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Natural–Human Models to Evaluate the 
Impact of Forecast Errors on Evacuations
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ABSTRACT: In addition to measuring forecast accuracy in terms of errors in a tropical system’s 
forecast track and other meteorological characteristics, it is important to measure the impact of 
those errors on society. With this in mind, the authors designed a coupled natural–human modeling 
framework with high-level representations of the natural hazard (hurricane), the human system 
(information flow, evacuation decisions), the built environment (road infrastructure), and connec-
tions between elements (forecasts and warning information, traffic). Using the model, this article 
begins exploring how tropical cyclone forecast errors impact evacuations and, in doing so, builds 
toward the development of new verification approaches. Specifically, the authors implement track 
errors representative of 2007 and 2022, and create situations with unexpected rapid intensifica-
tion and/or rapid onset, and evaluate their impact on evacuations across real and hypothetical 
forecast scenarios (e.g., Hurricane Irma, Hurricane Dorian making landfall across east Florida). 
The results provide first-order evidence that 1) reduced forecast track errors across the 2007–22 
period translate to improvements in evacuation outcomes across these cases and 2) unexpected 
rapid intensification and/or rapid onset scenarios can reduce evacuation rates, and increase traffic, 
across the most impacted areas. In exploring these relationships, the results demonstrate how 
experiments with coupled natural–human models can offer a societally relevant complement to 
traditional metrics of forecast accuracy. In doing so, this work points toward further development 
of natural–human models and associated methodologies to address these types of questions and 
improve forecast verification across the weather enterprise.
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A s discussed in Murphy (1993), Roebber and Bosart (1996), and Morss (%005), 
forecasts that are “accurate” according to meteorological metrics are not necessarily 
helpful for everyone using them and can sometimes lead to undesirable outcomes. 

This is exemplified by Hurricane Irma, a case where meteorologically accurate but 
inevitably uncertain forecasts—combined with many additional physical–social factors and 
uncertainties—triggered mass evacuations and severe tra(c across Florida in %01). As the 
forecasts shi*ed and tra(c worsened, some evacuees became more exposed to hazardous 
conditions than had they remained in place (Cangialosi et al. %01,; Wong et al. %01,). For 
these types of reasons, the National Academy of Sciences recommends the weather enterprise 
measure the impact of forecasts on society (NASEM %01,). Extending this idea to tropical 
systems like Irma, in addition to measuring forecast accuracy through errors in the system’s 
track, intensity, and other meteorological characteristics, traditional veri-cation metrics 
should be supplemented with new approaches that measure how forecasts and their errors 
in.uence societal impacts of interest, such as evacuation outcomes.

One approach for such work is using computational models to run virtual experiments 
studying evacuation behaviors across hurricane forecast scenarios. Here, we demonstrate this 
potential by using a coupled natural–human model named Forecasting Laboratory for Explor-
ing the Evacuation system (FLEE). Introduced by Harris et al. (%0%1, hereafter HRM%1), FLEE 
builds on previous work using models for studying evacuation communication (e.g., Morss 
et al. %01); Watts et al. %019), evacuation decision-making (e.g., Yin et al. %01/; Widener et al. 
%013; Davidson et al. %01,), and evacuation traffic (e.g., Yang et al. %019; Yi et al. %01)), and 
links these components together in a computationally feasible framework. By representing 
the features together with a quasi-realistic representation of forecast data, FLEE enables us to 
investigate relationships among forecasts, evacuation decisions, and traffic, as a step toward 
new approaches to evaluating forecasts based on their societal impacts.

FLEE simulates the natural hazard (hurricane), the human system (information flow, 
evacuation decisions), the built environment (road infrastructure), and connections between 
systems (forecast information, evacuation orders, traffic). Consistent with the study’s goals, 
FLEE represents key aspects of these subsystems at a high level, but none with the full details 
of the real system. Decisions on what to include were informed by our understanding of hur-
ricanes and their forecasts combined with empirical knowledge of evacuation gained through 
surveys and interviews of decision-makers in past hurricanes (e.g., Lindell and Perry %01%; 
Baker 1991; Huang et al. %016; Lindell et al. %019). By integrating the features, FLEE becomes 
a “virtual laboratory” for exploring how changes in forecasts propagate across subsystems.  
For example, Harris et al. (%0%3, hereafter HMR%%) used FLEE to explore how evacuations  
change with various forecast scenarios impacting the Florida Peninsula and how that compares 
with other factors influencing evacuation, such as evacuation management strategies and 
population characteristics. As part of this, FLEE’s evacuations were validated against empirical 
evacuation data collected during Hurricanes Irma and Dorian, adding confidence the modeling 
framework captures the important features for a first-order analysis of the system dynamics.

AFFILIATIONS: Harris—University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, and National Center 
for Atmospheric Research, Boulder, Colorado; Roebber—University of Wisconsin–Milwaukee, Milwaukee, 
Wisconsin; Morss—National Center for Atmospheric Research, Boulder, Colorado
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Building on this work, this paper’s objective is to use FLEE to begin assessing how forecast 
errors influence evacuation outcomes. Results in this article focus on Hurricane Irma, while 
results for a hypothetical scenario (Hurricane Dorian making landfall across east Florida) are 
provided in supplemental material. Starting with the National Hurricane Center’s (NHC)  official  
(OFCL) forecasts for Irma, we first compare FLEE’s simulated evacuations with observed 
evacuation outcomes. Then, based around the NHC OFCL forecasts, we create hypothetical 
scenarios with large intensity and forward speed errors, such as when the storm undergoes 
rapid intensification (RI) and moves faster than expected (rapid onset), and assess their impact 
on FLEE’s evacuations. We then assess the role of reduced track errors on evacuation by using 
cones of uncertainty (track forecast cones) representative of forecast errors today (%0%%) and 
in the past (%00)). Through the analysis, we ask the following questions:

RQ1:  Do large intensity and forward speed errors, such as those in unexpected rapidly inten-
sifying and/or poorly forecast rapid onset scenarios, negatively impact evacuations?

RQ%:  Do improvements in forecast track accuracy over time—as expressed through smaller 
cones of uncertainty—translate to improved evacuations?

In exploring these questions for this real and hypothetical forecast scenario, we demon-
strate how experiments using coupled natural–human models like FLEE can offer a societally 
relevant complement to traditional metrics of forecast accuracy. As part of this, we point 
toward the development of more detailed models to explore these types of verification ques-
tions further, and in doing so, outline a new approach to help make forecasts more useful 
across society.

Design and approach
Model overview. Though details regarding FLEE’s implementation and design are provided 
in HRM%1, here we highlight important aspects of the model to note when interpreting this 
study’s experiments:

• Virtual world—The modeled area is a 10 × / cellular depiction of the Florida Peninsula  
(Fig. 1; grid cells are 69 km × 69 km each). FLEE includes /.1 million household agents 
(groups of four individuals who collectively make evacuation decisions; Lindell et al. 
%019) whose spatial distribution on the grid is approximated via Census data.

• Forecast data—Every 6 h, archived NHC forecast products depicting the storm’s current and 
forecast information are synthesized to create a red–orange–yellow–green “light system” 
forecast of wind, storm surge, and rain risk for each of FLEE’s grid cells. The information 
used includes the following:
• Wind risk: Forecast category, location in the forecast wind field, location relative to the 

cone of uncertainty, expected time of arrival of tropical storm force winds
• Surge risk: Forecast category, location in the forecast wind field, location relative to the 

cone of uncertainty, expected time of arrival of tropical storm force winds, grid cell’s 
surge inundation potential, storm’s approach angle relative to coastline

• Rain risk: Forecast forward speed, location in the forecast wind field, location relative 
to the cone of uncertainty, expected time of arrival of tropical storm force winds

• Evacuation orders—Emergency manager agents, located within FLEE’s coastal grid cells, 
decide whether to issue evacuation orders based on storm surge risk, clearance times, and 
the forecast time of arrival of tropical storm force winds.

• Evacuation decisions—Household agents decide to evacuate based on a combination of 
wind, surge, and rain risk for their location, evacuation order information, and household 
characteristics (mobile home ownership, age, car ownership, and socioeconomic status). 

���8�21��3/��10�:���9�4��010� ��� ���� �
�	��
����



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y J U N E  2 0 2 3 E1169

Fig. 1. NHC OFCL forecasts for Hurricane Irma (2017) and corresponding FLEE estimates of wind, surge, and rain risks as the storm 
approaches and travels through the Florida-like model grid. Forecasts are shown at 24 h intervals, but update every 6 h in the 
model simulations (not shown). (column 1) Evolving NHC OFCL forecast track (black center line), forecast storm intensity on the 
Saffir–Simpson scale (TS/numbers), 2017 cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white), 
50 (pink), and 64+ (red) kt intervals. (columns 2–4) The light system threats for wind, surge, and rain are shown on the model 
grid for equivalent times in the simulation, with the OFCL forecast track (center black line) and 2017 cone of uncertainty (outer 
black lines) included for reference. Note that threats are highest when near the center of the forecast cone and when hazards are 
most imminent, among other factors.
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We exclude some factors known to influence evacuation decisions (e.g., fuel shortages 
during Irma) as we are not seeking a fully realistic algorithm, but one capturing the main 
processes across most cases.

• Traffic and the built environment—Idealized highways and interstates simulating key 
aspects of Florida’s road network (e.g., I-)5 and I-95) are overlaid on FLEE’s grid. The 
roads allow evacuating households to move between grid cells. If spots are unavailable 
on roads due to traffic for an extended period, household agents who decided to evacuate 
will shelter in place instead.

Model validation. FLEE’s evacuation response to Irma and Dorian’s NHC OFCL forecasts 
were validated against available empirical data for the storms in HMR%%, focusing on the 
spatial and temporal patterns of evacuation orders, evacuation rates, and tra(c intensity. 
Key aspects of this validation are resummarized in the “Results” section. The available 
empirical data vary across studies; e.g., evacuation rates are calculated by county, zip code, 
and region. Because it is di(cult to translate the empirical data by county, for example, onto 
FLEE’s grid cells for an exact comparison, we instead aggregate the empirical data to  
ensure the bigger picture aspects of FLEE’s evacuation behave in a su(ciently realistic 
manner for a -rst-order analysis exploring the relationships between forecast errors and 
evacuation outcomes.

Experimental design. To assess the impact of forecast errors on evacuation outcomes, we 
-rst identify the “typical” errors for tropical cyclone forecast elements, presently and his-
torically. For track and intensity, average forecast errors as well as their trends over time are 
available for 0–1%0-h lead times on NHC’s website (www.nhc.noaa.gov/verification/index.shtml).  
NHC’s forward speed forecast errors (i.e., along track errors) are not readily available, though 
they are slightly larger than cross-track errors (as noted by Fossell et al. %01)). Storm size 
forecast errors are also unavailable, as it is di(cult to accurately verify wind radii forecasts, 
and because error measurements may not paint a complete picture depending on the instru-
mentation used for validation (Cangialosi %019). Based on data availability, we focus on track  
and intensity errors.

Forecast track errors are also reflected in the NHC’s Track Forecast Cone product, also 
referred to as the cone of uncertainty. According to the NHC website,

The cone represents the probable track of the center of a tropical cyclone, and is formed by en-
closing the area swept out by a set of circles along the forecast track (at 1%, %/, 36 hours, etc). 
The size of each circle is set so that two-thirds of historical o(cial forecast errors over a 5-year 
sample fall within the circle.

The sizes of the circle radii defining the NHC cones—both present and historical—can be 
found at www.nhc.noaa.gov/aboutcone.shtml. Because track errors have been decreasing over 
time, the cone of uncertainty has been shrinking since its implementation in %00%.

To explore the role of forecast track errors on evacuation outcomes in FLEE, our approach 
is to change the cone of uncertainty to sizes representative of today (%0%%) and in the  
past (%00)). This period was chosen as it represents 15 years of progress reducing forecast 
track errors in the weather enterprise; e.g., the %00) cone is nearly double the size of the 
%0%% cone (sizes of the circles used to create the cones are provided in online supplemental 
Table S1; https://doi.org/10.1175/BAMS-D-22-0136.2). Another reason for choosing the period 
is that the cones were calculated differently before %00) (i.e., errors over a 10-yr sample 
were used as opposed to the 5-yr sample used after %00)). By comparing the evacuation 
response in FLEE using the %00) cone with those using the %0%% cone, we can begin to 
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quantify the value of reduced track errors on evacuation outcomes across this period for 
these scenarios (RQ%).

We note that the experiments using the %00) and %0%% cones used the NHC best track 
(observed track) to create “forecasts” with varying levels of uncertainty. This was preferred 
over the NHC OFCL forecast track since the latter contains track errors. Best tracks were 
downloaded at www.nhc.noaa.gov/gis/; ArcGIS was used to overlay the cones onto the best 
track. The light system forecasts corresponding to these experiments are provided in 
Figs. S1, S%, S6, and S).

To explore the role of forecast intensity errors on evacuations, our first approach was 
to introduce erroneous intensities higher and lower than OFCL forecasts by amounts 
representing average errors in %00) and %0%%. However, average errors are less than 
%0 kt (1 kt ≈ 0.51 m s−1) in both cases, even at long lead times. As a result, intensity errors 
are too small to effectively resolve in the current implementation of FLEE, where light 
system forecasts are synthesized into four categories (red, orange, yellow, green) for all 
tropical systems.

Because of the limitation, we instead create poorly forecast rapidly intensifying/rapid 
onset (RI/RO) scenarios where intensity and forward speed errors are large. In these 
scenarios—which are a known problem in meteorology (DeMaria et al. %0%1)—we shorten 
the NHC OFCL forecast timeline while keeping the peak magnitudes of risk the same, and 
simulate its effect on evacuations. More specifically, the NHC OFCL forecast timeline is 
shortened from 16, to ,/ h and )% h by using every other advisory (only the 0000 and  
1%00 UTC advisories), while only 6 h of time elapses in the simulation. This accelerates the 
storm’s forward speed and evolution of the intensity forecasts (light system forecasts are 
summarized in supplemental Figs. S3, S/, S,, and S9). By comparing the evacuation from 
the RI/RO forecast scenarios to the NHC OFCL forecasts and to each other, we begin to tease 
out the potential role of poorly forecast RI/RO scenarios on evacuation outcomes (RQ1).

The full list of experiments are provided in Table 1. Simulations are run using the NHC 
OFCL forecast, the two RI/RO forecast scenarios, and for the two different cone sizes. Experi-
ments were repeated for two storm scenarios: one real (Hurricane Irma) and one hypothetical 
(Hurricane Dorian making landfall across east Florida, shown in supplemental material). The 
purpose of the hypothetical Dorian scenario is to demonstrate the potential of using these 
types of coupled natural–human models to explore potentially impactful scenarios that may 
not have occurred yet. Together, these experiments allow us to answer RQ1 and RQ% for the 
two scenarios, and in doing so, point toward developing more detailed models and experi-
ments to answer related and more specific verification questions.

Table 1. Experiments in the study. We note that the NHC OFCL and RI/RO experiments use the 2017 cone 
of uncertainty for Irma experiments (1–3) and the 2019 cone of uncertainty for the hypothetical Dorian 
(landfalling) experiments (6–8). For the hypothetical Dorian experiments, tracks in all experiments (6–10) 
are shifted westward so the storm makes landfall along Florida’s east coast.

Irma Dorian (landfalling)

Expt No. Expt name Expt No. Expt name

1 NHC OFCL 6 NHC OFCL (shifted)

2 NHC OFCL with RI/RO 7 NHC OFCL (shifted) with RI/RO

3 NHC OFCL with RI/RO − 12 h 8 NHC OFCL (shifted) with RI/RO − 12 h

4 NHC best track with 2007 
cone of uncertainty

9 NHC best track (shifted) with 2007 
cone of uncertainty

5 NHC best track with 2022 
cone of uncertainty

10 NHC best track (shifted) with 2022 
cone of uncertainty
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Data analysis. To compare evacuation behaviors across experiments, we track evacuation 
statistics over time for each of FLEE’s grid cells. The primary model outputs analyzed are 
evacuation rates (the percentage of households in a grid cell that successfully evacuated) 
and the percentage who wanted to evacuate but were unsuccessful due to excessive tra(c 
in their area.

In addition, we aggregate model data into multiple impact zones, designed as first-order 
approximations of areas likely to experience different levels of impacts based on the actual 
meteorological conditions produced by the storm. Here, we use four impact zones, defined 
by whether the grid cells are 1) coastal or inland, and %) experience winds greater than 6/ kt 
(hurricane force) or less than 6/ kt during the storm of interest. Using the impact zones, we 
can determine who evacuated from locations that did not end up experiencing hazardous 
wind conditions (future versions could do this for rain and surge parameters as well). In 
interpreting results, we compare metrics that might indicate successful outcomes in differ-
ent ways. For example, high evacuation rates may not be preferred if the storm ends up not 
having much impact in those areas, and unnecessary evacuations may not matter if those at 
high risk can get out safely.

Results
Comparing FLEE with observations. Figure 1 shows NHC OFCL Irma forecasts (le* column) 
and the equivalent light system representations of wind, surge, and rain risk (right columns) 
at %/-h intervals. Early forecasts place FLEE’s entire model grid within NHC’s cone of uncer-
tainty (cone size representative of the time of the event in %01)) with the most likely outcome 
(center track) being a landfalling major hurricane in southeastern Florida near Miami. How-
ever, forecasts shi*ed toward a west Florida landfall as the storm approached, with the storm 
eventually making one mainland U.S. landfall as a category / storm in the Florida Keys and a 
second landfall as a category 3 storm in southwestern Florida. Irma’s hurricane-force winds 
impacted the western two-thirds of Florida—particularly the southwest coastlines—while 
tropical-storm-force winds, .ooding, and power outages were observed along the eastern 
coastline. Based on these Irma forecasts, emergency manager agents in FLEE issued evacu-
ation orders starting in Miami–Fort Lauderdale then expanding outward along both coasts 
as the storm approached (Figs. %a,b; red cells), which was observed in Irma’s actual evacu-
ation orders (Wong et al. %01,; Darzi et al. %0%1). The comparison with empirical data on 
evacuation orders increases our con-dence that FLEE’s evacuation order algorithm behaves 
su(ciently realistically for the purposes here.

FLEE’s simulated evacuation rates based on NHC OFCL forecasts (Fig. %a) vary from %0% to 
/0% along Florida’s east coasts, /0%–)0% along the south and west coasts, and 10%–/0% 
inland. This closely resembles the observational data, which also suggest evacuation rates 
vary from %0% to /0% along Florida’s east coast, to /0%–)0% across the south and west 
coasts, and around 10%–30% inland (data aggregated from Wong et al. %01,; Long et al. 
%0%0; Martín et al. %0%0; Feng and Lin %0%1).

Since this was the largest evacuation in U.S. history, severe traffic was observed across 
Florida before Irma (Wong et al. %01,). In FLEE, traffic is most severe around Tampa Bay–Saint 
Petersburg (Fig. %b) with 5%–%0% of households in the metropolitan area unsuccessful at 
evacuating due to traffic. This broadly matches observations of traffic rates, which shows 
severe traffic across the Tampa Bay, I-)5, and surrounding areas (Feng and Lin %0%1; Staes 
et al. %0%1), and our general understanding of south and western Florida being difficult to 
evacuate based on the high population and limited evacuation routes.

Across FLEE’s entire model grid, 3%.0% of households evacuated, which equals  
5./  million people (Table %, column 1). FDEM (%01,) suggest actual evacuation numbers 
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totaled 6.9  million, and when considering households evacuating to local shelters in FLEE 
(not shown), the modeled evacuation rates closely resemble the observations. The temporal 
evolution of FLEE’s evacuation rates (supplemental Fig. 5) is linear during the event, match-
ing observations in Wong et al. (%01,).

This comparison of FLEE’s simulated evacuation using NHC’s OFCL forecasts with empirical 
data on evacuation orders, rates, and traffic suggests FLEE captures the broader patterns of 
evacuation for Irma and thus provides a realistic baseline for interpreting results from other 
experiments.

Impact of poorly forecast RI/RO. Regarding the NHC OFCL with RI/RO experiments where 
forward speed and intensity errors are significant (RQ1), evacuation rates decreased  
everywhere relative to NHC OFCL while evacuation tra(c increased (Table %, Figs. %c,d). 
For example, evacuation rates in the NHC OFCL with RI/RO experiment decreased by 
/.)% (630,000 fewer evacuees) relative to NHC OFCL across the entire model grid, while the  

Fig. 2. Irma’s simulated evacuation outcomes across grid cells for the NHC OFCL and RI/RO experiments. The first items presented 
are (a) evacuation rates and (b) percentage of households who decided to evacuate but were unsuccessful due to traffic, both 
for the experiment using Irma’s NHC OFCL forecast. Evacuation rates and the percentage of households who decided to evacuate 
but were unsuccessful due to traffic are presented for (c),(d) the NHC OFCL with RI/RO experiments and (e),(f) the NHC OFCL with 
RI/RO − 12 h experiments with values expressed as the departure from those in (a),(b) NHC OFCL. Also shown in (a)–(f) are grid 
cells that experienced hurricane force winds (dotted cells) and evacuation orders (red cells). (g) To provide a frame of reference 
for interpreting the simulations, the population by grid cell along with the approximate location of several major cities on the 
model grid are shown: Miami–Fort Lauderdale (yellow star), Tampa Bay–Saint Petersburg (blue star), Jacksonville (green star), 
and Orlando (orange star).
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number of unsuccessful evacuations due to traffic increased by similar amounts. These  
impacts were most pronounced in heavily impacted areas, such as Tampa Bay and Fort  
Myers, where a 1%%–16% reduction in evacuation rates was observed (Fig. %c). Similarly, 
RI/RO experiments in the Dorian (landfalling) scenario reduced evacuation rates across 
impacted areas (while increasing evacuation rates in less impacted areas; Fig. S,, Table S%).

When comparing the two NHC OFCL with RI/RO experiments—in both Irma and Dorian 
(landfalling) forecast scenarios—cases with larger forward speed and intensity errors  
(RI/RO − 1% h) resulted in worse evacuation rates and more traffic (Table %, columns %–,, 
Figs. %c–f). This suggests that an extra 1% h of forecast lead time can improve evacuations 
in these scenarios.

Results from the poorly forecast RI/RO scenarios with large intensity and forward speed 
errors make sense conceptually, as there is less time to evacuate before the storm arrives. 
Nevertheless, this is the first study (to our knowledge) to begin quantifying the impact of 
these errors on evacuation outcomes (RQ1), and to suggest that reducing these errors should 
translate to improved evacuations.

Impact of reduced track errors. In this section, we change from OFCL to best track as the 
simulated forecast, and modify NHC’s cone of uncertainty to sizes representative of track 
errors today (%0%%) and in the past (%00)) and examine their impact on FLEE’s evacuations 
(RQ%). When results are averaged across the model grid, a simulation with the %0%% cone re-
sults in %10,000 fewer evacuees than a simulation with the %00) cone (Table %, column %).  
The reduction is most pronounced along Florida’s east coast (less-impacted areas), where the 
smaller %0%% cone results in a 1%–)% reduction in evacuation rates, while evacuation rates 
across west Florida (most impacted areas) remain the same (Fig. 3e). Backing up this idea, 
evacuation rates in the coastal <6/ kt zone decrease by 3.5% overall (Table %, column 3),  
while in the coastal >6/ kt zone they increase by 0./% (Table %, column 5). The results  
makes sense when considering the light system forecasts for the experiments (supplemental 
Figs. S1 and S%), as the %0%% cone is quicker to reduce risk across Florida’s east coast as the 
storm approached, while forecast risk in west Florida remains the same between the %00) 
and %0%% cones.

The story is similar with the hypothetical Dorian scenario: while evacuation rates and traf-
fic remain similar across impacted areas between the simulations with the %00) and %0%% 
cones, the smaller %0%% cone leads to significantly reduced evacuation rates in less-impacted  
regions (Fig. S,, Table S%). For example, in this scenario, the %0%% cone reduced evacuation 

Table 2. Irma’s simulated evacuation behaviors averaged across all grid cells for all experiments. In addition to evacuation rates 
and total numbers evacuated, evacuation rates are broken down into impact zones (coastal vs inland and areas experiencing vs 
not experiencing hurricane force winds of 64+ kt) and the percentage and numbers of evacuees who attempted to evacuate but 
were unsuccessful due to excessive traffic. In columns 2 and 8, m indicates million and K indicates thousand.

Irma expt
Evacuation 
rates (%) Evacuated

Coastal  
> 64 kt 

zone (%)

Inland  
> 64 kt 

zone (%)

Coastal  
< 64 kt 

zone (%)

Inland  
< 64 kt 

zone (%)

Unsuccessful  
evacuation due 

to traffic (%)

Unsuccessful  
evacuation due  

to traffic

NHC OFCL 32.0 5.24m 39.3 24.5 29.6 29.4 2.5 410K

NHC OFCL 
with RI/RO

27.3 4.61m 32.0 20.3 27.2 28.4 6.3 1.06m

NHC OFCL with 
RI/RO − 12 h

26.3 4.44m 27.7 18.2 26.5 25.9 7.6 1.28m

Best track with 
2007 cone

32.5 5.33m 38.2 27.1 31.2 26.0 2.3 380K

Best track with 
2022 cone

31.2 5.12m 38.6 26.0 27.7 26.0 1.7 286K
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rates by ,%–1)% across west Florida. This makes sense conceptually: if the average track 
errors are smaller, as they are with a smaller cone, there is less uncertainty as to where 
(and when) a storm will make landfall, and which areas will be most heavily affected. Less 
uncertainty causes a smaller area to be considered at risk which influences evacuation deci-
sions, and in this case, reduces the number of people thinking they are at high enough risk 
to evacuate.

Despite little differences in evacuations across the most impacted areas between the %00) 
and %0%% cones—which could result from using best track forecasts in these experiments—the 
%0%% cone reduced evacuation rates in less impacted areas, and thus an argument can be made 
for improved evacuation outcomes with reduced forecast track errors over the %00)–%% year 
period (RQ%).

Summary and looking ahead
This article demonstrates how coupled natural–human models like FLEE can provide vir-
tual laboratories to explore how changes in hurricane forecast errors in.uence evacuations 

Fig. 3. Irma’s simulated evacuation outcomes across grid cells for experiments using the 2007 and 2022 cones of uncertainties. 
(a),(b) Evacuation rates and the percentage of households who decided to evacuate but were unsuccessful due to traffic are pre-
sented for the best track with 2007 cone of uncertainty experiments. (c),(d) Similarly, for the best track with 2022 cone of uncer-
tainty experiments, evacuation rates and the percentage of households who decided to evacuate but were unsuccessful due to 
traffic are presented. The difference between the 2007 and 2022 cone of uncertainty cases is then shown, both for (e) evacuation 
rates and (f) the percent of unsuccessful evacuations due to traffic. Also shown in (a)–(f) are grid cells that experienced hurricane 
force winds (dotted cells) and evacuation orders (red cells). (g) To provide a frame of reference for interpreting the simulations, 
the populations by grid cell along with the approximate location of several major cities on the model grid are shown: Miami–Fort 
Lauderdale (yellow star), Tampa Bay–Saint Petersburg (blue star), Jacksonville (green star), and Orlando (orange star).
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across many forecast scenarios and, in doing so, provide a new and complementary veri-ca-
tion approach to traditional metrics of forecast accuracy. To demonstrate this potential, we 
conduct hypothetical experiments using cones of uncertainty representative of track errors 
today (%0%%) and in the past (%00)) and examine their impacts on evacuation. We also cre-
ate scenarios like when a storm undergoes rapid intensi-cation (RI) or moves faster than 
expected (rapid onset), and assess their impact on evacuation outcomes in FLEE. Both sets 
of experiments are conducted for Irma and a hypothetical version of Dorian (supplemental 
material) making landfall across east Florida, and provide a -rst-order look at the following 
questions:

RQ1:  Do large intensity and forward speed errors, such as those in unexpected rapidly inten-
sifying and/or poorly forecast rapid onset scenarios, negatively impact evacuations? In 
these experiments for both the Irma and hypothetical Dorian landfalling cases, evacu-
ation rates decrease considerably in the most impacted areas (e.g., by 1%%–16% in 
areas closest to Irma’s landfall) while unsuccessful evacuations due to tra(c increased. 
Though these results make sense conceptually, we begin to measure the impact of 
these errors on evacuation outcomes and suggest that reducing them should translate 
to improved evacuations.

RQ2:  Do improvements in forecast track accuracy over time—as expressed through smaller 
cones of uncertainty—translate to improved evacuations? In the Irma and Dorian land-
falling scenarios, the %0%% (smaller) cone reduced the number of (arguably unneces-
sary) evacuations in less impacted areas relative to the %00) (larger) cone. Meanwhile, 
evacuation rates and tra(c in the most impacted areas remained similar. Since the 
cone of uncertainty sizes represent track errors during these periods, an argument can 
be made for improved evacuation outcomes with reduced forecast track errors during 
the period of %00)–%%.

Our results are not intended to provide definitive answers to the questions above; rather, 
in beginning to explore these ideas, we demonstrate how coupled natural–human models 
offer a societally relevant complement to traditional metrics of forecast accuracy, and point 
toward the development of more detailed natural–human models to answer these types of 
questions further.

Coupled natural–human models provide several opportunities for future work to address 
questions of interest to the meteorological community. First, models with a more sophisticated 
representations of forecast intensity, an increased horizontal resolution of grid cells, and faster 
computational speeds—which enables running additional simulations and scenarios—could 
better tease out the effects of track, intensity, and forward speed errors on evacuation out-
comes. Second and relatedly, coupled models with similar updates could be used to explore 
additional verification-related questions:

• Where and when are evacuation rates most susceptible to small changes in the fore-
cast track?

• Are there diminishing returns in terms of how improving aspects of forecast accuracy 
affects evacuation?

• Does human input over models and ensembles translate to evacuation success?
• Are there fundamental differences in evacuations in well forecasted RI/RO events versus 

poorly forecasted ones?

Third, coupled natural–human models can be extended to additional phenomenon 
such as tornadoes and wildfires, potentially transforming public warning and protection 
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scenarios in these areas. Fourth, one could look at other ways to measure evacuation success, 
in  addition to the ones adopted here. For example, looking at the economic impacts of 
evacuations could be particularly interesting. Fifth, Hurricane Ian (%0%%) provides another 
opportunity to verify FLEE against real-world evacuation data. Then, changing aspects of 
Ian’s forecasts and seeing its evacuation effects in FLEE would be interesting given Ian’s 
significant impacts and the complex scenario it presented for decision-makers in populated 
regions (e.g., rapid intensification and southward shift in track prior to landfall).

Coupled natural–human models like FLEE show promise for supporting meteorology in 
the long term. As computing power continues to increase, and as empirical data on hurricane 
evacuation behaviors and traffic become more available, that information can be codified 
into coupled natural–human models, thus increasing their realism, and subsequently, their 
ability to answer verification questions of interest. This emphasizes the value of integrating 
expertise in social and behavioral sciences and engineering into the weather enterprise, 
to address questions at the intersection of these fields. By combining such knowledge, 
empirical-modeling studies can provide new opportunities to advance our understanding of 
the hurricane forecast–evacuation system, including the development of societally relevant 
forecast verification techniques.

Acknowledgments. This material is based upon work supported by the National Science Foundation 
under Grants %100,01 and %100,3). The authors thank NSF for their support. This material is also 
based upon work supported by the National Center for Atmospheric Research, which is a major facility 
sponsored by the National Science Foundation under Cooperative Agreement 1,5%9)).

Data availability statement. The commented code, an ODD specification (a formal, detailed model 
description), and supporting input files are available for download at the CoMSES model library 
(www.comses.net/codebaserelease/4cd05855-f387-48bd-8899-9d62375518cb/).

���8�21��3/��10�:���9�4��010� ��� ���� �
�	��
����

http://www.comses.net/codebaserelease/4cd05855-f387-48bd-8899-9d62375518cb/


A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y J U N E  2 0 2 3 E1178

References
Baker, E., 1991: Hurricane evacuation behavior. Int. J. Mass Emerg. Disasters, 9, 

287–310, https://doi.org/10.1177/028072709100900210.
Cangialosi, J. P., 2019: National Hurricane Center forecast verification report: 2019 

hurricane season. NHC Tech. Rep., 75 pp., www.nhc.noaa.gov/verification/pdfs/
Verification_2019.pdf.

——, A. S. Latto, and R. Berg, 2018: Tropical cyclone report. Hurricane Irma 
(AL112017), 30 August–12 September 2017. NHC Tech. Rep., 111 pp., www.
nhc.noaa.gov/data/tcr/AL112017_Irma.pdf.

Darzi, A., V. Frias-Martinez, S. Ghader, H. Younes, and L. Zhang, 2021: Constructing 
evacuation evolution patterns and decisions using mobile device location data: 
A case study of Hurricane Irma. arXiv, 2102.12600v1, https://doi.org/10.48550/
arXiv.2102.12600.

Davidson, R., and Coauthors, 2018: An integrated scenario ensemble-based frame-
work for hurricane evacuation modeling: Part 1—Decision support system. Risk 
Anal., 40, 97–116, https://doi.org/10.1111/risa.12990.

DeMaria, M., J. L. Franklin, M. J. Onderlinde, and J. Kaplan, 2021: Operational  
forecasting of tropical cyclone rapid intensification at the National Hurricane 
Center. Atmosphere, 12, 683, https://doi.org/10.3390/atmos12060683.

FDEM, 2018: Regional Emergency Management Liaison Team. FDEM, www.florida 
disaster.org/dem/directors-office/regions/.

Feng, K., and N Lin, 2021: Reconstructing and analyzing the traffic flow during 
evacuation in Hurricane Irma (2017). Transp. Res., 94D, 102788, https://doi.
org/10.1016/j.trd.2021.102788.

Fossell, K. R., D. Ahijevych, R. E. Morss, C. Snyder, and C. Davis, 2017: The 
 practical  predictability of storm tide from tropical cyclones in the Gulf of 
Mexico. Mon. Wea. Rev., 145, 5103–5121, https://doi.org/10.1175/MWR-D-17- 
0051.1.

Harris, A. R., P. J. Roebber, and R. E. Morss, 2021: An agent-based modeling 
framework for examining the dynamics of the hurricane-forecast-evacuation 
system. Int. J. Disaster Risk Reduct., 67, 102669, https://doi.org/10.1016/ 
j.ijdrr.2021.102669.

——, R. E., Morss, and P. J. Roebber, 2023: What improves evacuations? Exploring the 
hurricane-forecast-evacuation system dynamics using an agent-based framework. 
Nat. Hazards Rev., https://doi.org/10.1061/NHREFO/NHENG-1671, in press.

Huang, S.-K., M. K. Lindell, and C. S. Prater, 2016: Who leaves and who stays? A 
review and statistical meta-analysis of hurricane evacuation studies. Environ. 
Behav., 48, 991–1029, https://doi.org/10.1177/0013916515578485.

Lindell, M. K., and R. W. Perry, 2012: The Protective Action Decision Model:  
Theoretical modifications and additional evidence. Risk Anal., 32, 616–632, 
https://doi.org/10.1111/j.1539-6924.2011.01647.x.

——, P. Murray-Tuite, B. Wolshon, and E. J. Baker, 2019: Large-Scale Evacuation: 
The  Analysis, Modeling, and Management of Emergency Relocation from 
 Hazardous Areas. 1st ed. Taylor and Francis, 346 pp.

Long, E. F., M. K. Chen, and R. Rohla, 2020: Political storms: Emergent partisan 
skepticism of hurricane risks. Sci. Adv., 6, eabb7906, https://doi.org/10.1126/
sciadv.abb7906.

Martín, Y., S. L. Cutter, and Z. Li, 2020: Bridging Twitter and survey data for evacua-
tion assessment of Hurricane Matthew and Hurricane Irma. Nat. Hazards Rev., 
21, 04020003, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000354.

Morss, R. E., 2005: Problem definition in atmospheric science public policy: The 
example of observing-system design for weather prediction. Bull. Amer. Meteor. 
Soc., 86, 181–192, https://doi.org/10.1175/BAMS-86-2-181.

——, and Coauthors, 2017: Hazardous weather prediction and communication in 
the modern information environment. Bull. Amer. Meteor. Soc., 98, 2653–2674, 
https://doi.org/10.1175/BAMS-D-16-0058.1.

Murphy, A. H., 1993: What is a good forecast? An essay on the nature of goodness 
in weather forecasting. Wea. Forecasting, 8, 281–293, https://doi.org/10.1175/ 
1520-0434(1993)008<0281:WIAGFA>2.0.CO;2.

NASEM, 2018: Integrating Social and Behavioral Sciences within the Weather 
 Enterprise. National Academies Press, 198 pp.

Roebber, P. J., and L. F. Bosart, 1996: The complex relationship between forecast 
skill and forecast value: A real-world analysis. Wea. Forecasting, 11, 544–559, 
https://doi.org/10.1175/1520-0434(1996)011<0544:TCRBFS>2.0.CO;2.

Staes, B., N. Menon, and R. L. Bertini, 2021: Analyzing transportation network 
performance during emergency evacuations: Evidence from Hurricane Irma. 
Transp. Res., 95D, 102841, https://doi.org/10.1016/j.trd.2021.102841.

Watts, J., R. E. Morss, C. M. Barton, and J. L. Demuth, 2019: Conceptualizing and 
implementing an agent-based model of information flow and decision making 
during hurricane threats. Environ. Modell. Software, 122, 104524, https://doi.
org/10.1016/j.envsoft.2019.104524.

Widener, M. J., M. W. Horner, and S. S. Metcalf, 2013: Simulating the effects of social 
networks on a population’s hurricane evacuation participation. J. Geogr. Syst., 
15, 193–209, https://doi.org/10.1007/s10109-012-0170-3.

Wong, S., S. Shaheen, and J. Walker, 2018: Understanding evacuee behavior: A case 
study of Hurricane Irma. Transportation Sustainability Research Center Rep.,  
72 pp., https://escholarship.org/uc/item/9370z127.

Yang, K., R. A. Davidson, B. Blanton, B. Colle, K. Dresback, R. Kolar, and  
T.  Wachtendorf, 2019: Hurricane evacuations in the face of uncertainty: Use of  
integrated models to support robust, adaptive, and repeated decision-making.  
Int. J. Disaster Risk Reduct., 36, 101093, https://doi.org/10.1016/j.ijdrr.2019.101093.

Yi, W., L. K. Nozick, R. A. Davidson, B. Blanton, and B. A. Colle, 2017: Optimization of 
the issuance of evacuation orders under evolving hurricane conditions. Transp. 
Res., 95B, 285–304, https://doi.org/10.1016/j.trb.2016.10.008.

Yin, W., P. Murray-Tuite, S. V. Ukkusuri, and H. Gladwin, 2014: An agent-based mod-
eling system for travel demand simulation for hurricane evacuation. Transp. 
Res., 42C, 44–59, https://doi.org/10.1016/j.trc.2014.02.015.

���8�21��3/��10�:���9�4��010� ��� ���� �
�	��
����

https://doi.org/10.1177/028072709100900210
http://www.nhc.noaa.gov/verification/pdfs/Verification_2019.pdf
http://www.nhc.noaa.gov/verification/pdfs/Verification_2019.pdf
http://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf
http://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf
https://doi.org/10.48550/arXiv.2102.12600
https://doi.org/10.48550/arXiv.2102.12600
https://doi.org/10.1111/risa.12990
https://doi.org/10.3390/atmos12060683
http://www.floridadisaster.org/dem/directors-office/regions/
http://www.floridadisaster.org/dem/directors-office/regions/
https://doi.org/10.1016/j.trd.2021.102788
https://doi.org/10.1016/j.trd.2021.102788
https://doi.org/10.1175/MWR-D-17-0051.1
https://doi.org/10.1175/MWR-D-17-0051.1
https://doi.org/10.1016/j.ijdrr.2021.102669
https://doi.org/10.1016/j.ijdrr.2021.102669
https://doi.org/10.1061/NHREFO/NHENG-1671
https://doi.org/10.1177/0013916515578485
https://doi.org/10.1111/j.1539-6924.2011.01647.x
https://doi.org/10.1126/sciadv.abb7906
https://doi.org/10.1126/sciadv.abb7906
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000354
https://doi.org/10.1175/BAMS-86-2-181
https://doi.org/10.1175/BAMS-D-16-0058.1
https://doi.org/10.1175/1520-0434(1993)008%3C0281:WIAGFA%3E2.0.CO;2
https://doi.org/10.1175/1520-0434(1993)008%3C0281:WIAGFA%3E2.0.CO;2
https://doi.org/10.1175/1520-0434(1996)011%3C0544:TCRBFS%3E2.0.CO;2
https://doi.org/10.1016/j.trd.2021.102841
https://doi.org/10.1016/j.envsoft.2019.104524
https://doi.org/10.1016/j.envsoft.2019.104524
https://doi.org/10.1007/s10109-012-0170-3
https://escholarship.org/uc/item/9370z127
https://doi.org/10.1016/j.ijdrr.2019.101093
https://doi.org/10.1016/j.trb.2016.10.008
https://doi.org/10.1016/j.trc.2014.02.015

	A New Verification Approach? Using Coupled Natural–Human Models to Evaluate the Impact of Forecast Errors on Evacuations
	KEYWORDS
	Design and approach
	Model overview.
	Model validation.
	Experimental design.
	Data analysis.

	Results
	Comparing FLEE with observations.
	Impact of poorly forecast RI/RO.
	Impact of reduced track errors.

	Summary and looking ahead
	Acknowledgments.
	Data availability statement.
	References


