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Impact of Forecast Errors on Evacuations
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ABSTRACT: In addition to measuring forecast accuracy in terms of errors in a tropical system’s
forecast track and other meteorological characteristics, it is important to measure the impact of
those errors on society. With this in mind, the authors designed a coupled natural-human modeling
framework with high-level representations of the natural hazard (hurricane), the human system
(information flow, evacuation decisions), the built environment (road infrastructure), and connec-
tions between elements (forecasts and warning information, traffic). Using the model, this article
begins exploring how tropical cyclone forecast errors impact evacuations and, in doing so, builds
toward the development of new verification approaches. Specifically, the authors implement track
errors representative of 2007 and 2022, and create situations with unexpected rapid intensifica-
tion and/or rapid onset, and evaluate their impact on evacuations across real and hypothetical
forecast scenarios (e.g., Hurricane Irma, Hurricane Dorian making landfall across east Florida).
The results provide first-order evidence that 1) reduced forecast track errors across the 2007-22
period translate to improvements in evacuation outcomes across these cases and 2) unexpected
rapid intensification and/or rapid onset scenarios can reduce evacuation rates, and increase traffic,
across the most impacted areas. In exploring these relationships, the results demonstrate how
experiments with coupled natural-human models can offer a societally relevant complement to
traditional metrics of forecast accuracy. In doing so, this work points toward further development
of natural-human models and associated methodologies to address these types of questions and
improve forecast verification across the weather enterprise.
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s discussed in Murphy (1993), Roebber and Bosart (1996), and Morss (2005),

forecasts that are “accurate” according to meteorological metrics are not necessarily

helpful for everyone using them and can sometimes lead to undesirable outcomes.
This is exemplified by Hurricane Irma, a case where meteorologically accurate but
inevitably uncertain forecasts—combined with many additional physical-social factors and
uncertainties—triggered mass evacuations and severe traffic across Florida in 2017. As the
forecasts shifted and traffic worsened, some evacuees became more exposed to hazardous
conditions than had they remained in place (Cangialosi et al. 2018; Wong et al. 2018). For
these types of reasons, the National Academy of Sciences recommends the weather enterprise
measure the impact of forecasts on society (NASEM 2018). Extending this idea to tropical
systems like Irma, in addition to measuring forecast accuracy through errors in the system’s
track, intensity, and other meteorological characteristics, traditional verification metrics
should be supplemented with new approaches that measure how forecasts and their errors
influence societal impacts of interest, such as evacuation outcomes.

One approach for such work is using computational models to run virtual experiments
studying evacuation behaviors across hurricane forecast scenarios. Here, we demonstrate this
potential by using a coupled natural-human model named Forecasting Laboratory for Explor-
ing the Evacuation system (FLEE). Introduced by Harris et al. (2021, hereafter HRM21), FLEE
builds on previous work using models for studying evacuation communication (e.g., Morss
etal. 2017; Watts et al. 2019), evacuation decision-making (e.g., Yin et al. 2014; Widener et al.
2013; Davidson et al. 2018), and evacuation traffic (e.g., Yang et al. 2019; Yi et al. 2017), and
links these components together in a computationally feasible framework. By representing
the features together with a quasi-realistic representation of forecast data, FLEE enables us to
investigate relationships among forecasts, evacuation decisions, and traffic, as a step toward
new approaches to evaluating forecasts based on their societal impacts.

FLEE simulates the natural hazard (hurricane), the human system (information flow,
evacuation decisions), the built environment (road infrastructure), and connections between
systems (forecast information, evacuation orders, traffic). Consistent with the study’s goals,
FLEE represents key aspects of these subsystems at a high level, but none with the full details
of the real system. Decisions on what to include were informed by our understanding of hur-
ricanes and their forecasts combined with empirical knowledge of evacuation gained through
surveys and interviews of decision-makers in past hurricanes (e.g., Lindell and Perry 2012;
Baker 1991; Huang et al. 2016; Lindell et al. 2019). By integrating the features, FLEE becomes
a “virtual laboratory” for exploring how changes in forecasts propagate across subsystems.
For example, Harris et al. (2023, hereafter HMR22) used FLEE to explore how evacuations
change with various forecast scenarios impacting the Florida Peninsula and how that compares
with other factors influencing evacuation, such as evacuation management strategies and
population characteristics. As part of this, FLEE’s evacuations were validated against empirical
evacuation data collected during Hurricanes Irma and Dorian, adding confidence the modeling
framework captures the important features for a first-order analysis of the system dynamics.
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Building on this work, this paper’s objective is to use FLEE to begin assessing how forecast
errors influence evacuation outcomes. Results in this article focus on Hurricane Irma, while
results for a hypothetical scenario (Hurricane Dorian making landfall across east Florida) are
provided in supplemental material. Starting with the National Hurricane Center’s (NHC) official
(OFCL) forecasts for Irma, we first compare FLEE’s simulated evacuations with observed
evacuation outcomes. Then, based around the NHC OFCL forecasts, we create hypothetical
scenarios with large intensity and forward speed errors, such as when the storm undergoes
rapid intensification (RI) and moves faster than expected (rapid onset), and assess their impact
on FLEE’s evacuations. We then assess the role of reduced track errors on evacuation by using
cones of uncertainty (track forecast cones) representative of forecast errors today (2022) and
in the past (2007). Through the analysis, we ask the following questions:

RQ1: Do large intensity and forward speed errors, such as those in unexpected rapidly inten-
sifying and/or poorly forecast rapid onset scenarios, negatively impact evacuations?

RQ2: Do improvements in forecast track accuracy over time—as expressed through smaller
cones of uncertainty—translate to improved evacuations?

In exploring these questions for this real and hypothetical forecast scenario, we demon-
strate how experiments using coupled natural-human models like FLEE can offer a societally
relevant complement to traditional metrics of forecast accuracy. As part of this, we point
toward the development of more detailed models to explore these types of verification ques-
tions further, and in doing so, outline a new approach to help make forecasts more useful
across society.

Design and approach

Model overview. Though details regarding FLEE’s implementation and design are provided
in HRM21, here we highlight important aspects of the model to note when interpreting this
study’s experiments:

e Virtual world—The modeled area is a 10 x 4 cellular depiction of the Florida Peninsula
(Fig. 1; grid cells are 69 km x 69 km each). FLEE includes 4.1 million household agents
(groups of four individuals who collectively make evacuation decisions; Lindell et al.
2019) whose spatial distribution on the grid is approximated via Census data.

e Forecast data—Every 6 h, archived NHC forecast products depicting the storm’s current and
forecast information are synthesized to create a red—orange—yellow—-green “light system”
forecast of wind, storm surge, and rain risk for each of FLEE’s grid cells. The information
used includes the following:

e Wind risk: Forecast category, location in the forecast wind field, location relative to the
cone of uncertainty, expected time of arrival of tropical storm force winds

e Surge risk: Forecast category, location in the forecast wind field, location relative to the
cone of uncertainty, expected time of arrival of tropical storm force winds, grid cell’s
surge inundation potential, storm’s approach angle relative to coastline

e Rain risk: Forecast forward speed, location in the forecast wind field, location relative
to the cone of uncertainty, expected time of arrival of tropical storm force winds

e FEvacuation orders—Emergency manager agents, located within FLEE’s coastal grid cells,
decide whether to issue evacuation orders based on storm surge risk, clearance times, and
the forecast time of arrival of tropical storm force winds.

e FEvacuation decisions—Household agents decide to evacuate based on a combination of
wind, surge, and rain risk for their location, evacuation order information, and household
characteristics (mobile home ownership, age, car ownership, and socioeconomic status).
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Fig. 1. NHC OFCL forecasts for Hurricane Irma (2017) and corresponding FLEE estimates of wind, surge, and rain risks as the storm
approaches and travels through the Florida-like model grid. Forecasts are shown at 24 h intervals, but update every 6h in the
model simulations (not shown). (column 1) Evolving NHC OFCL forecast track (black center line), forecast storm intensity on the
Saffir-Simpson scale (TS/numbers), 2017 cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white),
50 (pink), and 64+ (red) kt intervals. (columns 2-4) The light system threats for wind, surge, and rain are shown on the model
grid for equivalent times in the simulation, with the OFCL forecast track (center black line) and 2017 cone of uncertainty (outer
black lines) included for reference. Note that threats are highest when near the center of the forecast cone and when hazards are
most imminent, among other factors.
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We exclude some factors known to influence evacuation decisions (e.g., fuel shortages
during Irma) as we are not seeking a fully realistic algorithm, but one capturing the main
processes across most cases.

e Traffic and the built environment—Idealized highways and interstates simulating key
aspects of Florida’s road network (e.g., I-75 and I-95) are overlaid on FLEE’s grid. The
roads allow evacuating households to move between grid cells. If spots are unavailable
on roads due to traffic for an extended period, household agents who decided to evacuate
will shelter in place instead.

Model validation. FLEE’s evacuation response to Irma and Dorian’s NHC OFCL forecasts
were validated against available empirical data for the storms in HMR22, focusing on the
spatial and temporal patterns of evacuation orders, evacuation rates, and traffic intensity.
Key aspects of this validation are resummarized in the “Results” section. The available
empirical data vary across studies; e.g., evacuation rates are calculated by county, zip code,
and region. Because it is difficult to translate the empirical data by county, for example, onto
FLEE’s grid cells for an exact comparison, we instead aggregate the empirical data to
ensure the bigger picture aspects of FLEE’s evacuation behave in a sufficiently realistic
manner for a first-order analysis exploring the relationships between forecast errors and
evacuation outcomes.

Experimental design. To assess the impact of forecast errors on evacuation outcomes, we
first identify the “typical” errors for tropical cyclone forecast elements, presently and his-
torically. For track and intensity, average forecast errors as well as their trends over time are
available for 0-120-h lead times on NHC’s website (www.nhc.noaa.gov/verification/index.shtml).
NHC’s forward speed forecast errors (i.e., along track errors) are not readily available, though
they are slightly larger than cross-track errors (as noted by Fossell et al. 2017). Storm size
forecast errors are also unavailable, as it is difficult to accurately verify wind radii forecasts,
and because error measurements may not paint a complete picture depending on the instru-
mentation used for validation (Cangialosi 2019). Based on data availability, we focus on track
and intensity errors.

Forecast track errors are also reflected in the NHC’s Track Forecast Cone product, also
referred to as the cone of uncertainty. According to the NHC website,

The cone represents the probable track of the center of a tropical cyclone, and is formed by en-
closing the area swept out by a set of circles along the forecast track (at 12, 24, 36 hours, etc).
The size of each circle is set so that two-thirds of historical official forecast errors over a 5-year
sample fall within the circle.

The sizes of the circle radii defining the NHC cones—both present and historical—can be
found at www.nhc.noaa.gov/aboutcone.shtml. Because track errors have been decreasing over
time, the cone of uncertainty has been shrinking since its implementation in 2002.

To explore the role of forecast track errors on evacuation outcomes in FLEE, our approach
is to change the cone of uncertainty to sizes representative of today (2022) and in the
past (2007). This period was chosen as it represents 15 years of progress reducing forecast
track errors in the weather enterprise; e.g., the 2007 cone is nearly double the size of the
2022 cone (sizes of the circles used to create the cones are provided in online supplemental
Table S1; https://doi.org/10.1175/BAMS-D-22-0136.2). Another reason for choosing the period
is that the cones were calculated differently before 2007 (i.e., errors over a 10-yr sample
were used as opposed to the 5-yr sample used after 2007). By comparing the evacuation
response in FLEE using the 2007 cone with those using the 2022 cone, we can begin to
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quantify the value of reduced track errors on evacuation outcomes across this period for
these scenarios (RQ2).

We note that the experiments using the 2007 and 2022 cones used the NHC best track
(observed track) to create “forecasts” with varying levels of uncertainty. This was preferred
over the NHC OFCL forecast track since the latter contains track errors. Best tracks were
downloaded at www.nhc.noaa.gov/gis/; ArcGIS was used to overlay the cones onto the best
track. The light system forecasts corresponding to these experiments are provided in
Figs. S1, S2, S6, and S7.

To explore the role of forecast intensity errors on evacuations, our first approach was
to introduce erroneous intensities higher and lower than OFCL forecasts by amounts
representing average errors in 2007 and 2022. However, average errors are less than
20kt (1 kt = 0.51 m s™) in both cases, even at long lead times. As a result, intensity errors
are too small to effectively resolve in the current implementation of FLEE, where light
system forecasts are synthesized into four categories (red, orange, yellow, green) for all
tropical systems.

Because of the limitation, we instead create poorly forecast rapidly intensifying/rapid
onset (RI/RO) scenarios where intensity and forward speed errors are large. In these
scenarios—which are a known problem in meteorology (DeMaria et al. 2021)—we shorten
the NHC OFCL forecast timeline while keeping the peak magnitudes of risk the same, and
simulate its effect on evacuations. More specifically, the NHC OFCL forecast timeline is
shortened from 168 to 84h and 72 h by using every other advisory (only the 0000 and
1200 UTC advisories), while only 6 h of time elapses in the simulation. This accelerates the
storm’s forward speed and evolution of the intensity forecasts (light system forecasts are
summarized in supplemental Figs. S3, S4, S8, and S9). By comparing the evacuation from
the RI/RO forecast scenarios to the NHC OFCL forecasts and to each other, we begin to tease
out the potential role of poorly forecast RI/RO scenarios on evacuation outcomes (RQ1).

The full list of experiments are provided in Table 1. Simulations are run using the NHC
OFCL forecast, the two RI/RO forecast scenarios, and for the two different cone sizes. Experi-
ments were repeated for two storm scenarios: one real (Hurricane Irma) and one hypothetical
(Hurricane Dorian making landfall across east Florida, shown in supplemental material). The
purpose of the hypothetical Dorian scenario is to demonstrate the potential of using these
types of coupled natural-human models to explore potentially impactful scenarios that may
not have occurred yet. Together, these experiments allow us to answer RQ1 and RQ2 for the
two scenarios, and in doing so, point toward developing more detailed models and experi-
ments to answer related and more specific verification questions.

Table 1. Experiments in the study. We note that the NHC OFCL and RI/RO experiments use the 2017 cone
of uncertainty for Irma experiments (1-3) and the 2019 cone of uncertainty for the hypothetical Dorian
(landfalling) experiments (6-8). For the hypothetical Dorian experiments, tracks in all experiments (6-10)
are shifted westward so the storm makes landfall along Florida’s east coast.

1 NHC OFCL 6 NHC OFCL (shifted)

2 NHC OFCL with RI/RO 7 NHC OFCL (shifted) with RI/RO

3 NHC OFCL with RI/RO =12 h 8 NHC OFCL (shifted) with RI/RO — 12 h

4 NHC best track with 2007 9 NHC best track (shifted) with 2007
cone of uncertainty cone of uncertainty

5 NHC best track with 2022 10 NHC best track (shifted) with 2022
cone of uncertainty cone of uncertainty
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Data analysis. To compare evacuation behaviors across experiments, we track evacuation
statistics over time for each of FLEE’s grid cells. The primary model outputs analyzed are
evacuation rates (the percentage of households in a grid cell that successfully evacuated)
and the percentage who wanted to evacuate but were unsuccessful due to excessive traffic
in their area.

In addition, we aggregate model data into multiple impact zones, designed as first-order
approximations of areas likely to experience different levels of impacts based on the actual
meteorological conditions produced by the storm. Here, we use four impact zones, defined
by whether the grid cells are 1) coastal or inland, and 2) experience winds greater than 64kt
(hurricane force) or less than 64kt during the storm of interest. Using the impact zones, we
can determine who evacuated from locations that did not end up experiencing hazardous
wind conditions (future versions could do this for rain and surge parameters as well). In
interpreting results, we compare metrics that might indicate successful outcomes in differ-
ent ways. For example, high evacuation rates may not be preferred if the storm ends up not
having much impact in those areas, and unnecessary evacuations may not matter if those at
high risk can get out safely.

Results

Comparing FLEE with observations. Figure 1 shows NHC OFCL Irma forecasts (left column)
and the equivalent light system representations of wind, surge, and rain risk (right columns)
at 24-h intervals. Early forecasts place FLEE’s entire model grid within NHC’s cone of uncer-
tainty (cone size representative of the time of the event in 2017) with the most likely outcome
(center track) being a landfalling major hurricane in southeastern Florida near Miami. How-
ever, forecasts shifted toward a west Florida landfall as the storm approached, with the storm
eventually making one mainland U.S. landfall as a category 4 storm in the Florida Keys and a
second landfall as a category 3 storm in southwestern Florida. Irma’s hurricane-force winds
impacted the western two-thirds of Florida—particularly the southwest coastlines—while
tropical-storm-force winds, flooding, and power outages were observed along the eastern
coastline. Based on these Irma forecasts, emergency manager agents in FLEE issued evacu-
ation orders starting in Miami-Fort Lauderdale then expanding outward along both coasts
as the storm approached (Figs. 2a,b; red cells), which was observed in Irma’s actual evacu-
ation orders (Wong et al. 2018; Darzi et al. 2021). The comparison with empirical data on
evacuation orders increases our confidence that FLEE’s evacuation order algorithm behaves
sufficiently realistically for the purposes here.

FLEE’s simulated evacuation rates based on NHC OFCL forecasts (Fig. 2a) vary from 20% to
40% along Florida’s east coasts, 40%—70% along the south and west coasts, and 10%-40%
inland. This closely resembles the observational data, which also suggest evacuation rates
vary from 20% to 40% along Florida’s east coast, to 40%—-70% across the south and west
coasts, and around 10%-30% inland (data aggregated from Wong et al. 2018; Long et al.
2020; Martin et al. 2020; Feng and Lin 2021).

Since this was the largest evacuation in U.S. history, severe traffic was observed across
Florida before Irma (Wong et al. 2018). In FLEE, traffic is most severe around Tampa Bay—Saint
Petersburg (Fig. 2b) with 5%-20% of households in the metropolitan area unsuccessful at
evacuating due to traffic. This broadly matches observations of traffic rates, which shows
severe traffic across the Tampa Bay, I-75, and surrounding areas (Feng and Lin 2021; Staes
et al. 2021), and our general understanding of south and western Florida being difficult to
evacuate based on the high population and limited evacuation routes.

Across FLEE’s entire model grid, 32.0% of households evacuated, which equals
5.4 million people (Table 2, column 1). FDEM (2018) suggest actual evacuation numbers
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(a) NHC OFCL (c) NHC OFCL with RVRO  (€) NHC OFCL with RVIRO -12  (g) Population by grid
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Fig. 2. Irma’s simulated evacuation outcomes across grid cells for the NHC OFCL and RI/RO experiments. The first items presented
are (a) evacuation rates and (b) percentage of households who decided to evacuate but were unsuccessful due to traffic, both
for the experiment using Irma’s NHC OFCL forecast. Evacuation rates and the percentage of households who decided to evacuate
but were unsuccessful due to traffic are presented for (c),(d) the NHC OFCL with RI/RO experiments and (e),(f) the NHC OFCL with
RI/RO - 12h experiments with values expressed as the departure from those in (a),(b) NHC OFCL. Also shown in (a)-(f) are grid
cells that experienced hurricane force winds (dotted cells) and evacuation orders (red cells). (g) To provide a frame of reference
for interpreting the simulations, the population by grid cell along with the approximate location of several major cities on the
model grid are shown: Miami-Fort Lauderdale (yellow star), Tampa Bay-Saint Petersburg (blue star), Jacksonville (green star),
and Orlando (orange star).

totaled 6.9 million, and when considering households evacuating to local shelters in FLEE
(not shown), the modeled evacuation rates closely resemble the observations. The temporal
evolution of FLEE’s evacuation rates (supplemental Fig. 5) is linear during the event, match-
ing observations in Wong et al. (2018).

This comparison of FLEE’s simulated evacuation using NHC’s OFCL forecasts with empirical
data on evacuation orders, rates, and traffic suggests FLEE captures the broader patterns of
evacuation for Irma and thus provides a realistic baseline for interpreting results from other
experiments.

Impact of poorly forecast RI/RO. Regarding the NHC OFCL with RI/RO experiments where
forward speed and intensity errors are significant (RQ1), evacuation rates decreased
everywhere relative to NHC OFCL while evacuation traffic increased (Table 2, Figs. 2c,d).
For example, evacuation rates in the NHC OFCL with RI/RO experiment decreased by
4.7% (630,000 fewer evacuees) relative to NHC OFCL across the entire model grid, while the
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Table 2. Irma’s simulated evacuation behaviors averaged across all grid cells for all experiments. In addition to evacuation rates
and total numbers evacuated, evacuation rates are broken down into impact zones (coastal vs inland and areas experiencing vs
not experiencing hurricane force winds of 64+ kt) and the percentage and numbers of evacuees who attempted to evacuate but
were unsuccessful due to excessive traffic. In columns 2 and 8, m indicates million and K indicates thousand.

NHC OFCL 32.0 5.24m 39.3 24.5 29.6 29.4 2.5 410K
NHC OFCL 27.3 4.6Tm 32.0 20.3 27.2 28.4 6.3 1.06m
with RI/RO

NHC OFCL with 26.3 4.44m 27.7 18.2 26.5 25.9 7.6 1.28m
RI/RO-12h

Best track with 32.5 5.33m 38.2 271 31.2 26.0 2.3 380K
2007 cone

Best track with 31.2 5.12m 38.6 26.0 27.7 26.0 1.7 286K
2022 cone

number of unsuccessful evacuations due to traffic increased by similar amounts. These
impacts were most pronounced in heavily impacted areas, such as Tampa Bay and Fort
Myers, where a 12%-16% reduction in evacuation rates was observed (Fig. 2c). Similarly,
RI/RO experiments in the Dorian (landfalling) scenario reduced evacuation rates across
impacted areas (while increasing evacuation rates in less impacted areas; Fig. S8, Table S2).

When comparing the two NHC OFCL with RI/RO experiments—in both Irma and Dorian
(landfalling) forecast scenarios—cases with larger forward speed and intensity errors
(RI/RO - 12h) resulted in worse evacuation rates and more traffic (Table 2, columns 2-8,
Figs. 2c—f). This suggests that an extra 12 h of forecast lead time can improve evacuations
in these scenarios.

Results from the poorly forecast RI/RO scenarios with large intensity and forward speed
errors make sense conceptually, as there is less time to evacuate before the storm arrives.
Nevertheless, this is the first study (to our knowledge) to begin quantifying the impact of
these errors on evacuation outcomes (RQ1), and to suggest that reducing these errors should
translate to improved evacuations.

Impact of reduced track errors. In this section, we change from OFCL to best track as the
simulated forecast, and modify NHC’s cone of uncertainty to sizes representative of track
errors today (2022) and in the past (2007) and examine their impact on FLEE’s evacuations
(RQ2). When results are averaged across the model grid, a simulation with the 2022 cone re-
sults in 210,000 fewer evacuees than a simulation with the 2007 cone (Table 2, column 2).
The reduction is most pronounced along Florida’s east coast (less-impacted areas), where the
smaller 2022 cone results in a 1%-7% reduction in evacuation rates, while evacuation rates
across west Florida (most impacted areas) remain the same (Fig. 3e). Backing up this idea,
evacuation rates in the coastal <64kt zone decrease by 3.5% overall (Table 2, column 3),
while in the coastal >64kt zone they increase by 0.4% (Table 2, column 5). The results
makes sense when considering the light system forecasts for the experiments (supplemental
Figs. S1 and S2), as the 2022 cone is quicker to reduce risk across Florida’s east coast as the
storm approached, while forecast risk in west Florida remains the same between the 2007
and 2022 cones.

The story is similar with the hypothetical Dorian scenario: while evacuation rates and traf-
fic remain similar across impacted areas between the simulations with the 2007 and 2022
cones, the smaller 2022 cone leads to significantly reduced evacuation rates in less-impacted
regions (Fig. S8, Table S2). For example, in this scenario, the 2022 cone reduced evacuation
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(a) Best Track with 2007 (c) Best Track with 2022 (e) 2007 cone — 2022 cone (g) Population by grid
Cone (evacuation rates) Cone (evacuation rates) (a—c) (evacuation rates) cell
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hurricane force
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Fig. 3. Irma’s simulated evacuation outcomes across grid cells for experiments using the 2007 and 2022 cones of uncertainties.
(a),(b) Evacuation rates and the percentage of households who decided to evacuate but were unsuccessful due to traffic are pre-
sented for the best track with 2007 cone of uncertainty experiments. (c),(d) Similarly, for the best track with 2022 cone of uncer-
tainty experiments, evacuation rates and the percentage of households who decided to evacuate but were unsuccessful due to
traffic are presented. The difference between the 2007 and 2022 cone of uncertainty cases is then shown, both for (e) evacuation
rates and (f) the percent of unsuccessful evacuations due to traffic. Also shown in (a)—(f) are grid cells that experienced hurricane
force winds (dotted cells) and evacuation orders (red cells). (g) To provide a frame of reference for interpreting the simulations,
the populations by grid cell along with the approximate location of several major cities on the model grid are shown: Miami-Fort
Lauderdale (yellow star), Tampa Bay-Saint Petersburg (blue star), Jacksonville (green star), and Orlando (orange star).

rates by 8%-17% across west Florida. This makes sense conceptually: if the average track
errors are smaller, as they are with a smaller cone, there is less uncertainty as to where
(and when) a storm will make landfall, and which areas will be most heavily affected. Less
uncertainty causes a smaller area to be considered at risk which influences evacuation deci-
sions, and in this case, reduces the number of people thinking they are at high enough risk
to evacuate.

Despite little differences in evacuations across the most impacted areas between the 2007
and 2022 cones—which could result from using best track forecasts in these experiments—the
2022 cone reduced evacuation rates in less impacted areas, and thus an argument can be made
for improved evacuation outcomes with reduced forecast track errors over the 2007-22 year
period (RQ2).

Summary and looking ahead
This article demonstrates how coupled natural-human models like FLEE can provide vir-
tual laboratories to explore how changes in hurricane forecast errors influence evacuations
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across many forecast scenarios and, in doing so, provide a new and complementary verifica-
tion approach to traditional metrics of forecast accuracy. To demonstrate this potential, we
conduct hypothetical experiments using cones of uncertainty representative of track errors
today (2022) and in the past (2007) and examine their impacts on evacuation. We also cre-
ate scenarios like when a storm undergoes rapid intensification (RI) or moves faster than
expected (rapid onset), and assess their impact on evacuation outcomes in FLEE. Both sets
of experiments are conducted for Irma and a hypothetical version of Dorian (supplemental
material) making landfall across east Florida, and provide a first-order look at the following
questions:

RQ1: Do large intensity and forward speed errors, such as those in unexpected rapidly inten-
sifying and/or poorly forecast rapid onset scenarios, negatively impact evacuations? In
these experiments for both the Irma and hypothetical Dorian landfalling cases, evacu-
ation rates decrease considerably in the most impacted areas (e.g., by 12%-16% in
areas closest to Irma’s landfall) while unsuccessful evacuations due to traffic increased.
Though these results make sense conceptually, we begin to measure the impact of
these errors on evacuation outcomes and suggest that reducing them should translate
to improved evacuations.

RQ2: Do improvements in forecast track accuracy over time—as expressed through smaller
cones of uncertainty—translate to improved evacuations? In the Irma and Dorian land-
falling scenarios, the 2022 (smaller) cone reduced the number of (arguably unneces-
sary) evacuations in less impacted areas relative to the 2007 (larger) cone. Meanwhile,
evacuation rates and traffic in the most impacted areas remained similar. Since the
cone of uncertainty sizes represent track errors during these periods, an argument can
be made for improved evacuation outcomes with reduced forecast track errors during
the period of 2007-22.

Our results are not intended to provide definitive answers to the questions above; rather,
in beginning to explore these ideas, we demonstrate how coupled natural-human models
offer a societally relevant complement to traditional metrics of forecast accuracy, and point
toward the development of more detailed natural-human models to answer these types of
questions further.

Coupled natural-human models provide several opportunities for future work to address
questions of interest to the meteorological community. First, models with a more sophisticated
representations of forecast intensity, an increased horizontal resolution of grid cells, and faster
computational speeds—which enables running additional simulations and scenarios—could
better tease out the effects of track, intensity, and forward speed errors on evacuation out-
comes. Second and relatedly, coupled models with similar updates could be used to explore
additional verification-related questions:

e Where and when are evacuation rates most susceptible to small changes in the fore-
cast track?

e Are there diminishing returns in terms of how improving aspects of forecast accuracy
affects evacuation?

e Does human input over models and ensembles translate to evacuation success?

o Are there fundamental differences in evacuations in well forecasted RI/RO events versus
poorly forecasted ones?

Third, coupled natural-human models can be extended to additional phenomenon
such as tornadoes and wildfires, potentially transforming public warning and protection
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scenarios in these areas. Fourth, one could look at other ways to measure evacuation success,
in addition to the ones adopted here. For example, looking at the economic impacts of
evacuations could be particularly interesting. Fifth, Hurricane Ian (2022) provides another
opportunity to verify FLEE against real-world evacuation data. Then, changing aspects of
Ian’s forecasts and seeing its evacuation effects in FLEE would be interesting given Ian’s
significant impacts and the complex scenario it presented for decision-makers in populated
regions (e.g., rapid intensification and southward shift in track prior to landfall).

Coupled natural-human models like FLEE show promise for supporting meteorology in
the long term. As computing power continues to increase, and as empirical data on hurricane
evacuation behaviors and traffic become more available, that information can be codified
into coupled natural-human models, thus increasing their realism, and subsequently, their
ability to answer verification questions of interest. This emphasizes the value of integrating
expertise in social and behavioral sciences and engineering into the weather enterprise,
to address questions at the intersection of these fields. By combining such knowledge,
empirical-modeling studies can provide new opportunities to advance our understanding of
the hurricane forecast—evacuation system, including the development of societally relevant
forecast verification techniques.
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