars that are superposed on the red clump),
4 are lower-giant-branch stars, 9 track the upper giant
branch quite closely, one (KMT-2019-BLG-1143, blue)
lies significantly below the upper giant branch, and one
(OGLE-2017-BLG-0905, green) lies well above the up-
per giant branch.

The broad pattern of the FSPL events relative to
the background is as expected: they are concentrated
in the red clump (i.e., the most densely populated re-
gion of giant stars), and are somewhat over-represented
on the upper giant branch and under-represented on
the lower giant branch, which is expected due to larger
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Figure 4. Cumulative Distribution of log θE for 30 FSPL
events with giant-star sources that were found in four sea-
sons of KMTNet data, 2016–2019. The absence of detections
θE . 4 µas is due to selection effects, while the paucity for
θE & 300 µas is due to a combination of selection effects and
the lack of bulge stars M & 1 M⊙. The remaining feature,
the factor ∼3 “Einstein Desert”, 8.8 µas < θE < 26 µas, is
the signature of two populations, i.e., BDs/stars with masses
0.02 . M/M⊙ . 1 to the right and FFPs with much lower
masses to the left. The former are detected mainly in the
bulge, while the latter are likely to be about equally drawn
from the bulge and the disk. See Section 8.3. This Figure
can be compared to Figure 10 from Kim et al. (2021).

and smaller cross sections, respectively. The complete
absence of FSPL events between 16 < I < 15.5 would
appear to be somewhat surprising. However, Kim et al.
(2021) showed that this is due to systematic underes-
timation (with considerable scatter) of source flux for
FSPL events by the automated pipeline. See their Fig-
ure 6.

The outlier KMT-2019-BLG-1143 was investigated
by Kim et al. (2021). We investigate the other outlier
(OGLE-2017-BLG-0905) in Appendix A.

Figure 2 shows the distribution of the 30 FSPL
events on the sky in Galactic coordinates, against the
same background of 2019 EventFinder events that ap-
pears in Figure 4 of Kim et al. (2021). The FSPL events
are concentrated toward the Galactic plane, as would
be expected for giant-source events because they are
more heavily represented in regions of high extinction.
However, this is a weak effect, and no strong statistical
conclusion can be drawn from this apparent pattern.

Figure 3 shows the cumulative distribution of the
30 FSPL events as a function of normalized impact pa-
rameter z0 ≡ u0/ρ. In nature, this distribution is ex-
actly uniform, so any (statistically significant) devia-
tion from a uniform distribution should reflect selection
effects. Kim et al. (2021) had argued based on their
analogous Figure 3, that the distribution was consis-

tent with being uniform over [0 ≤ z0 < 1]. Comparison
of the observed distribution with a uniform expectation
(red line) indicates that, with accumulating statistics,
this may no longer be true. A Kolmogorov-Smirnov
(KS) test yields an unimpressive p = 28%. However,
KS is a very “forgiving” test because it assumes no
prior information on the form of the deviation. By con-
trast, our eye is drawn to the near absence of events
with z0 > 0.82, where we might expect the greatest
difficulty for detections. The green line, which ignores
the single detection at z0 ≃ 1, appears more satisfy-
ing. Kim et al. (2021) argued that there is substantial
information about ρ in the regions of the light curve
having z ≡ u/ρ > 1, so that uniform sensitivity over
[0 ≤ z0 < 1] was plausible. However, it is also plausible
that there would be at least some effect for z0 ∼ 1, as
seems to be indicated by Figure 3, albeit weakly.

One might suspect that the dearth of events with
z0 ∼ 0.9 is the result of the z0 < 1 boundary in our ini-
tial selection combined with ordinary statistical noise.
That is, some events with initial estimates z0,init ∼ 0.9
were ultimately eliminated after they were determined
to have z0,TLC > 1 from subsequent TLC reductions,
but the “complementary” events that would have had
z0,TLC ∼ 0.9 (if TLC reductions had been done) were
not investigated after it was found that z0,init > 1. In
fact, we were concerned about this and obtained TLC
for 5 events with z0,init & 1. However, z0,TLC > 1 was
confirmed for all 5. Hence, we do not believe that such
selection bias is a strong effect.

6. THE EINSTEIN DESERT

Figure 4 shows the cumulative distribution log θE for
the 30 FSPL events in the survey. It exhibits three
principal features; 1: a paucity of detections with θE &
300 µas, 2: a complete absence of detections with θE <
4 µas, and 3: the “Einstein Desert”, i.e., the absence of
detections over the interval, 8.8 µas < θE < 26 µas.

As discussed in Section 3, the first was expected,
primarily due to the rapid fall-off of the bulge mass
function for M & 1 M⊙, but somewhat augmented by
selection effects due to saturation. The latter will be
examined more closely in Section 7.

As will also be discussed in Section 7, the second
feature is likewise due to selection.

However, selection effects play no role in the third
feature, the “Einstein Desert”, because the effective se-
lection function (see discussion of Figure 6, below) is
smoothly increasing from a factor of 2 below the Desert
to a factor of a few above it.

As was already anticipated in Section 3, the upper
shore of this desert (at θE = 26 µas) can be attributed
to the sharp fall-off in the bulge mass function in the
BD regime. In this sense, it is qualitatively similar to
the first feature, but with a crucial difference. Being
generated by a fall-off at the high end of the mass func-
tion, the first feature is “washed out” by contributions
of disk lenses of much lower mass (hence, higher spe-
cific frequency) but with similar θE =

√
κM πrel. By
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contrast, the population of disk stars and BDs only con-
tribute to θE in regions well above the desert, and so
the upper edge of the Desert is sharp.

The 4 events that lie below the Desert must repre-
sent a separate, low-mass population because they have
Einstein radii that are a factor &3 below those of the
lowest-mass bulge BD lenses (and even farther below
those of the lowest-mass disk BD lenses). The existence
of the Desert is a powerful constraint on the nature of
this population: whatever model one adopts must not
only reproduce the observed low-θE detections but must
also respect the absence of such detections in the Desert.

Figure 5 shows a scatter plot of FSPL proper mo-
tions against Einstein radii. Generally, the proper mo-
tions are consistent with those expected for bulge and
disk lenses. Note that the FFPs are within this range,
somewhat more tightly grouped but with a median sim-
ilar to the sample as a whole.

7. SELECTION EFFECTS

7.1. Selection Effects Due to Lens Mass (thus, θE)

There are two principal selection effects due to lens mass
that can prevent a given event from entering the sam-
ple. These derive from the requirements that, first,
the light curve must initially be selected as a “mi-
crolensing event”, and second, that finite source ef-
fects must be detected in this event. In Section 2, we
adopted a threshold for finite source effects: ∆χ2

fspl ≡
χ2(PSPL) − χ2(FSPL) > 20. The threshold for event
detection, ∆χ2

select, i.e., the difference in χ2 between mi-
crolensing and non-microlensing interpretations of the
light curve as determined by EventFinder and the spe-
cial giant-star searches, varied somewhat for different
subsamples (see Kim et al. 2021). For purposes of this
section, we impose the minimum threshold that was
common to all subsamples, namely, ∆χ2

select > 1000.
This has the effect of eliminating one of the FSPL
events from the sample, i.e., KMT-2019-BLG-2528 with
∆χ2

select = 973. A hypothetical event can drop out of
the sample either because ∆χ2

fspl falls below our thresh-
old of 20 or because ∆χ2

select falls below our threshold of
1000. Under our assumptions for real versus hypothet-
ical events, we will see that both ∆χ2

fspl and ∆χ2
select

will monotonically decline with falling mass.
To understand how selection effects impact these

two criteria, consider two events that are “identical” in
every respect except for the lens mass, e.g., a real event
and a hypothetical event with either larger or smaller
lens mass. Here, “identical” means that the lens and
source of the hypothetical event both have the same
6 phase-space coordinates as the real event and that
the source radius and temperature are also the same.
Under these assumptions, µrel, z0 = u0/ρ, t∗ = ρ tE,
and teff = u0 tE are the same for the two events. How-
ever, because θE scales as M1/2, tE, u0, and ρ all differ.
Specifically, tE ∝ M1/2, u0 ∝ M−1/2, and ρ ∝ M−1/2.
We also assume that the observational sequences of the
real and hypothetical events are the same. Then, we
can evaluate upper and lower limits on θE for each real
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Figure 5. Scatter plot of log µrel vs. log θE for the 30 FSPL
giant-source events from four years of KMTNet data. The
events are color coded by year: cyan (2016), green (2017),
magenta (2018), and blue (2019). The four FFPs at the
left (with red interiors) all have µrel > 4 mas yr−1, whereas
the 26 non-FFPs are distributed more broadly. However
no strong conclusion can be drawn from this. Note that
Figure 9 of Kim et al. (2021) corresponds to the blue points
in this Figure.
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Figure 6. Measurements (circles) and sensitivity limits (error
bars) of θE for 29 FSPL events, rank ordered by lower limits.
As the θE of hypothetical events is progressively reduced be-
low that of the actual event, it eventually falls below the de-
tection threshold, either because ∆χ2

select < 1000 (required
to detect the event) or ∆χ2

fspl < 20 (required to be chosen as
an FSPL event). As θE is progressively increased, the peak
of the event eventually saturates, making it impossible to
measure θE. KMT-2019-BLG-2528 with ∆χ2

select = 973 is
excluded because the detection itself fails ∆χ2

select > 1000.
The magenta histogram shows the number of FSPL events
that were sensitive to each θE.
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event based on comparison to hypothetical events under
these assumptions.

First consider the case that the real and hypothet-
ical events satisfy ρreal < ρhyp ≪ 1, i.e., in particular,
Mhyp < Mreal. Then, because z0 is the same in both
cases, both the PSPL and FSPL models will have essen-
tially the same morphologies in the peak region of each
event. In addition, because the duration of the tran-
sit, ∆ttrans = 2 tE

√

ρ2 − u2
0, is invariant, they will have

roughly the same number of data points over the peak
region. On the other hand, they will have a magnifica-
tion ratio Ahyp/Areal ≃ (ρhyp/ρreal)

−1 = θE,hyp/θE,real.
Hence, the real event will be brighter than the hypothet-
ical one, and the number of “signal photons” (difference
between the true number for the FSPL model and the
expected number for the incorrect PSPL model) will fall
linearly with θE,hyp, while the number of background
photons remains the same. Hence, ∆χ2

fspl will fall lin-
early with θE,hyp if the hypothetical event is “above
sky” and quadratically if it is “below sky”. Once θE
falls sufficiently that ρ & 1, the functional forms of the
models in the two cases start to differ, but the princi-
ple remains the same. We estimate ∆χ2

fspl by scaling to
the actual value found from the FSPL and PSPL fits to
the real data and calculating the signal-to-noise ratio
of each case by assuming typical 2′′ FWHM seeing and
a typical I-band background of 19.25 mag per square
arcsec.

Next we turn to ∆χ2
select. As long as ρ . 1, the

principal impact of declining θE on ∆χ2
select is that tE

is shorter, so that there are fewer magnified data points
for a given event. Hence, ∆χ2

select declines as ∆χ2
select ∝

tE ∝ θE. Eventually, θE becomes small enough that
ρ & 1, at which point, finite source effects dominate the
morphology of the light curve. At this point, the effect
of the further decline of θE through ρ = 1 on ∆χ2

select
is similar to that on ∆χ2

fspl.
On the other hand, as the mass is increased, even-

tually the peak flux fpeak ≃ 2fs/ρ ∝ M1/2 will grow so
large that the images become saturated over peak. As
discussed above, in many cases it will still be possible
to measure ρ from the V -band images. However, these
are 10 times less frequent, and so for low-cadence fields
they may not sample the peak region. Moreover, as the
mass continues to be raised, eventually the V -band im-
ages will also become saturated. We model this process
by assuming the same seeing and background as above,
and by reducing ∆χ2 by a factor 20 for the regime in
which I is saturated but V is not. Here, a factor 10
comes from the lower cadence in V band and 2 comes
from the lower photon counts in the V band. This sets
an upper limit on the detectable θE for a given event.

In most cases, we do not actually know the lens
mass, but we do know θ∗ and θE. Hence, we can still
compare the real and hypothetical events in terms of a
measurable quantity, θE = θ∗/ρ. Then, for each event
i, with measured Einstein radius, θE,i, there is some
range θE,min,i < θE < θE,max,i over which it could have
been detected, where θE,min,i < θE,i is set by the ∆χ2

threshold (either ∆χ2
fspl or ∆χ2

select) and θE,max,i > θE,i

is set by saturation.

Figure 6 shows these ranges of sensitivity to θE for
the 29 FSPL events with ∆χ2

select > 1000, rank ordered
by the θE,min of each event. The most important fea-
ture of this Figure is that the 4 lowest-θE events (i.e.,
the 4 FFPs) are all pressed up near their detection limit.
By contrast, and with one very telling exception, there
is no such effect for the highest-θE events. For example,
the 8 events with θE > 200 µas occupy a broad range of
positions relative to the detection limits for that event.
This suggests that the fact that there is only one event
with θE > 500 µas is due to the low frequency of such
events in nature rather than lack of sensitivity of the
survey. Indeed, as shown by the magenta curve, of the
29 FSPL events, 22 would be able to detect events with
θE = 500 µas. Moreover, there is a well-understood
reason for the paucity of θE & 500µas events: as dis-
cussed in Section 3, these are almost entirely due to disk
lenses, and in a mass range for which the mass function
is already in decline. Indeed, the one event that lies
above this limit (OGLE-2018-BLG-0705), is known to
lie far in the foreground DL ∼ 2.5 kpc by two indepen-
dent arguments. First, it has a measured πE (in addi-
tion to the known θE), yielding πrel = θEπE. Second,
the lens proper motion indicates that it is a member of
NGC6544, whose distance is well-determined by sev-
eral techniques. See Appendix A. Hence, the fact that
the low-θE events are all pressed up against the detec-
tion limit hints that these may represent the “edge” of
a population that we are just barely detecting.

7.2. Selection Effects Due to µrel

There are also selection effects due to lens-source rela-
tive proper motion. To understand these, we consider
hypothetical events with the same θE and lens-source
trajectory, but moving with faster or slower proper mo-
tion. For hypothetical proper motions that are higher,
the hypothetical event will be “sped up” (tE, teff , and
t⋆ will all be shorter) compared to the real one, so
∆χ2

select and ∆χ2
fspl will both fall inversely as µ−1

rel , and
so will eventually fall below our thresholds of selec-
tion and/or detection. On the other hand, as µrel is
decreased, the event will be “slowed down”, thus re-
ducing µthresh in direct proportion, i.e., µthresh ∝ µrel.
Thus, it will eventually fall below our search limit
of µthresh > 1 mas yr−1. Our main concern here
will be the proper-motion selection effects for the 4
FFPs. These have θE = (4.35, 4.77, 5.94, 8.80) µas,

µrel = (4.17, 6.14, 7.95, 9.74) mas yr−1,
µthresh = (3.46, 11.17, 10.34, 8.80) mas yr−1,

∆χ2
select = (2180, 2663, 2992, 6249), and ∆χ2

fspl =
(577, 234, 187, 1513). Therefore, they have, respec-
tively, µrel,min = (1.21, 0.55, 0.77, 1.11) mas yr−1 and
µrel,max = (9.09, 16.35, 23.79, 60.87) mas yr−1. The
lower limits play very little role, but the upper limits
will be important when evaluating the kinematic con-
straints on the FFP masses (see Section 8).
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8. CONSTRAINTS ON THE FFP POPULATION

If the “Einstein Desert” is real, then it implies that the
objects that lie below this gap are a separate popula-
tion of low-mass objects. The existence of this gap will
then be an important constraint on the mass function
of these objects. Hence, the first question that must be
addressed is, how statistically secure is this gap?

8.1. Is the Einstein Desert Real?

The fact that the eye is drawn to the gap in Figure 4
does not, in itself, make it real. We can construct
the following “naive test” by noting that there are 4
detections within a factor of 2 below the gap, and 6
within a factor of 2 above it. Given that the sensitivity
of the survey is monotonically increasing over this en-
tire range and that the gap itself covers a factor of 3,
we would expect a continuous distribution to generate
(4+6)/2×log(3)/ log(2) = 7.9 detections in the region of
the gap. The fact that none are detected has a formal
probability of p = 0.0004. However, we call this test
“naive” because it is constructed after the fact. The
above statistical evaluation would be valid only if we
asked the question before conducting the experiment.
We might have asked a dozen questions, such as: is
there a gap around θE ∼ 15 µas, around 30 µas etc. Or
perhaps the data would have yielded some other pecu-
liar feature, causing us to construct some other poste-
rior test designed to highlight its improbability. If we
could imagine constructing 50 such tests, then the prob-
ability of finding p = 0.0004 in one of them is 2%. This
is still small but the case would not be overwhelming.

Nevertheless, the fact is that we did not enter this
investigation without any prior knowledge. Mróz et al.
(2017) already found an analogous gap in the Einstein
timescale distribution at tE ≃ 0.5 days. At typical lens-
source relative proper motions µrel ∼ 7 mas yr−1 (for
disk lenses), we would expect a gap at θE = µrel tE ∼
10 µas, which is similar to the geometric center of the
gap in Figure 4: 15 µas. Hence, the above statistical
test should be taken approximately at face value. That
is, we regard the suggestion by Mróz et al. (2017) of a
new population as confirmed3.

8.2. δ-Function FFP Mass Function

When Sumi et al. (2011) and Mróz et al. (2017)
first suggested their respective FFP populations, they
each presented their frequency estimates in terms of
δ-function mass functions. Neither argued that the
FFP mass function was sharply peaked, but rather used
δ-functions as a convenient way to characterize the basic

3In fact, Mróz et al. (2017) adopted exactly the cautious ap-
proach recapitulated above toward the evidence that they pre-
sented for a new population. The statistical significance for
this suggestion was roughly comparable to ours: they found
6 events below the gap (compared to our 4). However, with less
complete light-curve coverage and no finite-source effects, these
were individually less secure. Their (very appropriate) conser-
vative orientation was reflected in their title “No large popu-
lation of unbound or wide-orbit Jupiter-mass planets”, which
did not mention a new population. The abstract introduces
this suggestion with the cautionary phrase “may indicate”.

mass scale and frequency. In Section 8.3, we will argue
that, especially in light of the Einstein radius measure-
ments presented here, power laws provide a more useful
framework to characterize FFPs. However, there is one
constraint on the FFP mass function that is most eas-
ily described in terms of δ-functions, namely, that the
observed FFP proper motions put a lower limit on the
FFP mass scale.

As noted in the discussion of Figure 5, the observed
proper-motion distribution is consistent with that of
typical disk or bulge lenses. Strictly speaking, however,
this really applies only to disk lenses with DL & 2 kpc
for which the component of the proper motion that is
due to the peculiar motion of the lenses (relative to
Galactic rotation) is small compared to the mean rel-
ative proper motion that is set by the proper motions
of the bulge sources. For DL . 1 kpc, by contrast,
these peculiar motions dominate, and the expected am-
plitude of the relative proper motion grows µrel ∝ D−1

L
with declining distance. Hence, at sufficiently low M
(≡ θ2E/κπrel, so, low DL), the observed “typical disk”
proper motions of the FFPs should come into strong
tension with what is expected for nearby lenses.

We quantify this conflict as follows. For each as-
sumed lens mass M , and for each of the four FFP
events, we calculate πrel = θ2E/κM . We adopt πS from
Nataf et al. (2013) and so find DL = AU/(πrel + πS),
and we adopt µS,hel from Gaia. We model the disk as
having a flat rotation curve with vrot = 235 km s−1.
We model the disk lenses as having velocity disper-
sions σl = 28 km s−1 √η and σb = 18 km s−1 √η, where
η = exp(DL/2.5 kpc), and we assume an asymmetric
drift of vrot−

√

v2rot − (182 + 282 + 332) η(km s−1)2. We
conduct a 2-dimensional integral over this velocity dis-
tribution, first calculating µrel,hel and than converting
to µrel. At that point, we exclude realizations that ex-
ceed the upper limits that are described in Section 7 for
each event. And, of course, we weight the result by µrel.
We find the fraction of this predicted µrel distribution
that have proper motions less than the observed val-
ues, gi. For a fair sample, we expect that the gi should
be uniformly distributed, with mean 〈gi〉 = 1/2, but if
the model is systematically overestimating the proper
motions (i.e., it assumes that the lenses are closer than
they actually are), then we expect gi ≪ 1/2. Hence we
adopt a likelihood estimator L =

∏4
i=1 gi. We find that

FFPs with M < 1.5 M⊕ are disfavored at 2-σ, while
those with M < 0.95 M⊕ are ruled out at 3-σ. These
limits correspond to mean lens distances of 1.1 kpc and
0.7 kpc, respectively. That is, these results conform to
our naive expectation.

Thus, any compact mass function (not necessarily
a δ-function) for which the expected detections were
M . M⊕ would be heavily disfavored. However, as we
will see explicitly in Section 8.3, only a small fraction of
expected detections from viable power-law distributions
are in this range.
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Figure 7. Cumulative distributions of FFP detections for
three power-law indices (colored curves) compared to the
actual detections (black). The curves are each normalized
to 4 detections at Einstein radius θE = 9 µas. The three
curves then predict (3,1.5,1) detections within the observed
Einstein Desert for p = (0.6, 0.9, 1.2), which argues strongly
that the index is steeper than the measured one for bound
planets, γ = 0.6.
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Figure 8. Relative number of FFP detections predicted for
p = 0.9 and p = 1.2 power-law distributions, as a function
of distance from the Sun and FFP mass. The contours rep-
resent steps of a factor 1.5. For p = 1.2, the larger area
in yellow and green almost perfectly compensates the lower
amplitude compared to the smaller black region, so that the
FFPs are predicted to come equally from the bulge and the
disk. For p = 0.9 the ratio is bulge:disk = 5:4.
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Figure 9. Cumulative distribution of predicted FSPL detec-
tions (colored curves) versus the actual detections (black)
of 29 events. The FFP model (p = 1.2), which flattens for
log(θE/µas) & 1.2, is normalized to 4 detections, shown as
disk (blue), bulge (red), and combined (magenta) curves.
The same three colors are used for the predictions for stars
and BDs, which start to rise at log(θE/µas) ∼ 1.2. The
star+BD normalization is set so that the overall prediction
(green) matches the observed profile.

8.3. Power-Law FFP Mass Function

The FFP mass function is likely to be better character-
ized by a power-law function,

dN

d logM
= Z ×

(

M

Mnorm

)−p

, (9)

than a δ-function. Like the latter, a power-law function
requires two parameters, namely the power-law index
p and the normalization Z, while the reference mass
Mnorm is an arbitrary zero point whose inclusion allows
Z to have simple units; i.e., (dex)−1. The first argu-
ment favoring a power-law distribution is that there is
no reason to expect that FFPs will have special mass
scale, only that selection biases may possibly “pick out”
FFPs of a certain scale. Second, FFPs are very likely to
be related in some way to bound planets, whose mass-
ratio function is very well characterized by a power
law. For lenses with an observed θE, the inferred mass
varies as a function of distance, M = θ2E/κπrel, with
πrel = AU(D−1

L −D−1
S ), and so can be very different if

the lenses are assumed to be in the disk or bulge. Only
a continuous mass distribution (of which, a power-law
function has the simplest form) can handle these possi-
bilities simultaneously.

Moreover, we do in fact have some prior informa-
tion on the power-law index p. For planets in the mass
range under consideration, M < MSaturn, it is difficult
to imagine any formation scenario other than within
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the disks around stars, i.e., the same process that gives
rise to the known population of bound planets found by
microlensing planet searches. These have a power-law
mass-ratio distribution, dN/d log q ∝ q−γ , with γ ≃ 0.6
(Zang et al., in preparation; Suzuki et al. 2016; Shvartz-
vald et al. 2016). The FFPs must either be drawn from
this population and ejected to larger and/or unbound
orbits, or they must form in the outer portions of their
solar system, i.e., beyond the range of detection of the
known bound population. In either case, we would ex-
pect this to result in a mass distribution with p > γ.
That is, the probability for a planet drawn from the
known bound population to be scattered to a large or
unbound orbit monotonically increases with declining
mass because this generally requires scattering off a
heavier planet. And planets formed in the outer disk
(by core-accretion rather than gravitational collapse)
should be heavily biased toward low mass because of
the paucity of raw material and the long dynamical
timescales. For example, in our own Solar System only
dwarf planets such as Pluto are believed to have formed
in situ in the outer Solar System, while Uranus and Nep-
tune are believed to have formed inside the current orbit
of Saturn and to have been scattered to their present-
day orbits (Tsiganis et al. 2005; Morbidelli et al. 2005;
Gomes et al. 2005).

In the observed mass-ratio function for bound plan-
ets, the number of planets with mass ratio greater than
a certain q, is ∝ q−γ . Then, assuming that scattering
to large or unbound orbits is proportional to the num-
ber of such potential scatterers, p = kγ, with k = 2.
In practice, heavier planets will be more efficient scat-
terers, which would imply 1 < k < 2. On the other
hand, if the number of FFPs is of order or larger than
the number of bound planets (as seems to be the case,
see Section 9.2), then the original value of γ must have
been larger than currently observed, with lower mass
members of the original bound population having been
preferentially removed. In this case, the present-day
observed mass ratio distribution (and, in particular, its
power-law form) must reflect the imprint of the scatter-
ing process in addition to the formation process. How-
ever, because the FFP population is not overwhelm-
ingly dominant, it is unlikely that taking account of
formation-plus-scattering can drive k much above the
range 1 < k < 2.

Starting from these very general considerations, we
ask whether and how the FSPL FFP sample can fur-
ther constrain p. Figure 7 shows the predicted cumula-
tive distribution of FFPs based on the range of power
laws described above, p = (0.6, 0.9, 1.2), correspond-
ing to k = (1, 1.5, 2). In making these predictions we
have adopted relative detection efficiencies E = (4/3)X
(X < 0.5), E = (2X + 1)/3 (0.5 < X < 1), E = 1
(1 < X < 2), E = 2 − X/2 (2 < X < 4), with
X ≡ log(θE/3 µas). In the regime X > 0.5, in which
the detections are roughly randomly distributed in the
range of detectability (Figure 6), this function approx-
imates the relative fraction of events that are sensitive
to a given θE. For X < 0.5, we complete this function

linearly by imposing a threshold at θE = 3 µas, which
is supported by the fact that all four FFPs are pressed
up close to this limit.

The curves in Figure 7 are all normalized to the 4
detections with θE < 9 µas. As can be seen, all three
curves account of the form of the detections very well.
However, they then predict, respectively, about 3, 1.5,
and 1 event in the Einstein Desert. Hence, they are,
respectively, strongly disfavored, mildly disfavored, and
acceptable.

In Figure 8 we show the predicted distribution
of detections as a function of FFP mass and distance
for the latter two models. The contours change color
at factors of 1.5. The bulge FFPs are centered at
M ∼ (40, 30) M⊕ for p = (0.9, 1.2), while the disk FFPs
are at a broad range of lower masses, as expected from
the facts that θE is measured for the objects in our sam-
ple and M = θ2E/κπrel. As we will soon see, there are
almost exactly the same number of bulge and disk FFPs
in the p = 1.2 model: the fact that the yellow and green
contours are much larger than the black contour com-
pensates for their 2.2–3.4 times lower amplitude. For
the p = 0.9 model, we find that the ratio is bulge:disk
= 5:4.

To normalize this distribution we predict the stellar
and brown-dwarf FSPL events using a Chabrier (2005)
initial mass function (with bulge stars that have M >
1 M⊙ being converted into remnants). See Figure 9.
We normalize the FFP curves to 4 total detections and
normalize the stellar curve to approximately match the
observed distribution. The bulge and disk FSPL events
are shown in red and blue respectively, with magenta
showing the sum of these. There are two sets of such
curves, one for FFPs and the other for stars and BDs.
The green curve shows the overall sum. For the FFPs,
the bulge and disk curves are almost identical. As noted
above, for the p = 0.9 model, the bulge FFPs would be
favored 5:4. From the relative normalization of the FFP
and star-plus-BD curves, the FFP mass function can be
expressed as

dN

d logM
=

0.39

dex× star
×
(

M

38 M⊕

)−p

,

(p = 0.9 or 1.2).

(10)

Because the mean mass of the adopted stellar-BD mass
function is 〈M〉 = 0.199 M⊙, this can also be written

dN

d logM
=

1.96

dex×M⊙,stars
×
(

M

38 M⊕

)−p

. (11)

The uncertainty in the normalization is strongly domi-
nated by the Poisson error of 4 FFP detections, i.e., it is
50%. We consider that it is unlikely that the power-law
index lies far outside the indicated range 0.9 . p . 1.2.
For indices much below p = 0.9, the FFPs would pop-
ulate the Einstein Desert. While there are no strong
constraints on power laws that are substantially steeper
than p = 1.2, it is hard to imagine a mechanism that
would generate them.



186 Gould et al.

Assuming that these power laws apply to FFPs
from Earth to Saturn masses, then this range contains
a total of 130 M⊕ or 200 M⊕ of FFPs per solar mass of
stars for the p = 0.9 and p = 1.2 models, respectively.

We note that the form of the bulge and disk stel-
lar FFP detections shown in Figure 9 are in reason-
able accord with the expectations of Section 3. The
observed FSPL events are above the expectations in
the BD regime. This may reflect an underestimation of
the BD component in the Chabrier mass function, but
it could also reflect a statistical fluctuation. Address-
ing this question would take us beyond the scope of the
present investigation.

9. DISCUSSION: RELATION OF FFPS TO KNOWN

POPULATIONS

When we introduced the acronym “FFP”, we were care-
ful to have it refer to “candidates”, rather than just
“free-floating planets”. The main reason for this is
the general concern that the low-mass objects that ap-
pear “isolated” in microlensing events could be bound
planets in orbits that are too wide to enable microlens-
ing signatures of the host. This possibility has always
been recognized and was explored in depth by Clan-
ton & Gaudi (2014a,b, 2016). Gould (2016) pointed
out that the orbital separations of FFPs in very wide
(“Kuiper-like”) and extremely wide (“Oort-like”) orbits
could eventually be measured.

Here, we compare the FFP population as de-
rived from our FSPL survey, as characterized by Equa-
tions (10) and (11) to various known populations, in
order to obtain a more comprehensive picture. This
will include planets discovered by microlensing in typi-
cal orbits, known planets in very wide orbits, and known
interstellar objects.

We adopt the orientation that the most likely origin
of FFPs is that they they formed within a factor of a
few of the snow line, a region that was rich in proto-
planetary materials, and where dynamical timescales
were relatively short, and that they were ejected by
dynamical processes, either to much wider orbits or to
unbound orbits. Hence, we regard it as likely that FFPs
comprise both bound and unbound objects. Within this
framework, we expect a greater fraction of high-mass
FFPs to be in bound orbits, simply because it is easier
to eject a test particle than an object whose mass is a
substantial fraction of that of the perturber.

9.1. Comparison to Mroz et al. (2017)

Mróz et al. (2017) considered a δ-function model with
FFP mass M = 5 M⊕ to account for their NtE = 6
short-tE events. They obtained a best fit of R5M⊕,tE =
10 FFPs per star. Although they did not quote an error
in this estimate, the Poisson noise yields σ5M⊕,tE =

R5M⊕,tE/N
1/2
tE = 4.1.

To compare our result to theirs, we insert the same
δ-function model into the formalism described in Sec-
tion 8.3, thereby obtaining R5M⊕,θE = 15.3±7.6, based
on our NθE = 4 small-θE detections. Hence, the two
determinations are consistent at the 0.6-σ level.

Although we mainly restrict consideration to our
own results in this work, we note that, because the two
normalizations are consistent, it can also be appropri-
ate to combine them. We then find that the combined
normalization is a factor

Frenorm = 0.73± 0.24 (12)

smaller compared to results from our study alone. Note
that the fractional error is then≃1/3 rather than 1/2, as
would be expected from the fact that there are a total of
10 detections, rather than 4. Note also that this renor-
malization would apply to both Equations (10) and (11)
and to either indicated power-law index.

9.2. Comparison to the Known Bound-planet

Mass-ratio Function

At present, the masses of most microlensing planets are
unknown. Hence, what is most precisely measured is
the planet-host mass-ratio (q) function, which can be
expressed, in analogy to Equation (9),

dN

d log q
= Zq ×

(

q

qnorm

)−γ

, (13)

which, using a zero point qnorm = 10−3.5, has mea-
sured values Zq = 0.175 (dex)−2/star and γ = 0.6
(Zang et al. 2022, in preparation). There are three
aspects that make the comparison difficult. First, the
units of Z are (dex)−1/star while the units of Zq are
(dex)−2/star. The additional “dex” means “per decade
of projected separation”. We account for this by re-
garding two decades of separation (roughly 0.1–10 AU)
as being approximately representative of the whole pop-
ulation. That is, we roughly account for not only the
cold planets detected by microlensing but also the hot
and warm planets detected by transit and radial veloc-
ity surveys. Second, the denominator term “star” does
not mean exactly the same thing for the two power-law
functions. For our FSPL study, events enter the sample
in proportion to their number density, but for the mass-
ratio functions studies of Zang et al. (in preparation),
they enter as microlensing events, whose frequency is
weighted by their cross section, i.e., ∝ M1/2. Therefore,
if we want to convert Equation (13) to “per solar mass of
stars”, we should calculate the mean mass weighted by
M1/2, i.e., 〈M〉√M ≃ 0.33 M⊙. Third, eponymously,
the argument of the mass function is mass, while the
argument of the mass-ratio function is mass ratio. We
account for this by evaluating at bound-planet mass
mp = q 〈M〉√M . With these approximations, we infer
a frequency of known bound planets of

dN

d logmp
=

1

dex×M⊙,stars
×
(

mp

38M⊕

)−0.6

. (14)

Comparison of Equations (11) and (14) indicates
that at the normalization mass there are 2 times more
FFPs than bound planets, while at lower masses, the
ratio is even larger. For example, at mp = 10 M⊕,
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it is about 3 for the p = 0.9 power law. Of course,
this comparison required several approximations due to
the intrinsic incommensurability of the underlying mea-
surements. Nevertheless, one can infer robustly that the
number of FFPs is of order or larger than the number
of bound planets in the mass range to which the FFP
measurement is directly sensitive, 5 . M/M⊕ . 60 (see
Figure 8). This implies, as foreshadowed in Section 8.3,
that the form of the bound-planet mass function was
shaped partly, or perhaps mainly, by the ejection pro-
cess, rather than just the formation process.

9.3. Comparison to Known Uranus- and

Neptune-like Planets

In the entire Universe, there are exactly three known
planets that can be securely described as “Uranus-like”
(or “Neptune-like”), in that their masses and separa-
tions are of the same order as these two planets, namely,
Uranus and Neptune themselves, as well as OGLE-
2008-BLG-092Lb, which has s = 5.3 and q = 2.4×10−4

(Poleski et al. 2014).

9.3.1. Uranus and Neptune

We focus first on Uranus and Neptune. Equation (11)
predicts that, for p = 0.9 and within a factor

√
10 of

M = (MUranus+MNeptune)/2 = 16 M⊕, each solar mass
of stars should be accompanied by an average of 4.3
FFPs (whether unbound or in wide orbits). This can
be compared to the two such observed planets in the
Solar System, the only planetary system for which we
have a complete census. These numbers are compatible
within the Poisson error, and they would be more so if
we applied the renormalization given by Equation (12),
by which the expectation would be reduced to 3.1±1.0.

Furthermore, if a doppelganger of the Solar Sys-
tem gave rise to a microlensing event at DL ∼ 5 kpc in
which either its “Uranus” or its “Neptune” generated a
characteristic FSPL profile, there is only a small chance
that its “Sun” would leave a trace on the event. That
is, if a planet lies at (3-dimensional) physical separation
from its host, r, with a random orientation, then the
probability that its normalized projected separation, s,
and host-source impact parameter, u0, lie within speci-
fied regimes, (i.e., within smax and u0,max, respectively,
are,

p(s < smax) = 1−
√

1− s2max

s2full

p(u0 < u0,max) =
u0,max

sfull
,

(15)

where sfull ≡ r/DLθE. We note that for DL = 5 kpc
and DS = 8 kpc, DL θE = 3.91 AU (M/M⊙)

1/2, but
for the entire range, 2.5 kpc < DL < 5.5 kpc, this
formula remains accurate to <4%. Thus, for Uranus
and Neptune doppelgangers, sfull = 4.9 and 7.7, re-
spectively. We focus first on Neptune. According to
Equation (15) there is a small (p = 8%) chance that
s < 3, in which case, even if the host were detected,

the planet would be regarded as having a Saturn-like
(not Neptune-like) orbit. For FSPL events, the main
way that the host would be detected is that the source
would come within u0 < u0,max ∼ 2.5, which would
induce a peak magnification A & 1.03. Overall, this
occurs with probability p = 32%, but about 7% is due
to the cases with s < 3, leaving p = 25% that could
in principle be recognized as having Neptune-like or-
bits. At the median projected separation of the s > 3
population, namely smed = 6.8, the encounter with
the host would occur ∆t ≃ (smed/sfull) r/DL µrel →
68 day(µrel/6 mas yr−1)−1 before or after t0. To re-
liably identify a peak in such a low-amplitude event,
we should require that the observations continue a fac-
tor 1.3 beyond peak, i.e., to 77 days. Roughly 1/3 of
all events will fail this criterion because the peak re-
gion lies wholly or partly outside the bulge-observing
season. Thus, we expect about 16% of true bound
Neptunes that are detected as FSPL FFP events to be
recognizable as such. Repeating the same calculation
for Uranus yields 32%. Thus, the average probability
for Uranus and Neptune is about 25%. Hence, with
four examples, we should expect one host detection as-
suming that all were bound. However, the probability
for zero detections under this assumption is p = 32%.
Moreover, there is added uncertainty in this estimate
due to the fact that the majority of potential hosts are
much less massive than the Sun. If typical separations
of Neptune-like planets scale ∝ M1/2, then the above
calculations hold exactly. If they scale ∝ M , then the
probability of host detections goes up, while if these
typical separations are independent of host mass, then
the probability goes down.

The main implication of this exercise is that, at
least regarding the region of parameter space in which
Equation (11) is directly sensitive to the observations,
the Solar System is consistent with the hypothesis that
all FFPs are due to bound planets in wide orbits, such
as those of Uranus and Neptune.

9.3.2. OGLE-2008-BLG-092Lb

Among bound planets with secure s and q measure-
ments: OGLE-2008-BLG-092Lb is unique: there are no
other planets with s > 3 and q < 10−2.1. Planets with
s < 3 are unlikely to be in wide orbits, while those
with q > 10−2.1 could in principle have formed through
another channel, i.e., gravitational collapse.

However, in addition to this one secure Neptune-
like planet, there is another bound planet, OGLE-
2011-BLG-0173Lb, with best estimates s = 4.7 and
q = 4.5 × 10−4 (Poleski et al. 2018). In fact, there is
an alternate solution with s = 0.22 with virtually iden-
tical χ2. Nevertheless, based on the general statistical
properties of microlensing planets, Poleski et al. (2018)
argued that the wide solution was preferred.

Poleski et al. (2021) conducted a systematic search
for wide-orbit planets in 20 years of OGLE data, which
recovered these two planets (and no others in the
“Neptune-like” domain). They re-evaluated and con-
firmed the argument that the wide solution for OGLE-
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2011-BLG-0173Lb is preferred, based on updated mi-
crolensing statistics. Including both planets, they de-
rived a rate of 1.4+0.9

−0.6 “wide-orbit ice giants” (2 < s < 6,
−4 < log q < −1.5), based on a total of 5 detections,
only the above two of which are in the regime of interest
here.

To obtain a proper comparison to the FSPL sam-
ple, we apply their best-fit parameters (A, n,m) =
(1.04, 1.15, 1.09) to their Equations (6) and (8), but re-
stricted to (4 < s < 6, −4 < log q < −3), and find an
expected number (per star) ofN = 0.67±0.47, where we
have adopted a Poisson error based on two detections.
To maintain consistency with our other comparisons,
we should convert this to expected Neptune-like plan-
ets per solar mass of stars, i.e., 2.0 ± 1.4. The best-fit
value is identical to the actual number of such planets
in the Solar System, and, additionally, there is a sub-
stantial Poisson error in this prediction. Hence, this
result is likewise consistent with all Neptune-like FFPs
being due to wide-orbit bound planets.

9.3.3. OGLE-2016-BLG-1227: “FFP” with Buried Host

We chose the “clearly planetary” boundary, log q <
−2.1 for wide-orbit planets in part to emphasize the
isolation of OGLE-2008-BLG-092 (log q = −3.6) on the
(s, q) plane, i.e., 1.5 dex below this boundary, by ex-
cluding the only other known low-mass companion with
s > 3: OGLE-2016-BLG-1227. This event has many
striking features that potentially shed light on the con-
nection between FFPs and (known) bound planets.

The most striking is that this “planet” was orig-
inally discovered as an “FFP”, i.e., a short-duration,
apparently isolated FSPL event, which upon detailed
investigation was found to have subtle (∆χ2 = 128) sig-
natures of a host (Han et al. 2020a). These signatures
came entirely from the giant-star source passing over
the planetary caustic. In particular, because s = 3.7
and the trajectory orientation was α = 274◦, there was
no discernible “bump” due to the host. That is, the
magnification due to the underlying “host event” es-
sentially peaks at the time of planetary event at

Ahost =
s4 + 1

|s4 − 1| → 1.01. (16)

Second, this event had an exceptionally low lens-
source relative proper motion µrel = 0.8±0.1 mas yr−1.
This is remarkable in itself because, as noted in Sec-
tion 2, the fraction of events among the parent popula-
tion with such low µrel is just p = 0.002.

Third, the low ∆χ2 and low µrel just men-
tioned, when combined, imply that if this event had
had a more typical proper motion, then the host
would not have been discovered, and it would have
been called an “FFP”. That is, for roughly continu-
ous photometric coverage, ∆χ2 ∝ µ−1

rel , i.e., ∆χ2 =
17 (µrel/6 mas yr−1)−1. Thus, it is striking that in
the one case that an “FFP” event has been “slowed
down” sufficiently to detect subtle host signatures, they
do appear. Note that Gould (2022, Fig. 7) has shown

from a large planet sample that planet detection is fa-
vored relative to underlying event rate by ∼µ−1

rel , due to
this “enhanced ∆χ2 effect”. This improves the above-
mentioned probability from p = 0.2% to p = 1.8%.

Fourth, although the mass ratio, log q = −2.1,
would, in general be consistent with this being a very
massive “planet” that could in principle have formed by
independent gravitational collapse (like stars and BDs),
rather than in the accretion disk of a star, there is sig-
nificant evidence that this companion is in the unam-
biguously planetary mass regime. The “planetary Ein-
stein timescale” is well-measured to be tp ≡ q−1/2tE =
4.07 ± 0.06 day (Table 2 of Han et al. 2020a), while
µrel = 0.8±0.1 mas yr−1 is also well-measured (Table 3
of Han et al. 2020a), implying that the Einstein ra-
dius of the planet θE,p = µrel tp = 8.8± 1.1 µas (which
corrects Table 3 of Han et al. 2020a). This is within
the range of the four FFPs analyzed in this paper. In
particular, it implies that πrel of this (bound) planet is
πrel = 3.3 µas(Mplanet/3MJup)

−1 where we have chosen
the mass normalization as a plausible lower limit for ob-
jects that can form by gravitational collapse. Thus, for
the planet mass to exceed this limit, the lens and source
would have to be separated byDLS ≡ DS−DL < 26 pc.
Of course, this is not a proof that the mass is so low
as to exclude formation by collapse, but it is a strong
indication.

On the other hand, if we assume that this planet
has a similar mass to the bulge part of the FFP distri-
bution in Figure 8 (because of similar θE), i.e., mp ∼
80 M⊕, then DLS ∼ 300 pc, while the host mass would
be Mhost ∼ 0.03 M⊙. Moreover, at s = 3.7 (so, pro-
jected separation a⊥ = s θE,host DL ≃ 3 AU), it is un-
likely to have a physical separation from its host that
is similar to Uranus or Neptune, although if the host
is a late M-dwarf or BD, it could have such a char-
acteristic after scaling this system size by host mass.
Thus, whatever is the nature of this object, it does not
fit into the picture of planets with Neptune-like masses
and Neptune-like separations around normal stars.

We mention two final points: First, this event did
not enter the parent sample of our study because it
had µthresh = 0.33 mas yr−1 and so failed Equation (5).
Of course, if it had entered the sample, it would have
been excluded as a “published planet”, i.e., not an FFP.
Second, because the source/host contrast ratio is likely
to be of order 10 mag in the K-band (assuming that
it is a star rather than a BD), the estimate by Han
et al. (2020a) that the lens and source can be resolved
by adaptive optics on the European Extremely Large
Telescope (EELT) is too optimistic. Gould (2022) esti-
mates 2100 for EELT, but also suggests that they might
be resolved by VLTI GRAVITY+ by 2050.

9.3.4. Caveats

Although both of the tests in Sections 9.3.1 and 9.3.2
indicate consistency with the hypothesis that all of the
FFPs in our FSPL sample are due to known popula-
tions of wide-orbit bound planets, there is no strong
evidence that even a majority (let alone all) are due to
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such planets. First, the solar system is known to be
rich in gas giant planets in “Jupiter-like” or “Saturn-
like” orbits relative to the field. From the mass-ratio
function, we would expect only 0.2 such planets within√
10 of their mean mass, compared to two observed.

Moreover, the presence of Jupiter and Saturn is signif-
icant not only in that they may indicate that the Solar
System is planet-rich, but also in that they were impli-
cated in the expulsion of Uranus and Neptune to wide
orbits. Finally, the observed characteristics of the Solar
System may be subject to subtle selection effects due
to the existence of the observers. For example, the tur-
moil in the Solar System engendered by the expulsion
process may have played a crucial role in the delivery
to Earth of water and/or organic materials, or perhaps
to other conditions on Earth that were crucial to the
development of intelligent life.

Similarly, the estimates of Neptune-like planets
from the detection of wide-orbit planets are subject to
several caveats. First, the Poisson error in this estimate
is already quite large. Second, one cannot really be cer-
tain that the wide-orbit solution for OGLE-2011-BLG-
0173Lb is correct. This solution is favored statistically
only because there are more planets with s > 1 than
s < 1, but the power law relation is derived from a
sample that does not contain any planets (other than
OGLE-2008-BLG-092) that are close to its observed
value: | log s| ≃ 0.7 and that are also log q < −2.1 (so
not subject to alternative formation mechanisms). If
this planet is eliminated, then the mean expected num-
ber drops by a factor 2 and the fractional Poisson error
becomes much larger.

What we can say robustly is that there is a known
population of bound planets that contributes signifi-
cantly to FSPL events that have been (or possibly will
be) in the FFP domain. However, whether this is 10%
or 100%, we cannot now say.

Finally, we note that (contrary to the case of the
Jovian FFPs suggested by Sumi et al. 2011) there are
no limits on bound Neptune-like planets from direct
imaging because they are too faint.

9.4. Comparison to ‘Oumuamua-like Objects

‘Oumuamua was discovered via the PanStarrs survey as
an asteroid-like object that was leaving the Solar Sys-
tem in a strongly unbound orbit (eccentricity e = 1.2).
It may or may not be related to FFPs, depending on
its physical origin. The conventional view, and the one
that we will adopt here, is that it is an interstellar aster-
oid that was formed in another solar system. However,
other ideas for its origin have been suggested, including
that it is an alien spacecraft (Loeb 2021) and that it is
the result of a violent collision of Solar System objects
that occurred inside the orbit of Mercury (B. Katz et
al, 2018, rejected by arXiv).

Do et al. (2018) calculated the space density
of objects with exactly the same physical properties
as ‘Oumuamua under the assumption that the ex-
pected rate of detection was exactly 1 per 3.5 years
of PanStarrs operations as n ≃ 0.20 AU−3 = 1.75 ×

1015 pc−3. To account for the fact that there have
been no further reports of such objects during the past
4 years, we reduce this to n = 1× 1015 pc−3. Following
Rafikov (2018) we adopt physical dimensions (180 m×
18 m×18 m), and a typical asteroid density of 3 gm/cm

3

to derive a massMOum = 1.7×1011 gm = 3×10−17 M⊕,
and so a spatial density ρOum = 0.03 M⊕ pc−3. In order
to compare this to our FFP estimates, we first adopt
a local stellar mass density of ρstars = 0.04 M⊙ pc−3

(Bovy 2017) and assume that this detectability applies
to 1 dex of object mass, to obtain

dNOum

d logM
=

2.5× 1016

dex×M⊙,stars
, (17)

implying an interstellar-asteroid mass density per
decade of 0.75 M⊕/dex/M⊙,stars.

The main point to notice about this calculation is
that this mass fraction per decade (measured at M =
3 × 10−17 M⊕) is remarkably similar to the value im-
plied by Equation (11) at its pivot point (M = 38 M⊕)
of 74 M⊕/dex/M⊙,stars. That is, the two are consistent
with being part of the same distribution provided that
the distribution function is approximately flat in mass,
i.e., p ∼ 1. As we have already concluded that p ∼ 1
based on FFP detections, combined with the lack of de-
tections in the Einstein Desert, this suggests that FFPs
and ‘Oumuamua-like objects may result from the same
physical processes, i.e., the processes of planet forma-
tion and early dynamical evolution.

In fact, Do et al. (2018) considered and rejected
the idea that ‘Oumuamua-like objects were created and
ejected as part of planet formation, primarily because
they appeared to be too abundant. However, we con-
sider that the error in the above estimate is an order of
magnitude (i.e., 1 dex). In particular, if ‘Oumuamua-
like objects were a factor 10 less common than the Do
et al. (2018) estimate, there would still be a 10% chance
that one would be detected, which hardly can be con-
sidered to be an implausible scenario.

If we assume that they are part of the same pro-
cess and that they participate in the same power-law
distribution, then by comparing the two measurements
separated by 18.1 dex in mass, which differ in amplitude
by −1.99±1 dex, we can estimate a power-law index of

p = 1 +
−1.99

18.1
± 1

18.1
= 0.89± 0.06. (18)

However, it is also possible that the similarities of
the mass densities of FFPs and ‘Oumuamua-like objects
is just a coincidence and that ‘Oumuamua arose from
some entirely different process. In addition to the possi-
bilities mentioned above, Rafikov (2018) has suggested
that ‘Oumuamua results from the tidal disruption of a
rocky planet by its white-dwarf host. There could be
other possibilities as well.

Nevertheless, the hypothesis of a common origin
can be subjected to further tests. If more ‘Oumuamua-
like objects are found by improved surveys, their fre-
quency and power-law distribution can be better mea-
sured. If this power law is consistent with the p ∼ 1 that
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is implied by the common-origin hypothesis, this would
constitute further evidence. Similarly, better measure-
ments of the FFP power law could confirm (or contra-
dict) its apparent agreement with the one needed to
connect the FFP and ‘Oumuamua measured frequen-
cies.

In this regard, it is important to note that there has
already been a detection of a second extra-solar minor
body, 2I/Borisov (Higuchi & Kokubo 2020), of substan-
tially different mass, M ∼ 5× 10−14 M⊕ (Jewitt et al.
2020), i.e., 1700 times more massive than ‘Oumuamua.
Unfortunately, to our knowledge, there is not as yet a
published estimate of the space density of objects of
this class.

9.5. Summary

The comparison to various known populations can be
summarized as follows. First, the frequency of FFPs
derived from our FSPL sample is consistent with that
from the PSPL sample of Mróz et al. (2017) at the 1-σ
level. Combining the two leads to revisions of Equa-
tions (10) and (11), i.e.,

dN

d logM
=

0.28± 0.09

dex× star
×
(

M

38 M⊕

)−p

, (19)

and

dN

d logM
=

1.43± 0.47

dex×M⊙,stars
×
(

M

38 M⊕

)−p

, (20)

with 0.9 . p . 1.2 and applying to the regime
5 . M/M⊕ . 60. Second, the frequency of FFPs in
this mass range is of order or larger than that of known
bound planets. Third, if the Solar System’s endowment
of planets with similar masses and orbits to those of
Uranus and Neptune is typical, then these objects are
likely to contribute a substantial fraction of our detec-
tions. However, there is some evidence that the Solar
System may not be typical. Fourth, the observed FFPs
and ‘Oumuamua-like objects are consistent with being
drawn from the same power-law distribution, in which
case its index would be p = 0.89± 0.06.
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Mróz, P., Ryu, Y.-H., Skowron, J., et al. 2018, A Neptune-
mass Free-floating Planet Candidate Discovered by Mi-
crolensing Surveys, AJ, 155, 121
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APPENDIX A. REMARKS ON INDIVIDUAL EVENTS

In this section, we remark on anything that is notable
about the FSPL events from 2016–2018. For notes on
the 2019 events, see Kim et al. (2021).

The majority of these notes concern the fact
that 10 of the 17 FSPL events that are reported here
were previously published or (in one case) is the sub-
ject of work in preparation. By contrast, only one of the
13 events analyzed by Kim et al. (2021) from 2019 had
been the subject of a previous publication, namely the
FFP OGLE-2019-BLG-0551 (Mróz et al. 2020). For
each of the 9 published events, we compare the best
value of θE reported in these papers (first) to the one
we report here (second), both in µas:

Two of these events, OGLE-2016-BLG-1540

(Mróz et al. 2018) (9.2 vs. 8.8) and KMT-2017-BLG-

2820 (Ryu et al. 2021) (5.9 vs. 5.9) are FFPs, with the
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latter having been discovered as part of the program
being reported here.

Three were published as BD candidates as inferred
from their relatively small Einstein radii: OGLE-

2017-BLG-0560 (Mróz et al. 2018) (39 vs. 35),MOA-

2017-BLG-147 (Han et al. 2020b) (51 vs. 46), and
MOA-2017-BLG-241 (Han et al. 2020b) (28 vs. 26).

Four of these events were the subject of previous
publications because they are FSPL events for which
it was possible to derive microlens parallaxes based on
Spitzer data. Spitzer carried out a large, 6-year pro-
gram whose principal goal was to measure the microlens
parallaxes, and thereby the masses of and distances to,
planetary-system microlenses (Yee et al. 2015). How-
ever, Spitzer microlens parallaxes also yield masses and
distances for FSPL events, whether the finite source ef-
fects are observed from the ground or Spitzer (Zhu et al.
2016). The four published events are: OGLE-2016-

BLG-1045 (Shin et al. 2018) (244 vs. 249), OGLE-

2017-BLG-0896 (Shvartzvald et al. 2019) (140 vs.
140), OGLE-2017-BLG-1186 (Li et al. 2019) (94 vs.
94), and OGLE-2017-BLG-1254 (Zang et al. 2020)
(207 vs. 224).

The reason that the θE values are identical for three
events (KMT-2017-BLG-2820, OGLE-2017-BLG-0896,
OGLE-2017-BLG-1186) is that we adopted the pub-
lished parameters after finding that we recovered the
event using our standard procedures.

In addition, S. Tsirulik, J.C. Yee et al., (in prepa-
ration) applied this technique to OGLE-2018-BLG-

0705 and found DL = 2.2 ± 0.1 kpc and M = 0.74 ±
0.05 M⊙. The event is projected against the cluster
NGC6544, and the lens proper motion, measured from
a combination of Gaia, Spitzer, and ground data, is
consistent with that of the cluster. Hence, it is very
likely that the lens is a cluster member, having 2-σ
tension with the literature-based distance to NGC6544
(2.6± 0.3 kpc).

OGLE-2017-BLG-0905: This event is by far the
largest outlier on the CMD, lying roughly 2 mag above
the bulge giant branch (highest point in Figure 1). This
“problem” would be ameliorated (but not completely
solved) if the true color were substantially redder than
the one that we measured. First, however, we have
made separate color measurements from KMTC and
KMTS data, and these differ by only 0.04 mag. Sec-
ond, the color (and the magnitude) that are derived
from the light curve are nearly identical to those of the
baseline object, as would be expected for such a bright
source. This is true for both KMTC and KMTS. An-
other possible explanation for the extreme brightness
of the source (for its color) is that it is actually a fore-
ground disk star. However, the Gaia proper motion
µS(E,N) = (−5.3 ± 0.3,−7.5 ± 0.2) mas yr−1, is only
∼3 mas yr−1 from the centroid of the bulge distribu-
tion. On the other hand, this µS would be unusual for
a disk star, unless it were very nearby, which is dis-
favored by the Gaia geometric parallax measurement
πS = 0.13± 0.27 mas. Thus, the source is most likely a
relatively rare post-AGB star.

Although µS is only 1-σ from the bulge mean,
this deviation happens to be close to the direction
of anti-rotation, so that µS = 9.2 mas yr−1 . This
makes our otherwise slightly puzzling measurement of
µrel = 12.1 mas yr−1 (the second largest in our sample),
more understandable.

Finally, we note that most of the I-band points in
and near the peak of the event were saturated. How-
ever, the event parameters were easily recovered from
the V -band light curve. Moreover, a significant mi-
nority of I-band points were not saturated due to a
combination of “poor” seeing and/or favorable place-
ment of the source near the pixel corners. These “sal-
vaged” I-band points yielded consistent results with the
V -band analysis.

Two other events, MOA-2016-BLG-258 and
OGLE-2017-BLG-1186, were also saturated at peak.
In the first case, the saturation was mild and intermit-
tent, and saturation did not affect KMTA at all. Hence,
no special measures were required to fit the light curve
other than removing a few saturated points. For the
second case, which was already mentioned above as a
published event, the peak region was very densely cov-
ered in the V band due to a combination of the long
source self-crossing time t∗ = ρ tE = 3.8 days and the
high V -band cadence Γ = 0.4 hr−1. Hence, there was
no difficulty in modeling the event even though all of
the peak I-band data had to be excluded.

OGLE-2017-BLG-0084: This event has a rela-
tively large color error, σ(V −I)S = 0.14, in a measure-
ment that yields a somewhat unexpectedly red source,
(V − I)S,0 = 1.33 ± 0.14, compared to (V − I)S,0 ∼
1.06±0.10 for lower red-giant branch stars of its appar-
ent magnitude and in its angular proximity. The rela-
tively poor measurement is due to the event peaking at
the beginning of the season, when the nightly visibility
was brief, so few V -band points were taken when the
Vs ∼ 23.5 source was highly magnified. This color is
very similar to that of the baseline object, whose error
is also large. We accept the color measurement at face
value. Nevertheless, we note that if we had imposed the
lower giant-branch color, then the estimates of θE and
µrel would have been reduced by a factor 0.83 from 264
to 211 mas, and from 1.71 to 1.42 mas yr−1, respec-
tively. We do not impose this prior because it would
be inappropriate to do so without also taking account
of the reduced probability of detection, which in this
low-µrel regime scales roughly as θE µ3

rel, i.e., implying
a combined factor of 0.47. The net effect of applying
both priors would be too small to warrant introducing
this level of complexity.

Three events met the initial selection criteria and
also yielded excellent ρ measurements, but were nev-
ertheless excluded from the final sample because the
sources either are not giants or could not be properly
characterized. As a matter of due diligence, we docu-
ment these decisions.

KMT-2017-BLG-1725: The high magnification
of this event enables a very precise measurement of the
(V −I) color, despite high extinction, AI = 3.84, reveal-
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ing that the source lies ∆[(V − I), I] = (−1.10,+1.03)
blueward and fainter than the red clump. These offsets
are inconsistent with a bulge giant, and indeed with any
bulge source, other than from very rare populations,
such as extreme blue horizontal branch stars. Most
likely, the source lies far in the foreground along this
b = −1.1 line of sight, which implies that it would be
probing a very different population of lenses compared
to most of our sources. In addition, due to the source’s
unknown extinction, we cannot reliably estimate θ∗ (so
θE) which is the basic point of the entire project. We
therefore exclude this event from the sample.

KMT-2018-BLG-1993: This event lies far out
on the near side of the bar and very close to the Galactic
plane (l, b) = (+6.06,+0.33). The KMT event page lists
the extinction as AI = 5.60 (derived by approximating
AI = 7AK , where AK is from Gonzalez et al. 2012).
The KMT V/I CMD confirms that the field is too
extincted to determine the source properties in these
bands. As we usually do in such cases, we try to clarify
the nature of the source by incorporating VVV survey
data (Minniti et al. 2017). We match KMT I-band
pyDIA photometry to K-band VVV to construct an
[(I − K), I] CMD. We find that the red clump is at
Icl,pyDIA = 19.90, which combined with Icl,0 = 14.27
from Nataf et al. (2013), would yield AI ∼ 5.6 (taking
account of the fact that pyDIA typically differs from
standard Cousins I by .0.2 mag whenever it can be
calibrated). From the light curve model, we obtain
Is,pyDIA = 21.79 ± 0.10. implying that the source lies
1.89±0.10 below the red clump. In principle, this would
be consistent with it being a lower giant-branch star in
the bar. We then check the nearest VVV entry and
find that it is ∆[(J −K),K] = (−0.40, 1.51) bluer and
fainter than the red clump. This “catalog entry” can-
not be directly identified with the microlensed source
(with ∆I = 1.89) because if it were, then it would be
∆(I −K) = +0.48 redder than the red clump. There-
fore, the VVV entry must contain a blend that con-
tributes substantial light that is much bluer than the
source. In principle, the source might then still be a
giant at the base of the giant branch, and, for example,
the blend could be the lens, lying far in the foreground
and therefore blue. Unfortunately, we have no corrob-
orating evidence that this is the case, and the source
could be a subgiant lying much closer along the line of
sight. The plausibility of this alternate scenario is aug-
mented by the source’s near-plane position, b = +0.33.
That is, the line of sight is never more than 50 pc
from the plane, so without color-magnitude informa-
tion, the source could be anywhere along this line of
sight. Hence, we exclude this event.

KMT-2016-BLG-2608: Guided in part by expe-
rience with the above two events, we carefully reviewed
all the FSPL events, including those from 2019 that
were analyzed by Kim et al. (2021), in order to iden-
tify problematic events. This investigation led to the
exclusion of one further FSPL event: KMT-2016-BLG-
2608. This event was the 20th “new event” found in
our special giant-source search, beyond the 2588 events

found by EventFinder for 2016. Following the con-
ventions established by Mróz et al. (2020) and Ryu
et al. (2021), we assign it a discovery sequence num-
ber 2588 + 20 = 2608. Due to very heavy extinction,
AI = 5.56, the (V − I) color could not be measured
despite relatively high magnification Amax ∼ 40. Like
KMT-2018-BLG-1993, KMT-2016-BLG-2608 lies very
close to the plane, b = −0.27, but in contrast to that
event, the source is much brighter than the red clump,
i.e., by ∆I = −1.38 mag. In itself, this makes it a
very plausible giant-source candidate. However, we are
unable to obtain minimal confirmation of this assess-
ment from VVV data. The nearest catalog entry has
K = 12.58 (compared to Kcl = 13.80). If we identify
this entry with the source, then it is ∆(I −K) ∼ −0.16
bluer than the red clump. This would be slightly un-
usual for such a bright star, and we note in particular
that this is not a problem that could be resolved by
assuming that the VVV entry contains blended light:
this would only make the source bluer. These con-
cerns are amplified by the VVV IR color information:
there is only one other band with a flux measurement,
H, and this yields (H − K)S = −0.04, compared to
(H −K) ∼ 0.8 for typical bulge giants in this field. Be-
cause (H −K)0 is strictly positive for all normal stars,
the only plausible explanation for this IR color measure-
ment (other than measurement error) is that the source
lies well in the foreground. This explanation is also con-
sistent with the very low Galactic latitude of this line
of sight, b = −0.27. In principle, as just mentioned, it
is possible that the H-band measurement is incorrect,
but the giant-source scenario requires that this error be
about 0.8 mag. While possible in principle, the balance
of evidence favors a foreground source, so we eliminate
this PSPL event.

Finally, we note that according to the above-
mentioned naming conventions, the KMT counterparts
to OGLE-2016-BLG-0245 and OGLE-2017-BLG-0560,
which were both re-discovered in the special giant-
source searches, are assigned KMT names KMT-2016-
BLG-2627 and KMT-2017-BLG-2830, respectively. In
contrast to KMT-2016-BLG-2608, these names have no
lasting significance because the official (i.e., discovery)
name is from OGLE. However, these names are needed
in the context of the current paper to maintain homo-
geneous conventions.

Nevertheless, this purely formal naming issue does
relate to an important, substantive question: within the
sample of 30 FSPL events, exactly four were not discov-
ered by EventFinder: OGLE-2019-BLG-0551 (ρ = 4.5),
OGLE-2016-BLG-1540 (ρ = 1.6), KMT-2017-BLG-
2820 (ρ = 1.2), and OGLE-2017-BLG-0560 (ρ = 0.9).
All four were discovered in the special giant-source
search, but the first has a “normal” KMT name be-
cause it had already been discovered by AlertFinder.
This sample of EventFinder “failures” all have high
ρ. Indeed, of the 5 FSPL events with ρ > 0.6, only
KMT-2019-BLG-2073 (ρ = 1.2) was discovered by
EventFinder. Recall that the original motivation for the
special giant-source search was that EventFinder had
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failed to discover OGLE-2019-BLG-0551, likely (it was
thought) due to its deviations from the standard form
of Paczyński (1986) and Gould (1996) profiles. By con-
trast, AlertFinder simply looks for rising light curves,
but this system was not operating (or not fully operat-

ing) in 2016–2018. Hence, the discovery of KMT-2017-
BLG-2820 and the tight overlap between EventFinder
“failures” and high-ρ events together show that this in-
novation was both necessary and (at least mostly) suf-
ficient.


